
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Service-Based Specification of Reactive Systems

Jewgenij Botaschanjan, Alexander Harhurin, Leonid Kof

�����
���	

����

TUM-I0815
Mai 08

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-05-I0815-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut für Informatik der
Technischen Universität München

Service-Based Specification of Reactive Systems

Jewgenij Botaschanjan Alexander Harhurin∗ Leonid Kof
Technische Universität München

Department of Informatics
Chair of Software and Systems Engineering
Boltzmannstr. 3, 85748 Garching, Germany

{botascha,harhurin,kof}@in.tum.de

ABSTRACT
Requirement conflicts are very common. They can result from dif-
ferent stakeholders’ views, different knowledge of the operating en-
vironment, different interpretations of the same concept, etc. Re-
quirement conflicts are harmless, as long as they are detected and
resolved directly in the requirements engineering phase. Software
development practice shows, however, that the conflicts often re-
main unperceived until implementation. In this case conflict reso-
lution becomes much more expensive.

In the presented paper we suggest an approach to formalization of
functional requirements, based on the service concept introduced
by Broy [5]. This allows us to model every functional requirement
as a partial function and to identify conflicting functions. This re-
sults in a formally well-founded conflict detection method, appli-
cable in the requirements engineering phase. Applicability of the
method was tested on an industrial case study.

1. INTRODUCTION
Software plays a dominant role in todays embedded reactive sys-
tems domain. The rapid increase in the amount and importance of
different software-based functions and their extensive interaction
are just some of the challenges that are faced during the develop-
ment of reactive systems. One of the essential problems in this
domain is a tailored requirements engineering process [10]. The
more complex systems become, the more important it is to support
validation and verification, already in the requirements engineering
phase.

In order to assure consistency of a specification, a precise semantics
of the modeling techniques is inevitable. Based on a formal foun-
dation, discrepancies between conflicting functionalities can be de-
tected and resolved already in the early phases of the development
process. Furthermore, such a formal specification represents the
first model in a model-based system development along different

∗This work was partially funded by Siemens, Sector Industry in the
framework of the Flasco project. The responsibility for this article
lies with the authors.

abstraction levels. It serves as a formal basis for the construction
and verification of the models in the consecutive phases.

We introduce an approach to model a reactive system during the
early phases of a model-based development process. Thereby, we
focus on the formal definitions of functional requirements and rela-
tions between them, and show how the proposed formalism is used
to handle the aforementioned functional intricacy. The proposed
notation specifies a system as a set of black-box descriptions of the
system behavior (called services). In other words, the system be-
havior is specified as a set of causal relations between input and
output messages without any internal implementation details. Inte-
gration of different requirements might cause unforeseen conflicts
(known as feature interaction) and consequently lead to an incon-
sistent specification of the overall behavior. Informally, there is a
conflict between two services if they impose conflicting require-
ments on the behavior of a system which cannot be simultaneously
fulfilled. The earlier these conflicts are detected, the lower the cost
to resolve them. According to Boehm [1], resolution of a conflict
is 10 times more expensive in the design phase that in the require-
ments engineering phase. Thus, in the ideal case conflicts should be
identified and resolved in the requirements engineering phase. We
precisely show how the introduced concepts can be used to detect
and to resolve conflicts.

According to the development process introduced in our previous
work [11], a system is modeled at different levels of abstraction in
a way that each further level gives a more detailed view of the sys-
tem. Starting from a very abstract description of the system (a set of
informal goals or features), a formal specification is built up. This
specification provides the basis for the construction of a component
architecture. This allows us to involve verification into the devel-
opment process, which is valuable for the development of safety-
critical systems. The fact that according to [11] both specification
and architecture models are based on the same notation facilitates
this process. Thus, our specification model integrates seamlessly at
the top of a model chain closing the formal gap between require-
ments and design.

The presented paper is a continuation of the work begun in [13],
where a denotational semantics of our specification technique was
introduced. In contrast to that work, the operational semantics pro-
posed here allows automatic analysis of functional requirements.
By this, discrepancies between conflicting functionalities can be
detected and resolved automatically. Secondly, a formal specifica-
tion can be simulated in a CASE tool, and verified, e.g. by model
checking, which is valuable for industrial application.

1.1 Running Example
The concepts introduced in the remainder of the paper will be illus-
trated on a simplified industrial example of a bottling plant [9] orig-
inally specified and implemented for “Advanced Technologies and
Standards” of Siemens Automation and Drives [23]. The consid-
ered system comprises several distributed and partly safety-critical
subsystems to transport empty bottles from a storehouse to the bot-
tling plant, fill bottles with different items, seal them, and transport
them back to the storehouse. All these systems are operated by a
central control unit (CU) which provides a user interface to receive
commands and display the system status as well as a device inter-
face to send/receive control signals to/from the subsystems. Al-
though there are a lot of functional requirements on the system, in
this paper we consider a safety-critical subset concerning the in-
terplay between the CU and the conveyor belt only. Among other
things, the user can start and stop the conveyor. There is also an
emergency brake available. By putting the emergency brake on,
the CU immediately switches the conveyor off. The CU is not al-
lowed to switch the system on and the emergency lamp flashes red
until an abolition of the emergency is received.

In the bottling plant example we have potentially conflicting re-
quirements, such as: (1) If the operator puts the switch in the “con-
veyor on” position, the controller turns the conveyor belt on, and
(2) If the controller unit (CU) puts the emergency brake on, no ac-
tion can turn on the conveyor belt until the emergency brake is re-
leased. These requirements are potentially conflicting because they
affect the same actuator, namely the motor of the conveyor belt and
can potentially issue contradictory commands at the same time.

1.2 Outline
The rest of this paper is organized as follows: In Section 2, the
operational semantics of the proposed Service-Based Specification
is presented. In particular, we explain the formal specification of
functional requirements by means of services, and an operator to
combine modularly specified requirements. In Section 3, we con-
centrate on the consistency of a service-based specification. To that
end, we formally define conflicts and describe how they can be de-
tected and resolved based on the introduced formal concepts. In
Section 4, we show how our formal approach can be integrated into
a CASE tool. In particular, we introduce a concrete tool seman-
tics for services and their compositions and describe algorithms to
detect inter-service conflicts based on this semantics. Finally, we
compare our service model to related approaches in Section 5 be-
fore we conclude the paper in Section 6.

2. SERVICE-BASED SPECIFICATION
A specification consists of a set of requirements, which usually deal
with a specific part of the system functionality only, e.g. different
features, as well as normal-case behaviors and exceptional situ-
ations are handled by separate requirements. Black-box view is
the most appropriate level of abstraction to specify individual func-
tional requirements on a system under development. It allows the
functional specification to avoid any unnecessary constraints on its
realization.

These considerations suggest a specification paradigm called Ser-
vice-Based Specification (SBS). This specification consists of a set
of partial and non-deterministic black-box descriptions of the sys-
tem behavior, called services. Services are composed in such a way
that they can share inputs and outputs. However, the services do
not communicate directly: every service obtains its inputs directly
from and sends outputs directly to the environment. According to

Broy [5], a service specifies a functional requirement by defining
a relation between certain inputs and outputs of the system. Due
to the fact that this relation has no constraints on the implemen-
tation details, a service specifies solely the black-box behavior of
a functionality. Moreover, services describe system reactions for
a certain subset of the inputs only. This partial description allows
the distribution of the system description over different services
(requirements) and/or leaving certain inputs unspecified. The SBS
describes the system behavior from the environment perspective.
Thus, an implementation satisfies a service specification if it shows
the same I/O behavior as specified by the SBS.

This section introduces an operational-style description of the pro-
posed SBS. The operational semantics does not imply that design
decisions are made in the specification phase. Rather, it is a means
to describe, simulate, verify and validate a system specification.
The corresponding black-box behavior can be extracted from this
description in a schematic way [4]. Consequently, it can be realized
by distinctively different design and implementation models.

The following section introduces a technique to specify a single
functional requirement, a single service. Subsequently, we present
an operator to combine modularly specified requirements, the ser-
vice combination as well as its more general form, the prioritized
service combination. As a result, we get a specification which con-
sists of formally defined services and well-defined relationships be-
tween them.

2.1 Single Service
The formalism applied for the specification of the service behavior
is an adapted form of state transition systems from [2, 4] and rule
systems from [20].

A service has a syntactic interface consisting of the sets of typed
input and output ports. Figure 1 depicts the syntactical interfaces of
two services from our running example. There, the empty circles
represent the input ports and the solid circles the output ports.

Switch
switch comm

statusstate

(a) Switch

EBrake
commstate

emergeBrake

(b) EBrake

Figure 1: Syntactical Interfaces

The semantics of a service is described by a service automaton.
This is a tuple

A = (V, I, T) (1)

consisting of variables V , initial states I, and a transition relation
T . V consists of mutually disjoint sets of typed variables, I , O, L.
The variables from I and O are the input and output ports of the
service interface, respectively. L is a set of local variables. A type
of a variable describes a set of all its possible valuations. A state
of A is a valuation α that maps every variable from V to a value of
its type. Λ(V) is the set of all type-correct valuations for a set of
variables V , i.e. state space of A is a subset of Λ(V).

In the remainder of this work we use the following relations and
predicates on variable valuations. Two valuations α, β ∈ Λ(V) are
equal on a subset of common variables Z ⊆ V if:

α
Z
= β

def⇔ ∀v ∈ Z : α(v) = β(v).

A set of valuations A is a subset of another set of valuations B with
regard to a subset of common variables Z:

A
Z⊂ B

def⇔ ∀α ∈ A : ∃β ∈ B : α
Z
= β

∧ ∃β ∈ B : �α ∈ A : α
Z
= β.

The function loc denotes the set of all possible input and output
variable valuations for a given local state:

loc(α)
def
= {β ∈ Λ(V) | β

L
= α}.

Finally, we define the priming operation on variable names: If v is
a variable, then priming yields a new variable v′ of the same type.
The same applies for sets of unprimed variables, i.e. if v ∈ V , then
v′ ∈ V ′. For a given valuation α ∈ Λ(V) we write α′ ∈ Λ(V ′) in
order to denote a new valuation such that ∀v ∈ V : α(v) = α′(v′).
We use priming in order to be able to argue about the current state
and the next state within the same logical formula.

In the following, we will describe the behavior of services by means
of assertions. An assertion Φ is a logical formula, which may have
free occurrences of variables from V . Then, a valuation α satisfies
an assertion Φ, denoted by α 	 Φ, if and only if the assertion yields
true after replacing the free variables of Φ by the corresponding
values from α. The other type of assertions is defined over the
variables from V ∪ V ′. We write α, β′ 	 Φ in order to denote that
a pair of valuations α ∈ Λ(V) and β′ ∈ Λ(V ′) satisfies Φ. We
also write α 	 Φ for α ∈ Λ(V ∪ V ′).

I from (1) is an assertion characterizing the initial states of the
system. It must be satisfiable by at least one valuation of V and it
is allowed to constrain output and local variables only, i.e. the set
of possible initial inputs is not constrained by I.

T from (1) is a set of transitions. A transition t ∈ T relates states to
their respective successor states. Formally, a transition is an asser-
tion over V ∪V ′, where satisfying valuations of unprimed variables
describe the current state while the valuations of the primed ones
constrain the possible successor states. By enabling several satisfy-
ing successor state valuations for one current state, we can model
non-determinism. A transition is not allowed to constrain primed
input and unprimed output variables. By this, we disallow a ser-
vice to constrain its own future inputs, and enforce the separation
between the local state and the outputs.

off on

2: switch?on state?off/
status!on comm!on

1: switch? on state?off/
status!off comm!

3: switch? off state?on/
status!on comm!

4: switch?off state?on/
status!off comm!off

5: state?off/status!off

Figure 2: I/O Automaton of Switch

Figures 1(a) and 2 show the specification of service Switch from
our running example. In Figure 2, we use a special syntax to de-

scribe transition assertions: A transition goes from one control state
to another. A control state is a value of a dedicated local variable,
which encodes the control state. The other local variables, which
encode the data state of a service can be explicitly manipulated by
the transition assertion. A transition consists of four parts: precon-
dition, input patterns, post-condition and output patterns. A pre-
condition contains conditions on the input and on the current values
of the local variables. Input and output patterns describe the values
of the expected inputs (unprimed variables) and produced outputs
(primed variables), respectively. In our concrete syntax i?v de-
notes an input pattern, which evaluates to true if the variable i ∈ I
has the value v and o!v an output pattern, which is satisfied by
an assignment of value v to the output variable o′ ∈ O′. A spe-
cial form of the input pattern i?¬v is satisfied by all type-correct
valuations of i, except for v. The individual input patterns are sep-
arated by the logical AND and followed by an AND-separated out-
put pattern list with a slash in between. The post-condition is an
assignment of values to the variables in L′. In our simplified exam-
ple the local state of service automata consists of the control state
only (L = {cs}). Thus, e.g. , the pre- and post-conditions of Tran-
sition 2 from Figure 2 are cs = off and cs ′ = on , respectively.
Since the service automata from our running example do not con-
tain further local variables, pre- and post-conditions are omitted in
the figures. A transition can be fired if for the given inputs and the
current local state the precondition and the input pattern yield true.
The result of a transition step is a valuation that satisfies the output
pattern and the post-condition.

The service in Figure 2 formalizes the following requirement on
the CU: The user can switch the conveyor on/off, by putting one of
the two commands (on or off) in. Additionally, the CU receives
the state of the conveyor through the port state. If the conveyor
is in state off and the user switches it on, in the next step the CU
sends command on through its port command to the conveyor, as
well as message on through port status to the user display (cp.
Transition 2 in the automaton). The remaining transitions are de-
fined analogously. Note, Transition 5 does not reference two of the
four existing ports. This means that the outputs of these ports are
not subject to any restrictions by the service automaton and thus al-
lowed to have arbitrary values within their respective type domains.
In other words, if the CU receives state message on from the con-
veyor, then it sends message on to the display, independently from
the messages on the other ports.

In order to be able to reason about transition steps, we define a
set of I-enabled transitions originating from a given state α. An
I-enabled transition can process the provided input in the current
local state:

IEn(α)
def
= {t ∈ T | ∃β ∈ Λ(V) : α, β′ 	 t}.

For reasoning about valuation sequences, we define for every valu-
ation the set of its successors. Formally,

Succ(α)
def
= {β | ∃t ∈ T : α, β′ 	 t}.

The valuations reachable after n steps starting from some valuation
α are then recursively defined as

Succ0(α)
def
= {α} and Succn+1(α)

def
= Succ(Succn(α))

with Succ(A)
def
=

[

γ∈A

Succ(γ).

Finally, the set of all reachable states of a service S is defined as

Attr(S)
def
=

[

n∈N,α�I
Succn(α).

A run of a service automaton is an infinite sequence of states,
〈β0β1β2 . . . 〉, where ∀i ∈ N : βi+1 ∈ Succ(βi) and β0 	 I.
The semantics of a service automaton 〈〈S〉〉 is the set of all its runs.

A service is called valid if there exists at least one successor for
each reachable local state:

∀α ∈ Attr(S) : Succ(loc(α)) = ∅.
Otherwise, the service is inconsistent. It is quite easy to see that the
set of runs (consisting of infinite runs only) of a valid service is not
empty.

2.2 Service Composition
Individual services that have been specified independently can be
combined to a composite service. This directly reflects the idea
that all single functional requirements on a system must be satis-
fied by a valid implementation simultaneously. Thus, we define the
semantics of a composite service as being a container of all simul-
taneously operating sub-services. Thereby, services are allowed to
share input and output ports.

Unlike the “classical” notion of the composition, which reduces the
number of possible behaviors of individual automata [8, 17], we are
interested in obtaining a mechanism for the extension of the system
functionality. The service composition should accept all inputs, the
individual services can deal with as long as the outputs produced
by these services are unifiable (not contradictory). Thereby, the
reaction of the composition should accord with reactions specified
by the single services. In other words, our service composition
accepts the union of the inputs and produces the intersection of the
outputs.

We define the composition of two service only if their I/O ports and
local variables are mutually disjoint: (I1∪L1)∩(O2∪L2) = (O1∪
L1) ∩ (I2 ∪ L2) = ∅ and their homonymous variables (V1 ∩ V2)
have the same type. We speak about composable services if they
fulfill these properties.

If two services S1 and S2 are composable, their composition C
def
=

S1||S2 is defined by C
def
= (VC , IC , TC), where

• IC
def
= I1 ∪ I2, OC

def
= O1 ∪ O2, LC

def
= L1 ∪ L2,

• VC
def
= IC ∪ LC ∪ OC ,

• IC
def
= I1 ∧ I2,

• TC is defined via the successor relation, see Equation (2)
below.

The composition automaton makes a step if either the current input
can be accepted by both single services, and their reactions are not
contradictory, or the input can be accepted by one of both services
only. This means, the other service is not I-enabled. In the latter
case, the local variables of the not I-enabled service are not mod-
ified, and its output variables (not common with the first service)
are not subject to any restrictions. Formally, the set of successors

in valuation sequences of a service composition is defined as fol-
lows:

Succ(α)
def
= {β | ∃t1 ∈ T1, t2 ∈ T2 : α, β′ 	 t1 ∧ t2}

∪ {β | ∃t1 ∈ T1 : α, β′ 	 t1 ∧ IEn2(α) = ∅ ∧ α
L2= β}

∪ {β | ∃t2 ∈ T2 : α, β′ 	 t2 ∧ IEn1(α) = ∅ ∧ α
L1= β}.

(2)

A valuation β is a successor of the valuation α if there exist both a
transition t1 of service S1 and a transition t2 of S2 such that they
are satisfied by α and β′ simultaneously. Otherwise, β is a suc-
cessor of α if there is no I-enabled transition t2 of S2 in α and
there is a transition t1 of S1 such that it is satisfied by α and β′.
Thereby, all local variables of S1 must remain unaltered. The anal-
ogous behavior is exhibited by the transitions of S2 when S1 is not
I-enabled.

To illustrate the concept of composition, we consider a further re-
quirement concerning the emergency brake from our running ex-
ample. The CU immediately switches the system off if the user
puts the emergency brake on (message em on port eBrake) or a
critical state message is received from the conveyor (message em
on port state). The CU is not allowed to switch the system on
and the emergency lamp flashes red until an abolition of the emer-
gency (ab) is received on port eBrake. The service shown in Fig-

eOff eOn

2: state?em/
comm!off emerg!on

1: state? em eBrake? em
/emerg!off

4: eBrake? ab/
comm! emегg!on

5: eBrake?ab/emerg!off

3: eBrake?em/
comm!off emerg!on

Figure 3: I/O Automaton of EBrake

ures 1(b) and 3 formalizes this requirement. In the normal mode,
as long as no emergency signal is received, the emergency lamp is
off and port switch may have an arbitrary type-correct valuation,
i.e. , any message of the port type is allowed (Transition 1). Once
the emergency signal is received, the command on port comm will
be off and the signal on port emerg to the emergency lamp will
be on (Transitions 2 or 3). Then, no further commands are allowed
and the signal to the lamp is on as long as no abolition message is
received on port switch (Transition 4). After receiving an abo-
lition, message off is sent to the lamp, whereas, port switch is
not subject to any restrictions (Transition 5).

The composition of services Switch and EBrake results in the
automaton depicted in Figure 4. There, the labels of transitions are
of the form ts ∧ te, where ts is the identity number of a transition
from Figure 2, and te is a transition number from Figure 3. A label
of the form T ∧ te identifies a situation where service Switch is
not I-enabled. A transition with a label l1 ∨ l2 is an abbreviation of
two transitions with labels l1 and l2, respectively. According to the
definition, contradictory transition pairs do not belong to the transi-
tion set of the composition. For example, Transition 1 of Switch
and Transition 3 of EBrake are contradicting because of contra-
dictory messages on output port comm.

off/eOff on/eOff

off/eOn on/eOn

1 1

1 4

1 5

2 1

2 5

3 1

3 4

3 5

4 1 5 1

4 3

4 5 5 3 5 5

5 4

T 2T 2

Figure 4: Service Composition

The composition defined above is well-defined in the sense that for
composable services it yields a service again. It is also commuta-
tive, associative and idempotent, which is shown next.

PROPOSITION 1. The service composition is commutative, as-
sociative and idempotent.

PROOF SKETCH. The commutativity is a straight forward issue:
the definition of composition is symmetrical for both arguments.

We will sketch the associativity in one direction, i.e. that 〈〈(S1 ‖
S2) ‖ S3〉〉 ⊆ 〈〈S1 ‖ (S2 ‖ S3)〉〉 for some pairwise composable
S1, S2 and S3. The proof for the opposite direction goes analo-
gously. For this case it is sufficient to show that for state α holds
Succ(S1‖S2)‖S3(α) ⊆ SuccS1‖(S2‖S3)(α) for every valuation. Let
us assume that there exists β with

β ∈ Succ(S1‖S2)‖S3(α) and β /∈ SuccS1‖(S2‖S3)(α)

According to Definition (2), the successor relation builds upon
three subsets. Because ∧ is associative, we obtain a contradic-
tion if β belongs to the first one (i.e. for all i ∈ {1, 2, 3} there are
transitions ti ∈ Ti such that α, β′ 	 t1∧t2∧t3). Since the remain-
ing two cases are symmetrical, we will exemplary consider the case
where IEn3 = ∅. In this case there exist ti ∈ Ti for i ∈ {1, 2}
such that α, β′ 	 t1∧t2. Due to the last subset construction of (2),
we have β ∈ SuccS2‖S3(α) and obtain a contradiction also in this
case.

Finally, for S ‖ S only the first subset in the definition of compo-
sition will be non-empty. The idempotence then follows from the
idempotence of ∧.

2.3 Prioritized Composition
Usually, in specifications some events or behaviors explicitly have
a higher priority than others. For example, the system reaction in
the case of emergency has higher priority than the normal-case be-
havior. Another construction commonly found in specifications is
the presence of operational modes, in which the behavior of the
system changes. In order to be able to reflect these circumstances
in our service model, we introduce the notion of a prioritized com-
position. It allows an individual service to take control over other
services depending on certain input situations. By this, we can ex-
press different relationships between services, as for example ser-
vice relations from [6], without any modifications on them. This
means, for example, that a service does not have to be aware that

it can be “deactivated” by some other service. Thus, the prioritized
composition preserves the modularity of service specifications.

The prioritized composition allows service S2 to take priority over
service S1 in the composite system. Thereby, the prioritized com-
position is controlled by a special service SP with the interface
containing all input ports I1 ∪ I2 and no output ports. If the current
input enables a transition of SP , only service S2 is efficacious –
the local state of S1 remains unmodified, the output variables con-
trolled by S1 are not subject to any restrictions. Otherwise, the
composition behaves like the un-prioritized one. Thus, the priority
service SP determines certain input states for which the behavior
of the system should coincide with the behavior of S2 only.

The prioritized composition PC
def
= S1 ‖SP S2 is defined for a

pair of composable services S1 and S2 and a special prioritization

service SP
def
= (IP � LP , IP , TP) by PC

def
= (VPC , IPC , TPC),

where

• (I1 ∪ I2) ⊆ IP ,

• IPC
def
= IP , OPC

def
= O1 ∪ O2, LPC

def
= L1 ∪ L2 ∪ LP ,

• VPC
def
= IPC ∪ LPC ∪ OPC ,

• IPC
def
= IP ∧ I1 ∧ I2,

• TPC is defined via the successor relation, see Equation (2)
below.

Let TC be the transition set of the un-prioritized composition of
S1 and S2, i.e. S1 ‖ S2 = (VC , IC , TC), then the prioritized one
contains the following valuation states

Succ(α)
def
=

{β | ∃t ∈ TC : ∀tP ∈ TP : (α, β′ 	 t ∧ ¬tP) ∧ α
LP= β}

∪ {β | ∃t2 ∈ T2, tP ∈ TP : (α, β′ 	 t2 ∧ tP) ∧ α
L1= β}.

The first subset describes the case when SP is inefficacious (not
I-enabled). Then, the behavior of S1 ‖SP S2 coincides with the be-
havior of S1 ‖S2. The other subset contains the common behaviors
of S2 and SP , i.e. the reactions of S2 to the inputs enabled by SP .

In our running example, it makes sense to prioritize the emergency
break signals eBrake?em and state?em. Additionally, we re-
quire that the composite system must behave like service EBrake
if one of these signals arrives, otherwise, the behavior is identi-
cal to the composition from Figure 4. The priority service which
prioritizes emergency signals is depicted in Figure 5. The priori-

2: state?em

1: eBrake?em

Figure 5: Priority Service

tized composition of Switch and EBrake with regard to the pri-
ority service results in the automaton from Figure 6. Whenever an
emergency signal has arrived, this composition behaves like service

EBrake (transitions of the form p2∧ te), otherwise it behaves like
the composition from Figure 4.

off/eOff on/eOff

off/eOn on/eOn

1 1

1 4 p2 4

1 5

2 1

2 5

3 1

3 4 p2 4

3 5

4 1 5 1

4 3

4 5 5 3 5 5

5 4

T 2
p2 3

T 2

p2 3

Figure 6: Prioritized Composition

The un-prioritized composition from the previous section is a spe-

cial case of the prioritized one, namely S1 ‖ S2
def
= S1 ‖S⊥ S2,

where S⊥ is the service yielding “false” for any pair of valuation

states (α, β′). More precisely, we define S⊥
def
= (I1∪I2, I1∧I2, ∅).

The prioritized composition is in general non-commutative and
non-associative. However, we can generalize the associativity re-
sult from the previous section for the prioritization by the same
priority service: (S1 ‖SP S2) ‖SP S3 = S1 ‖SP (S2 ‖SP S3). We
also obtain the distributivity of the prioritized composition by the
following proposition.

PROPOSITION 2. The prioritized composition is distributive.

PROOF SKETCH. First, we observe that the overall behavior of

a transition set T can be described by a logical formula [T]
def
=W

t∈T t. Moreover, we write [TS1‖S2] = [TS1] � [TS2], where
� denotes the Boolean operation which corresponds to the un-
prioritized composition. Due to Proposition 1 it is commutative,
associative and idempotent. Then, the behavior of the prioritized
composition S1 ‖SP S2 denoted by [TS1‖SP S2

] reduces to

[TS1‖SP S2
] = ([TP] ⇒ [T2]) ∧ (¬[TP] ⇒ [TS1] � [TS2]).

In order to prove that for pairwise composable S1, S2 and S3 holds

S1 ‖SP (S2 ‖SQ S3) = (S1 ‖SP S2) ‖SQ (S1 ‖SP S3)

we must consider four cases: ([TSP] ∧ [TSQ]),. . . ,(¬[TSP] ∧
¬[TSQ]) and show for each of them that the behaviors of the both
formulas are the same. We will do this exemplary for ¬[TSP] ∧
¬[TSQ]: For the left-side formula we obtain [TS1] � [TS2‖S3] and
for the formula on the right side [TS1‖S2] � [TS1‖S3] which are
equal.

The prioritized and un-prioritized composition operators with their
properties enable the modular and distributed development of ser-
vice models and facilitate reuse of service specifications.

3. CONSISTENT SPECIFICATION
The overall specification is the combination of modularly speci-
fied sub-functionalities. Thereby, different services can share the
same I/O ports. Thus, the integration of different functions might

cause unforeseen conflicts (known as feature interaction) and con-
sequently lead to an inconsistent specification of the overall behav-
ior. As a consequence, it becomes a central task during the function
integration to detect and resolve conflicts in order to assure the con-
sistency of the overall specification. In the following sections, we
precisely define what we mean by conflicts and show how the intro-
duced formal concepts can be used to detect and to resolve conflicts
between functional requirements.

3.1 Conflict Detection
Intuitively, a conflict between two services exists when a service
in the presence of other services is prevented from reacting to all
inputs which can be suitably processed by the service in isolation.
While the behavior of both services may be correct according to
their intended behaviors, their interaction is undesired. However,
this situation cannot be automatically assessed as a conflict because
this restriction may be developer’s purpose. Thus, potential con-
flicts need a further analysis by the developer. A prerequisite for a
service conflict is that the two services have at least one common
output port.

Formally, for a composition S, which combines a service S1 with
some other services, we gather all states in which the set of inputs
accepted by S1 is further restricted in the composition. This set of
potentially conflicting states is defined as Confl(S1, S) ⊆ Λ(V)
with

α ∈ Confl(S1, S)
def⇔ α ∈ Attr(S) ∧ Succ(α)

I1⊂ Succ1(α) (3)

Succ(α) is the set of successors of α in the composition and
Succ1(α) is the successors of a projection of α in service S1.

Then, two services are potentially conflicting within an un-
prioritized composition in a state α, iff

α ∈ `
Confl(S1, S1 ‖ S2) ∪ Confl(S2, S1 ‖ S2)

´
.

Regarding potential conflicts in a prioritized composition where S2

takes priority over S1 with regard to SP , a conflict might appear
only if both services are efficacious, i.e. only if the current input
cannot be processed by the priority service. This is the case when
SuccP (α) = ∅, according to the definition from Section 2.3. Oth-
erwise, the behavior of the system coincides with the behavior of
the prioritized service and thus, per definition, cannot cause a con-
flict. If both services are efficacious simultaneously, we use the
same conflict definition as that of the un-prioritized composition.
Formally, α is a potentially conflicting state in the composition
S1 ‖SP S2, iff

α ∈ Confl(S1, S1 ‖ S2) ∪ Confl(S2, S1 ‖ S2) ∧ SuccP (α) = ∅.
The set of potentially conflicting states of two services within a
composition is defined as:

CP(S1, S2, SP)
def
= {α |
α ∈ Confl(S1, S1 ‖ S2) ∪ Confl(S2, S1 ‖ S2)

∧ SuccP (α) = ∅}.
Please note, in the special case of an un-prioritized composition
SuccP (α) = ∅ is true by definition, i.e. CP(S1, S2, SP) ⊆
CP(S1, S2, S⊥).

In our example, it is obvious that both services Switch and
EBrake are potentially conflicting in the unprioritized composi-
tion. According to service EBrake, after an emergency switch

Service Variable Value

Switch
switch ¬on on ¬off on off
state off off on off on

l1 off off on off on

EBrake
eBrake em em em ¬ab ¬ab

l2 eOff eOff eOff eOn eOn

Conflict Nr. 1 2 3 4 5

Table 1: Conflicting States

off, the CU is not allowed to switch the system on until an emer-
gency abolition message is received. At the same time, according
to service Switch, if the user switches the conveyor on, in the next
step the CU has to switch the system on. Formally, let us consider
a state α with l1 = off ∧ l2 = eOn ∧ switch = on ∧ state =
off ∧eBrake = ab. The output values are arbitrary. While there is
no successor for this state in the composition, service Switch con-
tains a successor of this state because of Transition 2 (see Figures 4

and 2). Because of Succ(α) = ∅ I1⊂ SuccSwitch(α) = ∅, there is a
potential conflict between both services. The set of all conflicting
states CP(Switch,EBrake, S⊥) is given by Table 1. The columns
which specify values of input and local variables identify five con-
flicting states.

A special class of potential conflicts are definite conflicts. Services
S1 and S2 are definitely conflicting if their composition does not
yield a valid service, i.e. there is a deadlock in the composition.
In other words, there is a reachable local state α in the composite
automaton for which no successor state exists: Succ(loc(α)) = ∅.
Obviously, every definite conflict satisfies Definition (3) for poten-
tial conflicts. Thus, every definite conflict is also a potential one.

3.2 Conflict Resolution
In order to obtain a consistent specification, all detected conflicts
have to be resolved. It is possible to identify three sources of con-
flicts, namely (1) user requirements on the considered system are
contradictory, (2) the formalizations of unifiable requirements are
more restrictive than necessary, and (3) a desired priority between
two requirements is omitted. Even though it is up to the developer
to judge whether a potential conflict must be resolved or not, we
propose two methods to resolve conflicts from classes (2) and (3).
The first class of conflicts can be resolved by reviewing the affected
requirements by the developer only, and therefore will not be fur-
ther treated here. The second class can be resolved by abstracting
the modular specification of at least one of the affected services.
The third class can be resolved by introducing an additional prior-
ity between affected services.

3.2.1 Abstracting Modular Specifications
In many cases, conflicts can be resolved by abstracting modular
specifications without changing the original meaning of require-
ments. Thereby, we are guided by the fact that a textual require-
ment is the most abstract specification and the corresponding ser-
vice is one of its refinements. A common source of inter-service
conflicts is the specification of the reaction time of the system to a
given input. A textual requirement “the system should react to the
input i with the output o” (i → F o) is often interpreted as “the sys-
tem should react to the input i with the output o in the next step”
(i → X o)1. This refinement of the textual requirement is more

1We use the following temporal logic operators: X for next and F
for eventually.

off on

2: switch?on state?off/
status!on comm!on1:

3:

4: switch?off state?on/
status!off comm!off

5:

off2
2a: switch?on state?off/ 2b: /status!on

comm!on

2c: /

on2
4a: switch?off

state?on/4b: /status!off comm!off 4c: /

Figure 7: Abstraction of Service Switch.

restrictive than necessary and thus may cause a conflict with other
services.

Note, the introduced nondeterminism may cause new conflicts and
consequently entails a repeated search and review of potential con-
flicts.

In our example, service Switch always specifies the system re-
action to the user input in the next step (see Figure 2). Let us as-
sume that the conveyor does not have to be switched on immedi-
ately after receiving the user signal (switch?on ∧ state?off →
F(status!on ∧ comm!on)). Then, service Switch is a cor-
rect but too restrictive specification of this requirement. To re-
solve conflicts detected in the last section, additionally to Tran-
sition 2 we add three new transitions and a new local state off2

(see Figure 7). Transition 2a is I-enabled whenever Transition 2
is I-enabled. However, it constrains no output variables. 2c is a
loop without any restrictions on the I/O variables. 2b is always
I-enabled and has the same restrictions on the output variables as
Transition 2. The modified service now specifies the following re-
quirement: switch?on∧ state?off → F(status!on ∧comm!on).
The same method is used to resolve conflicts involving Transition 4.
By this, we have resolved conflicts 2, 4 and 5 from Table 1.

3.2.2 Additional Priorities
For most conflicts the procedure introduced so far is not adequate
since changing the modular specification accordingly to the behav-
ior of another services implies loss of modularity. Therefore, to
resolve the source of conflicts (namely, the service interaction) we
propose to introduce additional priorities. By this, we preserve the
modularity of services and, furthermore, make functional depen-
dencies explicit.

In order to resolve a subset of potential conflicts RC ⊆
CP(S1, S2, S⊥) between two services S1 and S2 in favor of S2,
we synthesize a new priority service. In every conflicting state, this
service prioritizes service S2 and so resolves the detected potential

conflicts. Formally, the priority service SC(RC)
def
= (VC , IC , TC) is

defined as:

VC = IC
def
= I1 ∪ I2, IC

def
= True and

TC
def
= {(γ, δ′) ∈ Λ(I) × Λ(I ′) | α ∈ RC ∧ γ

I2= α}

Transitions of the new service TC are I-enabled exactly in the
conflicting states of the unprioritized composition. Then, in

S1 ‖SC(RC) S2 the set of potential conflicts is provably reduced
by RC , which is shown next.

PROPOSITION 3. For any services S1, S2 and a potential con-
flict state α ∈ CP(S1, S2, S⊥) holds: α /∈ CP(S1, S2, SC({α})).

PROOF. First, we observe that the domains of S1 ‖ S2 and

S1 ‖SC({α}) S2 are the same, i.e. α ∈ Λ(VS1‖SC({α})S2
). A tran-

sition of SC({α}) is always enabled in α, thus, according to the
definition of the parametrized composition, S2 will always take the
control over in α and by this Succ(α) = Succ2(α). Here, Succ is

the successor function of S1 ‖SC({α}) S2 and Succ2 of S2.

4. IMPLEMENTATION
Concepts introduced so far build a theoretical foundation for
service-based specification. Below, we sketch how these concepts
can be integrated into an existing CASE tool. The logical character-
ization of the operational service semantics permits on the one side
validation of our models by executing them and on the other their
verification and automatic inter-service conflict detection by tech-
niques like model checking, SAT- and constraint solving, etc. For
all these purposes a description technique and a tool-support are
needed. To our knowledge, there is no tool-support for the formal
specification of functional requirements and automatic detection of
conflicts between them. Therefore, we aim at integration of our
approach into the CASE tool AutoFOCUS [3].

AutoFOCUS is a tool for the component-based development of re-
active systems. It supports graphical description of the developed
system using different integrated diagram types (views). Here, we
describe only two, for our approach relevant views. The descrip-
tion techniques applied there are similar to the diagrams used to
describe our bottling plant example.

Architecture view: By using System Structure Diagrams (SSDs)
users can define the component structure of the system. In
particular, component interfaces consisting of I/O ports can
be defined.

Behavior view: State Transition Diagrams (STDs) describe the
behavior of a component in the system using an extended
version of I/O automata.

The current purpose of AutoFOCUS is the development of the de-
sign (with the possibility of a subsequent code generation) of reac-
tive systems. Its formally founded operational semantics allowed
to realize a simulation environment and to integrate different veri-
fication tools, e.g. model checkers, constraint solvers, etc. We are
currently extending this tool by a more abstract view dealing with
the specification of functional requirements.

In Section 4.1, we introduce a concrete (and more concise) Auto-
FOCUS based semantics for services and their compositions, which
allows to use STDs to describe the behavior of single services
(cp. [16] for a detailed description of the STD semantics). In Sec-
tion 4.2, based on this operational semantics and the definitions
from Section 3, we describe algorithms to detect conflicts between
services.

4.1 Simulation
A service is specified by an automaton A = (V, I, T), introduced
in Section 2. A missing part, not discussed so far is a concrete
scheme for the description of service transitions. In fact, the defini-
tion of the composition based on the Succ-relation give us no possi-
bility to represent infinite-state models by finite relations. Also, for
bigger finite-state models this description is not really handsome
either. This concrete description of service transitions is the topic
of the present section.

Single Service. For a service with n input ports I =
{ip1, . . . , ipn}, m output ports O = {op1, . . . , opm}, and w local
variables L = {l1 . . . , lw} a transition t is given by

pre ∧
n̂

j=1

ipj = ij ∧
m̂

j=1

op′
j = oj ∧

ŵ

j=1

l′j = vj

with the meaning that whenever actual input port values ipj match
the patterns ij , and in addition, precondition pre evaluates to true ,
then updated values of output ports op′

j and of local variables l′j
have to match the patterns oj and vj , respectively. pre is defined
over unprimed input ports and unprimed local variables only. The
patterns oj and vj may depend on the values of unprimed input
ports and local variables only.

Unprioritized Composition. If two services S1 and S2 are

composable, the transition set of their composition C
def
= S1||S2

consists of the following three sets: TC
def
= Ta ∪ Tb ∪ Tc. Ta is a

set of transitions which are conjunctions of transitions from S1 and
S2:

Ta
def
= {(pre1 ∧ pre2) ∧ (in1 ∧ in2) ∧ (out1 ∧ out2)

∧ (ass1 ∧ ass2) | t1 ∈ T1 ∧ t2 ∈ T2}.
Tb is a set of transitions from S1 whose input patterns and precon-
ditions are extended by an additional condition such that if the tran-
sition from S1 is I-enabled then no transition from S2 is I-enabled
simultaneously. In this case, no local variables of S2 are allowed to
be updated. Output ports of S2 are not subject to any restrictions:

Tb
def
= {(pre1 ∧ ¬

_

t∈T2

pret) ∧ (in1 ∧ ¬
_

t∈T2

int) ∧ out1

∧ (ass1 ∧
^

l∈L2

l′ = l) | t1 ∈ T1}.

Set Tc of transitions from S2 is defined analogously to Tb.

Prioritized Composition. The transition set of prioritized

composition PC
def
= S1 ‖SP S2 is defined by TPC

def
= Ta ∪ Tb. Ta

is a set of transitions from unprioritized composition C
def
= S1||S2

whose input patterns and preconditions are extended by an addi-
tional condition such that if the transition from C is I-enabled then
no transition from SP is I-enabled simultaneously. In this case, the
local variables of SP remain unaltered:

Ta
def
= {(pret ∧ ¬

_

p∈TP

prep) ∧ (int ∧ ¬
_

p∈TP

inp) ∧ outt

∧ (asst ∧
^

l∈LP

l′ = l) | t ∈ TC}.

Tb is a set of transitions which are conjunctions of transitions from
S2 and SP . No local variable of S1 is allowed to be updated:

Tb
def
= {(pre2 ∧ preP) ∧ (in2 ∧ inP) ∧ out2

∧ (ass2 ∧ assP ∧
^

l∈L1

l′ = l)) | t2 ∈ T2}.

The above specification scheme allows us to reuse the STDs of
AutoFOCUS for the specification of the proposed service diagrams.
We provided algorithms that can be used for the implementation of
the simulation environment for services in AutoFOCUS as well as
for the import of service models into different verification tools.

4.2 Conflict Detection
In order to ensure the correctness of safety-critical systems, val-
idation by simulation is not sufficient. Often, formal proofs are
required to show the consistency of the specifications. A model
checking back-end provided by AutoFOCUS tool allows to prove
highly general properties of a system based on its functional speci-
fication [22].

For finite-state models the logical characterization of services and
inter-service conflicts can be formulated in the propositional cal-
culus. Thus, we can use the established SAT solvers or Constraint
Logic Programming [15] to detect inconsistencies between func-
tional requirements automatically. However, the transformation to
a SAT solver or CLP is not in the scope of this paper – it is precisely
addressed e.g. in [16] for AutoFOCUS STDs. In the following, we
express the conditions for potential and definite conflicts based on
the concrete semantic scheme presented above. This representation
allows us to find conflicts automatically, e.g. by representing the
conflict condition as a further CLP constraint.

Deadlocks. According to the definition of the valid service from
Section 2.1, there is a deadlock in the specification of a single ser-
vice if there is a reachable local state for which no successor state
exists. In other words, there is a transition in the service automaton
such that satisfiability of its assertion implies unsatisfiability of all
service transitions for any inputs:

∃t ∈ T : asst ∧ ∀ip1, . . . , ipn : ¬
_

i∈T

prei.

Then, all states from loc(α) with α 	 asst are definite conflicts
(deadlocks) of the service. Naturally, the same applies to the com-
posite services.

Potential Conflicts. According to the definition from Sec-
tion 3.1, two services are potentially conflicting if there is an input
sequence which can be processed by one of the single services in
isolation but cannot be processed by their composition. In other
words, there is a transition t1 of a single service S1 such that there

is no transition of the composition SC
def
= S1 ‖ S2 whose input pat-

terns and precondition imply the input patterns and precondition of
t1:

∃t1 ∈ T1 : ∀tc ∈ TC : ¬(prec ∧ inc ⇒ pre1 ∧ in1).

Then, any α with α 	 pre1 is a state in which service S1 is poten-
tially conflicting with S2.

Regarding potential conflicts in a prioritized composition SPC
def
=

S1 ‖SP S2, a conflict might appear only if the current input cannot
be processed by the priority service. In other words, additionally to
the condition of an unprioritized conflict, satisfiability of the pre-
conditions and input patterns of t1 has to imply the unsatisfiability
of the preconditions and input patterns of all transitions of SP :

∃t1 ∈ T1 : ∀tpc ∈ TPC : ¬(prepc ∧ inpc ⇒ pre1 ∧ in1)

∧ ¬
_

p∈TP

(pre1 ∧ prep ∧ in1 ∧ inp).

The above definitions of a precise operational semantics of services
and inter-service conflicts in a uniform scheme allow us to extend
an existing tool by a specification technique which can be used to
validate and verify functional requirements. Also, based on this
semantics consistency analysis can be performed automatically.

5. RELATED WORK

Formal Foundation in Requirements Engineering. The
definition of formal semantics for requirement specifications is not
new. This idea goes back to the work by Parnas and Madey [19],
that proposes to specify a system as a black-box by means of math-
ematical functions. These functions describe the relations between
variables of the considered system and its environment. In contrast
to our work, this approach offers neither an operation semantics nor
a method to specify single requirements modularly and therefore it
is not able to support the scalability necessary for the state-of-the-
art systems.

Our work was significantly inspired by the PlayEngine introduced
by Harel et al. in [12], and particularly by their model chain from
play-in scenarios to the system model via requirements. The Play-
Engine provides interactive validation of interaction sequences. It
takes a set of LSCs (Live Sequence Charts, an extention of Message
Sequence Charts) as input and allows the user to send input signals
to the system. Then, it picks at random an interaction sequence that
suits the user input and shows the system output. In the case that
the user registers an undesirable system reaction, she has to man-
ually respecify the system. This approach, although valuable for
interactive validation, does not offer automatic conflict detection,
which is a central result of the presented paper.

The presented work is based on a theoretical framework introduced
by Broy [5] where the notion of a service behavior and service com-
position are formally defined. This framework proposes to model
system services as partial stream processing functions. It also de-
scribes, what behavior the composition, also a partial stream pro-
cessing function, should exhibit. However, this framework does not
automate conflict detection, either.

A further related approach can be found in the work by Schätz [21].
He provides a constructive approach to build components from
modular building blocks called functions. Like a service in our
approach, a function is not necessarily totally defined. However, in
contrast to the presented work, these functions are not allowed to
share common output ports. As a result, the behavior on a port can-
not be specified by different requirements which makes the func-
tions according to Schätz not a natural means to model require-
ments specifications.

The closest approach to our work is the work by Harhurin and Hart-
mann [13]. They focus on establishing the consistency of the spec-

ification of product lines. To that end, they define conflicts between
requirements and describe how these conflicts can be detected.
However, their approach uses a denotational semantics formalized
in first-order logic, what renders automatic analysis of functional
requirements impossible.

Feature Interaction. The central aim of our approach is to de-
tect and resolve conflicts between single requirements in order to
assure the consistency of the overall specification. A large body
of research on a related problem, called feature interaction, was
caused by the huge amount of software-based functions in telecom-
munications [7]. In this domain, features represent capabilities
that are incrementally added to a telephony network. One of the
most prominent works in this area is the approach by Jackson and
Zave [14]. They introduce Feature Boxes to model a telecommu-
nication system as a set of data passing components. In this sense,
Feature Boxes are similar to the approach presented in this paper.
However, they do not offer automatic conflict detection.

The goal-oriented approach to requirements refinement, as pro-
posed by van Lamsweerde [24], aims at refining high-level goals
to requirements and modeling conflicts between goals and/or re-
quirements. Conflicts are manually detected and modeled. The
presented approach, to the contrary, allows to validate specifica-
tions via simulation and offers systematic conflict detection.

Further related work can be found in the domain of embedded
control systems, e.g. approaches by Metzger [18] or Wilson et
al. [25]. All these approaches have in common that they focus
on feature interaction in the design phase without supporting the
inter-requirement conflict detection.

Automata Theories. Automata are a popular formalism for the
formal foundation of different artifacts and models in the software
engineering. Although there exists a variety of automata-based ap-
proaches, they all mainly deal with design and implementation of
software systems. Automata-based approaches, like I/O automata
by Lynch and Tuttle [17], or interface automata by de Alfaro and
Henzinger [8], are not suitable to model requirements. Features
like input-enabledness of the I/O-automata, or disjointness of out-
put ports of the interface automata, would inevitably lead to unjus-
tified design decisions made in the requirements engineering phase,
which is methodically wrong.

6. CONCLUSION AND OUTLOOK
We have presented an automata-based modeling paradigm, which
provides a natural way to capture and analyze the specifications
of reactive systems. The proposed composition mechanisms com-
bines single functional requirements, formalized as services, to an
overall specification. Both requirements and overall specifications
are described from the point of view of the system environment.
Using our model, the developer does not have to take any internal
details of the system into consideration such as component archi-
tecture or internal data and control flow. These details should be
treated in the subsequent development phases. Another important
feature of our model is the possibility to describe both input and
output behaviors of a system only partially. These two features
distinguish the proposed approach from any other formalism and
bring two important advantages: They allow establishing a one-to-
one correspondence between services and informal textual require-
ments. In addition, our notation eliminates the necessity for the

developer to over-constrain the analytical specification model by
implementation details.

Furthermore, the modularity in the proposed service-based devel-
opment process is also facilitated by the properties of the compo-
sition, i.e. the associativity and commutativity of the un-prioritized
composition and the distributivity of the prioritized one.

We see the application area of the proposed service-based speci-
fication in the requirements analysis phase, as part of the reactive
systems development. With a structured textual specification as an
input, this specification can be checked for consistency and fulfill-
ment of stakeholders’ goals by verification and simulation, respec-
tively. These two tasks can be performed thanks to the presented
formal operational semantics. For the former task we have formally
described the conditions which characterize a conflicting state.

Automation and computer-support of different tasks in software en-
gineering are as important as their foundation by formal methods.
The combination of these two factors is the best way to produce
correct systems, fulfilling the customer’s needs, at affordable cost.
For this purpose we presented a concrete scheme for the description
of our service models in the CASE tool AutoFOCUS.

Last but not least, a formal specification model can serve as an ac-
ceptance criterion for the artifacts produced during the subsequent
development phases, such as design or implementation. By inte-
grating service models into AutoFOCUS, we aim at establishing
a model stack, in which the correspondence between design and
specification can be formally proved, e.g. by showing a simulation
relation between both models.

There are several directions for further development of the pre-
sented approach. We are currently working on concepts to verify
the satisfiability of the service-based specification by a component-
based architecture. Beyond this, our future work includes the inte-
gration of the proposed service model into the tool AutoFOCUS.

Acknowledgments
We are grateful to Judith Hartmann for her advice on early versions
of the paper.

7. REFERENCES
[1] B. W. Boehm. Software Engineering Economics.

Prentice-Hall, Upper Saddle River, NJ, USA, 1981.

[2] J. Botaschanjan. Property-Preserving Deployment. PhD
thesis, TUM, 2008. To appear.

[3] P. Braun, H. Lötzbeyer, B. Schätz, and O. Slotosch.
Consistent integration of formal methods. In TACAS ’00.
Springer-Verlag, 2000.

[4] M. Breitling and J. Philipps. Black box views of state
machines. Technical Report TUM-I9916, Institut für
Informatik, Technische Universität München, 1999.

[5] M. Broy. Service-oriented systems engineering:
Specification and design of services and layered
architectures. In Engineering Theories of Software Intensive
Systems, pages 47–81. Springer Verlag, 2005.

[6] M. Broy. Model-driven architecture-centric engineering of
(embedded) software intensive systems: modeling theories
and architectural milestones. ISSE, 3(1):75–102, 2007.

[7] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature interaction: a critical review and

considered forecast. Comput. Networks, 41(1):115–141,
2003.

[8] L. de Alfaro and T. A. Henzinger. Interface automata. In
ESEC/FSE-9, pages 109–120. ACM, 2001.

[9] Festo Didactic. Detailspezifikation der SmartAutomation
Modellanlage, September 2006. Version 1.12.

[10] K. Grimm. Software technology in an automotive company:
major challenges. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages
498–503, Washington, DC, USA, 2003. IEEE Computer
Society.

[11] A. Gruler, A. Harhurin, and J. Hartmann. Modeling the
functionality of multi-functional software systems. In
Proceedings of ECBS’07, 2007.

[12] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart
play-out of behavioral requirements. In FMCAD ’02:
Proceedings of the 4th International Conference on Formal
Methods in Computer-Aided Design, pages 378–398,
London, UK, 2002. Springer-Verlag.

[13] A. Harhurin and J. Hartmann. Towards consistent
specifications of product families. In FM: 15th International
Symposium on Formal Methods, volume 5014 of LNCS.
Springer Verlag, 2008. To appear.

[14] M. Jackson and P. Zave. Distributed feature composition: A
virtual architecture for telecommunications services. IEEE
Trans. Softw. Eng., 24(10):831–847, 1998.

[15] J. Jaffar and M. J. Maher. Constraint logic programming: A
survey. Journal of Logic Programming, 19/20:503–581,
1994.

[16] H. Lötzbeyer and A. Pretschner. AutoFocus on Constraint
Logic Programming. In Proc. (Constraint) Logic
Programming and Software Engineering, 2000.

[17] N. A. Lynch and M. R. Tuttle. An introduction to
input/output automata. CWI-Quarterly, 2(3):219–246, 1989.

[18] A. Metzger. Feature interactions in embedded control
systems. Comput. Netw., 45(5):625–644, 2004.

[19] D. L. Parnas and J. Madey. Functional documents for
computer systems. Science of Computer Programming,
25(1):41–61, 1995.

[20] A. Pretschner and W. Prenninger. Computing refactorings of
state machines. Software and Systems Modeling, 6(4), 2007.

[21] B. Schätz. Building components from functions. In
Proceedings of FACS 2005, volume 160 of ENTCS, 2005.

[22] B. Schätz and F. Huber. Integrating formal description
techniques. In World Congress on Formal Methods (2), pages
1206–1225, 1999.

[23] Siemens, Sector Industry.
http://www.industry.siemens.de/en/.

[24] A. van Lamsweerde. Goal-oriented requirements
engineering: A guided tour. In RE ’01: Proceedings of the
5th IEEE International Symposium on Requirements
Engineering, pages 249–263. IEEE Computer Society, 2001.

[25] M. Wilson, E. H. Magill, and M. Kolberg. An online
approach for the service interaction problem in home
automation. In IEEE Consumer Comm. and Networking
Conf, pages 251–256, 2005.

