
Local Reasoning about While-Loops

Thomas Tuerk

University of Cambridge Computer Laboratory
William Gates Building, JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

http://www.cl.cam.ac.uk

Abstract. Separation logic is an extension of Hoare logic that allows local
reasoning. Local reasoning is a powerful feature that often allows simpler
specifications and proofs. However, this power is not used to reason about
while-loops.
In this paper an inference rule is presented that allows using local rea-
soning to verify the partial correctness of while-loops. Instead of loop in-
variants this inference rule uses pre- and post-conditions for loops. This
provides a different view of while-loops that is even without local reason-
ing often beneficial.

1 Motivation

There is a well known connection between loops and recursive procedures.
Modern compilers routinely transform recursive procedures into loops as part
of program optimisation and there are refactorings that depending on varying
criteria transform iterative programs in recursive ones and vice-versa. How-
ever, when using separation logic, recursive implementations are often much
easier to specify and verify than the corresponding imperative ones.

In the following I will look into this surprising observation a little closer
considering the example of determining the length of a single-linked list. This
example – like all others in this paper – has been verified using Holfoot [8], a Sep-
aration logic [5, 6] tool similar to the tool Smallfoot [1]. Both tools, Holfoot and
Smallfoot, use a very similar programming language. However, Holfoot sup-
ports a richer specification language as well as interactive proofs. This enables
it to reason about fully functional specifications, whereas Smallfoot just rea-
sons about the shape of datastructures. Details about the syntax and semantics
of the used specification and programming language are not important for this
paper and are therefore not discussed here. The programming language is easy
to understand, because its syntax is similar to C. The specification language has
uncommon syntax like using underscores to denote existential quantification.
Therefore, in this paper specifications will be presented in an informal, intuitive
way. All specifications are just concerned with partial correctness; termination
is not considered.

The examples as well as Holfoot itself are available at its webpage1. There
is also a web-interface that allows experimenting with the examples. Holfoot

1 http://holfoot.heap-of-problems.org

http://holfoot.heap-of-problems.org


is implemented inside the HOL 4 [2, 7] theorem prover. Thus, there are formal,
machine readable semantics of both the programming and the specification lan-
guage and all reasoning is done by proof inside HOL 4. In particular this means
that all inference rules – including the one presented in this paper – are proven
correct inside HOL 4.

So, let’s consider a recursive and an iterative implementation of determining
the length of a single-linked list:

list_length(r;c) [list(c,cdata)] {
local t;
if (c == NULL) {

r = 0;
} else {

t = c->tl;
list_length(r;t);
r = r + 1;

}
} [list(c,cdata) * (r = length(cdata))]

list_length_iter(r;c) [list(c,cdata)] {
local t;
r = 0; t = c;
while (t != NULL) [∃cdata1 cdata2.

lseg(c, cdata1, t) *
list(t, cdata2) *
(r = length(cdata1)) *
(cdata = cdata1 + cdata2)] {
t = t->tl;
r = r + 1;

}
} [list(c,cdata) * (r = length(cdata))]

Both procedures get two arguments: a call-by-reference argument r and a call
by value one c. The preconditions demand that c points to the start of a single-
linked list that contains some data cdata. The postconditions guarantee, that
this list is left unmodified and r is updated to contain the length of the list.
While this specification is sufficient for the recursive implementation, the iter-
ative one needs a complicated loop invariant. The loop-invariant (see Fig. 1)

Fig. 1. Loop Invariant of list length iter

demands that the list can be split into two parts: the part that has already been
counted and the one that still needs processing. The already counted part is a
list-segment from c to t containing cdata1. The current value of r has to be the
length of this already counted part. The unprocessed part is a null-terminated
single-linked-list starting at t and containing cdata2. Combined, the two parts
need to form the original list, i. e. appending cdata1 and cdata2 results in
cdata.

Summing up, there are two implementations of the same algorithm. They
have the same interface with exactly the same procedure specifications. How-
ever, while this specification is sufficient for the recursive implementation, the



iterative one needs to be annotated with a complicated loop invariant. This in-
variant is not just lengthy, it needs new concepts. Only the invariant needs to
talk about list-segments, a partial datastructure. Both implementations do es-
sentially the same, so why is it so much harder to specify the iterative one?
The answer is that the specification of the recursive procedure call can utilise
separation logic’s local reasoning whereas the loop invariant does not use it.

The recursive implementation checks first2, whether the list is empty. If it is
not empty, the first element can be split off. The recursive call then determines
the length of the remaining list. Thanks to local reasoning the specification of
the recursive call has to mention just the tail of the original list. It is implicitly
guaranteed that the first element of the original list is not modified. In con-
trast, the loop invariant describes the whole state / the whole datastructure.
The list-segment from c to t, which is handled implicitly in the recursive im-
plementation, is mentioned explicitly in the loop invariant.

In the following a inference rule is presented that allows the usage of local
reasoning for the verification of while loops. Instead of loop invariants, this
inference rule uses pre- and post-conditions for while loops. It allows to specify
the list-length example as follows:

list_length_iter(r;c) [list(c,cdata)] {
local t;
r = 0; t = c;
loop_spec [list(t,data)] {

while (t != NULL) { t = t->tl; r = r + 1; }
} [list(old(t),data) * (r = old(r) + length(data))]

} [list(c,cdata) * (r = length(cdata))]

This specification states that assuming t points to a start of a single linked list
before the loop, then after the execution of the loop, there is still the same list
in memory and the value of the variable r has been increased by the length of
the list. So, this specification is using local reasoning. The list-segment between
c and t is handled implicitly.

2 A closer look at the inference rule for while-loops

As motivated, local reasoning is an powerful feature that often allows simpler,
shorter specifications and proofs. However, the inference rule for while-loops
does not allow to utilise it. Let’s have a closer look at this inference rule and see
whether it can be modified to allow local reasoning. Hoare Logic [4] provides
the following inference rule to reason about the partial correctness of while-
loops:

WHILE RULE
{c ∧ I} p {I}

{I} while c do p done {¬c ∧ I}

2 Holfoot’s web-interface can be used to step through the proof. It can be found at
http://holfoot.heap-of-problems.org.

http://holfoot.heap-of-problems.org


This inference rule can informally be justified by an induction on the number
of loop iterations:

{I} while c do p done {¬c ∧ I} ⇐ induction / unroll

{¬c ∧ I} {¬c ∧ I} ∧ use induction hypothesis that
{c ∧ I} p; while c do p done {¬c ∧ I} ⇐ the while loop satisfies

the specification

∀prog. {I} prog {¬c ∧ I} −→
{c ∧ I} p; prog {¬c ∧ I} ⇐ sequential composition rule

{c ∧ I} p {I}

The possibility to use local reasoning is lost in the last step, the application
of the composition rule. Separation logic’s local reasoning guarantees that any
Hoare triple can be extended by an arbitrary context R:

{P} prog {Q} ⇐⇒ ∀R. {P ∗R} prog {Q ∗R}

However, applying the sequential composition rule in the described way, ig-
nores the possibility to extend the specification of prog with a frame R. Let’s try
to extend the inference rule for while-loops to be able use local reasoning. This
extension should be as general as possible.

Slightly generalised, the identified problem with the classical while-rule
is, that it is designed for single Hoare triples {P} prog {Q}. In practice how-
ever, one often reasons about families {P1} prog {Q1}, {P2} prog {Q2}, . . . of
specifications. As seen with the frame rule before, such families are usually
represented using higher order quantification, i. e. they are given in the form
∀x. {P (x)} prog {Q(x)}. If the classical while-rule is used for such a family, it
results in

WHILE RULE FOR FAMILIES
∀x. {c ∧ I(x)} p {I(x)}

∀x. {I(x)} while c do p done {¬c ∧ I(x)}

One can do better than this. This derived rule reasons about every member of
the family, about every instantiation of x separately. The other members, other
instantiations are ignored. In order to use that additional knowledge let’s replay
the informal justification for the classic while-rule with the quantifier in mind:

∀x. {I(x)} while c do p done {¬c ∧ I(x)} ⇐

∀x, prog.
(
∀y. {I(y)} prog {¬c ∧ I(y)}

)
−→

{c ∧ I(x)} p; prog {¬c ∧ I(x)} ⇐

∀x. ∃y. {c ∧ I(x)} p {I(y)} ∧
(
¬c ∧ I(y)→ ¬c ∧ I(x)

)
This rule is more general than the classical one. The classic one always in-

stantiates y with x. Now the induction hypothesis is stronger and one can ac-
tually use a different instantiation for the next iteration through the loop. As
discussed before, separation logic’s local reasoning can be expressed as such



a family of specifications. Therefore, reasoning about families of specifications
instead of single ones allows using local reasoning for loops. This is the core of
the proposed inference rule for loops. It leads to the following rule:

EXTENDED WHILE RULE
∀x, prog.

(
∀y. {I(y)} prog {¬c ∧ I(y)}

)
−→ {c ∧ I(x)} p; prog {¬c ∧ I(x)}

∀x. {I(x)} while c do p done {¬c ∧ I(x)}

The extended while rule allows to choose for each loop iteration a differ-
ent instantiation. So, I is still some kind of inductive property of the loop, but
strictly speaking no invariant any more. So let’s use proper pre- and postcon-
ditions for the loop. By introducing pre- and post-conditions, the case for skip-
ping the loop becomes more complicated. There is an additional proof obliga-
tion that the pre-condition implies the post-condition. Since there is this addi-
tional proof obligation anyhow, one can easily allow code after the loop. This
results in the inference rule proposed in this paper:

LOOP SPECIFICATION RULE
∀x. {¬c ∧ P (x)} p2 {Q(x)}

∀x, prog.
(
∀y. {P (y)} prog {Q(y)}

)
−→ {c ∧ P (x)} p1; prog {Q(x)}

∀x. {P (x)} while c do p1 done; p2 {Q(x)}

Both extensions of the extended while rule can be justified using exactly the
same reasoning as before. These extensions are natural and prove useful. Espe-
cially, using real pre- and post-conditions is convenient. However, these exten-
sions are unrelated to the main idea of using local reasoning for loops.

Notice, that this discussion about inference rules is intentionally very infor-
mal. There has been no definition of the semantics of the programming lan-
guage and no definition of Hoare triples. The purpose of this discussion is to
convey the main ideas. In contrast to this informal discussion here, the imple-
mentation of this proposed inference rule in Holfoot is formal. Everything is
defined using higher order logic and its soundness is machine checked using
the HOL 4 theorem prover.

3 Examples

I hope, I could convince you that loop-specifications are advantageous for the
initial example of calculating the length of a single-linked list. There are similar
results for reversing a single-linked list, copying a single-linked list, appending
two single-linked lists, removing an element from a single-linked list, etc. Due
to space restrictions most of these examples are not discussed here. They can be
found on Holfoot’s web-page3.

Before considering examples that are very similar to the motivating one,
let’s start by discussing examples that demonstrate that even without local rea-
soning loop specifications are still useful. In contrast to invariants, the pre- and

3 http://holfoot.heap-of-problems.org

http://holfoot.heap-of-problems.org


post-condition specify the behaviour of the block containing the while loop.
Therefore, the loop specification rule is closely related to Eric Hehner’s specified
blocks [3]. Hehner uses single boolean expressions instead of a pre- and post-
condition. Moreover, his work is much more general. However, he is not using
local reasoning. Allowing for these differences, his method of reasoning about
loops is very similar to the one proposed here.

3.1 Array Increment Example

Similar to Hehner’s specified blocks, loop specifications slightly change how to
think about loops. As a rule of thumb, loop invariants express what the loop has
already done, whereas loop specifications express what it will still do. Talking
about what still needs doing instead of what has already been done, often leads
to more natural specifications. Even without local reasoning, Hehner prefers
loops specified as blocks to invariants. He claims that it is simpler and more direct
to say what’s left to be done, rather than to formulate an invariant [3]. This differ-
ence between loop invariants and loop specifications is demonstrated by one of
Hehner’s examples:
inc(;a,n) [array(a,n,data)] {

local i, tmp;
i = 0;
while (i < n) {

tmp = (a + i) -> dta;
(a + i) -> dta = tmp + 1;
i = i + 1;

}
} [array(a,n,map +1 data)]

This procedure increments every element of an array. The loop can be specified
with the following invariant:

∃data2. array(a,n, data2) ∗(
∀x. x < i =⇒ data2[x] = data[x] + 1

)
∗(

∀x. i ≤ x < n =⇒ data2[x] = data[x]
)

The invariant states that there is an array of length n starting at a and contain-
ing some existentially quantified data data2. For all indices up to i the array
contains the incremented value, for all other indices it still contains the original
one. If a loop specification is used, it is the other way round:

pre: array(a,n, data)

post: ∃data2. array(a,n, data2) ∗(
∀x. x < old(i) =⇒ data2[x] = data[x]

)
∗(

∀x. old(i) ≤ x < n =⇒ data2[x] = data[x] + 1
)

This specification states that all the indices starting at the value of i will be up-
dated, while all smaller than i are not touched. Notice, that no local reasoning
is involved here yet. Using local reasoning, the loop specification can however
be simplified by implicitly handling the part of the array that is not touched.

pre: array(a+ i,n− i, data)

post: array(a+ old(i),n− old(i), map (+1) data)



This specification now states that given an array starting from a + i of length
n − i – i. e. just the part of the original array starting at index i – all elements
of this array are incremented. There is no need any more for some complicated
expressions about indices.

3.2 List Filtering Example

The last example demonstrates that loop invariants usually specify what has al-
ready been done, whereas loop specifications specify what will be done. How-
ever, both views were easy to express. The following example of filtering a list
demonstrates that it might be much simpler to express what the loop will still
do. Notice that this example is not exploiting local reasoning.

list_filter(l;x) [list(l,data)] {
local y, z, e;
y = l; z = NULL;
while (y != NULL) {

e = y->dta;
if (e == x) { /* need to remove y */

if (y == l) { /* first link */
l = y->tl; dispose y; y = l;

} else { /* not first link */
e = y->tl; z->tl = e; dispose y; y = z->tl;

}
} else { /* don’t need to remove y */

z = y; y = y->tl;
}

}
} [list(l, filter x from data)]

The loop invariant describes that parts of the list got already filtered. This par-
tial filtering is complicated to express:

if (y = l) then
∃data1. (data = (some xs) + data1) ∗ list(l, data1)

else
∃data1, date, data2. (data = data1 + date + (some xs) + data2) ∗

lseg(l, filtered data1,z) ∗ (z 7→ [tl : y, dta : date]) ∗
date 6= x ∗ list(y, data2)

This invariant is even worse than it looks, because the shorthand (some xs) is
used to denote a list of unknown length that consists of just the element x. In
contrast, the loop specification is straightforward, because it describes that the
whole list starting at y will be filtered.

pre: list(y, data2) ∗
if (y 6= l) then lseg(l, data,z) ∗ (z 7→ [tl : y,dta : zdate]) else emp

post: if (old(y) = old(l)) then list(l, filtered data2)
else list(l, data + zdate + filtered data2)



3.3 List Copy Example

After considering examples for which loop specifications proved beneficial even
without local reasoning, let’s have a look at an example with local reasoning:

list_copy(z;c) [list(c,data)] {
local x,y,w,d;
if (c==NULL) { z=NULL; }
else {

z=new(); z->tl=NULL; x = c->dta; z->dta = x; w=z; y=c->tl;
while (y!=NULL) {
d=new(); d->tl=NULL; x=y->dta; d->dta=x; w->tl=d; w=d; y=y->tl;

}
}

} [list(c,data) * list(z,data)]

This procedure copies a single-linked list that starts at c and updates the call-
by-reference argument z such that z points to the copy after execution. The
procedure first checks, whether the list is empty. In this case, nothing needs to
be copied. Otherwise, the first element is copied and auxiliary variables w and
y initialised. After this initialisation, z points to the beginning of the copy, w
points to its last element and y points to the part of the original list that still
needs to be copied. Then a while loop is used to copy the remainder of the list
by copying the element pointed to by y and then advancing y and w.

The while-loop can be specified with the following invariant:

∃data1, cdate, data2. (data = data1 + cdate + data2) ∗
lseg(c, data1 + cdate, y) ∗
lseg(z, data1, w) ∗ (w 7→ [tl : 0,dta : cdate]) ∗
list(y, data2)

This invariant states that the original data can be split into three parts: two
lists data1, data2 and a single element cdate. There is a list-segment from c to y
containing data1 followed by cdate. This part of the original list has already been
copied. The data data1 has been copied to a list-segment from z to w. The last
entry cdate is pointed to by w. Finally, data2 still needs to be copied. It is stored
in a list starting at y.

Using a loop specification simplifies reasoning about the loop significantly:

pre: w 7→ [tl : 0,dta : cdate] ∗ list(y, data2)

post: list(old(w), cdate + data2) ∗ list(old(y), data2)

This specification states that if before the loop is executed w points to some data
cdate and there is a list starting at y containing data2, then the list starting at y
is copied such that the old value of w points to a list containing cdate followed
by data2 after the execution of the loop. The part of the list that has already
been copied, i. e. the list-segment from c to y does not need to be mentioned
explicitly. It is handled implicitly using local reasoning. Notice moreover that
the loop specification does not use list-segments.



3.4 Partial Datastructures

Loop specifications can utilise local reasoning in order to implicitly handle
some part of the state that loop invariants mention explicitly. This implicitly
handled part of the state is usually a partial datastructure. For the examples
so far, these partial data structures are easy to express. For lists, the partial
datastructure is a list-segment and for arrays it is an array. Let’s now consider
a slightly more complicated datastructure: trees. For trees, the corresponding
partial datastructure is a tree with a hole for some other tree. This is difficult
to express. Separation logic’s magic-wand operator can be used, but reasoning
about this additional operator is not straightforward and Holfoot is not able to
do it. Therefore, Holfoot usually can’t handle the invariants of loops that op-
erate on trees. However, loop specifications can be used to avoid the partial
datastructure. This allows Holfoot to reason about additional examples like the
following:

search_tree_delete_min (t,m;) [binary_search_tree(t;keys) * (keys 6= ∅)] {
local tt, pp, p;
p = t->l;
if (p == 0) { m = t->dta; tt = t->r; dispose (t); t = tt; } else {
pp = t; tt = p->l;
loop_spec [binary_search_tree(p, keys2) & (pp points to p and p to tt)] {
while (tt != NULL) { pp = p; p = tt; tt = p->l; }
m = p->dta; tt = p->r; dispose(p); pp->l = tt;

} [∃p2. binary_search_tree(p2, keys2 without min(keys2)) & (pp points to p2)]
}

} [binary_search_tree(t;keys without min(keys)) * (m = min(keys))]

This procedure deletes the minimal key from a non-empty binary search tree.
The while-loop is used to search for the node storing the minimal key. After
the loop has been executed, the original binary-search tree is unmodified and
the variable p points to the node holding the minimal key and pp to its par-
ent node. However, expressing these properties of p and pp is complicated and
would require some kind of partial tree datastructure. Therefore, the code that
deletes the minimal element is included in the loop specification. Thus, the
post-condition of the loop specification can state, that the minimal key of the
original tree has been deleted. In contrast to the corresponding loop invariant,
the loop specification does not need partial tree datastructures.

Besides demonstrating that loop specifications can be used to eliminate the
need for partial datastructures, the last example also demonstrates why it is
useful that loop specifications allow code after the while-loop. Allowing code
after the loop is a minor extension, that is not used by most of the examples that
I considered so far. However, as this example illustrates, it sometimes results in
much simpler post-conditions.

4 Conclusion

In this paper an additional inference rule for while loops is presented. This
loop specification rule uses pre- and post-conditions instead of invariants. Loop
invariants express what the loop has done so far. In contrast loop specifications
state what the loop will still do. This often leads to more natural specifications.



The loop specifications presented here are very similar to Eric Hehner’s
specified blocks [3]. Even without local reasoning they often lead to simpler,
more natural specifications as demonstrated by the list filtering example. How-
ever, they have mainly been introduced in order to be able to use separation
logic’s local reasoning for loops. Using local reasoning, loop specifications gain
their full potential. Besides leading to even simpler specification, local reason-
ing can be used to avoid the need for predicates describing partial datastruc-
tures.

Loop specifications have been implemented inside Holfoot. This implemen-
tation includes a formal correctness proof inside the HOL 4 theorem prover.
There are many Holfoot examples available that demonstrate that loop speci-
fications can simplify the specification and verification of loops considerably.
There are examples for single linked lists like reversing a single-linked list,
copying a single-linked list, appending two single-linked lists, removing an ele-
ment from a single-linked list, examples for arrays like copying an array, binary
search, quicksort and examples for binary trees like binary search tree lookup
and deletion or traversing a tree with a user managed stack. These examples
and many others can be found on Holfoot’s webpage 4. The binary tree exam-
ples might be especially interesting. These could not be handled by Holfoot
without loop specifications, because Holfoot does not support predicates that
are able to describe the otherwise necessary partial datastructures.

Acknowledgements

I would like to thank Rustan Leino, David Naumann, Peter O’Hearn, Matthew
Parkinson and Hongseok Yang for discussions, comments and especially for
pointing me to Eric Hehner’s work.

4 http://holfoot.heap-of-problems.org

http://holfoot.heap-of-problems.org


Bibliography

[1] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modu-
lar automatic assertion checking with separation logic. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors,
FMCO, volume 4111 of Lecture Notes in Computer Science, pages 115–137.
Springer, 2005.

[2] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University, 1993.

[3] Eric C. R. Hehner. Specified blocks. In Bertrand Meyer and Jim Woodcock,
editors, VSTTE, volume 4171 of Lecture Notes in Computer Science, pages 384–
391. Springer, 2005.

[4] C. A. R. Hoare. An axiomatic basis for computer programming. COMMU-
NICATIONS OF THE ACM, 12(10):576–580, 1969.

[5] P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of 15th Annual Conference of the Eu-
ropean Association for Computer Science Logic, volume 2142 of Lecture Notes in
Computer Science, pages 1–19. Springer-Verlag, September 2001.

[6] J.C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Com-
puter Science, pages 55–74, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

[7] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Ot-
mane Aı̈t Mohamed, César Muñoz, and Sofiène Tahar, editors, TPHOLs,
volume 5170 of Lecture Notes in Computer Science, pages 28–32. Springer,
2008.

[8] Thomas Tuerk. A formalisation of Smallfoot in HOL. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, TPHOLs,
volume 5674 of Lecture Notes in Computer Science, pages 469–484. Springer,
2009.


	Local Reasoning about While-Loops

