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Abstract

We describe systems and their components by functional speci�cation
techniques� We de�ne notions of interface and interaction re�nement for
interactive systems and their components� These notions of re�nement
allow one to change both the syntactic �the number of channels and sorts
of messages at the channels� and the semantic interface �causality �ow
between messages and interaction granularity� of an interactive system
component� We prove that these notions of re�nement are compositional
with respect to sequential and parallel composition of system components�
communication feedback and recursive declarations of system components�
According to these proofs re�nements of networks can be accomplished in
a modular way by re�ning their components� We generalize the notions of
re�nement to re�ning contexts� Finally full abstraction for speci�cations
is de�ned and compositionality with respect to this abstraction is shown�
too�

�This work was partially sponsored by the German Sonderforschungsbereich ��� �Werk�
zeuge f�ur die Nutzung paralleler Architekturen�

�



CONTENTS �

Contents

� Introduction �

� Speci�cation �

� Composition �
��� Composition of Functions � � � � � � � � � � � � � � � � � � � � � � ��
��� Composition of Speci�cations � � � � � � � � � � � � � � � � � � � � ��

� Re�nement� Representation� Abstraction ��
��� Property Re�nement � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Interaction Re�nement � � � � � � � � � � � � � � � � � � � � � � � � ��

� Compositionality of Interaction Re�nement ��
��� Sequential and Parallel Composition � � � � � � � � � � � � � � � � ��
��� Feedback � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Recursively de�ned Speci�cations �	
��� Semantics of Recursively De�ned Speci�cations � � � � � � � � � � ��
��� Re�nement of Recursively Speci�ed Components � � � � � � � � � ��


 Predicate Transformers as Re�nements ��

� Conclusion ��

A Appendix� Full Abstraction ��



� INTRODUCTION �

� Introduction

A distributed interactive system consists of a family of interacting components�
For reducing the complexity of the development of distributed interactive sys	
tems they are developed by a number of successive development steps� By each
step the system is described in more detail and closer to an implementation
level� We speak of levels of abstraction and of stepwise re�nement in system
development�

When describing the behavior of system components by logical speci�cation
techniques a simple concept of stepwise re�nement is logical implication� Then
a system component speci�cation is a re�nement of a component speci�cation

if it exhibits all speci�ed properties and possibly more� In fact
 then re�nement
allows the replacement of system speci�cations by more re�ned ones exhibiting
more speci�c properties�

More sophisticated notions of re�nement allow to re�ne a system component
to one exhibiting quite di�erent properties than the original one� In this case

however
 we need a concept relating the behaviors of the re�ned system compo	
nent to behaviors of the original one such that behaviors of the re�ned system
component can be understood to represent behaviors of the original one� The
behavior of interactive system components is basically given by their interac	
tion with their environment� Therefore the re�nement of system components
basically has to deal with the re�nement of their interaction� Such a notion of
interaction re�nement is introduced in the following�

Concepts of re�nement for software systems have been investigated since
the early ���s� One of the origins of re�nement concepts is data structure
re�nement as treated in Hoare�s pioneering paper �Hoare ��� The ideas of
data structure re�nement given there were further explored and developed �see

for instance
 �Jones ���
 �Broy et al� ���
 �Sannella ���
 see �Coenen et al� ���
for a survey�� Also the idea of re�ning interacting systems has been treated
in numerous papers �see
 for instance
 �Lamport ���
 �Abadi
 Lamport ���
 and
�Back �����

Typically distributed interactive systems are composed of a number of com	
ponents that interact for instance by exchanging messages or by updating shared
memory� Forms of composition allow to compose systems from smaller ones�
Basic forms of composition for systems are parallel and sequential composition

communication feedback and recursion�

For a set of forms of composition a method for specifying system components
is called compositional �sometimes also the word modular is used�
 if the speci	
�cation of composed systems can be derived from the speci�cations of the con	
stituent components� We call a re�nement concept compositional
 if re�nements
of a composed system are obtained by giving re�nements for the components�
Traditionally
 compositional notions of speci�cation and re�nement for concur	
rent systems are considered hard to obtain� For instance
 the elegant approach
of �Chandy
 Misra ��� is not compositional with respect to liveness properties
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and does not provide a compositional notion of re�nement� Note
 it makes only
sense to talk about compositionality with respect to a set of forms of composi	
tion� Forms of composition of system components de�ne an algebra of systems

also called a process algebra� Not all approaches to system speci�cations empha	
sise forms of composition for systems� For instance
 in state machine oriented
system speci�cations systems are modelled by state transitions� No particular
forms of composition of system components are used� As a consequence compo	
sitionality is rated less signi�cant there� Approaches being in favor of describing
systems using forms of composition are called �algebraic�� A discussion of the
advantages and disadvantages of algebraic versus nonalgebraic approaches can
be found
 for instance
 in �Janssen et al� ����

Finding compositional speci�cation methods and compositional interaction
re�nement concepts is considered a di�cult issue� Compositional re�nement
seems especially di�cult to achieve for programming languages with tightly
coupled parallelism as it is the case in a �rendezvous� concept �like in CCS
and CSP�� In tightly coupled parallelism the actions are directly used for the
synchronization of parallel activities� Therefore the granularity of the actions
cannot be re�ned
 in general
 without changing the synchronization structure
�see
 for instance
 �Aceto
 Hennessy ��� and �Vogler �����

The presentation of a compositional notion of re�nement where the gran	
ularity of interaction can be re�ned is the overall objective of the following
sections� We use functional
 purely descriptive
 �nonoperational� speci�cation
techniques� The behavior of distributed systems interacting by communica	
tion over channels is represented by functions processing streams of messages�
Streams of messages represent communication histories on channels� System
component speci�cations are predicates characterizing sets of stream processing
functions� System components described that way can be composed and de	
composed using the above mentioned forms of composition such as sequential
and parallel composition as well as communication feedback� With these forms
of composition all kinds of �nite data processing nets can be described� Allow	
ing in addition recursive declarations even in�nite data processing nets can be
described�

In the following concepts of re�nement for interactive system components
are de�ned that allow one to change both the number of channels of a com	
ponent as well as the granularity of the messages sent by it� In particular

basic theorems are proved that show that the introduced notion of re�nement is
compositional for the basic compositional forms as well as for recursive declara	
tions� Accordingly for an arbitrary net of interacting components a re�nement
is schematically obtained by giving re�nements for its components� The correct	
ness of such a re�nement follows according to the proved theorems schematically
from the correctness proofs for the re�nements of the components�

We give examples for illustrating the compositionality of re�nement� We
deliberately have chosen very simple examples to keep their speci�cations small
such that we can concentrate on the re�nement aspects� The simplicity of these
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examples does not mean that much more complex examples cannot be treated�
Finally we generalize our notion of re�nement to re�ning contexts� Re�ning

contexts allow re�nements of components where the re�ned presentation of the
input history may depend on the output history� This allows in particular
to understand unreliable components as re�nements of reliable components as
long as the re�ning context takes care of the unreliability� Re�ning contexts are
represented by predicate transformers with special properties� We give examples
for re�ning contexts�

In an appendix full abstraction of functional speci�cations for the considered
composing forms is treated�

� Speci�cation

In this section we introduce the basic notions for functional system models and
functional system speci�cations� In the following we study system components
that exchange messages asynchronously via channels� A stream represents a
communication history for a channel� A stream of messages over a given message
set M is a �nite or in�nite sequence of messages� We de�ne

M� �df M
� �M�

We brie�y repeat the basic concepts from the theory of streams that we shall
use later� More comprehensive explanations can be found in �Broy ����

� By x�y we denote the result of concatenating two streams x and y� We
assume that x�y � x
 if x is in�nite�

� By hi we denote the empty stream�

� If a stream x is a pre�x of a stream y
 we write x v y� The relation v is
called pre�x order� It is formally speci�ed by

x v y �df �z �M� � x�z � y

� By �M��n we denote tuples of n streams� The pre�x ordering on streams
as well as the concatenation of streams is extended to tuples of streams
by elementwise application�

A tuple of �nite streams represents a partial communication history for a tuple
of channels� A tuple of in�nite streams represents a total communication history
for a tuple of channels�

The behavior of deterministic interactive systems with n input channels and
m output channels is modeled by �n�m��ary stream processing functions

f � �M��n � �M��m

A stream processing function determines the output history for a given commu	
nication history for the input channels in terms of tuples of streams�
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Example � Stream processing function

Let a set D of data elements be given and let the set of messages M be speci�ed
by�

M � D � f�g
Here the symbol � is a signal representing a request� For data elements d � D

a stream processing function

�c�d� �M� �M�

is speci�ed by

�e � D�x �M� � �c�d����x� � d����c�d��x�
� �c�d��e�x� � e��c�e��x�

The function �c�d� describes the behavior of a simple storage cell that can store
exactly one data element� Initially d is stored� The behavior of the component
modeled by �c�d� can be illustrated by an example input

�c�d�� ����d��� �d�
�� �d�

�d�
�� �d�

�x� �
d�d�d�

�d�
�d�

�d�
�d�

�d�
�d�

�d�
��c�d���x

The function �c�d� is a simple example of a stream processing function where
every input message triggers exactly one output message�

End of example

In the following we use some notions from domain and �xed point theory that
are brie�y listed�

� A stream processing function is called pre�x monotonic
 if for all tuples of
streams x� y � �M��n we have

x v y � f�x v f�y

We denote the function application f�x� by f�x to avoid brackets�

� By tS we denote a least upper bound of a set S
 if it exists�

� A set S is called directed
 if for any pair of elements x and y in S there
exists an upper bound of x and y in S�

� A partially ordered set is called complete
 if every directed subset has a
least upper bound�

� A stream processing function f is called pre�x continuous
 if f is pre�x
monotonic and for every directed set S 	M� we have�

f� t S � tff�x � x � Sg
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The set of streams as well as the set of tuples of streams are complete� For
every directed set of streams there exists a least upper bound�

We model the behavior of interactive system components by sets of contin	
uous �and therefore by de�nition also monotonic� stream processing functions�
Monotonicity models causality between input and output� Continuity models
the fact that for every behavior the system�s reaction to in�nite input can be
predicted from the component�s reactions to all �nite pre�xes of this input��
Monotonicity takes care of the fact that in an interactive system output already
produced cannot be changed when further input arrives� The empty stream is to
be seen as representing the information �further communication unspeci�ed��
Note
 in the example above by the preimposed monotonicity of the function
�c�d� we conclude �c�d��hi� � hi� otherwise
 we could construct a contradiction�

A speci�cation describes a set of stream processing functions that represent
the behaviors of the speci�ed systems� If this set is empty
 the speci�cation is
called inconsistent 
 otherwise it is called consistent � If the set contains exactly
one element
 then the speci�cation is called determined� If this set has more
then one element
 then the speci�cation is called underdetermined and we also
speak of underspeci�cation� As we shall see
 an underdetermined speci�cation
may be re�ned into a determined one� An underdetermined speci�cation can
also be used to describe hardware or software units that are nondeterministic�
An executable system is called nondeterministic
 if it is underdetermined� Then
the underspeci�cation in the description of the behaviors of a nondeterministic
system allows nondeterministic choices carried out during the execution of the
system� In the descriptive modeling of interactive systems there is no di�erence
in principle between underspeci�cation und the operational notion of nondeter	
minism� In particular
 it does not make any di�erence in such a framework

whether these nondeterministic choices are taken before the execution starts or
step by step during the execution�

The set of all �n
m�	ary pre�x continuous stream processing functions is
denoted by

SPFn
m

The number and sorts of input channels as well as output channels of a speci�	
cation are called the component�s syntactic interface� The behavior
 represented
by the set of functions that ful�ll a speci�cation
 is called the component�s se�
mantic interface� The semantic interface includes in particular the granularity
of the interaction and the causality between input and output� For simplicity
we do not consider speci�c sort information for the individual channels of com	
ponents in the following and just assume M to be a set of messages� However

all our results carry over straightforwardly to stream processing functions where
more speci�c sorts are attached to the individual channels�

�This does not exclude the speci�cation of more elaborate liveness properties including
fairness� Note	 fairness is	 in general	 a property that has to do with �fair� choices between
an in�nite number of behaviors�
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Qn
�

�
m
�

�

Figure �� Graphical representation of a component Q

A speci�cation of a possibly underdetermined interactive system component
with n input channels and m output channels is modeled by a predicate

Q � SPFn
m � Bool

characterizing pre�x continuous stream processing functions� Q is called an
�n�m�	ary system�s speci�cation� A graphical representation of an �n�m�	ary
system component Q is given in Figure �� The set of speci�cations of this form
is denoted by

SPECn
m

Example � Speci�cation

A component called C �for storage Cell� with just one input channel and one
output channel is speci�ed by the predicate C� The component C can be seen
as a simple store that can store exactly one data element� C speci�es functions
f of the functionality�

f �M� �M�

Let the sets D and M be speci�ed as in example �� If C receives a data element
it sends a copy on its output channels� If it receives a request represented by
the signal �
 it repeats its last data output followed by the signal � to indicate
that this is repeated output� The signal � is this way used for indicating a �read
storage content request�� The signal � triggers the read operation� A data
element in the input stream changes the content of the store� The message d
triggers the write operation� Initially the cell carries an arbitrary data element�
This behavior is formalized by the following speci�cation for C�

C�f � �d � D � f � �c�d�

where the auxiliary function �c�d� is speci�ed as in example �� Notice that the
data element stored initially is not speci�ed and thus component C is underde	
termined�

End of example
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For a deterministic speci�cation Q where for exactly one function q the predicate
Q is ful�lled
 in other words where we have

Q�f 
 f � q

we often write �by misuse of notation� simply q instead of Q� This way we
identify determined speci�cations and their behaviors�

By Im � SPFm
m we denote the identity function� that is we assume

�x � �M��m � Im�x � x

We shall drop the index m for Im whenever it can be avoided without confusion�
By �nm � SPFn

m we denote the function that produces for every input just
the empty stream as output on all its output channels� that is we de�ne

�x � �M��n � �nm�x � him

Similarly we write ym for the unique function in SPFm
� � in other words the

function with m input channels
 but with no output channels�
By �Lnm � SPECn

m we denote the logically weakest speci�cation
 which is the
speci�cation that is ful�lled by all stream processing functions� It is de�ned by

�f � SPFn
m � �Lnm�f

By
n

� we denote the function that produces two copies of its input� We have
n

�� SPFn
�n and

�x � �M��n �
n

� �x � �x� x�

By
nm
� � SPFn�m

n�m we denote the function that permutes its input streams as
follows � let x � �M��n� y � �M��m ��

nm
� �x� y� � �y� x�

Again we shall drop the index n as well as m in �nm� �L
n
m� yn and

n

� whenever it
can be avoided without confusion�

� Composition

In this section we introduce the basic forms of composition namely sequential
composition
 parallel composition and feedback� These compositional forms are
introduced for functions �rst and then extended to component speci�cations�
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��� Composition of Functions

Given functions
f � SPFn

k � g � SPF k
m

we write
f � g

for the sequential composition of the functions f and g which yields a function
in SPFn

m where
�f � g��x � g�f�x��

Given functions
f � SPFn�

m�� g � SPFn�
m�

we write
fkg

for the parallel composition of the functions f and g which yields a function in
SPFn��n�

m��m� where �let x � �M��n�� y � �M��n���

�fkg���x� y� � �f�x� g�y�

We assume that � � � has higher priority than �k�� Given a function

f � SPFn�m
m

we write
�f

for the feedback of the output streams of function f to its input channels which
yields a function in SPFn

m where

��f��x � fix�� y � f�x� y�

Here fix denotes the �xed point operator associating with any monotonic func	
tion f its least �xed point fix�f � Thus y � ��f��x means that y is with respect
the pre�x ordering the least solution of the equation y � f�x� y�� We assume
that ��� has higher priority than the binary operators ��� and �k�� A graphical
representation for feedback is given in Figure ��

We obtain a number of useful rules by the �xed point de�nition of �f � As a
simple consequence of the �xed point characterization
 we get the unfold rules�

�f � �� �Ik�f�� f

�f � �����Ikf�� f�
A graphical representation of the unfold rules for feedback is given in Figure ��
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f
�

x �
y ��

�
�
�

�f

Figure �� Graphical representation of feedback

f
�

x �
�

f
�

y�
y ��

�
�
�

�f

� �

f
�

x �
�

f
�

y �
y ��

�
�
�

�����Ikf�� f�� �

Figure �� Graphical representation of the unfold rules for feedback
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f
�

x �
g� y ��

�
�
�

f

� g y�

x �
g� y ��

�
�
�

Figure �� Graphical representation of semiunfold

A useful rule for feedback is semiunfold that allows one to move components
outside or inside the feedback loop �let g � SPFm

m ��

��f � g� � ���Ikg�� f�� g
A graphical representation for semiunfold is given in Figure ��

For reasoning about feedback loops and �xed points the following special
case of semiunfold is often useful�

fix�� y � m�f�x� y� � m�fix�� y � f�x�m�y�

The rule is an instance of semiunfold with g � � y � m�y� The correctness of
this rule can also be seen by the following argument� if y is the least �xed point
of

� y � m�f�x� y�

and ey is the least �xed point of

� ey � f�x� ey�

then ey � m�y and thus

y � m�� y � f�x�m�y�

Semiunfold is a powerful rule when reasoning about results of feedback loops�
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��� Composition of Speci�cations

We want to compose speci�cations of components to networks� The forms of
composition introduced for functions can be extended to component speci�ca	
tions in a straightforward way� Given component speci�cations

Q � SPECn
k � R � SPECk

m

we write
Q�R

for the predicate in SPECn
m where

�Q�R��f 
 �q� r � Q�q �R�r � f � q� r

Trivially we have for all speci�cations Q � SPECn
m the following equations�

Q� I � Q

I�Q � Q

Q� ym � yn

Given speci�cations
Q � SPECn�

m�� R � SPECn�
m�

we write
QkR

for the predicate in SPECn��n�
m��m� where

�QkR��f 
 �q� r � Q�q �R�r � f � qkr

Given speci�cation
Q � SPECn�m

m

we write
�Q

for the predicate in SPECn
m where

��Q��f 
 �q � Q�q � f � �q

For feedback over underdetermined speci�cations we get the following rules��

�Q� �� �Ik�Q��Q

�For determined system speci�cations Q we get the stronger rules �Q 
 �� Ik�Q��Q
and �Q 
 ���IkQ��Q� which do not hold for underdetermined systems	 in general� The
erroneous assumption that these rules are valid also for underdetermined systems is the source
for the merge anomaly see �Brock	 Ackermann �����
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�Q� �����IkQ��Q�

A useful rule for feedback is fusion that allows one to move components that are
not a�ected by the feedback outside or inside the feedback operator application�
Let R � SPECk

n�
R��Q � ���RkI��Q�

���Qkym�� �IkR�� � ��Q�� �IkR�
With the help of the basic functions and the forms of composition introduced
so far we can represent all kinds of �nite networks of systems �data �ow nets���
The introduced composing forms lead to an algebra of system descriptions�

� Re�nement� Representation� Abstraction

In this section we introduce concepts of re�nement for system components both
with respect to the properties of their behaviors as well as with respect to their
syntactic interface and granularity of interaction�

We start by de�ning a straightforward notion of property re�nement for
system component speci�cations� Then we introduce a notion of re�nement
for communication histories� Based on this notion we de�ne the concept of
interaction re�nement for interactive components� This notion allows to re�ne
a component by changing the number of input and output channels as well as
the granularity of the exchanged messages�

��� Property Re�nement

Speci�cations are predicates characterizing functions� This leads to a simple
notion of re�nement of component speci�cations by adding logical properties�
Given speci�cations

Q� eQ � SPECn
m

eQ is called a �property� re�nement of Q

if for all f � SPFn
m�

eQ�f � Q�f

Then we write
eQ� Q

If eQ is a property re�nement for Q
 then eQ has all the properties Q has and
may be some more� Every behavior that eQ shows is also a possible behavior of
Q�

�Of course	 the introduced combinatorial style for de�ning networks is not always very
useful	 in practice	 since the combinatorial formulas are hard to read� However	 we prefer
throughout this report to work with these combinatorial formulas	 since this puts emphasis
on the compositional forms and the structureof composition� For practical purposes a notation
with named channels is often more adequate�
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All considered composing forms are monotonic for the re�nement relation as
indicated by the following theorem�

Theorem � Compositionality of Re�nement�

� eQ� � Q�� � � eQ� � Q��� � eQ�� eQ� � Q��Q��

� eQ� � Q�� � � eQ� � Q��� � eQ�k eQ� � Q�kQ��

� eQ� Q�� �� eQ� �Q�

Proof� Straightforward
 since all operators for speci�cations are de�ned point	
wise on the sets of functions that are speci�ed�

�

A simple example of a property re�nement is obtained for the component C as
described in Example � on page � if we add properties about the data element
initially stored in the cell� A property re�nement does not allow one to change
the syntactic interface of a component
 however�

��� Interaction Re�nement

Recall from section � that streams model communication histories on channels�
In more sophisticated development steps for a component the number of chan	
nels and the sorts of messages on channels are changed� Such steps do not
represent property re�nements� Therefore we introduce a more general notion
of re�nement� To be able to do this we study concepts of representation of
communication histories on n channels modeled by a tuple of n streams by
communication histories on m channels modeled by a tuple of m streams�

Tuples of streams y � �M��m can be seen as representations of tuples of
streams x � �M��n
 if we introduce a mapping � � SPFn

m that associates
with every x its representation� � is called a representation function� If � is
injective then it is called a de�nite representation function� Note
 a mapping �
is injective
 if and only if�

�x� x � ��x � ��x� x � x

If a speci�cation R � SPECn
m is used for the speci�cation of a set of represen	

tation functions
 R is called a representation speci�cation�

Example � Representation Speci�cation

We specify a representation speci�cation R allowing the representation of streams
of data elements and requests by two separate streams
 one of which carries the
requests and the other of which carries the data elements� The representation
functions are mappings � of the following functionality�

� �M� � f��pg� � �D � fpg��
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Here
p

is used as a separator signal� It can be understood as a time tick that
separates messages� Given streams x and y let �x� y� denote a pair of streams and
�x� y���ex� ey� the elementwise concatenation of pairs of streams
 in other words�

�x� y���ex� ey� � �x�ex� y�ey�

Let T icks be de�ned by the set of pairs of streams of ticks that have equal
length�

T icks � f�pk
�
pk

� � k � INg
We specify the representation speci�cation R explicitly as follows�

R�� � �d � D�x �M� � �t � T icks � ����x� � t���� hi����x
� �t � T icks � ��d�x� � t��

p
� d�

p
����x

Note
 by the monotonicity of the speci�ed functions�

R��� �t � T icks � ��hi � t

The computation of a representation is illustrated by the following example�

������d�� ��d�� ��d�� x� �
� ����

p
���

p
��� �

p
�

d�
�
p
� d�

�
p
� d�

�
p
����x�

The example demonstrates how the time ticks are used to indicate in the streams
��x� the order of the requests relatively to the data messages in the original
stream x�

End of example

The elements in the images of the functions �withR�� are called representations�

De�nition � De�nite representation speci�cation� A representation
speci�cation R is called de�nite� if

�x� x� �� � � R�� �R�� � ��x � ��x� x � x

In other words R is de�nite� if di�erent streams x are always di�erently repre�
sented�

Obviously
 if R is a de�nite representation speci�cation
 then all functions �
with R�� are de�nite� For de�nite representation speci�cations for elements x
and x with x �� x the sets of representation elements f��x � R��g and f��x � R��g
are disjoint� Note
 the representation speci�cation given in the example above
is de�nite�



� REFINEMENT� REPRESENTATION� ABSTRACTION �

For every injective function
 and thus for every de�nite representation func	
tion �
 there exists a function � � SPFm

n such that�

��� � I

The function � is an inverse to � on the image of �� The function � is called
an abstraction for �� Notice that � is not uniquely determined as long as � is
not surjective� In other words
 as long as not all elements in �M��m are used
as representations of elements in �M��n there may be several functions � with
A���

The concept of abstractions for de�nite representation functions can be ex	
tended to de�nite representation speci�cations�

De�nition � Abstraction function� Let R � SPECn
m be a de�nite repre�

sentation speci�cation� a function � � SPFmn with

R�� � I

is called an abstraction function for R�

The existence of abstractions follows from the de�nition of de�nite representa	
tion speci�cation� Again for de�nite representation speci�cations the abstrac	
tion functions � are uniquely determined only on the image of R
 that is on the
union of the images of functions � with R���

De�nition � Abstraction for a de�nite representation speci�cation�
Let A � SPECm

n be the speci�cation with

A��
 R�� � I

Then A is called the abstraction for R�

For consistent de�nite representation speci�cations R with abstraction A we
have

R�A � I

If ��A � I � R�� then R contains all possible choices of representation functions
for the abstraction A�

Example � Abstraction

For the representation speci�cation R described in example � the abstraction
functions � are mappings of the functionality�

� � f��pg� � �D � fpg�� �M�

The speci�cation of A reads as follows�

A�� � �d � D�x � f��pg�� y � �D � fpg�� �
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����x� y� � ����x� y�
� ��

p
�x�

p
� y� � ��x� y�

� ��
p
�x� d�

p
�y� � d���x� y�

It is a straightforward rewriting proof that indeed�

R�A � I

The speci�cation A shows a considerable amount of underspeci�cation
 since
not all pairs of streams in f��pg� � �D � fpg�� are used as representations�

End of example

Parallel and sequential composition of de�nite representations leads to de�nite
representations again�

Theorem � Let Ri � SPECnimi
be de�nite representation speci�cations for i �

�� �� then
R�kR�

R��R�

�assuming m� � n� in the second formula� are de�nite representation speci�ca�
tions�

Proof� Sequential and parallel composition of injective functions leads to in	
jective functions�

�

Trivially we can obtain the abstractions of the composed representations by
composing the abstractions�

For many applications
 representation speci�cations are neither required to
be determined nor even de�nite� For an inde�nite representation speci�cation
sets of representation elements for di�erent elements are not necessarily disjoint�
Certain representation elements y do occur in several sets of representations for
elements� They ambiguously stand for ��represent�� di�erent elements� Such
an element may represent the streams x as well as x
 if ��x � ��x for functions
� and � with R�� and R��� For inde�nite representation speci�cations the rep	
resented elements are not uniquely determined by the representation elements�
A representation element y stands for the set

fx � �� � R�� � ��x � yg
For a de�nite representation speci�cation R this set contains exactly one element
while for an inde�nite representation speci�cation R this set may contain more
than one element� In the latter case
 of course
 abstraction functions � with
R�� � I do not exist�

However
 even for certain inde�nite representations we can introduce the
concept of an abstraction�
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De�nition � Uniform representation speci�cations� A consistent speci�
�cation R � SPECn

m is called a uniform representation speci�cation� if there
exists a speci�cation A � SPECm

n such that for all ��

R��� R�A� � � �

The speci�cation A is called again the abstraction for R�

The formula expresses that �R�A� is a left	neutral element for every represen	
tation function in R� Essentially the existence of an abstraction expresses the
following property of R� if for di�erent elements x and x the same representa	
tions are possible
 then every representation function maps these elements onto
equal representations� More formally stated
 if there exist functions e� and �

with R�e� and R�� such that
e��x � ��x

then for all functions � with R���

��x � ��x

Thus if elements are identi�ed by some representation functions
 this identi�ca	
tion is present in all representation functions� The same amount of information
is �forgotten� by all the representations� The representation functions then are
inde�nite in a uniform way� De�nite representations are always uniform�

A function is injective
 if for all x and x we have�

��x � ��x� x � x

A function that is not injective � de�nes a nontrivial partition on its domain�
A representation speci�cation is uniform if and only if all functions � with R��

de�ne the same partition�
For a uniform representation speci�cation R with abstraction A the product

�R�A� re�ects the underspeci�cation in the choices of the representations pro	
vided by R� If for a function � with �R�A��� we have x � ��x
 then x and x

have the same representations�

De�nition � Adequate representation� A uniform representation speci��
cation R with abstraction A is called adequate for a speci�cation Q� if�

Q�R�A� Q

Adequacy means that the underspeci�cation in �R�A� does not introduce more
underspeci�cation into Q�R�A than already present in Q� Note
 de�nite repre	
sentations are adequate for all speci�cations Q�

De�nition � Interaction re�nement� Given representations R � SPECn�n�

R � SPECm�m and speci�cations bQ � SPEC�n
�m� Q � SPECnm we say that bQ is an

interaction re�nement of Q for the representation speci�cations R and R� if

R� bQ� Q�R
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Figure �� Commuting diagram of interaction re�nement

This de�nition indicates that we can replace via an interaction re�nement a
system of the form Q�R by a re�ned system of the form R� bQ� We may think
about the relationship between Q and bQ as follows� the speci�cation Q speci�es
a component on a more abstract level while Q� gives a speci�cation for the
component at a more concrete level� Instead of computing at the abstract level
with Q and then translating the output via R onto the output representation
level
 we may translate the input by R onto the input representation level and
compute with bQ� We obtain one of these famous commuting diagrams as shown
in Figure ��

De�nition 
 Adequate interaction re�nement� The interaction re�ne�
ment of Q for the representation speci�cations R and R is called adequate for
a speci�cation Q� if R is adequate for Q�

For adequate interaction re�nements using uniform representation speci�cations
R with abstraction A � SPECm

i 
 we obtain

R� bQ�A� Q

since from the interaction re�nement property we get

R� bQ�A� Q�R�A

and by the adequacy of R for Q

Q�R�A� Q

which shows that R� bQ�A is a �property� re�nement of Q� A graphical illustra	
tion of adequate interaction re�nement is shown in Figure ��
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Figure �� Commuting diagram of interaction re�nement

The following table summarizes the most important de�nitions introduced
so far�

Table of de�nitions

eQ property re�nement of Q eQ�f � Q�f

R consistent
 de�nite with abstr� A R�A � I

R uniform with abstraction A R��� R�A� � � �

R adequate for Q with abs� A Q�R�A� Q

Inter� re�nement bQ of Q for R�R R� bQ� Q�R

Adequate inter� re�nement R uniform and adequate for Q

The notion of interaction re�nement allows one to change both the syntactic
and the semantic interface� The syntactic interface is determined by the number
and sorts of channels� the semantic interface is determined by the behavior of
the component represented by the causality between input and output and by
the granularity of the interaction�
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Example � Interaction Re�nement

We re�ne the component C as given in Example � into a component bC that has
instead of one input and one output channel two input and two output channels�
The re�nement bC uses one of its channels carrying the signal � as a read channel
and one of its channels carrying data as a write channel� Let R and A be given
as speci�ed in the examples above

We specify the interaction re�nement bC of C explicitly� bC speci�es functions
of functionality�

f � f��pg� � �D � fpg�� � f��pg� � �D � fpg��

We specify�
bC�f � �d � D � f � h�d

where the auxiliary function h is speci�ed by�

h � D � �f��pg� � �D � fpg�� � f��pg� � �D � fpg���
�d� e � D�x � f��pg�� y � �D � fpg�� �

�h�d����x� y� � �
p
��� d�

p
���h�d��x� y�

� �h�d��
p
�x�

p
� y� � �

p
�
p
���h�d��x� y�

� �h�e��
p
�x� d�

p
�y� � �

p
� d�

p
���h�d��x� y�

It is a straightforward proof to show�

R� bC � C�R

Assume � with R�� and h such that there exist f and d with bC�f and f � h�d�
we prove by induction on the length of the stream x that there exist e� with R�e�
and c�d as speci�ed in example � such that�

�h�d����x � e���c�d��x

For x � hi we obtain� there exists t � T icks such that�

�h�d����x �
�h�d��t �
t �
e��x �
e���c�d��x

Now assume the hypothesis holds for x� there exists t � T icks�

�h�d������x� �
�h�d��t���� hi����x� �
t��

p
��� d�

p
���h�d����x �

e��d��c�d��x� �
e��c�d����x�
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There exists t � T icks�

�h�e����d�x� �
�h�e��t��

p
� d�

p
����x� �

t��
p
� d�

p
���h�d����x �

e��d��c�d��x� �
e��c�e��d�x�

This concludes the proof for �nite streams x� By the continuity of h and � the
proof is extended to in�nite x�

End of example

Continuing with the system development after an adequate interaction re�ne	
ment of a component we may decide to leave R and A unchanged and carry on
by just further re�ning bQ�

� Compositionality of Interaction Re�nement

Large nets of interacting components can be constructed by the introduced
forms of composition� When re�ning such large nets it is decisive for keeping
the work manageable that interaction re�nements of the components lead to
interaction re�nements of the composed system�

In the following we prove that interaction re�nement is indeed compositional
for the introduced composing forms that is sequential and parallel composition

and communication feedback�

��� Sequential and Parallel Composition

For systems composed by sequential compositions
 re�nements can be con	
structed by re�ning their components�

Theorem � Compositionality of re�nement� seq� composition� As�

sume bQi is an interaction re�nement of Qi for the representations Ri�� and Ri

for i � �� �� then bQ�� bQ� is an interaction re�nement of Q��Q� for the repre�
sentations R� and R��

Proof� A straightforward derivation shows the theorem�

R�� bQ�� bQ� � fmonotonicity of ���
 bQ� interaction re�nement of Q�g
Q��R�� bQ� � fmonotonicity of ���
 bQ� interaction re�nement of Q�g
Q��Q��R�

�
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Example � Compositionality of Re�nement for Sequential Composition

Let C and bC be speci�ed as in the example above� Of course
 we may compose
C as well as bC sequentially� We de�ne the components CC and dCC by�

CC �df C�C

dCC �df
bC� bC

Note
 CC is a cell that repeats its last input twice on a signal �� It is a straight	
forward application of our theorem of the compositionality of re�nement that
dCC is a re�nement of CC �

R�dCC � CC�R

Of course
 since R�A � I we also have that R�dCC�A is a property re�nement
of CC�

End of example

Re�nement is compositional for parallel composition
 too�

Theorem � Compositionality of re�nement for parallel composition�

Assume bQi is an interaction re�nement of Qi for the representations Ri and Ri

for i � �� � then bQ�k bQ� is an interaction re�nement of Q�kQ� for the represen�
tations R�kR� and R�kR��

Proof� A straightforward derivation shows the theorem�

�R�kR��� � bQ�k bQ�� � frule for sequential and parallel compositiong
�R�� bQ��k�R�� bQ�� � f bQi interaction re�nement for Qig
�Q��R��k�Q��R�� � frule for sequential and parallel compositiong
�Q�kQ��� �R�kR��

�

For sequential and parallel composition compositionality of re�nement is quite
straightforward� This can be seen from the simplicity of the proofs�

��� Feedback

For the feedback operator
 re�nement is not immediately compositional� We
do not obtain
 in general
 that � bQ is an interaction re�nement of �Q for the
representations R and R provided bQ is an interaction re�nement of Q for the
representations RkR and R� This is true
 however
 if I � �A�R� �see below��

The reason is as follows� In the feedback loops of � bQ we cannot be sure that
only representations of streams �i�e� streams in the images of some of the func	
tions characterized by R� occur� Therefore
 we have to give a slightly more
complicated scheme of re�nement for feedback�
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Theorem � Compositionality of re�nement� feedback� Assume bQ is an
interaction re�nement of Q for the representation speci�cations RkR and R

where R is uniform� then ���IkA�R�� bQ� is an interaction re�nement of �Q for
the representations R and R�

Proof� We prove�

�R����IkA�R�� bQ���f � ���Q��R��f

From
�R����IkA�R�� bQ���f

we conclude that there exist functions �
 bq
 �
 and � such that R��
 bQ�bq
 R��

and A�� and furthermore

f � �����Ik�� ��� bq�

Since bQ is an interaction re�nement of Q for the representations RkR and R

for functions � with R�� and � with R�� and  q with bQ�q there exist functions q
and e� such that Q�q and R�e� hold and furthermore

��k��� bq � q� e�

Given x
 because of the continuity of �
 bq
 �
 and �
 we may de�ne ���Ik�� ��� bq����x
by tbyi where

by� � hibm
byi�� � bq���x� ����byi�

Moreover
 because of the continuity of q
 we may de�ne !����q��x by !��tyi where
y� � him

yi�� � q�x� yi�

We prove�
e�� t yi � tbyi

by computational induction� We prove by induction on i the following proposi	
tion�

byi v e��yi v byi��
If i � �
 we have�

by� v fby� is the least elementg
e��y� v fy� is the least elementg
e��q�x� y�� � fre�nement propertyg
bq���x� ��y�� v fy� is the least elementg
bq���x� ����by�� � fde�nition of by�g
by�
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Assume now the proposition holds for i� then we obtain�

byi�� � fde�nition of byi��g
bq���x� ����byi� v finduction hypothesisg
bq���x� ����e��yi� � funiformity of Rg
bq���x� ��yi� � fre�nement propertyg
e��q�x� yi� � fde�nition of yi�� g
e��yi��

Furthermore we get�

e��yi�� � fde�nition of yi�� g
e��q�x� yi� � fre�nement propertyg
bq���x� ��yi� � funiformity of R g
bq���x� ����e��yi� v finduction hypothesisg
bq���x� ����byi��� � fde�nition of byi��g
byi��

"From this we conclude by the continuity of e� that�

tbyi � e�� t yi
and thus

����Ik�� ��� bq�����x � e����q��x

and �nally
���Q��R��������Ik�� ��� bq��

�

Assuming an adequate re�nement allows us to obtain immediately the following
corollary�

Theorem � Compositionality of adequate re�nement� feedback� As�

sume bQ is an adequate interaction re�nement of Q for the representations RkR
and R with abstraction A then �� bQ�A�R� is an interaction re�nement of �Q
for the representations R and R�

Proof� Let all the de�nitions be as in the proof of the previous theorem� Since
the interaction re�nement is assumed to be adequate there exists a function eq
with Q�q such that

q� e���� � � eq� �

Carrying out the proof of the previous theorem with eq instead of q and � instead
of e� we get�

���Ik�� ��� bq� � ��eq�� �
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By straightforward computational induction we may prove

��bq��� �� � ���Ik�� ��� bq�

This concludes the proof�
�

Assuming that A�R contains the identity as a re�nement we can simplify the
re�nement of feedback loops�

Theorem 
 Assume bQ is an interaction re�nement of Q for the representa�
tions RkR and R with abstraction A and assume furthermore

I � A�R

then � bQ is an interaction re�nement of �Q for the representations R and R�

Proof� Straightforward deduction shows�

R�� bQ�
R����IkA�R�� bQ��
�Q�R

�

Note
 even if I is not a re�nement of A�R
 in other words even if I � A�R
does not hold
 other re�nements of A�R may be used to simplify and re�ne the
term A�R in ���IkA�R�� bQ�� By the fusion rule for feedback as introduced in
section � we obtain�

R��� bQ�A�R� � ���RkI�� bQ�A�R�

This may allow further re�nements for bQ�A�R�

Example 
 Compositionality of Re�nement for Feedback

Let us introduce the component F with two input channels and one output
channel� It speci�es functions of the following functionality�

f �M� �M� �M�

F is speci�ed as follows�

F�f � �x� y �M� � �d � D � f�x� y� � g�x� d�y�

where the auxiliary function g is speci�ed by

g �M� �M� �M�
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where �d� e � D�m �M�x� y �M� �

g�x� d���y� � g�x� d�y�
� g���x� d�y� � d���g�x� y�
� g�d�x� e�y� � d�g�x� y�

It is a straightforward proof that for the speci�cation C as de�ned in Example
��

�F � C

We carry out this proof by induction on the length of the input streams x� We
show that �f ful�lls the de�ning equations for functions c�d in the de�nition
of C in Example �� Let f be a function with F�f and g be a function as
speci�ed above in the de�nition of F � We have to consider just two cases� by
the de�nition of f there exists g as de�ned above such that� there exists d�

��f�����x� �
fix�� y � g���x� d�y� �
fix�� y � d���g�x� d�y� �
d���fix�� y � g�x� d���y� �
d���fix�� y � g�x� d�y�

��f���e�x� �
fix�� y � g�e�x� d�y� �
fix�� y � e�g�x� y� �
e�fix�� y � g�x� e�y�

Induction on the length of x and the continuity of the function g conclude the
proof�

The re�nement bF of F according to the representation speci�cation R from
example � speci�es functions of the functionality�

f � f��pg� � �D � fpg�� � f��pg� � �D � fpg�� � f��pg� � �D � fpg��

It reads as follows�

bF �f � �x� ex� y� ey � �d � D � f�x� ex� y� ey� � bg�x� ex�
p
� y� d�

p
�
ey�

where the auxiliary function g is speci�ed by

bg � f��pg� � �D � fpg�� � f��pg� � �D � fpg�� � f��pg� � �D � fpg��

�d� e � D�x� y � f��pg�� ex� ey � �D � fpg�� �

bg�x� ex� ��y� ey� � bg�x� ex�
p
� y� ey�

� bg���x� ex�
p
� y� d�

p
�
ey� � �

p
��� d�

p
��bg�x� ex�

p
� y�

p
�
ey�

� bg�
p
�x� d�

p
�
ex�
p
� y� e�

p
�
ey� � �

p
� d�

p
��bg�x� ex� y� ey�

� bg�
p
�x�

p
�
ex� y� ey� � �

p
�
p
��bg�x� ex� y� ey�

� bg�x� ex�
p
� y�

p
�
ey� � bg�x� ex� y� ey�
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We have �again
 this can be proved by a straightforward rewrite proof��

�RkR�� bF � F �R

Moreover
 we have according to Theorem ��

R����IkA�R�� bF�� ��F ��R

and therefore
R����IkA�R�� bF�� C�R

Note
 the re�nement is de�nite and therefore adequate for F � Therefore we may
replace ���IkA�R�� bF � by �� bF �A�R��

The component �� bF �A�R� can be further re�ned by re�ning A�R� Let us

therefore
 look for a simpli�cation for A�R� We do not have

I � A�R

since by the monotonicity of all � with A�� we have�

��hi� d�hi� � hi
�otherwise we obtain a contradiction
 since by monotonicity the �rst elements
of ��x� d�y� have to coincide for all x and y�� Therefore for all � with R���

�t � ticks � ����hi� d�hi� � t��hi� hi�
This indicates that there are no functions � and � with R�� and A�� such that
����x � x is valid for all x� We therefore cannot simply re�ne A�R into I�

We continue the re�nement by re�ning p� We take into account properties
of bF � A simple rewriting proof shows�

�RkI�� bF � �RkI�� bF �A�R
Summarizing our re�nements we obtain�

R�� bF �
���RkI�� bF ���
���RkI�� bF �A�R���
R��� bF �A�R���
R����IkA�R�� bF�

This concludes our example of re�nement for feedback�

End of example

Recall that every �nite network can be represented by an expression that is
built by the introduced forms of composition� The theorems show that a network
can be re�ned by de�ning representation speci�cations for the channels and by
re�ning all its components� This provides a modular method of re�nement for
networks�
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� Recursively de�ned Speci�cations

Often the behavior of interactive components is speci�ed by recursion� Given a
function

� � SPECn
m � SPECn

m

a recursive declaration of a component speci�cation Q is given by a declaration
based on � �

letrec Q�f � � �Q��f

Recursive speci�cations are restricted in the following to functions � that exhibit
certain properties�

��� Semantics of Recursively De�ned Speci�cations

A function � where
� � SPFn

m � SPF
j

k

is monotonic with respect to implication
 if�

�Q� bQ�� �� �Q�� � � bQ��

A set fQi � i � INg of speci�cations is called a chain
 if for all i � IN and for all
functions f � SPFn

m�
Qi���f� � Qi�f�

A function � is continuous with respect to implication
 if for every chain fQi �
i � INg and all for functions f � SPFn

m�

� �Q��f � �i � IN � � �Qi��f where Q�f � �i � IN � Qi�f�

Note
 the set of all speci�cations forms a complete lattice�

De�nition � Predicate transformer� A predicate transformer is a func�
tion

� � SPECn
m � SPECj

k

that is monotonic and continuous with respect to implication �re�nement��

Note
 if � is de�ned by � �X� � Net�X� where Net�X� is a �nite network com	
posed of basic component speci�cations by the introduced forms of composition

then � is a predicate transformer�

A recursive declaration of a component speci�cation Q is given by a de�ning
equation �often called the �xed point equation� based on a predicate transformer
� �

letrec Q � � �Q�

A predicate Q is called a �xed point of � if�

Q � � �Q�
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In general
 for a function � there exist several predicates Q that are �xed points
of � � In �xed point theory a partial order on the domain of � is established
such that every monotonic function � has a least �xed point� This �xed point is
associated with the identi�er f by a recursive declaration of the form f � ��f �
For de�ning the semantics of programming languages the choice of the ordering

which determines the notion of the least �xed point
 has to take into account
operational considerations� There the ordering used in the �xed point construc	
tion has to re�ect the stepwise approximation of a result by the execution� For
speci�cations such operational constraints are less signi�cant�

Therefore we choose a very liberal interpretation for recursive declarations
of speci�cations in the following� For doing so we de�ne the concept of an upper
closure of a speci�cation� The upper closure is again a predicate transformer�

# � SPECn
m � SPECn

m

It is de�ned by the following equation�

#�Q��f � �g � Q�g � g v f

Notice that # is a classical closure operator
 since it has the following charac	
teristic properties�

�� bQ� Q�� �#� bQ�� #�Q��

Q� #�Q�

#�Q� � #�#�Q��

A predicate Q is called upward closed
 if Q � #�Q�� Note
 by # the least
element � is mapped onto the speci�cation �L that is ful�lled by every function

that is #��� � �L� From a methodological point of view it is su�cient to restrict
our attention to speci�cations that are upward closed�� This methodological
consideration and the considerable simpli�cation of the formal interpretation
of recursive declarations are the reasons for considering only upward closed
solutions of recursive equations�

A predicate transformer � is called upward closed
 if for all predicates Q we
have�

� �Q� � #�� �Q��

By the recursive declaration

letrec Q � � �Q�

�Taking the upper closure for a speci�cation may change its safety properties� However	
only safety properties for those behaviors may be changed where the further output	 indepen�
dent of further input	 is empty� A system with such a behavior does not produce a speci�c
message on an output channel	 even	 if we increase the streams of the messages on the input
channels� Then what output is produced on that channel obviously is not relevant at all�
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we associate with Q the predicate that ful�lls the following equation�

Q�f � �i � IN � Qi�f

where the predicates Qi are speci�ed by�

Q� � �L

Qi�� � #�� �Qi��

According to this de�nition we associate with a recursive declaration the logi	
cally weakest� predicate Q such that

Q � #�� �Q��

The predicate Q is then denoted by fix�� �

��� Re�nement of Recursively Speci�ed Components

A uniform representation speci�cation R with abstraction A is called adequate
for the predicate transformer � 
 if for all predicates X�

�X�R�A� X�� �� �X��R�A� � �X��

Adequacy implies that speci�cations for which R is adequate are mapped by �
onto speci�cations by for which R is adequate again�

Uniform interaction re�nement is compositional for recursive de�nitions based
on predicate transformers for which the re�nement is adequate� Again de�nite
representations are always adequate�

Theorem � Compositionality of re�nement for recursion� Let repre�
sentation speci�cations R and R be given� where R is uniform with abstraction
A and adequate for the predicate transformer

� � SPECnm � SPECnm

For a predicate transformer

b� � SPECbn
bm
� SPECbn

bm

where
R� 	L� 	L�R

and for all predicates X� bX �

�R� bX � X�R�� �R� b� � bX�� � �X��R�

we have
R� fix�� X � b� �X�A�R�� fix�� �R

�True is considered weaker than false�
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Proof� Without loss of generality assume that the predicate transformers � and
b� are upward closed� De�ne

Q� � �L

Qi�� � � �Qi�

bQ� � �L

bQi�� � b� � bQi�A�R�

We prove�
Qi�R�A� Qi

This proposition is obtained by a straightforward induction proof on i� For i � �
we have to show�

�L�R�A� �L

which is trivially true
 since �L holds for all functions� The induction step reads
as follows� from

Qi�R�A� Qi

we conclude by the adequacy of � �

Qi���R�A � fde�nition of Qi��g
� �Qi��R�A� fadequacy of � and induction hypothesisg
� �Qi� � fde�nition of Qi��g
Qi��

We prove by induction on i�

R� bQi � Qi�R

For i � �
 we have to prove�
R� �L� �L�R

This is part of our premises� Now assume the induction hypothesis holds for i�
trivially

R� bQi�A�R� R� bQi�A�R

Therefore
 with X � R� bQi�A and bX � bQi�A�R by our premise we have�

R� b� � bQi�A�R�� � �R� bQi�A��R

By the induction hypothesis and by the fact Qi�R�A� Qi we obtainR� bQi�A�
Qi as can be seen by the derivation

R� bQi�A �
Qi�R�A �
Qi
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We obtain�

R� bQi�� � fde�nition of bQi��g
R� b� � bQi�A�R�� fpremise for � 
 b� with X � R� bQi�A
 bX � bQi�A�R g
� �R� bQi�A��R� funiformity of R
 see aboveg
� �Qi��R� fde�nition of Qi��g
Qi���R

�

Note
 for de�nite representations R the premise

R� �L� �L�R

is always valid as the following straightforward derivation shows�

R� �L� fde�nition of �Lg
R�A� �L�R� fsince R�A � Ig
�L�R

We immediately obtain the following theorem as corollary� It can be useful for
simplifying the re�nement of recursion�

Theorem � Given the premisses of the theorem above and in addition

I � A�R

we have
R� fix�b� � fix�� �R

Proof� The theorem is proved by a straightforward deduction�

R� fix�b� � fpremiseg
R� fix�� X � b� �X�A�R�� ftheorem �g
fix�� �R

�

Note
 even if I is not a re�nement of A�R
 that is even if I � A�R does not
hold
 other re�nements of A�R may be used to simplify the term A�R in the
speci�cation�

fix�� X � b� �X�A�R�
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Example � Compositionality of Re�nement for Recursion

Of course
 instead of giving a feedback loop as in example  above we may also
de�ne an in�nite network recursively by��

letrec Q � � �Q�

where
� �X� � �� �IkX��F

Again we obtain �as a straightforward proof along the lines of the proof above
for �F � C shows��

Q � C

It is also a straightforward proof to show that

�R� bX � X�R�� �R� b� � bX�� � �X��R�

where
b� � bX� � �� �Ik� bX �A�R��� bF

Therefore we have
R� bQ � Q�R

where
letrec bQ � b� � bQ�

by our compositionality results� Again A�R can be replaced by its re�nement
as shown above�

End of example

Using recursion we may de�ne even in�nite nets� The theorem above shows
that a re�nement of an in�nite net that is described by a recursive equation is
obtained by re�nement of the components of the net�

� Predicate Transformers as Re�nements

So far we have considered the re�nement of components by re�ning on one hand
their tuples of input and on the other hand their tuples of output streams� A
more general notion of re�nement is obtained by considering predicate trans	
formers themselves as re�nements�

De�nition � Re�ning context� A predicate transformer

R � SPECnm � SPECi
k

�The predicate transformer � is obtained by the unfold rule for feedback
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is called a re�ning context� if there exists a mapping

A � SPECik � SPECn
m

called abstracting context such that for all predicates X we have�

A�R�X � X

Re�ning contexts can be used to de�ne a quite general notion of re�nement�

De�nition �	 Re�nement by re�ning contexts� Let R be a re�ning con�

text with abstracting context A� A speci�cation bQ is then called a re�nement for
the abstracting context A of the speci�cation Q� if�

A� bQ� Q

Note� R�Q is a re�nement of the speci�cation Q for the abstracting context A�
Re�ning contexts may be de�ned by the compositional forms introduced in the
previous sections�

Example � Re�ning Contexts

For component speci�cations Y with one input channel and two output channels
we de�ne a predicate transformer

A � SPEC�
� � SPEC�

�

by the equation�
A�Y � ���Pky��Y �� �ykI�

where the component P speci�es functions

p � D� � f��pg� � D�

A graphical representation of A�Y is given in Figure � Let P be speci�ed by�

P�p � �x � D� � y � f��pg� � p�m�x� ��y� � m�p�m�x� y�
� p�m�x�

p
� y� � p�x� y�

For a component speci�cation X with one input channel and one output
channel we de�ne a predicate transformer�

R � SPEC�
� � SPEC�

�

where
R�X � Q� �IkX�

where the component Q speci�es functions

q � D� � f��pg� �D�



� PREDICATE TRANSFORMERS AS REFINEMENTS �

P
�

x � z �
Y

y ��
�

�
�

A�Y

Figure � Graphical representation of A�Y

Let Q be speci�ed by�

Q�q � �x � D� � �k � IN � �i � IN � i  k�
q�mi� � ��i��� hi�

� q��mk����x� � ���k����
p
�m��q�x

Let mk stand for the �nite stream of length k containing just copies of the
message m� To show that A and R de�ne a re�ning context we show that�

A�R�X � X

which is equivalent to showing that for all speci�cations X�

���Pky��Q� �IkX��� �ykI� � X

This is equivalent to�
���Pky��Q�� �ykI� � I

which is equivalent to the formula�

�p� q� x � P�p �Q�q� x � ����Iky�� p� q�� �ykI���x
which can be shown by a proof based on the speci�cations of P and Q� Let
� stand for �I�ky� and � stand for the function �ykI��� For functions p and q

with P�p and Q�q there exists k � IN such that �i � IN with i  k�

� �fix�� y� z � q�p�� �m�x� ��i��y� z� �
� �fix�� y� z � q��mi��p�m�x� y�� �
� �fix�� y� z � ��i��� hi��q�p�m�x� y� �
� �fix�� y� z � q�p�� �m�x� ��i����y� z�

This can be shown by a straightforward proof of induction on i� By this we
obtain for i � k $ ��

� �fix�� y� z � q�p�� �m�x� y� z� �
� �fix�� y� z � q�p�� �m�x� ��k����y� z�
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Furthermore�

� �fix�� y� z � q�p�� �m�x� ��k����y� z� �
� �fix�� y� z � q��mk����p�m�x� y�� �
� �fix�� y� z � ���k����

p
�m��q�p�m�x� y� �

� �fix�� y� z � q�p�m�x� ��k����
p
�y� �

� �fix�� y� z � ���k����
p
�m��q�p�m�x� y� �

m� � �fix�� y� z � q�p�m�x� y� �
m� � �fix�� y� z � q�p�� �m�x� y� z�

We obtain
����� p� q�����m�x� �
� �fix�� y� z � q�p�� �m�x� y� z� �
m� � �fix�� y� z � q�p�� �m�x� y� z�

By induction on the length on x and the continuity of the involved functions
the proposition above is proved�

End of example

Context re�nement is indeed a generalization of interaction re�nement� Given
two pairs of de�nite representation and abstraction speci�cations R�A and R�A
by

A�Y � R�Y �A

R�X � A�X�R

a re�ning context and an abstracting context is de�ned
 since

A�R�X �

A��A�X�R� �

R� �A�X�R��A�
X

Re�ning contexts lead to a more general notion of re�nement than interaction
re�nement� There are speci�cations Q and bQ such that there do not exist
consistent speci�cations R and A where

R� bQ�A� Q

but there may exist re�ning contexts R and A such that

A� bQ� Q

Re�ning contexts may support the usage of sophisticated feedback loops between
the re�ned system and the re�ning context� This way a dependency between
the representation of the input history and the output history can be achieved�
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Q
�

x � z �

Hy ��
�

�
�

QbHe

Figure �� Graphical representation of the master%slave system

A very general form of a re�ning context is obtained by a special operator
for forming networks called master
slave systems� For notational convenience
we introduce a special notation for master%slave systems� A graphical represen	
tation of master%slave systems is given in Figure �� A master%slave system is
denoted by QbHe� It consists of two components Q and H called the master
Q � SPECi�m

k�n
and the slave H � SPECn

m� Then QbHe � SPECi
k� All the

input of the slave is comes via the master and all the output of the slave goes
to the master� The master%slave system is de�ned as follows�

QbHe � ���Qkyk�� �IkkH��
km
� �� �ymkIk�

or in a more readable notation�

�QbHe��f � �q� h � Q�q �H�h� f � qbhe

where �x� y� z�

�qbhe��x � z where �z� y� � fix�� z� y � q�x� h�y�

We can de�ne a re�ning context and an abstracting context based on the mas	
ter%slave system concept� we look for predicate transformers

R � SPECn
m � SPECi

k

with abstracting context

A � SPECi
k � SPECn

m

and for speci�cations V � SPECi�m
k�n and W � SPECn�k

m�i where the re�ning
context and the abstracting context are speci�ed as follows�

R�X � V bXe
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y
�

z�
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�
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�

Q
y �

x � z�

�
��

�

Q
k

	

k
Q

Figure �� Graphical representation of the cooperator

A�Y � W bY e
and the following requirement is ful�lled�

W bV bXee � X

We give an analysis of this requirement based on further form of composition

called a cooperator� The cooperator is denoted by
n

	

m

where m�n � IN � For

speci�cations Q � SPECn�k

m�k
� Q � SPECn�k

m�k the cooperator is de�ned as

follows�

�Q
k

	

k
Q� � SPECn�n

m�m

�Q
k

	

k
Q��f � �q� q � Q�q �Q�q � f � �q

k

	

k
q�

where

�q
k

	

k
q���x� x� � �z� z� where �z� y� y� z� � fix�� z� y� y� z � �q�x� y�� q�y� x��

A graphical presentation of the cooperator is given in Figure ��
A straightforward rewriting shows that the cooperator is indeed a general	

ization of the master%slave� For H � SPECk
k �

Q
k

	

k
H � QbHe

In particular we obtain�

W bV bXee � W
i

	

k
�V

n

	

m
X� � �W

i

	

k
V �bXe
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and therefore the condition�

W bV bXee � X

reads as follows�

�W
i

	

k
V �bXe � X

The following theorem gives an analysis for the component W
i

	

k
V �

Theorem �	 The implication

�W
i

	

k
V �bXe � X

implies

�W
i

	

k
V � �

nm
�

Recall�
nm
� just swaps its input streams�

Proof� By the de�nition of cooperation we may conclude that for every function
� and every function � such that W�� and V�� and for every f where X�f there
exists a function ef where X� ef such that�

�z � �z� z� � ��
i

	

k
���x� f�z�
 z � ef �x

Since this formula is true for all speci�cations X and therefore also for de�nite
speci�cations
 the formula holds for all functions f where in addition f � ef �
We obtain for the constant function f with z � f�x for all x and for all z�

�z � �z� z� � ��
i

	

k
���x� z�
 z � z

The equation above therefore simpli�es to

�z � �f�z� z� � ��
i

	

k
���x� f�z�
 f�z � f�x

Now we prove that from this formula we can conclude�

�f�z� x� � ��
i

	

k
���x� f�z�

We do the proof by contradiction� Assume there exists x such that�

�f�z� z� � ��
i

	

k
���x� f�z�
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and x �� z� Then we can choose a function f such that f�x �� f�z� This concludes
the proof of the theorem�

�

By the concept of re�ning contexts we then may consider the re�ned system

QbW bV bHeee

The re�nement of this re�ned network can then be continued by re�ning V bHe
and leaving its environment QbW b���ee as it is�

There is a remarkable relationship between master%slave systems and the
system structures studied in rely%guarantee speci�cation techniques as advo	
cated among others in �Abadi
 Lamport ���� The master can be seen as the
environment and the slave as the system� This indicates that the master%slave
situation models a very general form of composition� Every net with a subnet
H can be understood as a master%slave system QbHe where Q denotes the sur	
rounding net
 the environment
 of H� This form of networks is generalized by
the cooperator as a composing form
 where in contrast to master%slave systems
the situation is fully symmetric�

The cooperating components Q and Q in Q
k

	

k

Q can be seen as their
mutual environments� The concept of cooperation is the most general notion of
a composing form for components� All composing forms considered so far are
just special cases of cooperation� for Q � SPECn

m� P � SPECi
k we obtain�

Q�P � Q
m

	

�
P if m � i

QkP � Q
�

	

�
P

�Q � �Q� ��
m

	

m
I if n � m

Let a net N be given with the set & of components� Every partition of & into
two disjoint sets of components leads to a partition of the net into two disjoint

subnets say Q and Q such that the net is equal to Q
k

	

k
Q where k denotes

the number of channels in N leading from Q to Q and k denotes the number
of channels leading from Q to Q� Then both subnets can be further re�ned
independently�

	 Conclusion

The notion of compositional re�nement depends on the operators
 the composing
forms
 considered for composing a system� Compositionality is not a goal per
se� It is helpful for performing global re�nements by local re�nements� Re�ning
contexts
 master slave systems and the cooperator are of additional help for
structuring and restructuring a system for allowing local re�nements�
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The previous sections have demonstrated that using functional techniques a
compositional notion of interaction re�nement is achieved� The re�nement of
the components of a large net can be mechanically transformed into a re�nement
of the entire net�

Throughout this paper only notions of re�nement have been treated that can
be expressed by continuous representation and abstraction functions� This is
very much along the lines of �CIP ��� and �Broy et al� ��� where it is considered
as an important methodological simpli�cation
 if the abstraction and represen	
tation functions can be used at the level of speci�ed functions� There are inter	
esting examples of re�nement
 however
 where the representation functions are
not monotonic �see the representation functions obtained by the introduction
of time in �Broy ����� A compositional treatment of the re�nement of feedback
loops in these cases remains as an open problem�
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A Appendix
 Full Abstraction

Looking at functional speci�cations one may realize that sometimes they specify
more properties than one might be interested in and that one may observe
under the considered compositional forms� Basically we are interested in two
observations for a given speci�cation Q for a function f with Q�f and input
streams x� The �rst one is straightforward� we are interested in the output
streams y where

y � f�x

But
 in addition
 for controlling the behavior of components especially within
feedback loops we are interested in causality� Given just a �nite pre�x� ex of the
considered input streams x
 causality of input with respect to output determines
how much output �which by monotonicity of f is a pre�x of y� is guaranteed by
f �

More technically
 we may represent the behavior of a system component by
all observations about the system represented by pairs of chains of input and
corresponding output streams�

A set fxi � �M��n � i � INg is called a chain
 if for all i � IN we have
xi v xi��� Given a speci�cation Q � SPECn

m
 a pair of chains

�fxi � �M��n � i � INg� fyi � �M��m � i � INg�

is called an observation about Q
 if there exists a function f with Q�f such that
for all i � IN �

yi v f�xi

and
tfyi � i � INg � tff�xi � i � INg

The behavior of a system component speci�ed by Q then can be represented
by all observations about Q� Unfortunately
 there exist functional speci�cations
which show the same set of observations
 but
 nevertheless
 characterize di�erent
sets of functions� For an example we refer to �Broy ����

Fortunately such functional speci�cations can be mapped easily onto func	
tional speci�cations where the set of speci�ed functions is exactly the one char	
acterized by its set of observations� For this reason we introduce a predicate
transformer

) � SPECn
m � SPECn

m

that maps a speci�cation on its abstract counterpart� This predicate transformer
basically constructs for a given predicate Q a predicate )�Q that is ful�lled
exactly for those continuous functions that can be obtained by a combination
of the graphs of functions from the set of functions speci�ed by Q� We de�ne

�)�Q��f � �x � � bf � Q� bf � f vx bf � bf �x � f�x
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where
f vx bf � ��z � z v x� f�z v bf �z�

By this de�nition we obtain immediately the monotonicity and the closure pro	
perty of the predicate transformer )�

Theorem �� Closure property of the predicate transformer )�

�Q� bQ�� �)�Q� )� bQ�

Q� )Q

)�Q � )�)�Q

Proof� Straightforward
 since Q�f occurs positively in the de�nition of )�Q

f vx f and

�x � � bf � �)�Q��bf � f vx bf � bf �x � f�x � �)�Q��f

�

A speci�cation Q is called fully abstract
 if

Q � )�Q

We may rede�ne our compositional forms such that the operators deliver always
fully abstract speci�cations�

Qe�P � )�Q�P �

QekP � )�QkP �
e� Q � )�� Q�

All the results obtained so far carry over to the abstract view by the monotoni	
city of )
 and by the fact that we have

)�Q �P � � )�)�Q�)�P �
)�Q kP � � )�)�Qk)�P �
)��Q� � )�� )�Q�

Furthermore
 given an upward closed predicate transformer � we have� if Q is
the least solution of

Q � � �Q�

then Q � )�Q is the least solution of

Q � )�� �Q�

The proof is straightforward� Note
 by this concept of abstraction we may obtain

I � Ae�R



A APPENDIX	 FULL ABSTRACTION ��

in cases where I � A�R does not hold� This allows additional simpli�cations
of network re�nements�

Note
 full abstraction is a relative notion� It is determined by the basic
concept of observability and the composing forms� In the presence of re�nement
it is unclear whether full abstraction as de�ned above is appropriate� We have�

� bQ� Q�� �)� bQ� )�Q�

However
 if a component Q is used twice in a network � �Q�
 then we do not have


in general
 that for �determined� re�nements eQ of )�Q there exist �determined�

re�nements bQ of Q such that�

�� � eQ�� � � bQ��

Therefore
 when using more sophisticated forms of re�nement the introduced
notion of full abstraction might not always be adequate�
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