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Abstract. The correctness of a system according to a given specification is es-
sential, especially for safety-critical applications. One such typical application
domain is the automotive sector, where more and more safety-critical functions
are performed by largely software-based systems.
Verification techniques can guarantee correctness of the system. Although au-
tomotive systems are relatively small compared to other systems (e.g. business
information systems) they are still too large for monolithic verification of the
system as a whole.
Tackling this problem, we present an approach for modularized verification, aim-
ing at time-triggered automotive systems. We show how the concept of tasks, as
used in current automotive operating systems, can be modeled in a CASE tool,
verified and deployed. This results in a development processfacilitating verifica-
tion of safety-critical, real-time systems at affordable cost.

1 Introduction

Together with the growing functionality offered by today’sdistributed reactive systems,
the associated complexity of such systems is also dramatically increasing. Taking into
account that the vast majority of the functionality is realized in software, the need for
appropriate design and verification support becomes obvious.

A prime example for this trend is the current situation in theautomotive domain.
Here, a premium class car contains up to 70 electronic control units (ECUs) which
are responsible for all kinds of applications: infotainment (like navigation and radio),
comfort (power windows, seat adjustment, etc.), control oftechnical processes (motor
control, ABS, ESP), and much more. Consequently, the amountof associated software
is enormous – with the tendency to further increase in the future.

⋆ This work was partially funded by the German Federal Ministry of Education and Technology
(BMBF) in the framework of the Verisoft project under grant 01 IS C38. The responsibility for
this article lies with the authors.



With the trend going towards drive-by-wire, the software becomes responsible for
safety-critical functions, like steer-by-wire and brake-by-wire. The state-of-the-art me-
thod of quality assurance, namely testing, is not sufficientin the case of safety-relevant
functions: Testing can solely show the absence of bugs in a finite number of standard
situations. However, it can neverguarantee the software correctness. Formal verifica-
tion is a better choice in this case, as it canguarantee that the software satisfies its
specification.

Unfortunately, current verification techniques for reactive systems suffer from some
problems: Firstly, in order to prove the correctness of a system, both the application
logic itself as well as its infrastructure (operating system and communication mecha-
nisms) have to be verified. This results in an overall verification effort which cannot be
mastered by verifying the system as a whole.

Secondly, there is no continuous verification technique: While current CASE tools
typically used for automotive software development (like MATLAB/Simulink [1], Rose
RT [2], AutoFOCUS [3]) allow modeling of the functionality and structure of a real-
time system, they do not provide an explicit deployment concept. However, without
deployment support it makes no sense to verify properties onthe application model,
since they do not necessarily hold after deployment.

To tackle these problems we introduce a task concept for the model-based devel-
opment of distributed real-time systems, which allows modularized verification while
preserving verified properties for the model after deployment. Together, this results in
a continuous methodological support for development of verified automotive software.

We show the feasibility of our concepts on a case study. We demonstrate that em-
bedding of tasks into a realistic environment, such as a time-triggered bus and a time-
triggered operating system, does not violate the verified properties.

The remainder of this paper is organized as follows: Section2 introduces the case
study used as a continuous example throughout the whole paper. Sections 3 and 4
present the deployment platform (FlexRay Communication Protocol [4] and OSEK-
time OS [5]) and the CASE tool AutoFOCUS [3], used to specify the case study as
a task model. Sections 5 and 6 are the technical core of the paper: They show how
the tasks should be constructed in order that they are deployable without any loss of
verified properties. Section 7 gives an overview of related work and, finally, Section 8
summarizes the whole paper.

2 Case Study: Emergency Call (eCall)

To demonstrate the introduced ideas we use an automated emergency call as a running
example throughout this paper. According to the proposal bythe European Commis-
sion [6], such an automated emergency call should become mandatory in all new cars
as of 2009. The application itself is simple enough to be sketched in a few paragraphs,
but it still possesses typical properties of automotive software. By this we mean that it
is a safety-critical application distributed over severalelectronic control units (ECUs),
whose correct functionality not only depends on the correctness of the application itself
but also on the correctness of a real-time OS and a real-time bus.



We model the eCall as a system consisting of 3 sub-systems, namely: a GPS nav-
igation system, a mobile phone, and the actual emergency call application. External
information (e.g. the crash sensor, the GPS signals) is considered to be a part of the
environment. According to [6], these components interact as follows: The navigation
system sends periodically the vehicle’s coordinates to theemergency call application so
that it always possesses the latest coordinates. The crash sensor sends periodically the
current crash status to the emergency call application. If acrash is detected, the emer-
gency call application initiates the eCall by prompting themobile phone to establish
a connection to the emergency center. As soon as the mobile phone reports an open
connection, the application transmits the coordinates to the mobile phone. After the co-
ordinates have been successfully sent, the application orders the mobile phone to close
the connection. The emergency call is finished as soon as the connection is successfully
closed. If the radio link breaks down during the emergency call, the whole procedure is
repeated from the initiation step.

3 Deployment Platform

In order to master the inherent complexity of automotive systems, industry came up
with a number of standards, based on thetime-triggered paradigm [7]. They allow re-
alization of distributed systems with predictable time behavior, and thus can be consid-
ered as an appropriate deployment target for safety-critical real-time systems.
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Fig. 1. Target Deployment Platform Architecture

In a time-triggered system actions are executed at predefined points in time. In
particular, using time-triggered operating systems (VxWorks [8], QNX [9], OSEK-
time [10]), the execution of application processes is statically scheduled, and by apply-
ing time-triggered communication protocols (TTP/C [11], TTCan [12], FlexRay [13]),
the communication schedule becomes static as well. Furtheron, time-triggered com-
munication protocols provide, using time synchronization, a global time base to the



distributed communication partners. By this a combinationof time-triggered OS and
network allows realization of a deterministic system behavior with guaranteed response
times.

The target deployment platform of the presented work is a network of ECUs con-
nected by a FlexRay bus with a multiple-star topology and with OSEKtime OS running
on every node (see [14] for details). Fig. 1 shows a possible deployment of the three
tasks from the eCall study on two ECUs.

OSEKtime. OSEKtime OS is an OSEK/VDX [10] open operating system standard
of the European automotive industry [5]. The OSEKtime OS supports static cyclic
scheduling. In every round the dispatcher activates a process at the point of time spec-
ified in the scheduling table. If another process is running at this time, it will be pre-
empted until the completion of the activated process. OSEKtime also monitors the dead-
lines of the processes. In the case of deadline violation an error hook is executed.

FTCom [15] is the OSEKtime fault-tolerant communication layer that provides a
number of primitives for interprocess communication and makes task distribution trans-
parent. Messages kept in FTCom are uniquely identified by their IDs. For every message
ID FTCom realizes a buffer of length one. Application processes can send or receive
messages with certain IDs using communication primitives offered by FTCom. How-
ever, they are not aware of the location of their communication partners, i.e. whether
they communicate locally or through a bus.

FlexRay. FlexRay [4,16,17] is a communication protocol for safety critical real-time
automotive applications, that has been developed by the FlexRay Consortium [13]. It
is a static time division multiplexing network protocol andsupports fault-tolerant clock
synchronization via a global time base. The drifting clocksof FlexRay communication
partners are periodically synchronized using special syncmessages.

The static message transmission mode of FlexRay is based onrounds. FlexRay
rounds consist of a constant number of time slices of the samelength, so calledslots.
A node can broadcast its messages to other nodes at statically defined slots. At most
one node can broadcast during any slot. The latency of every message transmission is
bounded by the length of one slot.

A combination of time-triggered OS and bus allows synchronization of the compu-
tations and communication. This can be done by synchronizing the local ECU clock
with the global time delivered by FlexRay bus and by setting the length of the OSEK-
time dispatcher round to be a multiple of the length of FlexRay round. A unit of com-
putation is then also a FlexRay slot.

4 Logical Model

AutoFOCUSis a CASE tool for graphical specification of reactive systems. The tool has
a formal time-synchronous operational semantics. With itsgraphical specification lan-
guage AutoFOCUSsupports different views on the system, namely structure, behavior,
interaction and data-type view. This section gives a very short introduction to Auto-
FOCUS. A more detailed description of AutoFOCUSand its diagram types can be found
in [18].



Fig. 2. The Component Architecture of the eCall Study

Structural View: System Structure Diagrams (SSDs). A system in AutoFOCUS is mod-
eled by a network of componentsC, denoted as rectangles (cf. Fig. 2, where the task
model of the eCall application is shown). The communicationinterface of a component
c ∈ C is defined by a set of typed directedports Pc. There areinput andoutput ports,
represented by empty and solid circles, respectively. The components communicate via
typed channels, which connect input and output port pairs ofmatching types. An out-
put port can be a source of several channels, while an input port can be a sink of at
most one. A component can be refined by a further component network. This results in
a hierarchical order of SSDs. The leaf components in the hierarchy have an assigned
behavior, described byState Transition Diagrams.

Fig. 3.State Transition Diagram of theMobile Phone Logic Component

Behavior View: State Transition Diagrams (STDs). The behavior of a leaf component is
defined by an extended I/O automaton. It consists of a set ofcontrol states, transitions,
andlocal variables (cf. Fig. 3). Black dots on the left of the states denote initial states,
black dots on the right denote idle states3. (“5” on the transition labels denotes the
transition priority and is unimportant in the context of ourapplication.)

3 Idle states will be defined below, see Sect. 5.2.



An STD automatonA is completely defined by its set of control statesS, the set
of local variablesV , the initial states0 ∈ S, and the transition relationδ. A transition,
denoted by

(s1

pre:in:out:post
−−−−−−−−−→ s2) ∈ δ(A), for s1, s2 ∈ S,

consists of four elements:

– pre, transition precondition (a boolean expression referringto automaton’s local
variables and the ports of the corresponding component)

– in , input pattern that shows which message must be available onwhich port in
order that the transition is triggered

– out , output pattern that shows which message is written to whichport as a result of
this transition

– post , transition postcondition (a boolean expression referring to automaton’s local
variables and the ports of the corresponding component)

A transition can be triggered in the states1 if the input ports specified in the input pattern
in have received the necessary input messages and the precondition pre is satisfied.
The transition outputs data to output ports specified inout , changes the local variables
according to the postconditionpost , and puts the automaton into the states2.

For example, the transition with labelReceivedNoCloseConnection from Figure 3
has the form:

(x != close_connection):
connection_control?x:
connection_status!data_sending_ok,idle!Present:

It is fired if it gets a signal different fromclose_connection on portconnection_cont-
rol and sends thedata_sending_ok signal through portconnection_status and thePre-
sent signal via portidle. The postcondition is empty.

Communication Semantics. AutoFOCUScomponents perform their computation steps
simultaneously, driven by a global clock. Every computation step consists of two pha-
ses: First, a component reads values on the input ports and computes new values for
local variables and output ports. After the time tick new values are copied to the output
ports, where they can be accessed immediately via the input ports of connected com-
ponents and the cycle is repeated. This results in atime-synchronous communication
scheme with buffer size one.

5 Deployment

An automotive system is distributed over several communicating electronic control
units (ECUs). In the early design stages it is simpler to model application logic with-
out considering timing properties and future deployment. Pure functionality modeling
results in systems that have to be deployed manually and after deployment can show
wrong behavior or violate timing constraints.



In this section we motivate and describe the AutoFOCUS Task Model (AFTM),
which will be used for (semi-)automatic verification of time–triggered systems. Here,
we introduce a framework enabling modeling and deployment of tasks. The framework
architecture ensures that the properties verified for the logical model are preserved after
deployment. This results in a verified automotive system, provided that the infrastruc-
ture (OS/bus) is verified. For these purposes the framework [14] for automotive sys-
tems with the formalized and verified OSEKtime OS and the FlexRay protocol can be
used. This verification framework is developed in the automotive part of the Verisoft
project [19,20].

5.1 Design Process

The AutoFOCUSTask Model is designed to be an integral part of a model-baseddevel-
opment process. The prerequisite for this process is a formal specification of the desired
system. The envisioned process produces the following artifacts:

– The AutoFOCUSmodel (see also Section 4) represents the application logic(func-
tionality) without incorporating any deployment information. It is the basis for the
AutoFOCUS task model.

– The AutoFOCUSTask Model is an extension of the AutoFOCUSmodel, targeting at
future deployment to a time-triggered platform. This modelis verified against the
given specification.

– C0 code4 is generated from the AFTM. This code is the basis for the estimation
of the worst case execution times (WCETs) that are needed forscheduleability
analysis (see Section 6.1). WCETs can be estimated, given a compiled C program
and the processor the program runs on [23]. The behavioral equivalence between
C0 code and the automaton it was generated from must be proven. This proof can
be done, for example, by the means of translation validation[24]:
• Every transition of an AutoFOCUS automaton is annotated with a pre- and a

postcondition.
• The piece of code, generated from a particular transition, can be annotated with

the same pre- and postconditions as the transition itself.
• Finally, we verify that the pre- and postconditions hold forthe generated code.

– For the deployment and scheduling the decision must be takenwhich tasks run
on which ECUs. The schedules both for every ECU and for the communication
bus must be also constructed. The schedules have to take intoaccount casual de-
pendencies of the tasks, the WCETs and the real-time requirements (e.g. specified
response times).
At the moment we do not construct schedules but only check existing schedules for
correctness. Construction of schedules is a part of our future work.

In that way we obtain a continuous model-based development process, ranging from
high-level system design to verified deployed code.

4 The language C0 [21] is a Pascal-like restriction of C that issimilar to MISRA C [22]. In
safety critical applications it is feasible to use C in some restricted way to have less error-
prone programming style.



5.2 AutoFOCUSTask Model (AFTM)

An AutoFOCUS task model is obtained from AutoFOCUS model components through
encapsulation – Fig. 4 shows an AFTM task originating from anAutoFOCUS com-
ponentapp_logic. A task may contain a single component or a network consisting of
several components – it is then treated as a product automaton (seeBehavior View in
Sect. 4). The transformation from an AutoFOCUSmodel into an AutoFOCUStask model
is performed manually at the moment, but it is planned to extend the tool AutoFOCUS

in order to automate this transformation.

Fig. 4. AutoFOCUS task model ofEmergencyCallTask

An AutoFOCUS task model consists of a setT of tasks Ti with i ∈ {1, . . . , m} for
an arbitrary but constantm and a set of directed channels between them. We denote
by Pred ,Succ : T → P(T ) the functions indicating data flow between tasks:Tj ∈
Succ(Ti) means that there is a channel going fromTi to Tj andTj ∈ Pred(Ti) denotes
a channel going fromTj to Ti.

Every component in an AutoFOCUS model runs continuously, whereas the execu-
tion of a reactive system is an infinite sequence of finite computations started by the OS
scheduler and terminating with a specialexit() system call. To match this computation
model, we introduce in AFTM the notion of finite computationsthroughidle states.
An idle state is a state of the original logic component (or component network), where
the computation can continue only after having received newinput. In contrast to idle
states,non-idle states are allowed to have outgoing transitions only without requiring
any input. Thereby the set of control states is partitioned into two disjoint subsets:

Sidle = {s | s ∈ S ∧ ∀(s
pre:in:out:post
−−−−−−−−−→ s′) ∈ δ(A). in 6= ∅} (1)

Snon_idle = {s | s ∈ S ∧ ∀(s
pre:in:out:post
−−−−−−−−−→ s′) ∈ δ(A). in = ∅} (2)

An AFTM task computation is a finite sequence of state transitions leading from an
idle state to some other idle state:

c(val (Pc), s0) =s0

pre1 :in:out1 :post1
−−−−−−−−−−−→ s1

pre2 :∅:out2 :post2
−−−−−−−−−−−→ . . .

pren−1 :∅:outn−1 :postn−1
−−−−−−−−−−−−−−−−→ sn−1

pren :∅:outn :postn
−−−−−−−−−−−→ sn

(3)

wheres0, sn ∈ Sidle, s1, . . . , sn−1 ∈ Snon_idle, (si−1

prei :ini :outi :posti
−−−−−−−−−−−→ si) ∈ δ(A)

for all i ∈ {1, . . . , n}, andval (Pc) denotes the valuation of the component’s ports. This



linkage between target platform task runs and AFTM task computations is also utilized
for timing analysis (cf. Sect. 6.2).

In theMobile Phone logic component STD (Fig. 3, page 5) the statesno_connection,
connection_ok anddata_sent are idle. An example of the finite computations that can
be performed by this automaton isconnection_ok → sending_data → data_sent.

Upon reaching an idle state the encapsulated component of a task always sends a
signal through a dedicatedidle port:

∀(s1

pre:in:out:post
−−−−−−−−−→ s2) ∈ δ(A) : (s2 ∈ Sidle ⇔ (idle!Present) ∈ out) (4)

A distributed time-triggered system usually does not guarantee the simultaneous
presence of all required input signals because of delays. Asan AFTM task may start
only when all required input data are available we introducean input check for every
task – it forwards the inputs and thus allows the task to startonly after all required
inputs have arrived and the task is not running, i.e. it is in an idle state.

We introduce two kinds of input checks: OR and AND. An OR-taskT can start
when at least one input from any taskTi ∈ Pred(T ) has arrived. For instance the
EmergencyCallTask task on Fig. 2 is activated either to store new coordinates from the
GPSTask or to perform an emergency call after having received acrash signal. The idea
behind the AND-check is that the task can start only when all the inputs are available.
For instance, theGPSTask (Fig. 2) may first start when both coordinate inputsx andy
have arrived.

The input checks get their inputs solely from theinput buffers (see e.g.input_buffer
component in Fig. 4). These buffers store the arriving data as long as the tasks cannot
process them. After the data gathered by the buffer has passed the input check, the input
check sends thestarted signal to the buffer. Thereupon the input buffer is flushed and
starts gathering a new data set. This simulates the behaviorof the FTCom, which is
used for task communication on the deployment platform (cf.Sect. 3).

Theoutput buffer is necessary to assure well-defined points in time for communi-
cation and thus to make communication behavior predictable. The output buffer stores
the outputs of the application logic and forwards them to theenvironment on receiving
the idle signal. After that the output buffer is flushed and forwards the idle signal to the
input check, indicating the completion of the task computation.

The introduced concepts of input checks and input/output buffers, as well as idle
states, allow correct deployment on a distributed platformrunning with OSEKtime/Flex-
Ray (cf. Sect. 3). The AFTM properties facilitating deployment are in particular the
following: it models the behavior of the FTCom communication layer, it supports the
notion of finite computations as suitable for time-triggered systems, it reads the input
data at the beginning and communicates the results at the endof the computation, thus
facilitating scheduling and modular verification.

5.3 Code generation

To run a task on a real system the representation of the model as code in some executable
language is needed (e.g., for the automotive domain C code isusually used). Out of the



AFTM the corresponding C code (more precisely: C0 code) can be generated in a strict
schematical way.

In the presented approach properties of a task are proven forthe corresponding
AFTM since this is more effective than verifying the generated C0 code. The equiva-
lence of AFTM and C0 guarantees that the verified properties for the AFTM also hold
for the C0 code. This equivalence can easily be proven using translation validation [24].

6 Verification

In the previous sections we have described how an AutoFOCUScomponent model can
be packed into an AFTM. This section shows how the AFTM and thedeployed sys-
tem, based on AFTM, can be verified. The verification is accomplished in several steps:
First, the AutoFOCUS model, packed into AFTM, is verified. This can be done, as the
SMV model checker [25] is integrated with AutoFOCUS [26]. Then, it is necessary to
show that the properties verified for the AutoFOCUSmodel remain valid in the deployed
model. Formally, letModelAFTM denote the AutoFOCUSTask Model,Modeldepl the
deployed model, andP the specification (a set of LTL properties). Then, the accom-
plishment of this procedure results in the following property.

(ModelAFTM � P ) ⇒ (Model depl � P ) (5)

The prerequisite for the fulfillment of this formula is thatModelAFTM is a valid in-
stance of the AFTM, as described in Sect. 5.2. This is discussed in Sect. 6.1. Sect. 6.2
shows that AFTM constraints, together with certain scheduling constraints put on the
deployed system, imply behavioral equivalence betweenModelAFTM andModeldepl .
Behavioral equivalence, in turn, provides the desired correctness of the deployed sys-
tem, given thatModelAFTM was verified.

6.1 Task and System Properties

To ensure the validity of a particular AutoFOCUS task model, certain properties have to
be proven. First, it must be shown for every component network, deployed to one task,
that all states in its product automaton that are marked asidle satisfy Formula 1. All the
remaining states must satisfy Formula 2 (see page 8). These are purely syntactic checks
on the AutoFOCUS task product automaton.

In the eCall example the automaton of the mobile phone component as shown in
Fig. 3 (page 5) has three idle states (no_connection, connection_ok and data_send).
In these states new inputs from the Emergency Call task and the radio link status are
expected respectively. The remaining states are non-idle,thus, the transitions from these
states are not allowed to access the input ports.

The second property to be verified is that every task sends a special idle signal
before entering an idle state. This signal is needed in AFTM to affectinput_check and
output_buffer components (see Sect. 5.2). Formally it must be verified thatFormula 4
holds for every transition.

Finally, it is necessary to verify that every sequence of transitions starting in an
idle state always reaches some idle state within a finite number of steps. The first two



properties are simply syntactic checks on the model, while the last one can be verified
via model checking. To verify the last property, it is possible to use the SMV back end
of the tool AutoFOCUS.

6.2 Timing Properties

Timing properties ensure the equivalence of the data flow dependencies imposed by the
AFTM channels and the task dependencies in the deployed system. The prerequisite for
every timing analysis technique are the estimates for BCET/WCET for every task. In
our setting these are minimal/maximal execution times between any pair of idle states.
The estimation can be done e.g. using the static analysis techniques by AbsInt [23].
The task running time expressed in the logical time base of the deployment architecture
(number of slots) is then obtained by dividing the BCET/WCETestimates by the slot
length:

bslot =

⌈

bcet

|slot |

⌉

, wslot =

⌈

wcet

|slot |

⌉

(6)

The assumption is that no two tasks (on the same ECU) can run inthe same slot.
By this, the logical running times of a taskT which can be used in the scheduleability
analysis lie within[bslot(T ), . . . , wslot (T )]. Thus, in the remainder of this section the
notion of logical time is used in the scheduling constraints.

We describe the deployment of the system by the following definitions for arbitrary
tasksTi, Tj ∈ T . The set of relative start times5 is denoted bystart(Ti). W.l.o.g.
we assume thatstart(Tk) 6= ∅ for all Tk ∈ T . Let the predicateecu(Ti, Tj) denote
the deployment of tasks on the same ECU. The messages produced by a task are sent
through FlexRay in slots from the setsend(Ti)

6. Finally, the number of slots in the OS
round is denoted by|round |.

The scheduleability analysis for the given technical infrastructure lies beyond the
scope of this paper, however, the obtained scheduling tables have to be checked for
their correctness for the given AFTM. We say a scheduling table to be correct, if the
following properties hold.

Communication Jitter. In order to make the bus communication deterministic, the Flex-
Ray slots reserved for the messages produced by a taskT , must not lie within the
following interval (see Fig. 5):

∀s ∈ start(T ) : ∀ss ∈ send(T ) : ss 6∈ (s + bslot (T ), s + wslot (T )]

In the case of a local communication, the consuming taskT2 must not be started before
the WCET of its producing counterpartT2 passes:

ecu(T1, T2) ∧ T1 ∈ Pred(T2) ⇒

∀s1 ∈ start(T1), s2 ∈ start(T2) : s2 6∈ (s1 + bslot(T1), s1 + wslot (T1)]

5 A task can be started several times per OS round.
6 Note that the set can be empty if the task sends its results only locally.



These properties allow us to define thetransport time function tr . For a given pair of
tasksT1 andT2 with T1 ∈ Pred(T2) and a start times1 ∈ start(T1), s1+tr(T1, s1, T2)
is the minimal time after whichT2 is allowed to access the messages produced byT1

whenT1 is started at times1. An earlier access would violate the above properties.
For thelocal communication, i.e.,ecu(T1, T2) holds, this time iswslot (T1). Otherwise,
tr(T1, s1, T2) is the longest distance to the next sending slot fromsend(T1 ), which
transports data thatT2 is interested in, plus 1 slot for the transportation itself.The last
case is illustrated in Fig. 6. Due to the above constraints, for any fixed triple of param-
eters the value oftr is constant.

producing m

slotb      (T)s +

...

T ...
producing m producing m

Transport−Schedule

Execution−Schedule

s slots +w      (T)

ss

Fig. 5. Constrained Transport Times
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Fig. 6. Allowed Start Time

Control & Data Flow. The start times of tasks have to respect the data and control flow
relations between them. We constraint starts/terminations allowed to occur between
any pair of subsequent executions of a taskT . For that purpose we define the follow-
ing sets and predicates on them: For a taskT let start⊥(T ) = start(T ) ∪ {−1} and
start⊤(T ) = start(T )∪ {|round |+ min start(T )}. The value−1 denotes a fictitious
start time smaller than any actual start time ofT . The additional value ofstart⊤(T )
defines the firstT ’s start in the next round. Obviously, it will be greater thanany num-
ber in start(T ). Then for a given start times ∈ start⊥(T ) we denoteT ’s next start
time by next(T, s) = s′, with a minimal s′, such thats′ ∈ start⊤(T ) ands′ > s.
Further on, for a given start times ∈ start⊤(T ) we defineT ’s previous start time by
prev (T, s) = s′, with amaximal s′, such thats′ ∈ start⊥(T ) ands′ < s.

Using the definitions from above, we can now formulate scheduling constraints for
the both kinds of input check semantics. The AND-taskT which needs outputs from



the tasksT1, . . . , Tn demands, that these tasks must deliver their outputs between any
pair of subsequent starts ofT (see also Fig. 7).

∀s ∈ start(T ) : ∀T ′ ∈ Pred(T ) : ∃s′ ∈ start(T ′) :

prev (T, s) ≤ s′ + tr(T ′, s′, T ) < s

In the case of the OR-semantics forT , at least one of the tasksT1, . . . , Tn has to deliver
its outputs in this interval.

∀s ∈ start(T ) : ∃T ′ ∈ Pred(T ) : ∃s′ ∈ start(T ′) :

prev (T, s) ≤ s′ + tr(T ′, s′, T ) < s
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Fig. 7. Correct Data Flow
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No Data Loss. In the presented work we consider systems where no data loss is al-
lowed. By this a message has to be consumed by corresponding tasks, before it will be
overwritten. This implies the following relationship between two subsequent transports
from any producing taskT and the start times of the corresponding consumers (see also
Fig. 8).

∀s ∈ start(T ) : ∀T ′ ∈ Succ(T ) : ∃s′ ∈ start⊤(T ) :

s + tr(T, s, T ′) < s′ ≤ next(T, s) + tr(T,next(T, s), T ′)



Additionally to the above timing constraints, the responsetimes, which are an im-
portant part of the specification of real-time systems, haveto be checked. Since the task
running and transport times are calculable as described above, the response times can
be easily estimated.

The positive accomplishment of the above proof obligationsguarantees the correct-
ness of deployment. Thus, the resulting system will work correctly within the assumed
environment.

7 Related Work

In this paper we presented a concept for separate verification of application logic and
infrastructure. The necessity of the separation of functionality and infrastructure ver-
ification is also argued for by Sifakis et al. [27]. They introduce a formal modeling
framework and a methodology, addressing the analysis of correct deployment and tim-
ing properties. The extention in our task concept is the explicit modeling of task depen-
dencies and explicit statements about task activation conditions.

There also exist other approaches for the verification of distributed real-time soft-
ware. J. Rushby in [28] has presented a framework for a systematic formal verification
of time–triggered communication. His framework allows to prove a simulation rela-
tionship between an untimed synchronous system, consisting of a number of commu-
nicating components (“processors”) and its implementation based on a time-triggered
communication system. His approach considers only a one-to-one relationship between
components and physical devices they run on, i.e. no OS, and no sequentialization of
component execution is taken into account. This approach isinsufficient because it ne-
glects the current praxis of automotive software development: OS, bus and application
logic are developed by different suppliers and therefore should be treated separately.

There are also constructive approaches, trying to keep the properties of the models
during deployment. Examples of such approaches are Giotto [29] and AutoMoDe [30].
While the AutoMoDe approach suggests a bottom-up procedure, which is based on
the inter-arrival times of periodic signals, it is more appropriate for digital systems
for measurement and control, where this information is present at the design stage of
development.

The system behavior realized for AutoFOCUScomponents using AFTM is inspired
by Henzinger’s Giotto approach. The Giotto tasks, realizedin C, are also activated only
if all the needed inputs are available. Their outputs are issued after the time of their
worst case execution is elapsed. In order to provide such behavior, Giotto installs a low-
level system driver, calledE-machine, which takes over the role of input and output
check during the run-time. For this setting the construction of schedules was proven
to be polynomial in [31]. However, in contrast to the presented approach, the data and
control flow, which serves as an input for schedule synthesis, are extracted in a rather
ad hoc manner, e.g. it cannot be proven, that they correspond to theactual behavior of
the C-code tasks. Furthermore, no additional middleware like the E-machine is needed
in the presented work.

As noted in [32], in the CASE tools typically used for model-based software de-
velopment in the automotive domain, like MATLAB/Simulink [1], Rose RT [2], Auto-



FOCUS[3], there is no explicit deployment concept. In other tools, like ASCET-SD [33]
or Cierto VCC [34], there is an ability to build a deployment model for one ECU only.
However these tools allow the modeling of the systems only ona very low level of
abstraction. The application of such tools in the early design phases would lead to un-
necessary over-specification.

8 Conclusion

The task-based application model is simple enough to be verified using automated ver-
ification techniques such as model checking and robust enough to be deployed without
violation of the verified properties. The special task construction using message buffer-
ing and input checks assures that the task behavior remains the same even after deploy-
ment. Thus, the properties verified for the pure task-based system remain valid for the
deployed system.

It is important that in the presented approach the operatingsystem and the commu-
nication bus are verified separately from the application logic. The verification tasks
interact in the assumption/guarantee way: for the application verification we assume a
certain behavior of the infrastructure and for the infrastructure we verify that it guaran-
tees the assumed properties. This reduces the complexity ofverification and results in
a completely verified system. The separation of functional and timing properties brings
additional reduction of the verification effort.

The only piece missing to provide a pervasively verified time-triggered system is
the verified infrastructure (OS/bus) providing the properties that the application layer
(deployed AFTM) relies on. Such a verified infrastructure isbeing developed in the
Verisoft project [19]. In the context of this project the methodology presented in this
paper will also be applied to the emergency call application[6] to achieve a proof-of-
concept pervasive verification of an automotive system.
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