
Modeling the Dynamic Behavior of Objects
On Events� Messages and Methods

�Extended Abstract�

Ruth Breu� Radu Grosu

Institut f�ur Informatik� TU M�unchen� D������ M�unchen
email�breur�grosu�informatik	tu�muenchen	de

Events� messages and methods are three central concepts for modeling the
dynamic behavior of objects� Communication between objects by sending mes�
sages� changes of object states caused by incoming events and interface design
based on methods are catchwords of object�oriented analysis and design�

However� in most frameworks like OMT ���� the Booch method ��� and the
new method UML ��� messages� events and methods are separate concepts used
in di�erent parts and phases of system development� The interrelation between
these concepts remains often unclear and is left to the interpretation of the
system designer�

The focus of our paper is to provide clear concepts and techniques for the
dynamic modeling of objects in concurrent environments� The central descrip�
tion technique we rely on is a powerful variant of state transition diagrams �	�
��
In these diagrams� transitions are associated with triples consisting of a precon�
dition �the guard�� a set of inputoutput events and a postcondition describing
the change of state�

The notion of methods we consider is more general than the notion of pro�
cedures in a programming language� In our intuition� methods model high�level
activities of objects� Examples for such methods are the transfer of money in a
bank or the reservation of a hotel room� In this view� a general model of concur�
rently acting objects is inevitable since high�level activities often are conceived
to be parallel even if their later realization is sequential�

Concerning the design steps for developing a system description based on
state transition diagrams� we propose a two�layered technique� In a �rst stage� a
purely event�based description by state transition diagrams is developed� Events
are conceived as stimuli at a point in time causing reactions of the stimulated
object� The developed state transition diagrams in this stage de�ne for each
object allowable sequences of incoming events�

In a second stage of the design� the reactions of an object initiated by
events are further speci�ed� Roughly� each such kind of reaction corresponds
to a method and the initiating event corresponds to the call of the method� We
pursue the speci�cation of methods within the framework of state transition di�
agrams� This has two reasons� First� the use of a uniform framework supports
step�by�step design� Relations between di�erent stages can be established and
checked� Second and even more important� in a general framework of concur�
rently acting objects methods generally cannot be modeled in an isolated way
but the whole object behavior has to be considered�

Our notion of an object is not limited to the view of a sequential machine re�
acting to events successively� More general� object behavior may comprise inter�
nal parallelism and simultaneous computation of methods� i�e�� multiple threads�
Our object model is characterized by two important assumptions� namely that
methods are virtual objects �called clerks� and that messages sent to inexistent
objects are returned back as an error� Both assumptions are supported by many
standards for open distributed systems and serve as a prerequisite for modeling
high�level activities of objects�

We illustrate our approach by specifying the behavior of a simple bank� The
main task of a bank is to organize access to an associated set of accounts� Each
account belonging to a bank has an owner� a balance and a unique account
number ranging between � and �����

Clients can interact with a bank by opening and closing an account� by
crediting and debiting money to an account� resp�� and transferring an amount
from one account to another account �possibly belonging to a di�erent bank�� A
bank is a class manager for account objects� Banks handle the transactions of
the clients� In particular� they manage the access to the accounts�

A bank has as attributes the bank�s owner ow� the account numbers of its
active accounts aA and the account numbers of the inactive accounts fA� The
bank�s identi�er is bi�

attributes

ow
�� �Name
aA
 � � SetNat
fA
 fi j ��i�����g � SetNat

transitions

foundedliquidated

found

credit, debit, transferliquidatecredit, debit, transfer

open, close open, close

The attributes aA and fA allow the bank to keep track of its server objects�
Step � � Identify input messages and specify input behavior

The bank can receive the following input messages� open�o� a� � open an ac�
count with owner o and amount a� close�k� � close the account k� credit�k� a� and
debit�k� a� � credit and debit the amount a to account k� resp�� transfer�f� b� k� a�
� transfer the amount a from account f to account k at bank b� These messages
match exactly the methods which a bank o�ers�

A �complete� state transition diagram as given above describes the input
messages the bank can accept �for brevity� the method arguments are ignored��
This speci�cation is often called life�cycle speci�cation�

Step ��� � Specify each method separately

In order to specify the bank reactions for each method we �rst have to de�ne the
answer messages� Moreover� we have to enhance the input messages with return
addresses indicating the object a possible answer has to be sent to� If the method
requires no answer or if the return address can be derived from other information�
the return address can be omitted� For bank objects we introduce the following
answer messages� noAcc � a new account cannot be opened� noAcc�b� k� � there
is no account number k at bank b� tansferOK � transfer has been successfully
completed�

The methods open� close� credit and debit can be speci�ed as simple annota�

tions to the corresponding transition of the life�cycle diagram developed in the
previous step� Their speci�cation is given in tabular form below�

name in pre out post

fA
 � rnoAcc
fA�
 fA n fkg�

fA �
 �
ai�kopen�o� a� r��

aA�
 aA � fkg�open bi�open�o� a� r�
rk

k
 new�fA�

k �� aA rnoAcc�bi� k�
aA�
 aA n fkgclose bi�close�k� r� k � aA ai�kclose
fA�
 fA � fkg

k �� aA rnoAcc�bi� k�credit bi�credit�k� a� r�
k � aA ai�kcredit�a� r�

k �� aA rnoAcc�bi� k�debit bi�debit�k� a� r�
k � aA ai�kdebit�a� r�

The methods open account and close account are class methods for the ac�
count objects� These methods change the active�accounts and the free�accounts
bank attributes and activate� respectively deactivate� the corresponding account
objects� The open method also returns the new account number k� new�fA� is
assumed to choose an element out of the set fA�

Note that the new account number k is not the identi�er of the correspond�
ing account� because the accounts are private to the bank� i�e�� they cannot be
addressed directly� We use ai�k to denote the identi�er of account number k at
bank number i� The mapping a can be imagined as an encryption mechanism
which is private to the bank� Since the maximum number of active accounts is
limited in the problem statement� a call to open an account may also lead to
failure�

The methods credit and debit have a similar structure� If the given account
is not in the set of actual accounts� the message noAcc is returned� In the other
cases� the method is delegated to the corresponding object�

The methods speci�ed so far did not comprise interaction with servers and
thus could be speci�ed as simple annotations to the life�cycle diagram� The
method transfer�f� b� k� a� r�� in contrast� requires communication both with
the account f from which the amount a of money should be transferred and
with the bank b to which the money has to be transferred� The transfer method
thus involves a complex process described by a separate state transition diagram
given below�

{} t?ok / B!credit(K,A,t) {}

≠{m ok} t?m / F!credit(A,R), R!m {}

{m ok}≠
t?m / R!m
{}

idle

{(F’,B’,K’,A’,R’) = (f,b,k,a,r)}

{}
{} t?ok / R!transferOk {}

t?transfer(f,b,k,a,r) / f!debit(a,t)

Conceptually� each such state transition diagram describes a clerk object with an
own state� This object is identi�ed by an identi�er variable which will be bound

in step ��� to the state transition diagram describing the whole object behavior�
The state of a clerk object provides the clerk with the data necessary to execute
the method�

Informally� for transferring an amount a �rst a is withdrawn from the account
f � If the withdrawal has been successful� a message to the target bank b is sent for
crediting a to the account k� If this transaction has been successful� the message
TransferOK is sent back to the object identi�ed by the return address r� In
the other case� the money is credited again to the account f � Moreover� in all
failure cases� corresponding messages are sent back to the return address r�

Step ��� � Specify the overall object behavior

In the last step we have to integrate the method speci�cations by de�ning the
overall object behavior� We distinguish two fundamental ways of methods inte�
gration� sequential and parallel� Sequential integration corresponds to the usual
notion of operation in programming languages and allows one method execution
at a time� while parallel integration allows arbitrary many parallel method exe�
cutions� Both techniques can be combined in a very �exible way� We show below
only the parallel integration of the transfer method within the bank object by
using the organizer�clerk paradigm�

name in pre out post

fT �
 fT n ftg
transfer bi�transfer�f� b� k� a� r� ttransfer�ai�f � b� k� a� r� aT �
 aT � ftg

t
 new�fT �

The organizing bank delegates the computation of transfers to the clerk ob�
jects which act in parallel� This allows many transfers to be executed simulta�
neously� i�e�� banks exhibit both internal concurrency and multiple threads� The
organizing bank object keeps track of the active and inactive transfer �clerk�
objects by holding the corresponding lists of identi�ers aT and fT as attributes�

In our approach concurrent behavior within a single object is modeled by
the introduction of virtual clerk objects having an own state space� That way�
attribute sharing is replaced by message passing between organizers and clerks�

References

�	 G	 Booch	 Object Oriented Design	 The Benjamin�Cummings Publishing Company�
����	

�	 G	 Booch� J	 Rumbaugh� and I	 Jacobson	 The Uni�ed Modeling Language for
Object�Oriented Development� Version �	�� ����	

�	 M	 Broy� R	 Grosu� and C	 Klein	 Reconciling real�time with asynchronous message
passing	 Will appear in FME��� Proceedings� September ����	

�	 R	 Grosu� C	 Klein� B	 Rumpe� and M	 Broy	 State Transition Diagrams	 Technical
Report TUM�I����� Technische Universit�at M�unchen� June ����	

�	 J	 Rumbaugh� M	 Blaha� W	 Premerlani� F	 Eddy� and W	 Lorensen	 Object�

Oriented Modeling and Design	 Prentice Hall� ����	

This article was processed using the LATEX macro package with LLNCS style

