
A Bayesian Network Approach to Assess and Predict
Software Quality Using Activity-Based Quality Models

Stefan Wagner
Fakultät für Informatik

Technische Universität München
Garching b. München, Germany

wagnerst@in.tum.de

ABSTRACT
Assessing and predicting the complex concept of software
quality is still challenging in practice as well as research.
Activity-based quality models break down this complex con-
cept into more concrete definitions, more precisely facts about
the system, process and environment and their impact on ac-
tivities performed on and with the system. However, these
models lack an operationalisation that allows to use them
in assessment and prediction of quality. Bayesian Networks
(BN) have been shown to be a viable means for assessment
and prediction incorporating variables with uncertainty. This
paper describes how activity-based quality models can be
used to derive BN models for quality assessment and pre-
diction. The proposed approach is demonstrated in a proof
of concept using publicly available data.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.9 [Software
Engineering]: Management—Software Quality Assurance
(SQA)

General Terms
Measurement, Management

Keywords
Activity-Based Quality Models, Bayesian Networks, Quality
Assessment, Quality Prediction

1. INTRODUCTION
Despite the importance of software quality, the management
of software quality is still an immature discipline in software
engineering research and practice. Research work has gone
in many directions and produced a variety of interesting re-
sults. However, there is still no commonly agreed way for
quality management. The practice varies strongly from a
concentration on testing to a large-scale quality manage-
ment process.

One main problem is that many of the tools and methods
work rather isolated. Hence, quality is tackled on many
levels without a combined strategy [16]. What is missing is
a clear integration of these single efforts. One prerequisite
for such an integration is a quality management sub-process
in the overall development process. The process defines the
roles, activities and artefacts and how these work together.
A second prerequisite is a clear quality model that defines
quality for the software to be developed. The term quality
model is used in various contexts but we use it here to denote
a model that breaks down the complex concept quality and
thereby makes it more concrete. These concrete descriptions
of quality could then be used to construct, assess and predict
software quality.

1.1 Problem
Current quality models such as the ISO 9126 [10] have widely
acknowledged problems [6, 11]. Especially as a basis for as-
sessment and prediction, the defined “-ilities” are too ab-
stract. A clear transition to measurements is therefore dif-
ficult in practice. Hence, quantitative quality assessment
and prediction is usually done without direct use of such a
quality model. This, in turn, leads to isolated solutions in
quality management.

1.2 Contribution
We use the previously proposed activity-based quality mod-
els (ABQM) as a basis for quality assessment and prediction.
They provide a clear structure of quality and detailed in-
formation about quality-influences. Activity-based quality
models have proven useful in practice to structure quality
and to generate corresponding guidelines and checklists. In
this paper, we add a systematic transition from ABQMs
to Bayesian networks in order to enhance their assessment
and prediction capabilities. A 4-step approach is defined
that generates a Bayesian network using an activity-based
quality model and an assessment or prediction goal. The
approach is demonstrated in a proof of concept.

1.3 Outline
We first motivate and introduce activity-based quality mod-
els in Section 2. In Section 3 the 4-step approach for system-
atically constructing a Bayesian network from an activity-
based quality model is proposed. The approach is then
demonstrated in a proof of concept in Section 4 using pub-
licly available data from a NASA project. Related work
is discussed in Section 5 and final conclusions are given in
Section 6,



2. ACTIVITY-BASED QUALITY MODELS
Quality models describe in a structured way the meaning of
a software’s quality. We introduce the use of general quality
models and how the modelling of activities and facts helps
to define quality more precisely.

2.1 Software Quality Models
If quality requirements are handled at all in a software project,
quality models will be an integral part of it. The quality
model describes what is meant by quality and refines this
concept in a structured way. In practice, this is often re-
duced to metrics such as number of defects or high-level
descriptions as given by the ISO 9126 [10].

In general, there are two main uses of quality models in
a software project: (1) as a basis for defining quality re-
quirements and (2) for relating quality assurance techniques
and measurements to the quality requirements. The first
is commonly done by constraining well-known quality at-
tributes (reliability, maintainability, . . . ) as defined in a
quality model. In practice, this is often reduced to simple
statements such as “The system shall be easily maintain-
able.” The second use is often not explicitly considered.
However, certain metrics are nearly always measured such
as the number of faults in the system detected by inspections
and testing. The relationship between these measures and
quality attributes remains unclear. The reason lies in the
lack of practical means to define metrics for these high-level
quality attributes. Hence, more structure and more detail
is needed in quality models to integrate them closely in the
development process.

2.2 Facts and Activities
It has been proposed to use activity-based quality models
(ABQM) in order to address the shortcomings of existing
quality models [6]. The idea is to avoid to use high-level “-
ilities” for defining quality but to break it down into detailed
facts and their influence on activities performed on and with
the system. In [6] this was shown for maintainability, in [17]
for usability. In addition to information about the charac-
teristics of a system, the model contains further important
facts about the process, the team and the environment and
their respective influence on maintenance activities such as
Code Reading, Modification, or Test. For example, redundant
methods in the source code, also called clones, exhibit a
negative influence on modifications of the system because
changes to clones have to be performed in several places in
the source code.

For ABQMs, an explicit meta-model or structure model was
defined in order to characterise the quality model elements
and their relationships. Four elements of the meta-model
are most important: Entity, ATTRIBUTE, Impact and Activity.
An entity can be any thing, animate or inanimate, that can
have an influence on the software’s quality, e.g. the source
code of a method or the involved testers. These entities
are characterised by attributes such as STRUCTUREDNESS or
CONFORMITY. The combination of an entity and an attribute
is called a fact. We use the notation [Entity |ATTRIBUTE]

for a fact. For the example of code clones, we can write
[Method |REDUNDANCY]. These facts are assessable either by
automatic measurement or by manual review. If possible,

we define applicable metrics for measuring the facts inside
the ABQM.

An influence of a fact is then specified by an Impact. We con-
centrate on the influences on activities, i.e. anything that
is done with the system. For example, Maintenance or Use

are high-level activities. The impact on an Activity can be
positive or negative. We complete the code clone example
by adding the impact on Modification: [Method |REDUNDANCY]
−−→ [Modification]. This means that if a system entity Method

exhibits the attribute REDUNDANCY it will have a negative im-
pact on the Modification activity, i.e. changing the method.
A further example is the following tuple that describes con-

sistent identifiers: [Identifier |CONSISTENCY]
+−→ [Modification]

It means that identifiers that can be shown to be consis-
tent have a positive influence on the modification activity of
the maintainer of the system. In the model itself, we docu-
ment more information such as textual descriptions, sources,
assessment descriptions and so on. However, the short no-
tation captures the essential relationships.

The model does not only contain the impacts of facts on
activities but also the relationships among these. Facts as
well as activities are organised in hierarchies. A top-level
activity Activity has sub-activities such as Use, Maintenance

or Administration. These examples are depicted in Figure 1.
In realistic quality models, they are then further refined. For
example, maintenance can have sub-activities such as Code

Reading and Modification.

Use Maintenance
Administra-

tion

Activity

O
rg
a
n
is
a
ti
o
n

E
n
v
ir
o
n
m
e
n
t

S
y
s
te
m

S
it
u
a
ti
o
n

Extent

Constrained-

ness

Distribution

- -

+ +

-

-

-

-

Structured-

ness

...

Danger

...

Personnel 

turnover

...

Figure 1: High-level view on an activity-based qual-
ity model as a matrix

Because facts are a composite of an entity and an attribute,
the organisation in a hierarchy is straightforward. Hierarchi-
cal relationships between entities do usually already exist.
The top-level in Figure 1 is the situation of the software de-
velopment project. It contains, for example, the System, its
Environment and the development Organisation. Again, these
entities need to be further refined. For example, the system
consists of the source code as well as the executable. All
entities can be described with attributes such as the STRUC-



TUREDNESS of the System.

The two hierarchies, the fact tree and the activity tree, to-
gether with the impacts of the facts on the activities can
then be visualised using a matrix as in Figure 1. The fact
tree is shown on the left, the activity tree on the top. The
impacts are depicted by entries in the matrix where a “+”
denotes a positive and a “-” a negative impact.

The associations between facts in the fact tree can have two
different meanings. Either an entity is a part or a kind of
its super-entity. Along the inheritance associations, parts
and attributes are inherited. Hence, it allows a more com-
pact description and prevents omissions in the model. For
example, naming conventions usually are valid for all iden-
tifiers no matter whether they are class names, file names,
or variable names.

Having defined all these entries in the ABQM, we can define
which activities we want to support and which influencing
facts need to be defined. In terms of the above example, if
we want to support the activity Modification, we know that
we need to inspect the identifiers for their consistency.

There exists a prototype tool to define this kind of large
and detailed quality models [6]. Besides the easier creation
and modification of the model, this has also the advantage
that we can automate certain quality assurance tasks. For
example, by using the tool we can automatically generate
customised review guidelines for specific views.

3. ASSESSMENT AND PREDICTION
APPROACH

Although activity-based quality models have proven to be
useful in practice, there is no systematic approach for us-
ing such quality models in measuring. Hence, there are no
quantitative assessments and predictions possible so far. We
propose an approach that can be used for systematically
deriving assessment and prediction models from a activity-
based quality model.

3.1 Aim and Basic Idea
The general aim of the approach is to provide quality man-
agers with a systematic method to derive assessments and
predictions from an activity-based quality model. In the
ABQM, there are definitions of what quality means w.r.t. dif-
ferent situations, artefacts, and considered activities. Cur-
rently, we give a textual description in the quality model
how a fact could be assessed. For example, the fact de-
scribed by [Method |REDUNDANCY] contains the following as-
sessment description: “This fact can be assessed manually
or semi-automatically. For the automatic assessments there
are tools such as CloneDetective or CCFinder to detect re-
dundant parts of the source code.” This information is inter-
esting for quality assurance planning but cannot be directly
used for an overall assessment, let alone prediction.

Moreover, as the basic principle of activity-based quality
models is that the most important question in quality is
how well activities can be performed on and with the system,
not only facts but also activities should be assessed and pre-
dicted from the knowledge of facts and impacts. Currently,

only the qualitative statement whether an impact is positive
or negative is made. This is suitable for rough assessments
only. For more comprehensive and precise assessments of
the current state and prediction of future states, a more so-
phisticated approach is needed. It has to systematically help
to use the given relationships and enrich them with quanti-
tative information.

As most facts and especially the relationships between facts
and activities have an associated uncertainty, statistical meth-
ods are needed. Usually we cannot determine the exact re-
lationship but can derive an uncertain range. Also values
measured can be uncertain, e.g. values from expert opinion.
Moreover, a statistical method is needed that can directly
model the dependencies of different factors from the quality
model. We identified Bayesian networks as most suitable for
that task.

3.2 Bayesian Networks
Bayesian networks, also known as Bayesian belief nets or
belief networks, are a modelling technique for causal rela-
tionship based on Bayesian inference. They are represented
as a directed acyclic graph (DAG) with nodes for uncertain
variables and edges for directed relationships between the
variables. This graph models all the relationships abstractly.

For each node or variable there is a corresponding node prob-
ability table (NPT). These tables define the relationships and
the uncertainty of these variables. The variables are usually
discrete with a fixed number of states. For each state, the
probability that the variable is in this state is given. If there
are parent nodes, i.e. a node that influences the current node,
these probabilities are defined in dependence on the states
of these parents. An example is shown in Table 1. There
the variable is with a probability of 60% in the state true if
both parents are in the state low, and with 45% in true if
the first parent is in high and the second is in low.

Table 1: An example NPT for a variable with two
states and two parents

low high
low med high low med high

true 0.6 0.65 0.3 0.45 0.23 0.05
false 0.4 0.35 0.7 0.55 0.77 0.95

The process of building a Bayesian network contains the
identification of interesting variables that shall be modelled,
representing them as nodes, constructing the topology and
constructing the NPTs. Each of these steps is important and
non-trivial. First, the identification of interesting variables
includes the assumption that the model builder can decide
on some basis what is interesting. In many cases, this is
not clear beforehand. One possibility is to include many
variables and use sensitivity analysis to remove insignificant
variables.

Second, the creation of the topology uses the assumption
that the model builder can decide on the dependence and
independence of the identified variables. In the process of
building the Bayesian network, especially for independence



assumptions (i.e. missing edges in the graph) detailed justifi-
cations should be given. Third, the problem of constructing
NPTs is widely acknowledged in the literature [7]. It in-
volves defining quantitative relationships between variables.
There are various possible methods for this quantification
such as a probability wheel or regression from empirically
collected data. All methods have their pros and cons.

It is important to note that each of these steps is important
and errors in each of these steps can have a large effect on
the outcome. Bayesian networks and the corresponding tool
support make it easy to build models and get quantitative
results. However, one needs to be aware that many assump-
tions are embedded in a Bayesian network that need to be
validated before it can be trusted.

3.3 Four Steps for Network Building
We propose a four-step approach for building a Bayesian
network as assessment and prediction model derived system-
atically from an activity-based quality model. The resulting
Bayesian network contains three types of nodes:

• Activity nodes that represent activities from the qual-
ity model

• Fact nodes that represent facts from the quality model

• Indicator nodes that represent metrics for activities or
facts

We need four steps to derive these nodes from the infor-
mation of the ABQM. First, we identify the relevant activ-
ities with indicators based on the assessment or prediction
goal. Second, influences by sub-activities and facts are iden-
tified. This step is repeated recursively for sub-activities.
The resulting facts together with their impacts are modelled.
Third, suitable indicators for the facts are added. Fourth,
the node probability tables (NPT) are defined to reflect the
quantitative relationships. Having that, the Bayesian net-
work can be used for simulation by setting values for any of
the nodes. However, we first describe the four steps in more
detail.

The first step is a goal-based derivation of relevant activi-
ties and their indicators. We use GQM [2] to structure that
derivation. We first define the assessment or prediction goal,
for example, optimal maintenance planning or optimisation
of the security assurance. The goal shows the relevant ac-
tivities, such as maintenance or attack. This is refined by
stating questions that need to be answered to reach that
goal. For example, will the maintenance effort increase over
the next year or how often will there be a successful attack in
the next year? Finally, we derive metrics or indicators that
allow a measurement to answer the question. In the exam-
ples, that can be effort change trend or number of harmful
attacks over the next year.

In the second step, we use the quality model to identify
the other factors that are related to the identified activities.
There are two possibilities: (1) there are sub-activities of
the identified activities and (2) there are impacts from facts
to the identified activities. We repeat this recursively for

the sub-activities until all facts that have an impact on the
activities sub-tree below the identified activity are collected.
For each activity we immediately see the impacts and hence
the corresponding facts. All activities and facts identified
this way are modelled as nodes in the Bayesian network. We
add edges from sub-activities to super-activities and from
facts to activities on which they have an impact. Figure 2
gives an abstract overview of that mapping from the quality
model to the Bayesian network.

In the third step, we add additional nodes as indicators for
each fact and activity node that we want a measurement for.
The indicator for our relevant activity was defined in the
first step. Hence, we can add additional indicators for sub-
activities if needed. In any case, there need to be at least one
indicator for each fact that is modelled. There might be a
precise description in the quality model already. Otherwise,
we need to derive our own metric or use an existing one from
the literature. The edges are directed from the activity and
fact nodes to the indicators, i.e. the indicators are dependent
on the facts and activities. An indicator is only an expression
of the underlying factor it describes.

A main advantage of using a ABQMs as a basis for the
Bayesian network is that it prescribes its topology. One of
the main points of such quality models is to qualitatively
describe the relationships between different factors that are
relevant for software quality. We rely on that and assume
that all dependencies have been modelled and that all other
factors are independent. On the one hand, this constrains
the validity of the results of the Bayesian network by the va-
lidity of the ABQM. On the other hand, it frees the network
builder from reasoning about independence and dependence.

Finally, the fourth step, enriches the Bayesian network with
quantitative information. This includes defining node states
as well as filling the NPT for each node. The activity and
fact nodes are usually modelled as ranked nodes, i.e. in a
ordinal scale. The most common example is low, medium,
and high. This has advantages in evaluation and aggrega-
tion. The evaluation is easier as not precise numbers have to
be determined but coarse-grained levels. These levels actu-
ally reflect much more the high uncertainty in the data. Also
in aggregating over nodes (up the hierarchy in the activity
tree) coarse-grained ranked data is more simple to handle.
For only a few levels in ordinal scale, it is easier to define a
aggregation specification than for continuous data. To define
the NPT, we use an approach proposed by Fenton, Neil and
Galan Caballero [9]. The basic idea is to formalise the be-
haviour observed with experts that have to estimate NPTs.
They usually estimate the central tendency or some extreme
values based on the influencing nodes. The remaining cells
of the table are then filled accordingly. This is similar to lin-
ear regression where a Normal distribution is used to model
the uncertainty. We use the doubly truncated Normal dis-
tribution that is only defined in the [0, 1] region. It allows
to model a variety of shapes depending on the mean and
variation. It allows, for example, to model the NPT of a
node by a weighted mean over the influencing nodes.

The node states of indicator nodes depend on the scale of
the indicator used. This often will be continuous or discrete
interval states such as lines of codes in intervals of a hun-



Use Maintenance
Administra-

tion

Activity

O
rg

a
ni

sa
tio

n
E

nv
iro

n
m

e
nt

S
ys

te
m

S
itu

at
io

n

Extent

Constrained-
ness

Distribution

- -
+ +

-
-

-
-

Structured-
ness

...

Danger

...

Personnel 
turnover

...

IndicatorsActivities

Facts

Figure 2: Mapping of quality model elements to Bayesian network elements. The dashed arrows indicate
examples for mappings.

dred. The NPTs of the indicator nodes are then defined
using either common industry distributions or information
from company-internal measurements. For example, typical
LOC distributions can be accumulated over time. The influ-
ence of the activity or fact node, respectively, it belongs to
can be modelled in at least two ways: (1) partitioned expres-
sions and (2) arithmetic expressions. The latter describes a
direct arithmetical relationship from the level in the activity
or fact node to the indicator. Using a partitioned expres-
sion, the additional uncertainty can be expressed by defining
probability distributions for each level of the activity or fact
node.

3.4 Usage of the Bayesian Network
A main feature of Bayesian networks is their capability to
simulate different scenarios. Having built the Bayesian net-
work based on the activity-based quality model, we can ask
“what if?” questions. These questions are formulated in
scenarios that can be simulated and compared. A scenario
involves adding additional information to the model, more
specifically, adding an observation for a node. This way, the
uncertainty is removed and the consequences for the other
nodes can be calculated. Interestingly, in a Bayesian net-
work it is possible to do forward as well as backward in-
ference, i.e. information can be added to any node and the
effect is calculated in any direction of the graph.

A first straightforward scenario is to add the currently mea-
sured values for the fact indicator nodes. This will drive
the calculation up to the activities and the activity indica-
tor node. This indicator node then shows the probability
distribution for its value, i.e. the value of the activity. Then
changes can be made to the fact indicator nodes in other
scenarios to reflect possible changes. Their effect on the
activity can be predicted. Another interesting scenario is
to set a desired value for the activity indicator and let the
network calculate the most probable explanation in the fact

indicators. It shows the values that should be reached in
order to fulfil the goal.

4. PROOF OF CONCEPT
The above presented approach can be used in many different
contexts and to answer various assessment and prediction
questions. We provide a proof of concept here that applies
the approach to a publicly available data set.

4.1 Goal
Currently, we cannot provide a full validation of the assess-
ment and prediction approach because this would involve
measuring a large number of facts from the quality model in
order to take full advantage from the knowledge contained
in it. This data is not available in public data sets. Measur-
ing this at a company will need time and effort. Only then a
sensible analysis of the predictive validity and comparisons
with other prediction models are possible.

Nevertheless, we provide a proof of concept application of
the approach based on a small extract of our quality model
for maintainability for which there is publicly available data.
It demonstrates the basic principles of the approach on a real
data set. This way, we can analyse whether the approach
is feasible in an almost realistic setting. The predictive va-
lidity in the proof of concept can give an indication of the
usefulness of the approach. There should at least be an im-
provement over industry average values.

4.2 Context
The proof of concept comprises the prediction of the main-
tainability of a system. The system under analysis was de-
veloped by NASA in the project CM1 for which the data
has been publicised [12]. The system itself is an instrument
in a space craft developed in C. Various metrics, especially
the McCabe and Halstead metrics, have been collected in
this project.



As the quality model, we use the activity-based quality model
for maintainability from [6]. It contains a complete activity
tree for maintenance as well as about 200 facts with an im-
pact on those activities. The CM1 data set does not contain
data for all of these facts but we choose a small set of facts
and corresponding activities to predict maintainability. The
choice was therefore guided by the availability of the data.
The actual maintainability can be judged for CM1 because
the effort for several changes has been documented. We will
use this as our surrogate measure.

For modelling the Bayesian network, we use the tool Age-
naRisk1. It provides a complete tool environment for Bayesian
networks including the usage of expressions for describing
the NPT and sensitivity analysis.

4.3 Procedure
The first step in our assessment and prediction approach is
to identify the relevant activities and corresponding indica-
tors (metrics) in a GQM-like procedure. We want to analyse
maintainability and we assume that the quality manager is
interested in the question of how high the maintenance ef-
forts will be in the future. This information helps in plan-
ning the maintenance team. Hence, we formulate the Goal
as “Planning of future maintenance efforts”. We can directly
identify the activity Maintenance in that goal. To further op-
erationalise that, we define the corresponding question as
“What will be the maintenance effort per change request?”.
This information, probably together with a prediction of the
yearly number of change requests, would give a good basis
for maintenance planning. However, we concentrate only
on the question about the effort per change request. This
leads us straightforwardly to the metric “average effort per
change request”. Hence, an analysis of the mean is needed.

In the second step, we already start building the Bayesian
network. We look at the maintainability model and find
no impacts directly on Maintenance that should be consid-
ered here. However, we find 10 sub-activities including the
following 3 that we will further analyse: Quality Assurance, Im-

plementation and Analysis. All three have impacts from facts
but having in mind the available data, we ignore these and
use the further sub-activities Testing, Modification and Com-

prehension with its child Code Reading. We create nodes for
these activities and connect them with edges corresponding
to their hierarchy. They can be seen in Figure 3 in the box
“Activities”.

We only include 3 impacts on each of the lowest level activi-
ties chosen so far because we can find corresponding data in
the CM1 data set. These facts together with their impacts
are:

• [Module | EXTENT]
−−→ [Code Reading]

The size of a module has an impact on reading the
code of the module. In essence, the larger the module,
the longer it takes to read it.

• [Implementation |REGULARITY]
+−→ [Testing]

An implementation is regular if it does not use un-

1http://www.agenarisk.com/

necessarily nested branches. This complex structure
would render coverage by tests more difficult.

• [Comment |APPROPRIATENESS]
+−→ [Modification]

Comments need to appropriately describe the code it
is associated with.

The facts are added as nodes in the Bayesian network. In
Figure 3 they are contained in the box “Facts”. The impacts
are included as the arrows from the facts to the activities.

The indicators that are identified in the fourth step of the
approach are taken from the available data of the data set.
We only use 1 indicator per fact although we are aware that
each fact has more aspects that should be covered. For the
Extent of Modules, we use the indicator Average module size
given in LOC. The Regularity of the Implementation is in-
dicated by the Average Cyclomatic Complexity. This is not
a particularly good indicator as it only gives a number for
the decision points in the implementation. A manual re-
view can far better decide whether the implementation is
regular. However, we have no access to review results. A
similar reasoning holds for the indicator Comment Ratio for
the fact Appropriateness of Comments. The proportion of
the comments in relation to the other code is only of minor
importance in comparison with the semantic appropriate-
ness. However, we do not have access to such a semantic
judgement. The indicators can be found in Figure 3 on the
right-hand side in the box “Indicators”.

A difficult problem in general with Bayesian networks is the
definition of the node probability tables (NPT) [7]. Various
method can be used to define these NPTs that we will not
describe here in detail. For the approach, we can simplify
the problem to 2 cases: (1) activities and facts NPTs and
(2) indicator NPTs. The NPTs for the activities and facts
can, unless there is additional knowledge, be assumed as uni-
formly distributed. The impacts are only modelled as direct
influence. Here, a special method for ranked nodes [9] can
be applied that simplifies the task. For the indicator NPTs
either empirically investigated distributions of the company
or industry average distribution should be used. This forms
the distribution of the indicator values under uncertainty
without any observations.

For the average effort of a change, we refer to [15] that gave
an a mean defect removal cost of 27.4 person-hours with
minimum 3.9 and maximum 66.6. Although a change does
not always have to be a defect removal, it is precise enough
for the proof of concept. For the distributions of the other
indicators, no published distributions were available. Hence,
our own expert opinion was used as a basis.

4.4 Results and Discussion
Figure 3 shows two scenarios. The green values describe the
scenario in which no observations have been made, i.e. the
general scenario. The blue values are for the scenario Mea-
sured values in which for the three fact indicators the real
measured values are set as observations. More specifically,
the comment ratio is set to .2517, the average cyclomatic
complexity to 5.18 and the average module size to 33.47
LOC. This has effects on the rating of the facts in turn on
the activities. The most interesting value, however, is the



Figure 3: The resulting Bayesian network

average change effort. In the general scenario, this variable
has a mean value of 27 with a standard deviation of 12.1.
The additional information about the measured values shifts
the distribution to the left. The mean decreases to 15.9 with
standard deviation 8.5. This is still not the really measured
value of 6 but much closer than the industry standard of
27. Hence, it is an improvement in comparison to just using
standard numbers.

The reason for the large difference between the prediction
and the real value is probably three-fold. First, the distri-
bution from [15] might not be appropriate for the NASA
environment in which the effort for a change request seems
significantly smaller than average. Second, it might also be
the case that the data in the CM1 data set does not use ex-
actly the same measures as in [15]. The degree to which ad-
ditional efforts for re-inspection and re-testing are included
could vary. Third, several more factors than the 3 consid-
ered might have an influence on the maintenance effort. The

quality model contains many explanations in terms of facts
that should be investigated.

Nevertheless, the point of the proof of concept was not mainly
to show predictive validity but to investigate the general fea-
sibility. We saw that it is possible with reasonable effort to
build a Bayesian model. The 4-step approach gives direct
guidance for most of the network building. Only setting up
the NPTs is still a challenge. There are usually several pos-
sibilities how a relationship can be expressed and with how
much uncertainty it should be afflicted. This still needs ex-
pert opinion and experimentation. Nevertheless, AgenaRisk
provides very good tool support to find easier ways to define
an NPT. As our ABQMs can get very large with a few hun-
dreds of model elements, it remains to be evaluated whether
the approach scales when the quality model is fully mapped
to a Bayesian network. Probably, a selection of a subset of
the quality model is necessary first.



Furthermore, it is important to note that a more in-depth
validation of a resulting Bayesian network is necessary in
order to ensure that all parts, topology, node states, and
NPTs, represent the interdependencies of the quality factors
good enough so that a valid statement about the quality of
the software system can be made. This is not covered by
this proof-of-concept but has to be the next step.

5. RELATED WORK
The basic idea to use Bayesian networks for assessing and
predicting software quality has been developed mainly by
Fenton, Neil and Littlewood. They introduced Bayesian net-
works as a useful tool and applied it in various contexts re-
lated to software quality. In [8] they formulate a critique on
current defect prediction models and suggest to use Bayesian
networks. Other researchers also used Bayesian networks for
software quality prediction similarly [1, 14]

The work closest to the approach proposed in this paper
is [13]. They discuss quality models such as the ISO 9126 [10]
and their problems such as the undefinedness of the relation-
ships in such a model. They aim at solving these problems
by defining Bayesian networks for quality attributes directly.
Our work differentiates in using a defined structure for qual-
ity models that contain far more details as common quality
models. This structure and detail allows a straightforward
derivation of a Bayesian network from the quality model.
This has the advantage that the basic quality model can
also be used for other purposes then prediction such as the
specification of quality requirements.

Beaver, Schiavone and Berrios [4] also used a Bayesian net-
work to predict software quality including diverse factors
such as team skill and process maturity. In his thesis [3],
Beaver even compared the approach to neural networks and
Least Squares regressions that both were outperformed by
the Bayesian network. However, they did not rely on a struc-
tured quality model as in our approach.

6. CONCLUSIONS
A high goal in software quality management is the reliable
quantitative assessment and prediction of software quality.
Many efforts in building assessment and prediction models
have given various insights in the usefulness but also the
constraints of such models. However, these models have not
been tightly integrated into other quality management activ-
ities. Activity-based quality models have proven in practice
to be a solid foundation for defining quality on a detailed
level. However, quantitative analyses have not been directly
possible so far.

Bayesian networks have been shown to provide promising
results in quality predictions. Because of that and their
clear structuring that can straightforwardly reflect the struc-
ture of activity-based quality models, a 4-step approach for
transferring activity-based quality models to Bayesian net-
works was proposed. It allows to systematically construct
a Bayesian network that uses the knowledge encoded in the
quality model to provide information about a given assess-
ment or prediction goal. In the terminology of [5], we use
a quality definition model (the ABQM) and enrich it with a
quality assessment and quality prediction model (the BN).

Although not fully validated, we demonstrated the approach
in a case study using real NASA project data. The proof of
concept showed the applicability of the approach on such a
project and even could improve the prediction in comparison
to industry standard values. The prediction was not very
accurate but that can have various reasons such as a different
effort distribution at NASA or the influence of more factors
that have not been considered because there was no data
available.

The use of Bayesian networks opens many possibilities. Most
interestingly, after building a large Bayesian network, a sen-
sitivity analysis of that network can be performed. This can
answer the practically very relevant question which of the
factors are the most important ones. It would allow to re-
duce the measurement efforts significantly by concentrating
on these most influential facts.

We plan to apply this approach in future case studies at our
industrial partners in order to further validate the approach.
A comprehensive analysis of the predictive validity is neces-
sary to judge the usefulness of the approach and to compare
it with other means for assessment and prediction.

7. ACKNOWLEDGMENTS
This work has partially been supported by the German Fed-
eral Ministry of Education and Research (BMBF) in the
project QuaMoCo (01 IS 08023B).

8. REFERENCES
[1] S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno.

Constructing a Bayesian Belief Network to Predict
Final Quality in Embedded System Development.
IEICE Transactions on Information and Systems,
E88-D(6):1134–1141, 2005.

[2] V. R. Basili, G. Caldiera, and H. D. Rombach. Goal
question metric paradigm. In J. C. Marciniak, editor,
Encyclopedia of Software Engineering, volume 1. John
Wiley & Sons, 1994.

[3] J. M. Beaver. A life cycle software quality model using
bayesian belief networks. PhD thesis, University of
Central Florida, 2006.

[4] J. M. Beaver, G. A. Schiavone, and J. S. Berrios.
Predicting software suitability using a bayesian belief
network. In Proc. Fourth International Conference on
Machine Learning and Applications, pages 82–88.
IEEE Computer Society, 2005.

[5] F. Deissenboeck, E. Juergens, K. Lochmann, and
S. Wagner. Software quality models: Purposes, usage
scenarios and requirements. In Proc. 7th International
Workshop on Software Quality (WoSQ ’09). IEEE
Computer Society, 2009.

[6] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,
and J.-F. Girard. An activity-based quality model for
maintainability. In Proc. 23rd International
Conference on Software Maintenance (ICSM ’07).
IEEE Computer Society Press, 2007.

[7] N. Fenton and M. Neil. Managing risk in the modern
world. Applications of Bayesian networks. Knowledge
transfer report, London Mathematical Society, 2007.

[8] N. E. Fenton and M. Neil. A critique of software
defect prediction models. IEEE Transactions on



Software Engineering, 25(5):675–689, 1999.

[9] N. E. Fenton, M. Neil, and J. G. Caballero. Using
ranked nodes to model qualitative judgments in
Bayesian networks. IEEE Transactions on Knowledge
and Data Engineering, 19(10):1420–1432, 2007.

[10] ISO 9126-1. Software engineering – Product quality –
Part 1: Quality model, 2001.

[11] B. Kitchenham and S. L. Pfleeger. Software quality:
The elusive target. IEEE Software, 13(1):12–21, 1996.

[12] NASA IV&V Facility. Metrics data program.
http://mdp.ivv.nasa.gov/.

[13] M. Neil, B. Littlewood, and N. Fenton. Applying
bayesian belief networks to systems dependability
assessment. Safety Critical Systems Club Newsletter,
8(3), 1999.

[14] E. Perez-Minana and J. Gras. Improving fault

prediction using Bayesian networks for the
development of embedded software applications.
Software Testing Verification and Reliability,
16(3):157, 2006.

[15] S. Wagner. A literature survey of the quality
economics of defect-detection techniques. In Proc. 5th
ACM-IEEE International Symposium on Empirical
Software Engineering (ISESE ’06). ACM Press, 2006.

[16] S. Wagner and F. Deissenboeck. An integrated
approach to quality modelling. In Proc. 5th
International Workshop on Software Quality
(5-WoSQ). IEEE Computer Society Press, 2007.

[17] S. Winter, S. Wagner, and F. Deissenboeck. A
comprehensive model of usability. In
Proc. Engineering Interactive Systems 2007, volume
4940 of LNCS, pages 106–122. Springer-Verlag, 2008.


