
A Hierarchy for

Accellera’s Property

Specification Language

Thomas Türk

May 1st, 2005

Diploma Thesis

University of Kaiserslautern

Supervisor:

Prof. Dr. Klaus Schneider

Vorliegende Diplomarbeit wurde von mir selbstständig verfasst. Es wurden keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Kaiserslautern, 1. Mai 2005

Thomas Türk

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Main Objective . 2

1.3 Document Structure . 3

2 Basics 5
2.1 Linear Temporal Logic (LTL) . 6

2.2 Reset Linear Temporal Logic (RLTL) . 8

2.3 Accellera’s Property Specification Language (PSL) 12

2.4 ω-Automata . 19

2.4.1 Finite State Automata on Finite Words 19

2.4.2 ω-Automata . 20

2.4.3 Symbolic Representation . 21

2.4.4 Automaton Formulas . 23

2.4.5 Syntactic Sugar . 25

2.4.6 Flat Automaton Formulas . 27

2.4.7 Classes of ω-Automata . 28

3 Translation 31
3.1 From PSL to RLTL . 31

3.2 From RLTL to LTL . 35

3.3 From LTL to ω-Automata . 35

3.3.1 Basic Translation . 36

3.3.2 Improved Translation . 38

3.4 Overall Translation . 39

4 Temporal Logic Hierarchy for PSL 41
4.1 A Hierarchy of LTL . 41

4.2 A Hierarchy of RLTL . 44

4.3 A Hierarchy of PSL . 45

5 The HOL System 51
5.1 Deep Embedding of PSL . 52

5.2 Deep Embedding of LTL and RLTL . 52

i

5.3 Deep Embedding of ω-Automata . 53
5.4 Translations of LTL to ω-Automata . 53
5.5 Translation of PSL to RLTL . 54

6 Conclusion and Future Work 55

ii

1 Introduction

1.1 Motivation

Model checking and equivalence checking are state-of-the-art in modern hardware cir-
cuit design. Moreover, standardised languages like the hardware description languages
VHDL [4, 56] and Verilog [41] are widespread and allow one the convenient exchange
of modules, which can also be sold as IP blocks. However, specifications of tempo-
ral properties that are required for model checking cannot be easily described with
these languages [16, 45]. Hence, the research on model checking during the last two
decades considered mainly temporal logics like LTL [42], CTL [21] and CTL∗ [22]. More-
over, several other formalisms like ω-automata [54] or monadic second order logics are
used [32].

The syntax, the semantics and also the expressiveness and complexity of these tem-
poral logics are very different. For example, while LTL model checking is PSPACE-
complete, CTL model checking can be done in polynomial time, which is a consequence
of the different expressive power of these logics. Moreover, temporal logics, ω-automata
and monadic predicate logics form a hierarchy in terms of expressiveness [49].

The significant differences of the temporal logics used for specification prevent the
use of different tools, a situation that was similar in digital circuit design before the
standardisation of VHDL [4, 56] and Verilog [41]. For this reason, the increased im-
portance of verification leads to industrial interest in standardised specification logics.
Hence, great effort has been put on a standard of an industrial-strength property
specification language. Accellera’s Property Specification Language (PSL) [1, 2] is its
result.

In this diploma thesis, a translation of a significant subset of PSL to classical tem-
poral logic LTL is presented. It is well known how LTL can be translated to equivalent
ω-automata [20, 24, 25, 52, 61]. In particular, there is a hierarchy of ω-automata
[35, 36, 49, 58] that distinguishes between safety, liveness and four other classes
of increasing expressiveness. Recently, the related subsets of LTL of this hierarchy
have been syntactically characterised [48, 49]. In particular, linear-time translations
have been presented [48, 49] that translate the temporal logic classes to correspond-
ing ω-automata. The presented translation of a subset of PSL to LTL allows one to
lift these temporal logic classes to PSL, i. e. it allows one to syntactically characterise
subsets of PSL that can be translated to corresponding ω-automata.

Especially, subsets of PSL that can be translated to safety or liveness automata
are interesting, since the classification into safety and liveness is important for many
applications. Since only finite paths can be examined with simulation, this approach

1

1 Introduction

is limited to safety and liveness properties. In particular, liveness properties can be
proved and safety properties can be disproved by means of simulation. The same holds
for most variants of bounded model checking [51], which are in some sense related to
symbolic simulation. Other properties like fairness properties stating that a condition
has to hold infinitely often, or persistence properties stating that a condition holds
from a certain unknown point of time on, cannot be easily examined by simulation.

1.2 Main Objective

The main objective of this diploma thesis is to syntactically identify subsets of PSL
that form a hierarchy similar to the well-known hierarchies of LTL and ω-automata.
Furthermore, translations have to be developed that allow one to translate PSL classes
to the corresponding LTL and ω-automata classes. Moreover, these translations and
the hierarchy of PSL should be formally validated using an automated proof system.

The translation of the subset of PSL to ω-automata presented in this work consists
of three parts: the translation of a subset of PSL to RLTL, the translation of RLTL to
LTL and the translation of LTL to ω-automata (see Figure 1.1). RLTL is an extension
of LTL by a reset operator that allows one to abort the consideration of a property.
RLTL was introduced by Armoni, Bustan, Kupferman and Vardi in 2003 [5] to show
the impact of different reset operators. As a consequence of [5], the semantics of the
reset operator in PSL has been changed in version 1.1 to meet the semantics of the
reset operator in RLTL. The previous version leads to a non-elementary blow-up in the
translation to ω-automata. Thus, it is not surprising that a significant subset of PSL
can be translated to RLTL. However, the actual translation of a subset of PSL to RLTL
originates to this work. For the translation of RLTL to LTL, an algorithm presented in
[5] is used. Finally, the translation of LTL to ω-automata as given by [48, 49] is used.

PSL RLTL LTL ω-automata
[5] [48, 49]

Figure 1.1: Translation of a subset of PSL to ω-automata

Using these translations between a subset of PSL, RLTL, LTL and ω-automata, the
hierarchy of LTL identified by Klaus Schneider [48, 49] is lifted to PSL and RLTL,
i. e. PSL and RLTL classes are identified that are translated to the corresponding LTL
class by the presented translations. Therefore, they can also be translated to the
corresponding class of ω-automata [49]. Moreover, the identified PSL and RLTL classes
are complete in the sense, that they are as expressive as the corresponding LTL class.
Especially, PSL classes are identified that correspond to liveness and safety properties.

In 2004, Claessen and Mårtensson presented a subset of PSL, called weak PSL that
can express only liveness properties [18]. The PSL class corresponding to liveness
properties defined in this work is different from weak PSL. In contrast to weak PSL,
negations are considered. On the other hand, in contrast to the classes defined in this

2

1.3 Document Structure

work, weak PSL may contain certain regular expressions.
The example of the slightly different definitions of the reset operator in PSL version

1.01 and version 1.1 and the enormous impact of this small change shows that proving
the correctness of the translations is quite tricky. PSL is a complex language and
that includes many special cases. Therefore, all parts of the translation of PSL to
ω-automata are formally validated in the interactive proof system for higher order
logic HOL [27, 29]. Moreover, the identified hierarchy of PSL is formally validated,
too. The resulting HOL library can be found on the included CD.

There is already a deep embedding of PSL in HOL [26]. This embedding is not part
of the Accellera standard. However, some members of the Accellera Formal Property
Language Technical Committee reviewed this embedding. In addition to this PSL
library, some parts of an existing LTL library [50] are used. There are of course also
other embeddings of temporal logics in HOL like [34, 57], but these are not useful in
this context, since they provide no deep embeddings.

In the scope of this diploma thesis, RLTL, LTL and ω-automata have been deeply
embedded in HOL. Using Mike Gordon’s deep embedding of PSL and these embeddings
of RLTL, LTL and ω-automata, the correctness of the entire translation of PSL to
ω-automata is formally proved. Moreover, it is proved in HOL that the presented
translation from PSL to LTL translates a PSL class to the corresponding LTL class.
Since this LTL class can be translated to the corresponding class of ω-automata, the
translation of PSL to LTL allows one to translate the PSL class to the corresponding
ω-automata class.

The usage of Mike Gordon’s PSL library is an additional value of this work, because
it is one of the first applications of this library. Translating PSL to another language
should find other bugs in the PSL library than sanity checking inside the PSL library
itself. Indeed, during this diploma thesis a small, until then unknown bug has been
discovered in the embedding, which will be mentioned later.

1.3 Document Structure

This diploma thesis is organised as follows: In Chapter 2, the used formalisms LTL,
RLTL, PSL and ω-automata are introduced. Based on these introductions, the trans-
lations between these formalisms are presented in Chapter 3. Since there are formal
HOL-proofs of the presented translations, only the main ideas of the proofs are given in
the thesis, while machine-checked proofs are given on the included CD. In Chapter 4,
the translations are used to define PSL classes that correspond to the temporal logic
hierarchy [36, 48, 49] and hence, to the ω-automaton hierarchy [35, 49, 58]. Chapter 5
describes the work done in HOL. The embeddings of the used formalisms, the overall
structure of the theories and important lemmata are described. However, formal proofs
are not presented here either. Instead of this, this section is meant to give an overview
about HOL and the HOL theories created during this work. Finally, some conclusions
are drawn and directions for future work are discussed.

3

2 Basics

In this chapter, the formalisms LTL, RLTL, PSL and ω-automata that are essential
for this work are introduced. All these formalisms are used to describe the temporal
behaviour of a system. Therefore, they share some common elements. They all use
propositional logic to describe properties of the current point of time, and they all
describe properties of a sequence of points of time, a so-called path. Thus, the used
notations for propositional logic and paths are defined first:

Definition 2.0.1 (Propositional Logic)
Let V be a set of variables. Then, the set of propositional formulas over V (short
propV) is recursively given as follows:

• each variable v ∈ V is a propositional formula

• ¬ϕ ∈ propV , if ϕ ∈ propV

• ϕ ∧ ψ ∈ propV , if ϕ,ψ ∈ propV

An assignment over V is a subset of V. In our context, assignments are also called
states. The set of all states over V, which is the power set of V, is denoted by P(V).
The semantics of a propositional formula with respect to a state s is given by the
relation |=prop that is defined as follows:

• s |=prop v iff v ∈ s

• s |=prop ¬ϕ iff s 6|=prop ϕ

• s |=prop ϕ ∧ ψ iff s |=prop ϕ and s |=prop ψ

If s |=prop ϕ holds, then the assignment s is said to fulfil (or to model) the propositional
formula ϕ.

For reasons of simplicity, the operator ∧ is often omitted. For example, x1x2 means
x1 ∧ x2. Additionally, further propositional operators like ∨,→,↔ etc. are added as
syntactic sugar, i. e. they are added as shorthands for formulas not containing these
operators:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ := ¬ϕ ∨ ψ

5

2 Basics

• ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

• true := v ∨ ¬v for an arbitrary variable v ∈ V

• false := ¬true

Definition 2.0.2 (Words)
A finite word v over a set Σ of length |v| = n + 1 is a function v : {0, . . . n} → Σ.
An infinite word v over Σ is a function v : N → Σ. Its length is denoted by |v| = ∞.
The set Σ is called alphabet. The elements of Σ are called letters. The finite word
of length 0 is called the empty word (denoted by ε). For reasons of simplicity, v(i) is
often denoted by vi for i ∈ N. Using this notation, words are often given in the form
v0v1v2 . . . vn or v0v1 The set of all finite words over Σ is denoted by Σ∗, and the
set of all infinite words over Σ is denoted by Σω.

Counting of letters starts with zero, i. e. vi−1 refers to the i-th letter of v. Fur-
thermore, vi.. denotes the suffix of v starting at position i, i. e. vi.. = vivi+1 . . . for all
i < |v| . The finite word vivi+1 . . . vj is denoted by vi..j. Notice that in case j < i the
expression vi..j evaluates to the empty word ε. For two words v1, v2, we use v1v2 for
the concatenation of v1 and v2. Finally, we use lω for the infinite word v with vj = l
for all j.

Definition 2.0.3 (Paths)
Temporal logics are often used to reason about the behaviour of transition systems.
A path of a transition systems is a word, for which is possible to transition from
one letter of the word to the next letter. However, the terminology of PSL does not
distinguish between paths and words [2]. Therefore, the terms ‘path’ and ‘word’ are
used synonymously in this work.

2.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) has been introduced by Pnueli in 1977 [42]. Essentially,
it consists of propositional logic enriched with the temporal operators X and U. The
formula Xϕ means that the property ϕ holds at the next point of time, ϕ U ψ means

that ϕ holds until ψ holds and that ψ eventually holds. The operators
←−
X and

←−
U

express the same properties for the past instead of the future. Therefore, the operators

X and U are called future operators, while
←−
X and

←−
U are called past operators. LTL

without past operators is as expressive as LTL with past operators [23]. Hence, LTL
is often regarded as the presented logic without past operators. In this work, this
subset is called FutureLTL. This work mainly considers FutureLTL, past operators
are not needed. However, they are introduced and the presented translation of LTL to
ω-automata considers these operators, because LTL with past operators is exponentially
more succinct than LTL without past operators [38].

6

2.1 Linear Temporal Logic (LTL)

Definition 2.1.1 (Syntax of Linear Temporal Logic (LTL))
The following mutually recursive definitions introduce the set ltlV of LTL formulas over
a given set of variables V:

• each propositional formula p ∈ propV is a LTL formula

• ¬ϕ, ϕ ∧ ψ ∈ ltlV , if ϕ,ψ ∈ ltlV

• Xϕ, ϕ U ψ ∈ ltlV , if ϕ,ψ ∈ ltlV

• ←−Xϕ, ϕ
←−
U ψ ∈ ltlV , if ϕ,ψ ∈ ltlV

Definition 2.1.2 (Future Fragment of LTL (FutureLTL))
The following definitions formally introduce the future fragment of LTL. For a given
set of variables V, the set fltlV is the set of FutureLTL formulas over V. It is given by
the following mutually recursive definitions:

• each propositional formula p ∈ propV is a FutureLTL formula

• ¬ϕ, ϕ ∧ ψ ∈ fltlV , if ϕ,ψ ∈ fltlV

• Xϕ, ϕ U ψ ∈ ltlV , if ϕ,ψ ∈ fltlV

Notice, that fltlV is a proper subset of ltlV .

Definition 2.1.3 (Semantics of Linear Temporal Logic (LTL))
For b ∈ propV and ϕ,ψ ∈ ltlV the semantics of LTL with respect to an infinite word
v ∈ P(V)ω and a point of time t ∈ N is given by:

• v |=t
ltl b iff vt |=prop b

• v |=t
ltl ¬ϕ iff v 6|=t

ltl ϕ

• v |=t
ltl ϕ ∧ ψ iff v |=t

ltl ϕ and v |=t
ltl ψ

• v |=t
ltl Xϕ iff v |=t+1

ltl ϕ

• v |=t
ltl ϕ U ψ iff ∃k. k ≥ t ∧ v |=k

ltl ψ ∧ ∀j. t ≤ j < k → v |=j
ltl ϕ

• v |=t
ltl

←−
Xϕ iff t > 0 ∧ v |=t−1

ltl ϕ

• v |=t
ltl ϕ
←−
U ψ iff ∃k. k ≤ t ∧ v |=k

ltl ψ ∧ ∀j. k < j ≤ t→ v |=j
ltl ϕ

Furthermore, a word v ∈ P(V)ω is said to satisfy (or to model) a LTL formula ϕ ∈ ltlV
(short v |=ltl ϕ) iff v |=0

ltl ϕ. A LTL formula ϕ is equivalent to a LTL formula ψ (denoted
by ϕ ≡ltl ψ) if for all words v ∈ P(V)ω and all points of time t ∈ N the relation v |=t

ltl ϕ
holds iff v |=t

ltl ψ holds. If for all v the relation v |=0
ltl ϕ holds iff v |=0

ltl ψ holds, ϕ and
ψ are initially equivalent (denoted by ϕ ≡0

ltl ψ).

7

2 Basics

LTL is usually enriched with syntactic sugar. In this work, the operators ∨,→ and
↔ are used with their usual definition. Additionally, the operators F,G, U and B are
important:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ := ¬ϕ ∨ ψ

• ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

• Fϕ := true U ϕ

• Gϕ := ¬F¬ϕ

• ϕ U ψ := ϕ U ψ ∨ Gϕ

• ϕ B ψ := ¬(¬ϕ U ψ)

Fϕ means that there is a point of time in the future where ϕ holds. Gϕ means that ϕ
holds from now on. ϕ U ψ is a weak variant of ϕ U ψ: In contrast to ϕ U ψ, it does not
demand that ϕ eventually holds; in this case ϕ must always hold. ϕ B ψ means that
either ψ never holds or that there is a point of time before ψ holds, where ϕ holds.

The operators F and G will become important for defining classes of ω-automata.
The U operator is used to explain the translation of LTL to ω-automata. Finally, B is
introduced, because it is the last needed operator to be able to transform FutureLTL
formulas into negation normal form [49]. However, this normal form is not discussed
here.

2.2 Reset Linear Temporal Logic (RLTL)

RLTL is an extension of FutureLTL by a reset operator, which allows one to abort the
consideration of a property. As mentioned above, RLTL has been introduced to show
the impact of different reset operators [5].

Definition 2.2.1 (Syntax of Reset Linear Temporal Logic (RLTL))
The following mutually recursive definitions introduce the set rltlV of RLTL formulas
over a given set of variables V:

• each propositional formula p ∈ propV is a RLTL formula

• ¬ϕ, ϕ ∧ ψ ∈ rltlV , if ϕ,ψ ∈ rltlV

• Xϕ, ϕ U ψ ∈ rltl, if ϕ,ψ ∈ rltlV

• ACCEPT(ϕ, b) ∈ rltlV , if ϕ ∈ rltlV , b ∈ propV

8

2.2 Reset Linear Temporal Logic (RLTL)

Some operators like ¬,∧ or U are used by several formalisms discussed in this work.
In most cases, it is clear by the context or does not make any difference to which
formalism one of these operators belongs. If it is important, it is denoted by a subscript,
e. g. ¬prop,¬ltl,¬rltl or ∧prop are used. In the case of RLTL formulas, there are special
cases, where it matters, whether the propositional negation ¬prop or the negation of
RLTL ¬rltl is used. An example is presented below.

Definition 2.2.2 (Semantics of Reset Linear Temporal Logic (RLTL))
The semantics of LTL is given with respect to a word v and a point of time t. To
define the semantics of RLTL, an acceptance condition a ∈ propV and a rejection
condition r ∈ propV are additionally needed. These conditions are used to capture the
required information about ACCEPT operators in the context of the formula. Thus,
for b ∈ propV and ϕ,ψ ∈ rltlV , the semantics of RLTL with respect to an infinite word
v ∈ P(V)ω , acceptance / rejection conditions a, r ∈ propV and a point of time t ∈ N is
given by:

• 〈v, a, r〉 |=t
rltl b iff vt |=prop a or

(
vt |=prop b and vt 6|=prop r

)

• 〈v, a, r〉 |=t
rltl ¬ϕ iff 〈v, r, a〉 6|=t

rltl ϕ

• 〈v, a, r〉 |=t
rltl ϕ ∧ ψ iff 〈v, a, r〉 |=t

rltl ϕ and 〈v, a, r〉 |=t
rltl ψ

• 〈v, a, r〉 |=t
rltl Xϕ iff vt |=prop a or

(
〈v, a, r〉 |=t+1

rltl ϕ and vt 6|=prop r
)

• 〈v, a, r〉 |=t
rltl ϕ U ψ iff ∃k. k ≥ t ∧ 〈v, a, r〉 |=k

rltl ψ ∧
∀j. t ≤ j < k → 〈v, a, r〉 |=j

rltl ϕ

• 〈v, a, r〉 |=t
rltl ACCEPT(ϕ, b) iff 〈v, a ∨ (b ∧ ¬r), r〉 |=t

rltl ϕ

A word v ∈ P(V)ω is said to satisfy a RLTL formula ϕ ∈ rltlV (short v |=rltl ϕ) iff
〈v, false, false〉 |=0

rltl ϕ holds. A RLTL formula ϕ is equivalent to a RLTL formula ψ
(denoted by ϕ ≡rltl ψ) if for all words v ∈ P(V)ω the relation v |=rltl ϕ holds iff
v |=rltl ψ holds.

ACCEPT(ϕ, b) stops the evaluation of the formula ϕ, when the condition b holds and
accepts formulas that have not been rejected before. For example, the word {a}{c}∅ω
does not satisfy the RLTL formula a U b, but it satisfies ACCEPT(a U b, c). On the
other hand, the word ∅{c}∅ω does not satisfy ACCEPT(a U b, c), since a U b fails before
c occurs. To understand the impact of the acceptance and rejection conditions and
thus, to understand the semantics of the ACCEPT operator, the following lemma is
important:

Lemma 2.2.3 For all infinite words v ∈ P(V)ω , all formulas ϕ ∈ rltlV , all acceptance
/ rejection conditions a, r ∈ propV and all points of time t ∈ N, the following holds:

(
vt |=prop a ∧ vt 6|=prop r

)
=⇒ 〈v, a, r〉 |=t

rltl ϕ and(
vt 6|=prop a ∧ vt |=prop r

)
=⇒ 〈v, a, r〉 6|=t

rltl ϕ

9

2 Basics

This lemma can be easily proved by structural induction. A proof is omitted here, but
can be found in the HOL theories1 on the included CD. Lemma 2.2.3 states that if
the acceptance condition holds, every formula is accepted. On the other hand, if the
rejection condition holds, every formula is rejected. Neither the acceptance nor the
rejection condition is dominant, but: If for a word v ∈ P(V)ω , the acceptance condition
a ∈ propV and the rejection condition r ∈ propV hold both at time t ∈ N, i. e. in case
vt |=prop a and vt |=prop r, the truth of the expression 〈v, a, r〉 |=t

rltl ϕ depends on
the formula ϕ ∈ rltlV . With a, b, c ∈ V for example, 〈{a, b}∅ω , a, b〉 |=0

rltl c holds, but
〈{a, b}∅ω , a, b〉 |=0

rltl ¬rltlc does not hold. Furthermore, this example shows that it may
be important whether the propositional negation ¬prop or the RLTL negation ¬rltl is
used: 〈{a, b}∅ω , a, b〉 |=0

rltl ¬propc holds. The example may lead to the conjecture that
in case vt |=prop a and vt |=prop r, the relation 〈v, a, r〉 |=t

rltl ϕ holds iff 〈v, a, r〉 6|=t
rltl

¬rltlϕ holds. However, this conjecture is wrong, as the following example shows2:
〈{a, b}{a}∅ω , a, b〉 |=0

rltl c U (¬rltlc) and 〈{a, b}{a}∅ω , a, b〉 |=0
rltl ¬rltl

(
c U (¬rltlc)

)
hold.

In general, the case that the acceptance and the rejection condition hold at the
same point of time causes a lot of problems. Luckily, all pairs of acceptance / rejec-
tion conditions (a, r) considered for evaluating expressions of the form v |=rltl ϕ have
the property ∀s. s |=prop ¬(a ∧ r), because the initial pair (false, false) possesses this
property, and because the pair of acceptance / rejection conditions is only changed by
the occurrence of a ¬rltl or ACCEPT operator in ϕ. The semantics of these operators
preserve the property ∀s. s |=prop ¬(a ∧ r).

Therefore, ∀s. s |=prop ¬(a∧r) or weaker variants of this condition are often assumed
when talking about pairs of acceptance / rejection conditions (a, r). These assumptions
simplify some proofs, because special cases (as the ones mentioned above) can be
excluded. For example, it does not matter if ¬prop or ¬rltl is used, if ∀s. s |=prop ¬(a∧r)
is assumed3. A assumption of this kind is also used by the following lemma:

Lemma 2.2.4 For all infinite words v1, v2 ∈ P(V)ω , all formulas ϕ ∈ rltlV , all accep-
tance / rejection conditions a, r ∈ propV and all points of time t ∈ N, the following
holds4:

(
∃k. k ≥ t ∧ vt..k−1

1 = vt..k−1
2 ∧((

vk1 |=prop a ∧ vk2 |=prop a ∧ vt1 6|=prop r ∧ vt2 6|=prop r
)
∨

(
vk1 6|=prop a ∧ vk2 6|=prop a ∧ vt1 |=prop r ∧ vt2 |=prop r

)))
=⇒(

〈v1, a, r〉 |=t
rltl ϕ⇐⇒ 〈v2, a, r〉 |=t

rltl ϕ
)

Lemma 2.2.4 states that the semantics of RLTL only considers the part of a word from
the current point of time to an occurrence of either the acceptance or the rejection

1theorem RLTL ACCEPT REJECT THM in theory ResetLTL Lemmata
2theorem RLTL SEM TIME STRANGE NEGATION EXAMPLE in theory ResetLTL Lemmata
3theorem RLTL SEM PROP RLTL OPERATOR EQUIV in theory ResetLTL
4theorem RLTL EQUIV PATH STRONG THM in theory ResetLTL Lemmata

10

2.2 Reset Linear Temporal Logic (RLTL)

condition. Again, the occurrence of both conditions at the same point of time, may
cause trouble. It is important that the ‘or’ is exclusive as the following example shows:
〈{a, b}∅ω , a, b〉 |=0

rltl a U ¬rltlc, but 〈{a, b}{c}∅ω , a, b〉 6|=0
rltl a U ¬rltlc.

The other RLTL operators have the same semantics as the corresponding LTL op-
erators. As well, most of the used syntactic sugar is similar to the syntactic sugar of
LTL:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ := ¬ϕ ∨ ψ

• ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

• Fϕ := true U ϕ

• Gϕ := ¬F¬ϕ

• ϕ U ψ := ϕ U ψ ∨ Gϕ

• ϕ B ψ := ¬(¬ϕ U ψ)

• REJECT(ϕ, b) = ¬(ACCEPT(¬ϕ, b))

In addition to the syntactic sugar of LTL, a dual operator for the ACCEPT operator
is defined. Using this REJECT operator and the other operators defined as syntactic
sugar, it is possible to transform every RLTL formula to a formula, that contains no
¬rltl operators.

Lemma 2.2.5 For every RLTL formula ϕ ∈ rltlV , there is an equivalent RLTL formula
ϕNNF in negation normal form, i. e. ϕNNF contains no ¬rltl operators. For an arbitrary
RLTL formula ϕ, the formula N (ϕ) is such an equivalent formula in negation normal
form5. Thereby, the rewrite relation N is defined as follows:

• N (¬rltlb) := ¬propb

• N
(
¬(¬ϕ)

)
:= N (ϕ)

• N
(
¬(ϕ ∧ ψ)

)
:= N (¬ϕ) ∨N (¬ψ)

• N
(
¬(Xϕ)

)
:= X

(
N (¬ϕ)

)

• N
(
¬(ϕ U ψ)

)
:= N (¬ϕ) B N (ψ)

• N
(
¬(ACCEPT(ϕ, b))

)
:= REJECT(N (¬ϕ), b)

5theorem RLTL NEGATION NORMAL FORM in theory ResetLTL Lemmata

11

2 Basics

All ϕ ∈ rltlV are equivalent to N (ϕ), i. e. for all words v ∈ P(V)ω the relation v |=rltl ϕ
holds iff v |=rltl N (ϕ) holds. However, 〈v, a, r〉 |=t

rltl ϕ iff 〈v, a, r〉 |=t
rltl N (ϕ) does not

hold in general. It has already been discussed that it may be important if ¬rltl or
¬prop is used. Thus, subformulas of the form ¬rltlb are problematic. However, also
subformulas of the form ¬(Xϕ) cause problems. For formulas of these forms, it is
required that the acceptance and rejection condition do not hold at the same time to
ensure that the semantic of a formula is not changed by N .

2.3 Accellera’s Property Specification Language (PSL)

As mentioned above, PSL is a standardised industrial-strength property specification
language. PSL was chartered by the Functional Verification Technical Committee of
Accellera. The Sugar language from IBM was chosen as the basis for PSL [1, 6]. The
Language Reference Manual for PSL version 1.0 [1] was released in April 2003. Finally,
in June 2004 version 1.1 [2] was released, where some anomalies were corrected.

PSL is designed as an input language for formal verification and simulation tools as
well as a language for documentation. Therefore, it has to be easy to read, and at
the same time, it must be precise and highly expressive. In particular, PSL contains
features for simulation like finite paths, features for hardware specification like clocked
statements and a lot of syntactic sugar.

PSL consists of four layers: The Boolean one, the temporal one, the verification
one and the modelling one. The Boolean layer is used to construct expressions that
can be evaluated in one state. The temporal layer is the heart of the language. It is
used to express properties concerning more than one state, i. e. temporal properties.
The temporal layer is divided into the Foundation Language (FL) and the Optional
Branching Extension (OBE). FL is, like LTL, a linear time temporal logic. Each point
of time is assumed to have only one successor. Therefore, the input is represented as
a word of points of time. In contrast, OBE is a branching time temporal logic. A
point of time may have more than one possible successor. Therefore, the input is a
tree of points of time, i. e. there may be more than one possible future. With OBE, it
is possible for example to express properties like For all points of time of each possible
future, there is a possible future such that there is a point of time in this future, when
some property holds. The verification layer is used to tell tools, what to do with the
properties expressed by the temporal layer. Finally, the modelling layer is used to
describe assumptions about the behaviour of inputs and to model auxiliary hardware
that is not part of the design.

Additionally, PSL comes in four flavours, corresponding to the hardware description
languages SystemVerilog, Verilog, VHDL and GDL. These flavours provide a syntax for
PSL that is similar to the syntax of the corresponding hardware description language.
This enables hardware designers to specify and document their hardware-designs in a
syntax that they are familiar with.

In this work, only the Boolean and temporal layers will be considered. Furthermore,

12

2.3 Accellera’s Property Specification Language (PSL)

mainly the formal syntax of PSL is used, which differs from the syntax of all four
layers. However, some operators are denoted differently from the formal syntax in this
work to avoid problems with LTL operators that have the same syntax but different
semantics.

The Boolean layer essentially consists of propositional logic. As mentioned above,
the temporal layer is divided into FL and OBE. FL is a linear temporal logic that
contains:

• propositional operators

• future temporal (LTL) operators

• a clocking operator for defining the granularity of time, which may differ from
one part of a formula to another

• Sequential Extended Regular Expressions (SEREs), for defining finite-length reg-
ular patterns, together with strong and weak promotions of SEREs to formulas
and an implication operator for predicating a formula on match of the pattern
specified by a SERE

• an operator for aborting a formula ‘asynchronously’ on satisfaction of a proposi-
tional condition

Additionally, FL contains a lot of syntactic sugar, which is omitted here. Clocked
statements may be seen as syntactic sugar, too, because formulas with clock statements
can be easily rewritten to unclocked formulas. The necessary rewrite rules are even
given in the official language standard [2].

OBE is essentially the temporal logic CTL [21], which is widely used and well un-
derstood. In this work, only FL is considered. Therefore, only this subset of PSL is
formally introduced here.

The formal semantics of PSL uses two special states > and ⊥. The state > satisfies
every propositional formula, even the formula false. On the other hand, ⊥ satisfies no
propositional formula, even the formula true is not satisfied. Using these two special
states, the semantics of a propositional formula ϕ ∈ propV with respect to a state
s ∈ P(V) ∪ {>,⊥} is given by

• > |=xprop ϕ

• ⊥ 6|=xprop ϕ

• s′ |=xprop ϕ iff s′ |=prop ϕ for s′ ∈ P(V), i. e. for s′ /∈ {>,⊥}

For a given set of variables V, the set of extended states over V is denoted by XP(V) :=
P(V) ∪ {>,⊥}. The definition of the formal syntax of PSL uses a special function for
words over these extended states. For finite or infinite words w ∈ XP(V)ω ∪ XP(V)∗,

13

2 Basics

the word w denotes the word over states that is obtained from w by replacing every >
with ⊥ and vice versa, i. e. for all i < |w|, the following holds:

wi :=




⊥ if wi = >
> if wi = ⊥
wi otherwise

Using these extended states and words over these states, it is possible to define the
formal syntax and semantics of FL:

Definition 2.3.1 (Syntax of Sequential Extended Regular Expressions)
The following mutually recursive cases introduce the set of Sequential Extended Reg-
ular Expressions sereV over a given set of variables V:

• each propositional formula p ∈ propV is a SERE over V

• {r} ∈ sereV , if r ∈ sereV

• [∗0] ∈ sereV

• r[∗] ∈ sereV , if r ∈ sereV

• r@c ∈ sereV , if r ∈ sereV and c ∈ propV

• r1 ; r2 ∈ sereV , if r1, r2 ∈ sereV

• r1 : r2 ∈ sereV , if r1, r2 ∈ sereV

• r1 | r2 ∈ sereV , if r1, r2 ∈ sereV

• r1 && r2 ∈ sereV , if r1, r2 ∈ sereV

Definition 2.3.2 (Syntax of Foundation Language (FL))
The following mutually recursive definitions introduce the set of FL formulas flV over
a given set of variables V:

• p, p! ∈ flV , if p ∈ propV

• ¬ϕ ∈ flV , if ϕ ∈ flV

• ϕ ∧ ψ ∈ flV , if ϕ,ψ ∈ flV

• r, r! ∈ flV , if r ∈ sereV

• Xϕ6, ϕ U ψ7 ∈ flV , if ϕ,ψ ∈ flV
6written as X! ϕ in [2]
7written as ϕ U ψ in [2], but this operator corresponds to the U operator of RLTL and LTL

14

2.3 Accellera’s Property Specification Language (PSL)

• ϕ ABORT b ∈ flV , if ϕ ∈ flV , b ∈ propV

• r 7→ ϕ ∈ flV , if r ∈ sereV , ϕ ∈ flV

• ϕ@c ∈ flV , if ϕ ∈ flV , c ∈ propV

Definition 2.3.3 (Important Subsets of FL)
The operator @ is called clock operator. Therefore, SEREs without this clock operator
are called unclocked SEREs. The set of all unclocked SEREs over a set of variables
V is denoted by usereV . As well, FL formulas without the clock operator are called
unclocked FL formulas. The set of all unclocked FL formulas over V is denoted by uflV .
The set of all SERE-free, unclocked FL formulas over V is denoted by suflV .

There are two equivalent ways to define the formal semantics of FL. The so-called
clocked semantics directly defines the semantics of SEREs and FL formulas. The so-
called unclocked semantics reduces clocked SEREs and clocked FL formulas to unclocked
ones, and then defines the semantics of unclocked SEREs and unclocked FL formulas.
Both semantics are defined in the official language standard [2]. A proof of their
equivalence can be found in Mike Gordon’s embedding of PSL in HOL [26]. In this work,
the unclocked semantics are used. The rewrite rules used to define this semantics use
some syntactic sugar of FL formulas. Thus, some syntactic sugar has to be considered
before:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ := ¬ϕ ∨ ψ

• ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

• Xϕ := ¬X¬ϕ

• Fϕ := true U ϕ

• Gϕ := ¬F¬ϕ

• ϕ U ψ8 := ϕ U ψ ∨ Gϕ

• ϕ B ψ9 := ¬(¬ϕ U ψ)

Definition 2.3.4 (Semantics of unclocked SEREs)
The semantics of unclocked SEREs is defined over finite words over extended states.
For a finite word v ∈ XP(V)∗ and an unclocked SERE r the notation v |=usere r means
that v models r tightly. For r, r1, r2 ∈ usereV and b ∈ propV , it is defined by:

8written as [ϕ W ψ] in [2], but this operator corresponds to the U operator of RLTL and LTL
9written as [ϕ BEFORE! ψ] in [2], but this operator corresponds to the B operator of RLTL and LTL

15

2 Basics

• v |=usere {r} iff v |=usere r

• v |=usere b iff |v| = 1 and v0 |=xprop b

• v |=usere [∗0] iff v = ε

• v |=usere r[∗] iff either v |=usere [∗0] or ∃v1, v2 s. t. v1 6= ε, v = v1v2, v1 |=usere r
and v2 |=usere r[∗]

• v |=usere r1 ; r2 iff ∃v1, v2 s. t. v = v1v2, v1 |=usere r1 and v2 |=usere r2

• v |=usere r1 : r2 iff ∃v1, v2, l with |l| = 1 s. t. v = v1lv2, v1l |=usere r1 and
lv2 |=usere r2

• v |=usere r1 | r2 iff v |=usere r1 or v |=usere r2

• v |=usere r1 && r2 iff v |=usere r1 and v |=usere r2

SEREs are an extended variant of regular expressions as introduced by Kleene [33].
They are used to describe properties of finite words. The length of a word may be
considered. In particular, a SERE may model a prefix of a word tightly, while it does
not model the word itself tightly. To check whether a prefix of a word matches some
pattern described by a SERE, operators of FL can be used.

The most basic SEREs are of the form [∗0] and b. The SERE [∗0] models exactly
the empty word ε tightly. b models all words of length one (i. e. all states) tightly that
model the propositional formula b. Two SEREs r1 and r2 can be concatenated by the
operators ; and :. The SERE r1 : r2 models all words v tightly that are concatenations
of two words v1 and v2 such that r1 models v1 and r2 models v2 tightly. For example,
the SERE p1 ; p2 with p1, p2 ∈ propV models a word v tightly iff |v| = 2, v0 |=prop p1

and v1 |=prop p2 hold. The semantics of r1 : r2 is similar to the semantics of r1 ; r2,
however it requires that v1 and v2 overlap by exactly one letter. r[∗] is used to describe
a concatenation of a finite list of words v1, . . . , vn that are all modelled tightly by r.
Finally, | and && describe disjunction and conjunction for SEREs. However, notice
that there is no negation operator.

Definition 2.3.5 (Semantics of unclocked FL)
For propositional formulas b, c ∈ propV , an unclocked SERE r ∈ usereV and unlocked FL
formulas ϕ,ψ ∈ uflV , the semantics of unclocked FL with respect to a finite or infinite
word v ∈ XP(V)∗ ∪ XP(V)ω is given by:

• v |=ufl b iff |v| = 0 or v0 |=xprop b

• v |=ufl b! iff |v| > 0 and v0 |=xprop b

• v |=ufl r! iff ∃j. j < |v| s. t. v0..j |=usere r

16

2.3 Accellera’s Property Specification Language (PSL)

• v |=ufl r iff ∃j. j < |v| s. t. v0..j>ω |=ufl r!

• v |=ufl ¬ϕ iff v 6|=ufl ϕ

• v |=ufl ϕ ∧ ψ iff v |=ufl ϕ and v |=ufl ψ

• v |=ufl Xϕ iff |v| > 1 and v1.. |=ufl ϕ

• v |=ufl ϕ U ψ iff ∃k. k < |v| s.t. vk.. |=ufl ψ and ∀j < k. vj.. |= ϕ

• v |=ufl ϕ ABORT b iff either v |=ufl ϕ or
∃j.j < |v| s.t. vj |=ufl b and v0..j−1>ω |=ufl ϕ

• v |=ufl r 7→ ϕ iff ∀j < |v|. v0..j |=usere r =⇒ vj.. |=ufl ϕ

A word v is said to model (or to satisfy) an unclocked FL formula ϕ iff v |=ufl ϕ holds.
An unclocked FL formula ϕ is equivalent to an unclocked FL formula ψ (denoted by
ϕ ≡ufl ψ) if for all words v, the relation v |=ufl ϕ holds iff v |=ufl ψ holds.

There are two groups of unclocked FL operators: operators that correspond to RLTL
operators and operators that are related to SEREs. The operators related to SEREs
will be explained first: For a given SERE r, the FL formula r! checks whether a prefix
of a word v is modelled tightly by r. A weak variant of this formula is the formula r.
It means that there is an extension of v such that an prefix of this extension is tightly
modelled by the SERE r. The so-called suffix implication operator 7→ remains. For a
given word v the formula r 7→ ϕ means that if some prefix of v models r tightly, then
the remaining suffix (included the last letter of the prefix) models ϕ.

All other FL operators correspond to RLTL operators. A difference to RLTL is, that
unclocked FL is able to consider finite paths. Thus, for a propositional formula b a
strong variant b! is introduced that does not accept the empty word ε. Analogously,
X is introduced as a strong variant of X. The semantics of X requires that a next
state exists. In contrast, the weak variants Xϕ and b accept ε and words shorter than
two letters, respectively. For the remaining temporal operator U a weak variant U is
already present in RLTL. Apart from finite paths, the meaning of the FL operators is
the same as the meaning of the corresponding RLTL operators. The role of the two
special states >,⊥ is played by the acceptance / rejection conditions of RLTL. The
proof of this connection between PSL and RLTL is one important part of the translation
presented in this work and will be explained in Section 3.1.

Using these semantics of unclocked SEREs and unclocked FL, the semantics of clocked
SEREs and clocked FL are defined as follows:

Definition 2.3.6 (Semantics of clocked SEREs)
The semantics of clocked SEREs is defined by reducing clocked SEREs to unclocked
SEREs. For a finite word v ∈ XP(V)∗, a clock c ∈ propV and a SERE r, the notation
v |=c

sere r means that v models r tightly in context of clock c. This relation is defined
by v |=c

sere r :⇔ v |=usere Rc(r), in which the rewrite relation Rc is given by:

17

2 Basics

• Rc({r}) := Rc(r)

• Rc(b) := ¬c[∗] ; c ∧ b

• Rc([∗0]) := [∗0]

• Rc(r[∗]) := {Rc(r)}[∗]

• Rc(r@c1) := Rc1(r)

• Rc(r1 ; r2) := Rc(r1) ; Rc(r2)

• Rc(r1 : r2) := Rc(r1) : Rc(r2)

• Rc(r1 | r2) := Rc(r1) | Rc(r2)

• Rc(r1 && r2) := Rc(r1) && Rc(r2)

Definition 2.3.7 (Semantics of clocked FL)
The semantics of clocked FL is defined by reducing clocked FL formulas to unclocked
ones. For a finite or infinite word v ∈ XP(V)∗ ∪ XP(V)ω , a clock c ∈ propV and a FL
formula ϕ, the notation v |=c

fl ϕ means that v models (or satisfies) ϕ in context of clock
c. This relation is defined by v |=c

fl ϕ :⇔ v |=ufl Fc(ϕ), in which the rewrite relation
Fc is given by:

• Fc(b) := ¬c U c ∧ b

• Fc(b!) := ¬c U c ∧ b

• Fc(r) := Rc(r)

• Fc(r!) := Rc(r)!

• Fc(¬ϕ) := ¬F c(ϕ)

• Fc(ϕ ∧ ψ) := F c(ϕ) ∧ F c(ψ)

• Fc(Xϕ) := ¬c U
(
c ∧ X¬c U (c ∧ F c(ϕ))

)

• Fc(ϕ U ψ) := c→ F c(ϕ) U c ∧ F c(ψ)

• Fc(ϕ ABORT b) := Rc(ϕ) ABORT b

• Fc(ϕ@c1) := F c1(ϕ)

• Fc(r 7→ ϕ) := Rc(r) 7→ F c(ϕ)

Clocks are used to express different granularities of time. Informally, all points of time
at which the clock does not hold, are ignored. The semantics of the ABORT operator
are an exception. Even if the clock is not present, an occurrence of the acceptance
condition is respected.

18

2.4 ω-Automata

2.4 ω-Automata

ω-automata have been introduced by J. R. Büchi in 1960 [14]. They are similar to finite
state automata as introduced by Kleene in 1956 [33]. While finite state automata decide
whether a finite word belongs to some language, ω-automata decide this property for
infinite words.

2.4.1 Finite State Automata on Finite Words

Definition 2.4.1 (Semiautomata)
A semiautomaton A = (Σ,S, I,R) is a tuple where S is the finite set of states, Σ a
finite alphabet, I ⊆ S is the set of initial states and R ⊆ S × Σ× S is the transition
relation of A. If for every state s ∈ S and every input i ∈ Σ, at least one s′ ∈ S with
(s, i, s′) ∈ R exists, the semiautomaton A is called total. If for every s, i at most one
state s′ with this property exists, A is called deterministic.

Definition 2.4.2 (Run of a Word)
Given a semiautomaton A = (Σ,S, I,R) and a finite or infinite word α over Σ. Then,
each word β over S with

• β is infinite if α is infinite and |β| = |α|+ 1 if α is finite

• β0 ∈ I

• (βi, αi, βi+1) ∈ R for all i < |α|

is called a run of α through A. The set of all runs of a word α through a semiautomaton
A is denoted by RUNA(α).

Example 2.4.3 Let A = (Σ,S, I,R) be a semiautomaton (see Figure 2.1) with:

• Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• S = {s0, s1, s2}

• I = {s0}

• R = {(si, j, sk) | i+ j ≡ k mod 3}

Then, s0s0s1s0 is a run of the finite word α = 312 over Σ through A. This is the only
run of α through A, since A is total and deterministic and therefore has exactly one
run for every word.

Definition 2.4.4 (Finite Automata on Finite Words)
A finite automaton on finite words is a tuple A = (B,F) where B = (Σ,S, I,R) is
a semiautomaton and F ⊆ S a set of final states. A accepts a finite word α ∈ Σ∗ iff

19

2 Basics

s0

s1 s2

1, 4, 7

2, 5, 8

2, 5, 8

2, 5, 8

0, 3, 6, 9

0, 3, 6, 9 0, 3, 6, 9
Figure 2.1: Example 2.4.3

there is a run β ∈ RUNA(α) that ends in a final state, i. e. iff there is a run β with
β|β|−1 ∈ F .

A finite automaton over finite words A is often denoted by (Σ,S, I,R,F). A finite
automaton is called total or deterministic if the corresponding semiautomaton has
these properties.

Example 2.4.5 Let A be the extension of the semiautomaton from Example 2.4.3 to
a finite automaton on finite words with F = {s0}. Then, A accepts exactly the empty
word ε and every decimal number that is divisible by three.

2.4.2 ω-Automata

ω-automata are finite automata on infinite words. Similarly to the case of finite words,
a set of accepting states is often used to define the acceptance condition. However,
in the case of infinite words, there are several reasonable definitions of acceptance
conditions. For example, an infinite word α could be accepted by an automaton A iff
there exists a run of α through A that

• never leaves the set of accepting states

• visits the set of accepting states at least once

• from some point of time never leaves the set of accepting states

• visits the set of accepting states infinitely often.

The last acceptance condition is the one used by Büchi. Therefore, the resulting
ω-automata are called Büchi automata. However, the other acceptance conditions

20

2.4 ω-Automata

and a lot of similar ones are used in practice, too. They lead to different classes of
ω-automata with different expressive power. In this work, a symbolic representation
of ω-automata is used, so-called automaton formulas. This symbolic representation is
able to express all presented acceptance conditions.

2.4.3 Symbolic Representation

Although good model checking procedures for CTL were known [19], first implemen-
tations of these procedures were not able to verify large systems, because no efficient
data structures were used. Verification tools were only able to handle systems with
a thousand states. A breakthrough was achieved by representing the systems with
Boolean functions, which are stored as binary decision diagrams (BDDs) [9]. The re-
sulting symbolic model checking procedures [8, 11, 12, 13] allow the checking of systems
with more than 1020 states.

Symbolic representations of ω-automata have many advantages: In general, the
symbolic representation of an ω-automaton is exponentially more succinct than the
corresponding ω-automaton. This allows linear translation procedures of LTL to sym-
bolically represented ω-automata [48]. Moreover, the resulting ω-automata can di-
rectly be used for symbolic model checking. Additionally, symbolically represented
ω-automata can be handled like formulas of a logic [48].

To explain the symbolic representation of ω-automata, semiautomata are considered
first: Let A = (Σ,S, I,R) be a semiautomaton. As the set Σ and the set of states
S are finite, they can be encoded by a finite set of propositional variables. So, let
Σ = P(VΣ) with VΣ = {i0, . . . , in} and S = P(VS) with VS = {q0, . . . , qm} hold. With
these settings, a state of A is a subset of VS , and a letter of the input alphabet Σ is
a subset of VΣ. Those subsets of a set of propositional variables can be interpreted as
assignments. Therefore, it is possible to encode a set of those subsets S, for example
the set of initial states I, by a propositional formula ΦS that has the following property:
s ∈ S ⇔ s |=prop ΦS .

Notice, that with n propositional variables 2n states can be encoded. Moreover,
small propositional formulas can encode large sets. For example, if every state of the
semiautomaton is an initial state, the set of initial states I can be encoded by the
propositional formula true.

Example 2.4.6 Let A = (Σ,S, I,R) be the semiautomaton from Example 2.4.3, i. e.
the semiautomaton given by:

• Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• S = {s0, s1, s2}

• I = {s0}

• R = {(si, j, sk) | i+ j ≡ k mod 3}

21

2 Basics

Then, the ten letters of Σ can be encoded by four propositional variables i0, i1, i2 and
i3. For this purpose, a kind of binary encoding is used: 0 is encoded by ∅ (short 0 =̂ ∅),
1 =̂ {i0}, 2 =̂ {i1}, 3 =̂ {i1, i0}, The set S can be encoded by two variables q0 and
q1: s0 =̂ ∅, s1 =̂ {q0} and s2 =̂ {q1}. With these settings, the set of initial states can
be encoded by the formula ¬q0¬q1.

By encoding Σ and S by propositional variables additional states and inputs are
introduced. For example, the state {q0, q1} has not existed before. However, these
additional states and inputs will not influence the semantics of an automaton, provided
that no additional accepted runs are introduced. This can be easily achieved by a
suitable transition relation.

The transition relation R can be encoded by a propositional formula, as well. R is a
subset of P(VS)×P(VΣ)×P(VS). As on has to distinguish between the two subsets of
P(VS), for every state variable q ∈ VS , a new state variable is introduced. These new
state variables are used to describe the second subset of P(VS). Thus, the new state
variable corresponding to a variable q ∈ VS represents the value of the variable q at the
next point of time. Therefore, it is denoted by Xq. Notice that Xq is a variable, while
Xq is a LTL formula. However, the meaning of the variable and the formula are similar.
Using this additional set of state variables, the transition relation can be encoded by a
propositional formula ΦR that fulfils the following property: for all states s1, s2 ⊆ VS
and all inputs σ ⊆ VΣ the relation (s1, σ, s2) ∈ R ⇔

(
s1 ∪ σ ∪ {Xq | q ∈ s2}

)
|=prop ΦR

holds.

Example 2.4.7 Let A = (Σ,S, I,R) be the semiautomaton from Example 2.4.6 with
the encodings VΣ = {i0, i1, i2, i3}, S = {q0, q1} and ΦI = ¬q0¬q1. To encode the
transition relation R by a formula ΦR, the subsets of Σ, which are used to label the
transitions (see Figure 2.2) are encoded first:

• {0, 3, 6, 9} is encoded by ϕ0 = ¬i0¬i1¬i2¬i3∨ i0i1¬i2¬i3∨¬i0i1i2¬i3∨ i0¬i1¬i2i3
• {1, 4, 7} is encoded by ϕ1 = i0¬i1¬i2¬i3 ∨ ¬i0¬i1i2¬i3 ∨ i0i1i2¬i3
• {2, 5, 8} is encoded by ϕ2 = ¬i0i1¬i2¬i3 ∨ i0¬i1i2¬i3 ∨ ¬i0¬i1¬i2i3

Using these encodings, the transition relation can be encoded by:

s0
1,4,7−−−→ s1: ¬q0¬q1 ∧ ϕ1 ∧ Xq0¬Xq1 ∨

s0
2,5,8−−−→ s2: ¬q0¬q1 ∧ ϕ2 ∧ ¬Xq0 Xq1 ∨

s1
0,3,6,9−−−−→ s1: q0¬q1 ∧ ϕ0 ∧ Xq0¬Xq1 ∨

s1
1,4,7−−−→ s2: q0¬q1 ∧ ϕ1 ∧ ¬Xq0 Xq1 ∨

s1
2,5,8−−−→ s0: q0¬q1 ∧ ϕ2 ∧ ¬Xq0¬Xq1 ∨

s2
0,3,6,9−−−−→ s2: ¬q0 q1 ∧ ϕ0 ∧ ¬Xq0 Xq1 ∨

s2
1,4,7−−−→ s0: ¬q0 q1 ∧ ϕ1 ∧ ¬Xq0¬Xq1 ∨

s2
2,5,8−−−→ s1: ¬q0 q1 ∧ ϕ2 ∧ ¬Xq0 Xq1

22

2.4 ω-Automata

This formula has not been simplified to show the relation between the original trans-
lation relation and its encoding.

{}

{q0} {q1}

ϕ1

ϕ2

ϕ1

ϕ2

ϕ1

ϕ2

ϕ0

ϕ0 ϕ0

Figure 2.2: Example 2.4.6 and Example 2.4.7

2.4.4 Automaton Formulas

This symbolic representation of semiautomata directly leads to a symbolic represen-
tation of finite state automata over finite words, since the set of final states can be
encoded in the same way. For ω-automata, this symbolic representation leads to au-
tomaton formulas [48, 49], that are defined as follows:

Definition 2.4.8 (Syntax of Flat Acceptance Conditions)
The following mutually recursive definitions introduce the set of flat acceptance con-
ditions acV over a set of variables V:

• every propositional formula p ∈ propV is an acceptance condition over V

• ¬ϕ ∈ acV , if ϕ ∈ acV

• ϕ ∧ ψ ∈ acV , if ϕ,ψ ∈ acV

• Gϕ ∈ acV , if ϕ ∈ acV

Definition 2.4.9 (Syntax of Automaton Formulas)
The following mutually recursive definitions introduce the set of automaton formulas
Lω(V) over a set of variables V:

• every flat acceptance condition ΦF ∈ acV is an automaton formula over V

23

2 Basics

• ¬ϕ ∈ Lω(V), if ϕ ∈ Lω(V)

• ϕ ∧ ψ ∈ Lω(V), if ϕ,ψ ∈ Lω(V)

• A∃(Q,ΦI ,ΦR,ΦF) ∈ Lω, if ΦF ∈ Lω(Q) and Q,ΦI ,ΦR are the symbolic repre-
sentations of the set of states, the set of initial states and the transition relation
of a semiautomaton, i. e. Q is a set of variables with Q∩ V = ∅, ΦI ∈ propQ and
ΦR ∈ propQ∪V∪{Xq|q∈Q}

Flat acceptance conditions are used to distinguish between the parts of an automaton
formula that may contain automaton operators and the parts that may not contain
these operators. This could as well be achieved without explicitly introducing flat
acceptance conditions. However, the introduction of flat acceptance conditions is an
appropriate way to model automaton formulas in HOL.

The most interesting operator is A∃, which is called existential automaton operator
in the following. A formula A∃(Q,ΦI ,ΦR,ΦF) consists of an acceptance condition
ΦF and a symbolic representation (VΣ, Q,ΦI ,ΦR) of a semiautomaton, whose input
alphabet VΣ is implicitly given by V. The acceptance condition has to check whether
an infinite run is accepted or not. Flat acceptance conditions, which are a simple
subset of FutureLTL, may be used therefor. However, automaton formulas themselves
are a formalism to describe languages of infinite words. Thus, also nested occurrences
of automaton formulas are allowed. Notice, that is includes nested occurrences of au-
tomaton operators. This informal description of the semantics of automaton formulas
leads to the following formal definition:

Definition 2.4.10 (Semantics of Flat Acceptance Conditions)
Flat acceptance conditions are a subset of LTL. Therefore, the semantics of a flat
acceptance condition is given by the semantics of LTL. However, as the operator G is
defined as syntactic sugar in LTL, its semantics will be explain here: The semantics
of a flat automaton formula ϕ ∈ acV is for an infinite word v ∈ P(V)ω and a point of
time t ∈ N given by

• v |=t
ac p iff vt |=prop p

• v |=t
ac ¬ϕ iff v 6|=t

ac ϕ

• v |=t
ac ϕ ∧ ψ iff v |=t

ac ϕ and v |=t
ac ψ

• v |=t
ac Gϕ iff ∀k ≥ t. v |=k

ac ϕ

A word v ∈ P(V)ω is said to satisfy a flat acceptance condition ϕ (short v |=ac ϕ) iff
v |=0

ac ϕ holds.

Definition 2.4.11 (Semantics of Automaton Formulas)
The semantics of an automaton formula ϕ ∈ Lω(V) is for an infinite word v ∈ P(V)ω

given by:

24

2.4 ω-Automata

• v |=omega ΦF iff v |=ac ΦF

• v |=omega ¬ϕ iff v 6|=omega ϕ

• v |=omega ϕ ∧ ψ iff v |=omega ϕ and v |=omega ψ

• v |=omega A∃(Q,ΦI ,ΦR,ΦF) iff an infinite word β ∈ Qω exists with

– β0 |=prop ΦI

–
(
βi ∪ vi ∪ {Xq | q ∈ βi+1}

)
|=prop ΦR for all i ∈ N

– β |=omega ΦF

A word v ∈ P(V)ω is said to satisfy an automaton formula ϕ iff v |=omega ϕ holds. An
automaton formula ϕ is equivalent to an automaton formula ψ (denoted by ϕ ≡omega ψ)
iff for all v the relation v |=omega ϕ holds iff v |=omega ψ holds.

2.4.5 Syntactic Sugar

Automaton formulas are able to express all ω-automata classes mentioned before. How-
ever, to be able to express these classes in a convenient way, some syntactic sugar for
automaton formulas and flat acceptance conditions is needed:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ := ¬ϕ ∨ ψ

• ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

• Fϕ := ¬G¬ϕ

• A∀(Q,ΦI ,ΦR,ΦF) := ¬A∃(Q,ΦI ,ΦR,¬ΦF)

In practice, another extension is useful, too. This extension is similar to syntactic
sugar, as far as it does not increase the expressiveness of automaton formulas. However,
it cannot be easily defined. Consider a formula of the form A∃(Q,ΦI ,ΦR,ΦF) ∈
Lω(V). In this formula, there is a distinction between the input variables V and the
state variables Q. The formula ΦI ∈ propQ may only consider state variables. The
transition relation ΦR may use the input variables, the state variables and the state
variables at the next point of time, but not the input variables at the next point of
time. Finally the acceptance condition ΦF may only consider state variables.

Therefore, an useful extension is to weaken this distinction. This extension leads
to a new operator A∃. This new operator is very similar to A∃. However, only the
following constraints are required for A∃(Q,ΦI ,ΦR,ΦF) ∈ Lω(V):

• ΦF ∈ Lω(Q ∪ V),

• Q ∩ V = ∅,

25

2 Basics

• ΦI ∈ propQ∪V and

• ΦR ∈ propQ∪V∪{Xq|q∈Q∪I}.

The semantics is given by: v |=omega A∃(Q,ΦI ,ΦR,ΦF) iff an infinite word β ∈ Qω

exists with

•
(
β0 ∪ v0

)
|=prop ΦI

•
(
βi ∪ vi ∪ {Xq | q ∈ βi+1 ∪ vi+1}

)
|=prop ΦR for all i ∈ N

• β ∪ v |=omega ΦF , where β ∪ v is the pointwise union of β and v, i. e.
(β ∪ v)i := βi ∪ vi for all i ∈ N.

This extended operator A∃ can be reduced to A∃ by introducing new state variables
and fixing the values of these new variables by extending the transition relation. For
example, the formula A∃(Q,ΦI ∧ i0,ΦR ∧ ¬Xi0,ΦF ∨ i1) ∈ Lω(V) with i0, i1 ∈ V can
be reduced to A∃(Q ∪ {j0, j1},ΦI ∧ j0,ΦR ∧ ¬Xj0 ∧ (j0 ↔ i0) ∧ (j1 ↔ i1),ΦF ∨ j1)
for j0, j1 /∈ V ∪ Q. Therefore, this new operator A∃ can be considered as syntactic
sugar. It does not increase the expressiveness of automaton formulas. In fact, symbolic
model checking algorithms can naturally handle these extended automaton formulas.
Moreover, using the A∃ operator, automaton formulas may be written linearly more
succinct.

Similar to the syntactic sugar defined with the help of the A∃ operator, some syn-
tactic sugar is introduced that uses the new operator A∃:

• A∀(Q,ΦI ,ΦR,ΦF) := ¬A∃(Q,ΦI ,ΦR,¬ΦF)

• Â∃ (Q,ΦI ,ΦR,F ,Φp) := A∃

(
Q,ΦI ,ΦR,

(
∧
ξ∈F

ξ

)
∧ Φp

)

• Â∀ (Q,ΦI ,ΦR,F ,Φp) := A∀

(
Q,ΦI ,ΦR,

(
∧
ξ∈F

ξ

)
→ Φp

)

The operator A∀ is very similar to A∀. The operators Â∃ and Â∀ are used by the
translation of LTL to ω-automata. They allow one to split the acceptance condition
ΦF ∈ Lω(Q∪V) into a propositional part Φp ∈ propQ∪V and a finite set of constraints
F with ξ ∈ Lω(Q ∪ V) for all ξ ∈ F .

In addition to weakening the usage of input variables, it is useful to weaken the usage
of X. The expression Xq is used by the transition relation to denote a special variable
that corresponds to the value of the variable q at the next point of time. Sometimes, it
is convenient to use a similar operator to consider the value of a propositional formula
ϕ at the next point of time. Therefore, the operator X is introduced. It replaces every
occurrence of a variable q in a propositional formula with Xq. Formally, the operator
X is defined by:

26

2.4 ω-Automata

• X(q) := Xq for all variables q

• X(¬ϕ) := ¬X(ϕ) and

• X(ϕ ∧ ψ) := X(ϕ) ∧X(ψ)

2.4.6 Flat Automaton Formulas

Automaton formulas are a convenient way to represent ω-automata. However, the
connection between automaton formulas and ω-automata is not obvious in general,
because some automaton formulas like A∃(Q1,ΦI1 ,ΦR1 ,¬A∃(Q2,ΦI2 ,ΦR2 ,ΦF)) or
A∃(Q1,ΦI1 ,ΦR1 ,ΦF1) ∧A∃(Q2,ΦI2 ,ΦR2 ,ΦF2) contain more than one automaton op-
erator and other automaton formulas like Gq contain no automaton operators.

On the other hand, automaton formulas of the form A∃(Q,ΦI ,ΦR,ΦF) where ΦF
is a flat acceptance condition are obviously related to ω-automata. Those automaton
formulas are called flat. Notice that following this definition A∃(Q,ΦI ,ΦR,ΦF) and
Â∃(Q,ΦI ,ΦR,F ,Φp) are flat automaton formulas, too, if ΦF ∈ ac and ξ ∈ ac for all
ξ ∈ F . Since a flat automaton formula ϕ directly corresponds to an ω-automaton Aϕ,
it is said that ϕ is total or deterministic iff Aϕ is total or deterministic.

For every automaton formula ϕ, there is a flat automaton formula ϕflat that is
equivalent to ϕ [49]. The translation of an automaton formula to an equivalent flat
one is called flattening. To flatten an automaton formula, formulas of the form given
above have to be eliminated by introduction or elimination of automaton operators.
It is quite easy to introduce an automaton operator, as the following lemma shows:

Lemma 2.4.12 For all automaton formulas ϕ ∈ Lω(V), the following holds10:

A∃({}, true, true, ϕ) ≡omega ϕ

However, it is much harder to eliminate automaton operators. Thereby, the product
of automaton formulas is needed:

Definition 2.4.13 (Product of Automaton Formulas)
For two automaton formulas A∃(Q1,ΦI1 ,ΦR1 ,ΦF1) and A∃(Q2,ΦI2 ,ΦR2 ,ΦF2) their
product is defined by:

A∃(Q1,ΦI1 ,ΦR1 ,ΦF1)×A∃(Q2,ΦI2 ,ΦR2 ,ΦF2) :=
A∃(Q1 ∪Q2,ΦI1 ∧ ΦI2 ,ΦR1 ∧ΦR2 ,ΦF1 ∧ ΦF2)

For A∃ and Â∃, this definition becomes:

A∃(Q1,ΦI1 ,ΦR1 ,ΦF1)×A∃(Q2,ΦI2 ,ΦR2 ,ΦF2) :=
A∃(Q1 ∪Q2,ΦI1 ∧ ΦI2 ,ΦR1 ∧ ΦR2 ,ΦF1 ∧ ΦF2)

Â∃(Q1,ΦI1 ,ΦR1 ,F1,Φp1)× Â∃(Q2,ΦI2 ,ΦR2 ,F2,Φp2) :=

Â∃(Q1 ∪Q2,ΦI1 ∧ ΦI2 ,ΦR1 ∧ ΦR2 ,F1 ∪ F2,Φp1 ∧ Φp2)

10theorem ID AUTOMATON SEM in theory Omega Automata Lemmata

27

2 Basics

The product of automaton formulas can be used to flatten automaton formulas, because
the following lemmata hold:

Lemma 2.4.14 For all automaton formulas A∃(Q1,ΦI1 ,ΦR1 , A∃(Q2,ΦI2 ,ΦR2 ,ΦF) ∈
Lω(V), the following holds11:

A∃(Q1,ΦI1 ,ΦR1 , A∃(Q2,ΦI2 ,ΦR2 ,ΦF)) ≡omega

A∃(Q1,ΦI1 ,ΦR1 , true)×A∃(Q2,ΦI2 ,ΦR2 ,ΦF)

Notice, that according to the definition of the syntax of automaton formulas, Q1, Q2

and V are pairwise disjoint.

Lemma 2.4.15 For all A∃(Q1,ΦI1 ,ΦR1 ,ΦF1) ∈ Lω(V) and A∃(Q2,ΦI2 ,ΦR2 ,ΦF2) ∈
Lω(V) with Q1 ∩Q2 = ∅, the following holds12:

A∃(Q1,ΦI1 ,ΦR1 ,ΦF1) ∧A∃(Q2,ΦI2 ,ΦR2 ,ΦF2) ≡omega

A∃(Q1,ΦI1 ,ΦR1 ,ΦF1)×A∃(Q2,ΦI2 ,ΦR2 ,ΦF2)

To flatten an arbitrary automaton formula, it remains to translate an automaton
formula ϕ of the form ¬A∃(Q1,ΦI1 ,ΦR1 ,ΦF1) to a flat automaton formula. In general,
this translation needs exponential time. It is usually done by determinising ϕ. The
negation of a total, deterministic automaton formula ϕdet,total can be easily computed
by simply negating the acceptance condition of ϕdet,total

13. Due to these exponen-
tial determinisation steps, the flattening of automaton formulas has nonelementary
complexity [49].

2.4.7 Classes of ω-Automata

Flat automaton formulas of the form A∃(Q,ΦI ,ΦR,GFϕ), where ϕ is a propositional
formula, correspond to Büchi automata. In fact, for every automaton formula, an
equivalent formula of this form exists, since Büchi automata are expressively complete
with respect to ω-regular properties. However, there are also a lot of other classes of
ω-automata. One reason why other classes of ω-automata are interesting too is, that
in contrast to classical finite state automata, Büchi automata are not closed under de-
terminisation, i. e. not for every Büchi automaton A, a deterministic Büchi automaton
B exists that is equivalent to A. Examples of classes of ω-automata defined for this
reason are Rabin [39, 43] and Streett automata [53]. Rabin and Streett automata are as
expressive as Büchi automata, but they are closed under determinisation. Another rea-
son to consider additional classes of ω-automata is, that the model-checking problem of

11theorem A NDET EX FLATTENING in theory Omega Automata Lemmata
12theorem A AND A NDET EX in theory Omega Automata Lemmata
13theorem TOTAL DET AUTOMATON EX ALL EQUIV in theory Omega Automata Lemmata

28

2.4 ω-Automata

some strictly less expressive classes of ω-automata is in practice more efficiently solv-
able than the model-checking problem of Büchi automata. For example, deterministic
safety, liveness, prefix and persistence automata can be translated to alternation free
µ-calculus, while the translation of deterministic Büchi and Streett automata requires
an alternation-depth of two in the translation [49]. Since the alternation-depth mainly
determines the runtime of the verification of µ-calculus formulas [49], the classes of
ω-automata that can be translated to alternation free µ-calculus can be handled much
more efficiently in practice. However, safety, liveness and persistence automata are still
expressive enough for a lot of practical applications. Hence, these automaton classes
are particularly interesting for specification and verification.

The classes of ω-automata are defined by their acceptance condition. The most
important classes of acceptance conditions are:

Definition 2.4.16 (Classes of Acceptance Conditions)
Let Φi,Ψi be propositional formulas for all i ∈ {0, . . . , f}. Then, the following classes
of acceptance conditions are defined [37]:

Safety condition: GΦ0

Liveness condition: FΦ0

Büchi condition [14, 15]: GFΦ0

Persistence condition [37]: FGΦ0

Rabin condition [44]:
f∨
j=0

(
GFΦ0 ∧ FGΨ0

)

Streett condition [53]:
f∧
j=0

(
FGΦ0 ∨ GFΨ0

)

Prefix condition (1. kind) [37, 47]:
f∧
j=0

(
GΦ0 ∨ FΨ0

)

Prefix condition (2. kind) [37, 47]:
f∨
j=0

(
FΦ0 ∨ GΨ0

)

Definition 2.4.17 (Classes of ω-Automata)
The class of nondeterministic ω-automata corresponding to a class of acceptance con-
ditions is given by the set of all flat automaton formulas A∃(Q,ΦI ,ΦR,ΦF), where
ΦF belongs to the class of acceptance conditions. As well, A∃(Q,ΦI ,ΦR,ΦF) can
be used to define the classes of ω-automata. The class of (nondeterministic) safety,
liveness, Büchi, persistence, Prefix-1, Prefix-2, Rabin and Streett automata are de-
noted by NDETG, NDETF, NDETGF, NDETFG, NDETPrefix1, NDETPrefix2, NDETRabin

and NDETStreett, respectively. The union of NDETPrefix1 and NDETPrefix2 is denoted by
NDETPrefix.

The corresponding deterministic classes are denoted by DETG, DETF, DETGF, DETFG,
DETPrefix1, DETPrefix2, DETPrefix, DETRabin and DETStreett, respectively. The corre-
sponding total classes are denoted by NDETtotal

G , NDETtotal
F etc. and DETtotal

G , DETtotal
F

etc., respectively.

29

2 Basics

These classes of ω-automata form a hierarchy in terms of expressiveness [35, 36,
49, 58]. For example, there is a NDETF automata such that no equivalent DETF

automata exists. Since DETF ⊂ NDETF holds, the class of deterministic liveness au-
tomata is strictly less expressive than the class of nondeterministic liveness automata
(short DETF � NDETF). On the other hand, the class of deterministic safety au-
tomata is as expressive as the class of nondeterministic safety automata (denoted by
DETG ≈ NDETG). An important part of the hierarchy of ω-automata can be found in
Figure 2.3. Notice that for every class of ω-automata, there is a class of deterministic
ω-automata that has the same expressive power.

NDETG

DETG

DETF

NDETtotal
F

≈
≈

DETPrefix1

�

�
DETPrefix2≈

DETGF

DETFG

NDETF

NDETPrefix1

NDETPrefix2

NDETFG

≈
≈

≈
≈

�

�
NDETGF

�

�

DETRabin

DETStreett

NDETRabin

NDETStreett

≈

≈

≈
≈

Figure 2.3: Hierarchy of ω-Automata [49]

30

3 Translation

In the previous chapter, all required formalisms are introduced. Based on this intro-
duction, the translation of PSL to ω-automata can be explained in this chapter. This
translation consists of three steps: the translation of PSL to RLTL, the translation of
RLTL to LTL and finally, the translation of LTL to ω-automata (Figure 1.1).

3.1 From PSL to RLTL

As mentioned above, the temporal and Boolean layers of PSL consists of FL and OBE.
OBE is essentially the well known temporal logic CTL [21]. As it is well known how to
handle CTL [19, 49], this work only considers FL.

FL with SEREs is strictly more expressive than LTL. For example, it is well known
that there is no LTL formula expressing that a proposition ϕ holds at every even point
of time [59, 60]. However,

v |=ufl

((
ϕ; true

)
[∗] 7→ X

(
ϕ! ∧ Xtrue!

))
∧ ϕ! ∧ Xtrue!

holds for v ∈ P(V)ω and ϕ ∈ propV iff vi |=prop ϕ holds1 for all even i. Since RLTL
is as expressive as LTL [5], FL with SEREs cannot be translated to RLTL. Therefore,
only SERE-free FL formulas are considered. Moreover, clock-statements are omitted for
reasons of simplicity here, since they can be regarded as syntactic sugar as described
in Section 2.3. Thus, only the translation of unclocked SERE-free FL (short SUFL) to
RLTL is considered.

The semantics of SUFL is quite similar to the semantics of RLTL. There are only two
important differences: SUFL is able to consider finite paths, and SUFL uses the special
states > and ⊥, while RLTL uses acceptance and rejection conditions. The first differ-
ence is not important in the scope of this work, because the overall goal is to translate
SUFL to ω-automata. Therefore, only infinite paths are of interest. To handle the sec-
ond difference, the special states > and ⊥ are simulated with the acceptance / rejection
conditions of RLTL. However, the special states and acceptance / rejection conditions
have slightly different semantics. The occurrence of > or ⊥ determines whether an
arbitrary proposition is fulfilled by the current state. However, the following states
are still important. In contrast, if either the acceptance or the rejection condition
occurs, the following states are not important according to Lemma 2.2.4. An example
showing this difference is ⊥{p}ω |=ufl Xp, but 〈{r}{p}ω , a, r〉 6|=0

rltl Xp for a, r, p ∈ V. To
overcome this slightly different semantics only special inputs are considered:

1theorem PSL WITH SERES STRICTLY MORE EXPRESSIVE THAN LTL EXAMPLE in theory PSLToRLTL

31

3 Translation

Definition 3.1.1 (PSL-paths)
A finite PSL-path over a set of variables V is a finite word v ∈ P(V)∗, i. e. a finite
word not containing special states. An infinite PSL-path over V is an infinite word
v ∈ XP(V)ω with the following properties:

• ∀j. vj=> −→ vj+1=>

• ∀j. vj=⊥ −→ vj+1=⊥

The set of all infinite PSL-paths over V is denoted by XP(V)ω
>⊥

. Notice that P(V)ω ⊂
XP(V)ω

>⊥
holds.

In this work, only infinite PSL-paths are considered. At the first glance, this may seem
to be a restriction, however, this is not the case, because essentially only words not
containing any special states are of interest. Special states are just used to explain the
semantics. Thereby, only paths that fulfil the additional property of PSL-paths are
used. In [31], PSL-paths are called proper words.

Since paths containing the special states > and ⊥ are allowed as input of SUFL
formulas, but these special states are not allowed as input of RLTL formulas, both
paths and formulas have to be translated. To translate the paths, two new atomic
propositions t and b are chosen, i. e. t and b do neither occur in the path nor in the
formula. Every occurrence of > on the path is replaced by the state {t}. In the same
way, every occurrence of⊥ is replaced by {b}. For the formula itself, only minor changes
are required: Essentially, only the PSL operators are exchanged with the corresponding
RLTL operators. Additionally, t and b are used as acceptance and rejection conditions,
respectively, while evaluating the translated formula on the translated path.

Lemma 3.1.2 With the definitions of Figure 3.1, the relation

v |=ufl f ⇐⇒ 〈RemoveTopBottom(t, b, v), t, b〉 |=0
rltl PSL TO RLTL f

holds2 for all f ∈ suflV , all infinite PSL-paths v ∈ XP(V)ω
>⊥

and all t, b /∈ V.

As t and b never occur at the same point of time on the translated path, this is
equivalent3 to

v |=ufl f ⇐⇒ RemoveTopBottom(t, b, v) |=rltl ACCEPT(REJECT(PSL TO RLTL f, b), t)

The proof of Lemma 3.1.2 is based on a structural induction and requires some lemmata
about RLTL. In particular, Lemma 2.2.3 and 2.2.4 are important. To express other

2theorem PSL TO RLTL THM in theory PSLToRLTL
3theorem PSL TO RLTL ELIM ACCEPT REJECT THM in theory PSLToRLTL

32

3.1 From PSL to RLTL

RemoveTopBottom(t, b, v)j :=




{t} if vj = >
{b} if vj = ⊥
vj otherwise

function PSL TO RLTL(Φ)
case Φ of

b : return b;
b! : return b;
¬ϕ : return ¬PSL TO RLTL(ϕ);
ϕ ∧ ψ : return PSL TO RLTL(ϕ) ∧ PSL TO RLTL(ψ);
Xϕ : return X

(
PSL TO RLTL(ϕ)

)
;

ϕ U ψ : return PSL TO RLTL(ϕ) U PSL TO RLTL(ψ);
ϕ ABORT b : return ACCEPT(PSL TO RLTL(ϕ), b);

end
end

Figure 3.1: Translation of SUFL to RLTL

important properties in a convenient way, some definitions about the occurrence of
propositions on a path are needed:

NAND ON PATH(v, a, r) := ∀t.¬(vt |=prop a ∧ vt |=prop r)

IS ON PATH(v, p) := ∃t. vt |=prop p

BEFORE ON PATH(v, a, b) := ∀t. (vt |=prop b)⇒ ∃t0. (t0 ≤ t ∧ vt0 |=prop a)

BEFORE ON PATH STRONG(v, a, b) := ∀t. (vt |=prop b)⇒ ∃t0. (t0 < t ∧ vt0 |=prop a)

NAND ON PATH(v, a, r) states that a and r never hold at the same point of time
on v. As discussed in Section 2.2 that is an important property of pairs of accep-
tance / rejection conditions. IS ON PATH(v, p) means that there is some point of time,
where p holds. Therefore, IS ON PATH(v, p) holds iff v |=ltl Fp holds. The expression
BEFORE ON PATH(v, a, b) means that either b never holds or that a occurs before or at
least at the same point of time as b. Finally, the predicate BEFORE ON PATH STRONG
is a strong variant of BEFORE ON PATH. It demands that a holds strictly before b.
Using these definitions, the following lemmata can be easily formulated:

Lemma 3.1.3 For all v ∈ P(V)ω , a1, a2, r ∈ propV , all ϕ ∈ rltlV and all points of time
t ∈ N, the following holds4:

(
NAND ON PATH(vt.., a1, r) ∧ BEFORE ON PATH(vt.., a1, a2)

)
=⇒(

〈v, a2, r〉 |=t
rltl ϕ⇒ 〈v, a1, r〉 |=t

rltl ϕ
)

4theorem RLTL SEM TIME ACCEPT BEFORE ON PATH in theory ResetLTL Lemmata

33

3 Translation

Informally, this lemma states that valid RLTL formulas do not become invalid if
the acceptance condition is strengthened. Since for all words v ∈ P(V)ω , and all
propositions a, b ∈ propV the expression ¬BEFORE ON PATH(v, a, b) is equivalent
to BEFORE ON PATH STRONG(v, b, a) ∧ IS ON PATH(v, b), the following lemma is
equivalent to Lemma 3.1.3:

Lemma 3.1.4 For all v ∈ P(V)ω , a1, a2, r ∈ propV , all ϕ ∈ rltlV and all points of time
t ∈ N, the following property holds5:

(
NAND ON PATH(vt.., a1, r) ∧ 〈v, a2, r〉 |=t

rltl ϕ ∧ 〈v, a1, r〉 6|=t
rltl ϕ

)
=⇒(

BEFORE ON PATH STRONG(vt.., a2, a1) ∧ IS ON PATH(vt.., a2)
)

Another important consequence of Lemma 3.1.3 is:

Lemma 3.1.5 For all v ∈ P(V)ω , a1, a2, r ∈ propV , all ϕ ∈ rltlV and all points of time
t ∈ N, the following property holds6:

(
NAND ON PATH(vt.., a1, r) ∧ NAND ON PATH(vt.., a1, r)

)
=⇒(

〈v, a1 ∨ a2, r〉 |=t
rltl ϕ⇐⇒

(
〈v, a1, r〉 |=t

rltl ϕ ∨ 〈v, a2, r〉 |=t
rltl ϕ

))

Using these lemmata about the acceptance / rejection conditions of RLTL, the proof
of Lemma 3.1.2 by structural induction is mainly technical. The cases for b, b!,¬ϕ
and ϕ ∧ ψ are obvious. The case for Xϕ uses the fact that only infinite PSL-paths
are considered. The rest it is technical, also the case for ϕ U ψ is mainly technical.
Therefore, the only interesting case is that for ϕ ABORT b. To prove this case, the
presented lemmata about RLTL and a case-analysis are used.

The usage of HOL to formally prove Lemma 3.1.2 has been shown valuable. The case
analysis used to prove the case for ABORT is quite tricky. During this case analysis,
a small, until then unknown bug in Mike Gordon’s deep-embedding of PSL has been
discovered: The unclocked semantic of ABORT is defined by v |=ufl ϕ ABORT b iff
either v |=ufl ϕ or ∃j.j < |v| s.t. vj |=ufl b and v0..j−1>ω |=ufl ϕ holds. This has been
literally implemented in HOL. In case of j = 0, the word v0..0−1>ω is evaluated to
>ω by the formal semantics of PSL. However, because the datatype used to model j
in HOL represents natural numbers, v0..0−1>ω evaluated to v0..0>ω and therefore, to
v0>ω in the HOL representation. After reporting this bug to Mike Gordon, it has been
fixed.

5theorems RLTL SEM TIME ACCEPT REJECT BEFORE ON PATH STRONG and
RLTL SEM TIME ACCEPT REJECT IS ON PATH in theory ResetLTL Lemmata

6theorem RLTL SEM TIME ACCEPT OR THM in theory ResetLTL Lemmata

34

3.2 From RLTL to LTL

Lemma 3.1.2 is the central result for the translation of PSL to RLTL. It considers
arbitrary infinite PSL-paths as inputs. However, one is usually interested only in paths
without special states. Restricting the allowed input paths, Lemma 3.1.2 directly leads
to the following theorem:

Theorem 3.1.6 (Translation of SERE-free FL to RLTL)
For all infinite words v ∈ P(V)ω and all ϕ ∈ suflV7, the following holds:

v |=ufl ϕ⇐⇒ v |=rltl PSL TO RLTL(ϕ)

Furthermore, PSL TO RLTL combined with the rewrite relation F from Definition 2.3.7
is able to translate clocked formulas8. For all infinite words v ∈ P(V)ω , all SERE-free
ϕ ∈ flV and all clocks c ∈ propV , the following holds:

v |=c
fl ϕ⇐⇒ v |=rltl PSL TO RLTL

(
Fc(ϕ)

)

3.2 From RLTL to LTL

An important property of RLTL is, that it is as expressive as LTL. Therefore, the
translation of RLTL to LTL that is used here has been given together with the orig-
inal definition of RLTL by Armoni, Bustan, Kupferman and Vardi in 2003 [5]. The
correctness of this translation can be easily proved by structural induction.

Theorem 3.2.1 (Translation of RLTL to LTL)
With the definition of Figure 3.2, the following holds9 for all infinite words v ∈ P(V)ω ,
all acceptance / rejection conditions a, r ∈ propV , all RLTL formulas ϕ ∈ rltlV and all
points of time t ∈ N:

〈v, a, r〉 |=t
rltl ϕ⇐⇒ v |=t

ltl RLTL TO LTL(a, r, ϕ)

At the initial point of time and with the initial pair of acceptance / rejection conditions,
this becomes:

v |=rltl ϕ⇐⇒ v |=ltl RLTL TO LTL(false, false, ϕ)

3.3 From LTL to ω-Automata

It is well known how LTL can be translated to equivalent ω-automata [20, 24, 25, 52,
61]. In this work, the translation introduced by Schneider [48, 49] is used, because it
considers the ω-automaton hierarchy (Figure 2.3). In fact, there are several translations
by Schneider: Here, a basic and an optimised version will be used.

7theorem PSL TO RLTL NO TOP BOT THM in theory PSLToRLTL
8theorems PSL TO RLTL CLOCKED THM and PSL TO RLTL NO TOP BOT CLOCKED THM

in theory PSLToRLTL
9theorem RLTL TO LTL THM in theory ResetLTL Lemmata

35

3 Translation

3.3.1 Basic Translation

The idea of the basic translation is to translate a LTL formula ϕ to an ω-automaton A

by successively abbreviating subformulas of ϕ with new propositional variables. The
value of these new propositional variables is fixed by additional constraints, such that
they correspond to the values of the abbreviated LTL formulas. Thus, the translation
finally produces a propositional formula pϕ and a set of constraints C that specify the
behaviour of the variables used by pϕ. The set of constraints C can be expressed as an
automaton formula of the form A∃(Q,ΦI ,ΦR,ΦF) such that for all infinite inputs v,
there is exactly one run β through this automaton that fulfils ΦF , i. e. there is exactly
one β with

•
(
β0 ∪ v0

)
|=prop ΦI

•
(
βi ∪ vi ∪ {Xq | q ∈ βi+1 ∪ vi+1}

)
|=prop ΦR for all i ∈ N

• β ∪ v |=omega ΦF .

This run β is related to the LTL formula ϕ and propositional formula pϕ by the following
relation: ∀t. v |=t

ltl ϕ ⇐⇒ (βt ∪ vt) |=prop pϕ. Therefore, the automaton formula A :=
A∃(Q,ΦI ,ΦR,ΦF ∧ pϕ) is a translation of ϕ, i. e. for all words v, the relation v |=ltl ϕ
holds iff v |=omega A holds. Furthermore, A is equivalent to A∃(Q,ΦI ∧ pϕ,ΦR,ΦF),
because pϕ is propositional.

This idea leads to the algorithm described in Figure 3.3. In this work, it is not
motivated, how to find suitable constraints. A detailed description and motivation of
the algorithm can be found in [49].

Theorem 3.3.1 (Basic translation of LTL to ω-automata)
For all LTL formulas Φ ∈ ltlV and Â(Q, I,R,F , p) := Streett(Φ), where Streett is
defined as in Figure 3.3, the following holds10:

• p ∈ propV∪Q

• each ξ ∈ F is of the form GFξ ′ with ξ′ ∈ propV∪Q

• for all v ∈ P(V)ω , the following holds:

v |=ltl Φ⇐⇒ v |=omega Â(Q, I,R,F , p)

• for all v ∈ P(V)ω , the following holds:

v |=ltl Φ⇐⇒ v |=omega A∃(Q, I ∧ p,R,
∧

ξ∈F
ξ)

10several theorems in theory LTLToOmega

36

3.3 From LTL to ω-Automata

function RLTL TO LTL(a, r,Φ)
case Φ of

b : return a ∨ (b ∧ ¬r);
¬ϕ : return ¬RLTL TO LTL(r, a, ϕ);
ϕ ∧ ψ : return RLTL TO LTL(a, r, ϕ) ∧ RLTL TO LTL(a, r, ψ);

Xϕ : return a ∨
(

X
(
RLTL TO LTL(a, r, ϕ)

)
∧ ¬r

)
;

ϕ U ψ : return RLTL TO LTL(a, r, ϕ) U RLTL TO LTL(a, r, ψ);
ACCEPT(ϕ, b): return RLTL TO LTL(a ∨ (b ∧ ¬r), r, ϕ);

end
end

Figure 3.2: Translation of RLTL to LTL

function Streett(Φ)
case Φ of

p : return Â∃({}, true, true, {}, p);
¬ϕ : Â∃(Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := Streett(ϕ);

return Â∃(Qϕ, Iϕ,Rϕ,Fϕ,¬pϕ);
ϕ ∧ ψ : return Streett(ϕ) × Streett(ψ);
Xϕ : Â∃(Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := Streett(ϕ);

q := new var;
return Â∃(Qϕ ∪ {q}, Iϕ,Rϕ ∧ (q ↔ Xpϕ),Fϕ, q);

ϕ U ψ : Â∃(QΦ, IΦ,RΦ,FΦ, pϕ ∧ pψ) := Streett(ϕ) × Streett(ψ);
q := new var;
RQ := q ↔ (pψ ∨ (pϕ ∧ Xq));
FQ := {GF(q ∨ pψ)};
return Â∃(QΦ ∪ {q}, IΦ,RΦ ∧RQ,Fϕ ∪ FQ, q);←−

Xϕ : Â∃(Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := Streett(ϕ);
q := new var;
return Â∃(Qϕ ∪ {q}, Iϕ ∧ ¬q,Rϕ ∧ (Xq ↔ pϕ),Fϕ, q);

ϕ
←−
U ψ : Â∃(QΦ, IΦ,RΦ,FΦ, pϕ ∧ pψ) := Streett(ϕ) × Streett(ψ);

q := new var;
RQ := Xq ↔ (pψ ∨ (pϕ ∧ q));
IQ := ¬q;
return Â∃(QΦ ∪ {q}, IΦ ∧ IQ,RΦ ∧RQ,FΦ, q);

end
end

Figure 3.3: The basic translation from LTL to ω-automata [49]

37

3 Translation

The basic translation is able to translate any LTL formula to a NDETStreett automa-
ton formula in linear time. That is quite a good result, because in general, this most
expressive class of ω-automata is needed. However, for every occurrence of a U op-
erator, a constraint of the form GFϕ is added. This is not necessary. In some cases,
the constraint can be omitted, in other cases, it can be replaced by a simpler liveness
constraint. These improved translations are important to identify a hierarchy of LTL
similar to the hierarchy of ω-automata.

In the following section, an improvement is presented that utilises the monotonicity
laws of LTL. It is able to omit some constraints. Furthermore, this improvement suffices
to identify classes of LTL corresponding to liveness and safety properties. However,
due to lack of time, further improvements are not considered in this work.

3.3.2 Improved Translation

Consider the case ϕ U ψ of the translation described in Figure 3.3. For every input v,
there is exactly one run β through the automaton formula A := Streett(ϕ U ψ). On
this run β, the new variable q behaves like the LTL formula ϕ U ψ, i. e. ∀t. β t |=prop q ⇔
β |=t

ltl ϕ U ψ holds. If the additional constraint GF(q ∨ pψ) is omitted, then there are
two possible runs through the resulting automaton11: on one run q behaves like ϕ U ψ,
on the other run q behaves like ϕ U ψ. Let Φ〈ϕ U ψ〉x be an arbitrary LTL formula
that contains the subformula ϕ U ψ at a position x. Furthermore, let Φ〈ϕ U ψ〉x be
the formula resulting from this formula by replacing ϕ U ψ with ϕ U ψ at position x.
If Φ〈ϕ U ψ〉x ∨ Φ〈ϕ U ψ〉x is equivalent to Φ〈ϕ U ψ〉x, the constraint may be omitted
when translating the occurrence of U at position x.

For all v and all t, the property v |=t
ltl ϕ U ψ =⇒ v |=t

ltl ϕ U ψ holds. All LTL opera-
tors except ¬ are monotone and ¬ is antimonotone. For example, v |=t

ltl ¬(ϕ U ψ) =⇒
v |=t

ltl ¬(ϕ U ψ) holds. Therefore, ¬(ϕ U ψ)∨¬(ϕ U ψ) is equivalent to ¬(ϕ U ψ). Ex-
ploiting this monotonicity, the constraint GF(q ∨ pψ) can be omitted while translating
ϕ U ψ, if this formula occurs under an odd number of negations in a larger formula.
This leads to the algorithm described in Figure 3.4.

Theorem 3.3.2 (Improved translation of LTL to ω-automata)
For all LTL formulas Φ ∈ LTLV and Â(Q, I,R,F , p) := TopProp(Φ), where TopProp is
defined as in Figure 3.4, the following holds12:

• p ∈ propV∪Q

• each ξ ∈ F is of the form GFξ ′ with ξ′ ∈ propV∪Q

• for σ = true and all v ∈ P(V)ω , the following holds:

v |=ltl Φ⇐⇒ v |=omega A∃(Q, I ∧ p,R,
∧

ξ∈F
ξ)

11theorem LEMMA 5 35 4 in theory LTL LEMMATA
12several theorems in theory LTLToOmegaOpt

38

3.4 Overall Translation

• for σ = false and all v ∈ P(V)ω , the following holds:

v |=ltl ¬Φ⇐⇒ v |=omega A∃(Q, I ∧ ¬p,R,
∧

ξ∈F
ξ)

Like the basic translation, the improved translation is able to translate any LTL formula
to a NDETStreett automaton formula in linear time. In contrast to the basic translation,
the acceptance condition may however be simpler. For a certain class of formulas, even
no fairness constraints are generated. This will be important when considering the
hierarchy of LTL.

function TopPropσ(Φ)
case Φ of

p : return Â∃({}, true, true, {}, p);
¬ϕ : Â∃(Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := TopProp¬σ(ϕ);

return Â∃(Qϕ, Iϕ,Rϕ,Fϕ,¬pϕ);
ϕ ∧ ψ : return TopPropσ(ϕ)× TopPropσ(ψ);
Xϕ : Â∃(Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := TopPropσ(ϕ);

q := new var;
return Â∃(Qϕ ∪ {q}, Iϕ,Rϕ ∧ (q ↔ Xpϕ),Fϕ, q);

ϕ U ψ : Â∃(QΦ, IΦ,RΦ,FΦ, pϕ∧pψ) := TopPropσ(ϕ)×TopPropσ(ψ);
q := new var;
RQ := q ↔ (pψ ∨ (pϕ ∧ Xq));
FQ := if σ then {GF(q ∨ pψ)} else {};
return Â∃(QΦ ∪ {q}, IΦ,RΦ ∧RQ,Fϕ ∪ FQ, q);←−

Xϕ : Â∃(Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := TopPropσ(ϕ);
q := new var;
return Â∃(Qϕ ∪ {q}, Iϕ ∧ ¬q,Rϕ ∧ (Xq ↔ pϕ),Fϕ, q);

ϕ
←−
U ψ : Â∃(QΦ, IΦ,RΦ,FΦ, pϕ∧pψ) := TopPropσ(ϕ)×TopPropσ(ψ);

q := new var;
RQ := Xq ↔ (pψ ∨ (pϕ ∧ q));
IQ := ¬q;
return Â∃(QΦ ∪ {q}, IΦ ∧ IQ,RΦ ∧RQ,FΦ, q);

end
end

Figure 3.4: Improved translation of LTL to ω-automata [48, 49]

3.4 Overall Translation

In this chapter, the translation of SERE-free FL formulas to RLTL, the translation of
RLTL to LTL and two translations of LTL to automaton formulas have been presented.

39

3 Translation

The combination of these translations leads to a translation of SERE-free FL formulas
to ω-automata.

The translation of SERE-free FL formulas to RLTL and the translation of LTL to
automaton formulas require only linear time with respect to the size of the original
formula. In contrast, the elimination of the ACCEPT operator, i. e. the translation of
RLTL to LTL generates LTL formulas that are quadratic in the size of the original RLTL
formulas. For example, consider the following type of RLTL formulas:

ACCEPT(XXX . . .︸ ︷︷ ︸
n

ϕ, b)

The translation to LTL introduces b for every occurrence of the X operator, i. e. n times.
Thus, the translation of RLTL to LTL in general needs quadratic time. Due to the
translation of RLTL to LTL, the overall translation needs quadratic time with respect
to the size of the original formula.

However, these estimations assume that the size of the representation of a LTL
formula is linear in the size of the LTL formula. The quadratic blowup of the translation
of RLTL to LTL is caused by inserting the acceptance condition b over and over again.
An implementation does not need to create multiple copies of b. Structure sharing is
able to reduce the required costs to linear time. The translations of LTL formulas to
ω-automata can handle all occurrences of an arbitrary subformula at once. Therefore,
these translations benefit from structure sharing, too.

The translation of SERE-free FL formulas to RLTL originates to this work. The other
parts of the overall translation have already been known [5, 48, 49]. Especially, the
translation of LTL to ω-automata is well-investigated. Due to reasons of simplicity,
this work only considers a quite simple translation of LTL to ω-automata. There are
far more optimised translations [48, 49]. Since the translation of LTL to ω-automata is
independent from the other parts of the overall translation, these optimised translations
can be easily used in practice when translating SERE-free FL formulas to ω-automata.

40

4 Temporal Logic Hierarchy for PSL

In Chapter 3, a translation of SERE-free FL to NDETStreett automaton formulas is
presented. In general, NDETStreett automata, the most expressive class of ω-automata
is really needed. However, it is interesting to consider subsets of SERE-free FL that
can be translated to strictly less expressive classes of ω-automata. Especially, classes
of SERE-free FL are interesting that correspond to the classes DETG,DETF,DETPrefix

and DETFG, because the model checking problem of these classes of ω-automata can
be solved very efficiently in practice. Additionally, DETG and DETF are interesting for
many applications like simulation or bounded model checking. As motivated in the
introduction, this work is therefore especially interested in deterministic liveness and
safety automata, i. e. in DETF and DETG automata.

Similar to the translation of SERE-free FL to RLTL-automata, only unclocked, SERE-
free FL (SUFL) is considered for reasons of simplicity. Clocked SERE-free FL formulas
can be easily reduced to unclocked ones by the rewrite rules given in Definition 2.3.7.
To identify classes of SUFL that correspond to classes of ω-automata, corresponding
classes of LTL are considered, first. Then, these classes of LTL are lifted to RLTL and
further to SUFL.

4.1 A Hierarchy of LTL

In [49], Schneider identifies classes of LTL that form a hierarchy similar to the hier-
archy of ω-automata (Figure 2.3). These classes are defined syntactically according
to Figure 4.1. Some elementary, but nevertheless important properties directly follow
from this definition:

Lemma 4.1.1 The following properties hold for the classes of LTL defined in Fig-
ure 4.11:

• Φ ∈ LTLF iff ¬Φ ∈ LTLG and Φ ∈ LTLG iff ¬Φ ∈ LTLF

• Φ ∈ LTLFG iff ¬Φ ∈ LTLGF and Φ ∈ LTLGF iff ¬Φ ∈ LTLFG

• LTLF ⊆ LTLGF ∩ LTLFG

• LTLG ⊆ LTLGF ∩ LTLFG

• LTLPrefix ⊆ LTLGF ∩ LTLFG

1theorem IS LTL RELATIONS in theory LTL

41

4 Temporal Logic Hierarchy for PSL

b ∈ LTLG

¬ϕ ∈ LTLG = ϕ ∈ LTLF

ϕ ∧ ψ ∈ LTLG = ϕ ∈ LTLG ∧ ψ ∈ LTLG

Xϕ ∈ LTLG = ϕ ∈ LTLG

ϕ U ψ ∈ LTLG = false

←−
Xϕ ∈ LTLG = ϕ ∈ LTLG

ϕ
←−
U ψ ∈ LTLG = ϕ ∈ LTLG ∧ ψ ∈ LTLG

b ∈ LTLGF

¬ϕ ∈ LTLGF = ϕ ∈ LTLFG

ϕ ∧ ψ ∈ LTLGF = ϕ ∈ LTLGF ∧ ψ ∈ LTLGF

Xϕ ∈ LTLGF = ϕ ∈ LTLGF

ϕ U ψ ∈ LTLGF = ϕ ∈ LTLGF ∧ ψ ∈ LTLF
←−
Xϕ ∈ LTLGF = ϕ ∈ LTLGF

ϕ
←−
U ψ ∈ LTLGF = ϕ ∈ LTLGF ∧ ψ ∈ LTLGF

b ∈ LTLPrefix

¬ϕ ∈ LTLPrefix = ϕ ∈ LTLPrefix

ϕ ∧ ψ ∈ LTLPrefix = ϕ ∈ LTLPrefix ∧ ψ ∈ LTLPrefix

Xϕ ∈ LTLPrefix = Xϕ ∈ LTLG ∪ LTLF

ϕ U ψ ∈ LTLPrefix = ϕ U ψ ∈ LTLG ∪ LTLF

←−
X ϕ ∈ LTLPrefix =

←−
Xϕ ∈ LTLG ∪ LTLF

ϕ
←−
U ψ ∈ LTLPrefix = ϕ

←−
U ψ ∈ LTLG ∪ LTLF

b ∈ LTLF

¬ϕ ∈ LTLF = ϕ ∈ LTLG

ϕ ∧ ψ ∈ LTLF = ϕ ∈ LTLF ∧ ψ ∈ LTLF

Xϕ ∈ LTLF = ϕ ∈ LTLF

ϕ U ψ ∈ LTLF = ϕ ∈ LTLF ∧ ψ ∈ LTLF

←−
X ϕ ∈ LTLF = ϕ ∈ LTLF

ϕ
←−
U ψ ∈ LTLF = ϕ ∈ LTLF ∧ ψ ∈ LTLF

b ∈ LTLFG

¬ϕ ∈ LTLFG = ϕ ∈ LTLGF

ϕ ∧ ψ ∈ LTLFG = ϕ ∈ LTLFG ∧ ψ ∈ LTLFG

Xϕ ∈ LTLFG = ϕ ∈ LTLFG

ϕ U ψ ∈ LTLFG = ϕ ∈ LTLFG ∧ ψ ∈ LTLFG
←−
Xϕ ∈ LTLFG = ϕ ∈ LTLFG

ϕ
←−
U ψ ∈ LTLFG = ϕ ∈ LTLFG ∧ ψ ∈ LTLFG

b ∈ LTLStreett

¬ϕ ∈ LTLStreett = ϕ ∈ LTLStreett

ϕ ∧ ψ ∈ LTLStreett = ϕ ∈ LTLStreett ∧ ψ ∈ LTLStreett

Xϕ ∈ LTLStreett = Xϕ ∈ LTLGF ∪ LTLFG

ϕ U ψ ∈ LTLStreett = ϕ U ψ ∈ LTLGF ∪ LTLFG

←−
Xϕ ∈ LTLStreett =

←−
X ϕ ∈ LTLGF ∪ LTLFG

ϕ
←−
U ψ ∈ LTLStreett = ϕ

←−
U ψ ∈ LTLGF ∪ LTLFG

Figure 4.1: Classes of LTL

Additionally, it is easy to see, that LTLPrefix is the Boolean closure of LTLG and LTLF

and that LTLStreett is the Boolean closure of LTLGF and LTLFG.

These classes of LTL can be translated to the corresponding classes of deterministic
ω-automata:

Lemma 4.1.2 For any Φ ∈ LTLκ with κ ∈ {G,F,Prefix,GF,FG,Streett}, there is an
equivalent ω-automaton AΦ ∈ Detκ.

Proof The improved translation of LTL to ω-automata presented in Section 3.3.2 is
able to translate every LTLG formula to an equivalent NDETG automaton2. Since DETG

is as expressive as NDETG (see Figure 2.3), every LTLG formula can be translated to
an equivalent DETG automaton.

According to Lemma 4.1.1, ¬Φ ∈ LTLG holds for all Φ ∈ LTLF. Therefore, ¬Φ can be
translated to an equivalent DETG automaton. The negation of this DETG automaton
leads to a DETF automaton. Thus, every Φ ∈ LTLF can be translated to an equivalent
DETF automaton.

LTLPrefix is the Boolean closure of LTLG and LTLF. Analogously, DETPrefix is the
Boolean closure of DETG and DETF [49]. Therefore, every Φ ∈ LTLPrefix can be trans-
lated to an equivalent DETPrefix automaton by translating all subformulas ΦG ∈ DETG,

2theorem LTL TO OMEGA OPTIMIZED THM IS LTL G in theory LTLToOmegaOpt

42

4.1 A Hierarchy of LTL

ΦF ∈ DETF and applying the Boolean operations discussed in Section 2.4.6 to the re-
sulting automaton formulas. Also the remaining classes LTLGF, LTLFG and LTLStreett

can be translated to the corresponding classes of deterministic ω-automata [49]. The
proof is omitted here.

ω-automata are strictly more expressive than LTL. In general, automata are able to
count modulo a constant number by storing information in their states. This ability
to count is the difference between the expressiveness of ω-automata and LTL. LTL is
as expressive as noncounting ω-automata [40]. As for κ ∈ {G,F,Prefix,GF,FG,Streett}
each class DETκ contains counting automata, LTLκ is strictly less expressive than
DETκ. However, LTLκ is as expressive as noncounting DETκ automata (denoted by
TDETκ) [49].

Lemma 4.1.3 For any κ ∈ {G,F,Prefix,GF,FG,Streett}, the logic LTLκ is complete
with respect to noncounting ω-automata, i. e. LTLκ is at least as expressive as TDETκ

(denoted by TDETκ w LTLκ). Together with Lemma 4.1.2, this implies LTLκ ≈
TDETκ.

Lemma 4.1.4 The classes of noncounting deterministic ω-automata form a similar
hierarchy as the classes of deterministic ω-automata [49]. This hierarchy is shown in
Figure 4.2.

TDETF

TDETG

�

�
TDETPrefix

�

�

TDETFG

TDETGF

�

�
TDETStreett

Figure 4.2: Hierarchy of deterministic noncounting ω automata [49]

Therefore, the classes of LTL form a hierarchy as well. Moreover, the same hierarchy is
formed by classes of LTL without past operators, i. e. by the classes of FutureLTL.
FutureLTL is as expressive as LTL [23], i. e. for each LTL formula ϕ, there is an
FutureLTL formula ϕfuture that is initially equivalent to ϕ. However, there is in general
no FutureLTL formula that is equivalent to ϕ. This relation between LTL and FutureLTL
holds for the defined classes of LTL, as well [49]. For κ ∈ {G,F,Prefix,GF,FG,Streett},
let FutureLTLκ denote the future fragment of LTLκ, i. e. FutureLTLκ := LTLκ∩FutureLTL.
Using these notations, the following lemma holds:

Lemma 4.1.5 For any κ ∈ {G,F,Prefix,GF,FG,Streett}, the logic LTLκ is as expres-
sive as FutureLTLκ [49]. Therefore, FutureLTLκ is as expressive as TDETκ.

43

4 Temporal Logic Hierarchy for PSL

4.2 A Hierarchy of RLTL

The algorithm presented in Section 3.2 translates a RLTL formula to an equivalent LTL
formula by introducing additional propositional subformulas. However, no additional
temporal operators are introduced. Since propositional subformulas do not affect the
membership in a LTL class, it is easy to define classes of RLTL that can be translated
to the corresponding LTL class. To prove the completeness of these classes, it remains
to show that every LTL class is at most as expressive as the corresponding class of
RLTL.

b ∈ RLTLG

¬ϕ ∈ RLTLG = ϕ ∈ RLTLF

ϕ ∧ ψ ∈ RLTLG = ϕ ∈ RLTLG ∧ ψ ∈ RLTLG

Xϕ ∈ RLTLG = ϕ ∈ RLTLG

ϕ U ψ ∈ RLTLG = false

ACCEPT(ϕ, b) ∈ RLTLG = ϕ ∈ RLTLG

b ∈ RLTLGF

¬ϕ ∈ RLTLGF = ϕ ∈ RLTLFG

ϕ ∧ ψ ∈ RLTLGF = ϕ ∈ RLTLGF ∧ ψ ∈ RLTLGF

Xϕ ∈ RLTLGF = ϕ ∈ RLTLGF

ϕ U ψ ∈ RLTLGF = ϕ ∈ RLTLGF ∧ ψ ∈ RLTLF

ACCEPT(ϕ, b) ∈ RLTLGF = ϕ ∈ RLTLGF

b ∈ RLTLPrefix

¬ϕ ∈ RLTLPrefix = ϕ ∈ RLTLPrefix

ϕ ∧ ψ ∈ RLTLPrefix = ϕ ∈ RLTLPrefix ∧ ψ ∈ RLTLPrefix

Xϕ ∈ RLTLPrefix = Xϕ ∈ RLTLG ∪ RLTLF

ϕ U ψ ∈ RLTLPrefix = ϕ U ψ ∈ RLTLG ∪ RLTLF

ACCEPT(ϕ, b) ∈ RLTLPrefix = ϕ ∈ RLTLPrefix

b ∈ RLTLF

¬ϕ ∈ RLTLF = ϕ ∈ RLTLG

ϕ ∧ ψ ∈ RLTLF = ϕ ∈ RLTLF ∧ ψ ∈ RLTLF

Xϕ ∈ RLTLF = ϕ ∈ RLTLF

ϕ U ψ ∈ RLTLF = ϕ ∈ RLTLF ∧ ψ ∈ RLTLF

ACCEPT(ϕ, b) ∈ RLTLF = ϕ ∈ RLTLF

b ∈ RLTLFG

¬ϕ ∈ RLTLFG = ϕ ∈ RLTLGF

ϕ ∧ ψ ∈ RLTLFG = ϕ ∈ RLTLFG ∧ ψ ∈ RLTLFG

Xϕ ∈ RLTLFG = ϕ ∈ RLTLFG

ϕ U ψ ∈ RLTLFG = ϕ ∈ RLTLFG ∧ ψ ∈ RLTLFG

ACCEPT(ϕ, b) ∈ RLTLFG = ϕ ∈ RLTLFG

b ∈ RLTLStreett

¬ϕ ∈ RLTLStreett = ϕ ∈ RLTLStreett

ϕ ∧ ψ ∈ RLTLStreett = ϕ ∈ RLTLStreett ∧ ψ ∈ RLTLStreett

Xϕ ∈ RLTLStreett = Xϕ ∈ RLTLGF ∪ RLTLFG

ϕ U ψ ∈ RLTLStreett = ϕ U ψ ∈ RLTLGF ∪ RLTLFG

ACCEPT(ϕ, b) ∈ RLTLStreett = ϕ ∈ RLTLStreett

Figure 4.3: Classes of RLTL

Lemma 4.2.1 Let RLTL TO LTL be the function defined in Figure 3.2, and let κ ∈
{G,F,Prefix,GF,FG,Streett} hold. Then, with the definitions of the classes of RLTL
from Figure 4.3 for all RLTL formulas Φ and all acceptance / rejection conditions a, r,
the following holds3:

Φ ∈ RLTLκ ⇐⇒ RLTL TO LTL(a, r,Φ) ∈ LTLκ

Thus, according to Theorem 3.2.1 for every Φ ∈ RLTLκ, there is an equivalent Φltl ∈
LTLκ.

This lemma implies RLTLκ w LTLκ for κ ∈ {G,F,Prefix,GF,FG,Streett}. In order to
prove RLTLκ ≈ LTLκ, it remains to show, that RLTLκ v LTLκ holds. According to
Lemma 4.1.5, FutureLTLκ is as expressive as LTLκ. Therefore, it is sufficient to show

3theorem IS RLTL LTL THM in theory ResetLTL Lemmata

44

4.3 A Hierarchy of PSL

FutureLTLκ w RLTLκ. This can be shown by translating every Φ ∈ FutureLTLκ to an
equivalent Φrltl ∈ RLTLκ. Since FutureLTL is a subset of RLTL, it is straightforward to
find such a translation.

Lemma 4.2.2 With the definition of Figure 4.4, the following holds for all infinite
words v ∈ P(V)ω and all FutureLTL formulas ϕ ∈ ltlV4:

v |=ltl ϕ⇐⇒ v |=rltl LTL TO RLTL(ϕ)

Furthermore, LTL TO RLTL translates a class of FutureLTL to the corresponding class
of RLTL, i. e. for each κ ∈ {G,F,Prefix,GF,FG,Streett} and all FutureLTL formulas Φ,
the following holds:

Φ ∈ FutureLTLκ ⇐⇒ LTL TO RLTL(ϕ) ∈ RLTLκ

function LTL TO RLTL(Φ)
case Φ of

b : return b;
¬ϕ : return ¬LTL TO RLTL(ϕ);
ϕ ∧ ψ : return LTL TO RLTL(ϕ) ∧ LTL TO RLTL(ψ);
Xϕ : return X

(
LTL TO RLTL(ϕ)

)
;

ϕ U ψ : return LTL TO RLTL(ϕ) U LTL TO RLTL(ψ);
end

end

Figure 4.4: Translation of FutureLTL to RLTL

As motivated, this directly leads to the following theorem:

Theorem 4.2.3 (Hierarchy of RLTL)
For any κ ∈ {G,F,Prefix,GF,FG,Streett}, the logic RLTLκ is as expressive as LTLκ.
Therefore, RLTLκ is complete with respect to noncounting ω-automata, i. e. RLTLκ is
as expressive as TDETκ.

4.3 A Hierarchy of PSL

The translation of SUFL to RLTL discussed in Section 3.1 essentially replaces every
PSL operator with its corresponding RLTL operator. Therefore, it is straightforward
to identify classes of SUFL that correspond to the classes of RLTL.

4theorem FUTURE LTL TO RLTL THM in theory ResetLTL Lemmata

45

4 Temporal Logic Hierarchy for PSL

b ∈ SUFLG

b! ∈ SUFLG

¬ϕ ∈ SUFLG = ϕ ∈ SUFLF

ϕ ∧ ψ ∈ SUFLG = ϕ ∈ SUFLG ∧ ψ ∈ SUFLG

Xϕ ∈ SUFLG = ϕ ∈ SUFLG

ϕ U ψ ∈ SUFLG = false

ϕ ABORT b ∈ SUFLG = ϕ ∈ SUFLG

b ∈ SUFLGF

b! ∈ SUFLGF

¬ϕ ∈ SUFLGF = ϕ ∈ SUFLFG

ϕ ∧ ψ ∈ SUFLGF = ϕ ∈ SUFLGF ∧ ψ ∈ SUFLGF

Xϕ ∈ SUFLGF = ϕ ∈ SUFLGF

ϕ U ψ ∈ SUFLGF = ϕ ∈ SUFLGF ∧ ψ ∈ SUFLF

ϕ ABORT b ∈ SUFLGF = ϕ ∈ SUFLGF

b ∈ SUFLPrefix

b! ∈ SUFLPrefix

¬ϕ ∈ SUFLPrefix = ϕ ∈ SUFLPrefix

ϕ ∧ ψ ∈ SUFLPrefix = ϕ ∈ SUFLPrefix ∧ ψ ∈ SUFLPrefix

Xϕ ∈ SUFLPrefix = Xϕ ∈ SUFLG ∪ SUFLF

ϕ U ψ ∈ SUFLPrefix = ϕ U ψ ∈ SUFLG ∪ SUFLF

ϕ ABORT b ∈ SUFLPrefix = ϕ ∈ SUFLPrefix

b ∈ SUFLF

b! ∈ SUFLF

¬ϕ ∈ SUFLF = ϕ ∈ SUFLG

ϕ ∧ ψ ∈ SUFLF = ϕ ∈ SUFLF ∧ ψ ∈ SUFLF

Xϕ ∈ SUFLF = ϕ ∈ SUFLF

ϕ U ψ ∈ SUFLF = ϕ ∈ SUFLF ∧ ψ ∈ SUFLF

ϕ ABORT b ∈ SUFLF = ϕ ∈ SUFLF

b ∈ SUFLFG

b! ∈ SUFLFG

¬ϕ ∈ SUFLFG = ϕ ∈ SUFLGF

ϕ ∧ ψ ∈ SUFLFG = ϕ ∈ SUFLFG ∧ ψ ∈ SUFLFG

Xϕ ∈ SUFLFG = ϕ ∈ SUFLFG

ϕ U ψ ∈ SUFLFG = ϕ ∈ SUFLFG ∧ ψ ∈ SUFLFG

ϕ ABORT b ∈ SUFLFG = ϕ ∈ SUFLFG

b ∈ SUFLStreett

b! ∈ SUFLStreett

¬ϕ ∈ SUFLStreett = ϕ ∈ SUFLStreett

ϕ ∧ ψ ∈ SUFLStreett = ϕ ∈ SUFLStreett ∧ ψ ∈ SUFLStreett

Xϕ ∈ SUFLStreett = Xϕ ∈ SUFLGF ∪ SUFLFG

ϕ U ψ ∈ SUFLStreett = ϕ U ψ ∈ SUFLGF ∪ SUFLFG

ϕ ABORT b ∈ SUFLStreett = ϕ ∈ SUFLStreett

Figure 4.5: Classes of SUFL

Lemma 4.3.1 Let PSL TO RLTL be the function defined in Figure 3.1 and let κ ∈
{G,F, Prefix,GF,FG,Streett} hold. Then, with the definitions of the classes of SUFL
from Figure 4.5 for all SUFL formulas Φ, the following holds5:

Φ ∈ SUFLκ ⇐⇒ PSL TO RLTL(Φ) ∈ RLTLκ

Thus, according to Theorem 3.1.6 for every Φ ∈ RLTLκ, there is a Φrltl ∈ RLTLκ that
is equivalent on infinite paths without special states.

Therefore, for each κ ∈ {G,F,Prefix,GF,FG,Streett}, the class SUFLκ is at most as
expressive as RLTLκ, if only infinite paths without special states are considered. This
condition that only infinite paths without special states are considered is always as-
sumed in the following.

It remains to show that SUFLκ is at least as expressive as RLTLκ. Since RLTLκ is as
expressive as FutureLTLκ, it is sufficient to translate all Φ ∈ FutureLTLκ to equivalent
Φsufl ∈ SUFLκ. As FutureLTL is a subset of SUFL, it is straightforward to find such a
translation:

Lemma 4.3.2 Let LTL TO PSL be the function defined in Figure 4.6. Then, the
following holds for all infinite words v ∈ P(V)ω and all FutureLTL formulas ϕ ∈ ltlV6:

v |=ltl ϕ⇐⇒ v |=ufl LTL TO PSL(ϕ)

5theorem IS PSL RLTL THM in theory PSLToRLTL
6theorem FUTURE LTL TO PSL THM in theory PSLToRLTL

46

4.3 A Hierarchy of PSL

Furthermore, LTL TO PSL translates all classes of FutureLTL to the corresponding class
of SUFL, i. e. for each κ ∈ {G,F,Prefix,GF,FG,Streett} and all FutureLTL formulas Φ,
the following holds:

Φ ∈ FutureLTLκ ⇐⇒ LTL TO PSL(ϕ) ∈ SUFLκ

function LTL TO PSL(Φ)
case Φ of

b : return b!;
¬ϕ : return ¬LTL TO PSL(ϕ);
ϕ ∧ ψ : return LTL TO PSL(ϕ) ∧ LTL TO PSL(ψ);
Xϕ : return X

(
LTL TO PSL(ϕ)

)
;

ϕ U ψ : return LTL TO PSL(ϕ) U LTL TO PSL(ψ);
end

end

Figure 4.6: Translation of FutureLTL to SUFL

Therefore, SUFLκ is as expressive as RLTLκ. The combination with the other results
of this chapter leads to the following theorem:

Theorem 4.3.3 (Hierarchy of PSL)
For any κ ∈ {G,F,Prefix,GF,FG,Streett}, the logics LTLκ, FutureLTLκ, RLTLκ and
SUFLκ are as expressive as TDETκ. Furthermore, LTL, FutureLTL, RLTL and SUFL are
as expressive as TDETStreet. This leads to the hierarchy shown in Figure 4.7.

This theorem is the main result concerning the hierarchy of PSL. Since efficient transla-
tions between the classes of PSL and the classes deterministic noncounting ω-automata
are given, it is of immediate practical relevance.

However, Theorem 4.3.3 also shows the limits of the defined hierarchy. The classes
of LTL and PSL are as expressive as the corresponding classes of noncounting, deter-
ministic ω-automata. For LTL, that is the best possible result, since LTL itself is not
able to count. Therefore, the classes of LTL are in some sense complete with respect to
the expressiveness of LTL. For example, every safety property that can be expressed by
LTL can also be expressed by LTLG. This situation is different for PSL. In Section 3.1,
a property is presented that can be expressed by unclocked FL with SEREs, but not
by LTL. Since LTL is as expressive as unclocked, SERE-free FL, this example shows
that unclocked FL with SEREs is strictly more expressive than unclocked, SERE-free
FL. Moreover, the property is a safety property that is expressible by unclocked FL
with SEREs, but not by SUFLG. Therefore, even if only infinite paths without special

47

4 Temporal Logic Hierarchy for PSL

states are considered, the defined classes of unclocked FL are not able to express all
properties that can be expressed as well by unclocked FL as by the corresponding class
of deterministic ω-automata.

The hierarchy of PSL only considers unclocked formulas. Clocked SERE-free FL can
be rewritten to unclocked SERE-free FL by the rewrite relation F defined in Defini-
tion 2.3.7. However, F introduces additional U and U operators. These additional
operators influence the membership of a formula in the defined classes of PSL. Es-
pecially, the operator U is problematic. For two formulas ϕ,ψ ∈ SUFL, the formula
ϕ U ψ is defined as a shorthand for ϕ U ψ ∨ ¬(true U ϕ). For arbitrary ϕ,ψ, this
formula neither belongs to TDETF nor to TDETG. However, ϕ U ψ is on infinite PSL-

paths equivalent to ¬
(
¬ψ U (¬ϕ ∧ ¬ψ)

)
7 [31]. This formula belongs to SUFLG iff

ϕ,ψ ∈ SUFLG. It can be used as an alternative definition of the semantics of U, if only
infinite PSL-paths are considered. However, a better solution is to use U like a basic
operator: The translation of PSL to RLTL, the translation of RLTL to LTL and the
translations of LTL to ω-automata should be extended by cases for U. Additionally,
the definitions of the PSL, RLTL and LTL classes should be extended to consider U.
Using such extensions, U can be handled in the best possible way.

7theorem PSL WEAK UNTIL ALTERNATIVE DEF in theory PSLToRLTL

48

4.3 A Hierarchy of PSL

LTLF

FutureLTLF

RLTLF

SUFLF

TDETF

≈
≈

≈
≈

LTLG

FutureLTLG

RLTLG

SUFLG

TDETG

≈
≈

≈
≈

�

�

LTLPrefix

FutureLTLPrefix

RLTLPrefix

SUFLPrefix

TDETPrefix

≈
≈

≈
≈

�

�

LTLFG

FutureLTLFG

RLTLFG

SUFLFG

TDETFG

≈
≈

≈
≈

LTLGF

FutureLTLGF

RLTLGF

SUFLGF

TDETGF

≈
≈

≈
≈

�

�

LTLStreett

FutureLTLStreett

RLTLStreett

SUFLStreett

TDETStreett
≈

≈
≈

≈

≈

≈

≈

≈

LTL

FutureLTL

RLTL

SUFL

Figure 4.7: Hierarchy of PSL

49

5 The HOL System

The HOL System [27, 29] is an interactive theorem prover for higher order logic. The
version of higher order logic used in HOL is predicate calculus with terms from the
typed lambda calculus [17]. The interactive frontend of HOL is formed by the functional
programming language ML, in which terms and theorems of the logic, proof strategies
and logical theories are implemented.

The first antecedent of HOL is LCF (logic for computable functions) [30]. The orig-
inal LCF was implemented at Edinburgh in the early 1970’s, and is now referred to
as Edinburgh LCF. Further developments at Cambridge led to a version of LCF called
Cambridge LCF. The HOL System is implemented on top of an early version of Cam-
bridge LCF, and consequently, many features of both Edinburgh and Cambridge LCF
were inherited by HOL. An enhanced and rationalised version, called HOL88 was re-
leased in 1988 after the original HOL System had been in use for several years. Other
important releases of HOL are HOL90 and HOL98. There is also a commercial version
of HOL, called ProofPower, which was developed by ICL Secure Systems. In this work,
HOL4 is used, which is a successor to the mentioned versions of HOL.

The HOL library created in this work is structured into several theories. The theory
TemporalModel contains embeddings of basic constructs like words or propositional
logic. Furthermore, it contains definitions of important functions and predicates re-
lated to these constructs. There are also some elementary lemmata. The theories
LTL, ResetLTL and Omega Automata contain the same for LTL, RLTL and automaton
formulas.

The definitions and lemmata of these theories are used by TemporalLib. This library
defines some simplification sets and specialised tactics. TemporalLib also uses the
theory GeneralLemmata, which contains some simple lemmata for rewriting that are
not directly related with the central formalisms. Most of these lemmata are about
operations on sets.

TemporalLib is used to prove some more complicated lemmata about the basic
constructs, LTL, RLTL and automaton formulas. The resulting theories are Temporal-

Model Lemmata, LTL Lemmata, ResetLTL Lemmata and Omega Automata Lemmata. The
basic translation of LTL to ω-automata can be found in the theory LTLToOmega.
The correctness of the improved translation is proved in the theory LTLToOmegaOpt.
Since the translation of RLTL to LTL is comparable simple, it is part of the theory
ResetLTL Lemmata. Finally, definitions and lemmata about PSL and the translation
of SUFL to RLTL can be found in the theory PSLToRLTL.

In the following, the deep embeddings of the used formalisms and some important

51

5 The HOL System

theorems are presented. Additionally, the used parts of Mike Gordon’s PSL library [26]
are discussed. However, these presentations are quite short, because the definitions and
theorems used in HOL are in general very similar to the ones presented in the previous
chapters.

5.1 Deep Embedding of PSL

Mike Gordon’s PSL theory [26, 28] is intended to be as close to the formal semantics
of PSL as possible. Let ’prop be an arbitrary HOL type. Then, the HOL type ’prop

letter is defined to be either one of the special states TOP, BOTTOM or a state STATE s,
where s is a set over ’prop. Propositional logic formulas over variables of type ’prop

are formalised by the HOL type ’prop bexp. The predicate B SEM: ’prop letter →
’prop bexp → bool defines the semantics of these propositional formulas.

A path over an arbitrary HOL type ‘a is modelled by the HOL type ’a path. Finite
paths are denoted by FINITE p, where p is a ’a list. Infinite paths are denoted by
INFINITE p, where p is a function of type num → ’a.

For an arbitrary HOL type ’prop, the HOL type ’prop fl is a deep embedding of
FL over variables of type ’prop. The unclocked semantics of ’prop fl is defined by
the predicate UF SEM: ’prop letter path → ’prop fl → bool.

Another part of the PSL embedding is the theorem fl induct, which is used for
structural inductions over ’prop fl formulas. There are of course a lot of other defi-
nitions and theorems. Especially, SEREs have not been mentioned yet at all. However,
these are the most important definitions and theorems for this work.

5.2 Deep Embedding of LTL and RLTL

In contrast to PSL, the formalisms LTL and RLTL do not use special states and consider
only finite states. Therefore, the definitions of propositional logic and paths can be
simplified. For an arbitrary HOL type ’prop, a state is modelled by the HOL type
’prop temporal state. It is defined as a set over ’prop. Propositional logic over
variables of type ’prop is modelled by the HOL type ’prop prop logic. Its semantics
is defined by the predicate P SEM. An infinite path over an arbitrary HOL type ’a is
modelled by the HOL type ’a temporal path. It is defined as an abbreviation of the
HOL type num → ’prop temporal state.

The syntax and semantics are defined exactly as described in Chapter 2. LTL and
RLTL over variables of type ’prop are modelled by the HOL types ’prop ltl and ’prop

rltl. Their semantics is assigned by the predicates LTL SEM TIME and RLTL SEM TIME.
The semantics at the initial point of time is referenced by the predicates LTL SEM and
RLTL SEM.

52

5.3 Deep Embedding of ω-Automata

5.3 Deep Embedding of ω-Automata

The deep embedding of ω-automata uses the same definitions of paths and proposi-
tional logic as the embeddings of LTL and RLTL. To define automaton formulas, a
deep embedding of a symbolic representation of semiautomata is used.

To define the transition relation of semiautomata, which may use the special vari-
ables Xq to refer to the value of the variable q at the next point of time, extended propo-
sitional logic is introduced by the HOL type ’prop xprop logic and the predicate
XP SEM: ’prop temporal state × ’prop temporal state→ ’prop xprop logic→
bool. These extended propositional logic is used to define semiautomata. The HOL
type ’prop semi automaton is defined as a tuple of a set of state variables, the set
of initial states modelled by a ’prop prop logic formula and the translation relation
modelled by a ’prop xprop logic formula. The semantics of semiautomata is mod-
elled by the predicate RUN that checks, whether a path is a run of some input through
a semiautomaton. Thereby, the extended syntax and semantics of automaton formulas
presented in Section 2.4.5 are used, i. e. input variables are handled like state variables.
However, the definition of the syntax of automaton formulas demands that the sets of
input and state variables are disjoint. This is not guaranteed by the HOL-embedding.
Instead of this, state variables occurring as inputs are ignored by the definition of the
semantics.

This deep embedding of semiautomata is used to define automaton formulas. Flat
acceptance conditions are modelled by the HOL type automaton formula. Automaton
formulas are modelled by the HOL type automaton formula. Their semantics are
assigned by the predicates ACCEPT COND SEM TIME, ACCEPT COND SEM and A SEM.

In contrast to the formal definition, the syntax of the embedding of automaton for-
mulas in HOL does not guarantee that state and input variables are disjoint. Therefore,
the predicate VARDISJOINT AUTOMATON FORMULA checks whether this condition is met.
Furthermore, there are some definitions and theorems that allow variable renamings.

5.4 Translations of LTL to ω-Automata

The translations of LTL to ω-automata are quite tricky. The correctness of both,
the basic and the improved translation, is proved by structural induction. Since the
proof becomes very large, the cases of this structural induction are proved as sepa-
rate theorems. Thereby, the induction hypothesis is abstracted by special predicates
BASIC TRANSLATION INVARIANTS and OPTIMIZED TRANSLATION INVARIANTS.

The proofs of the correctness of the cases is quite tricky. A lot of lemmata about
ω-automata and LTL are used. Moreover, in many cases, it has to be assured that
some sets of variables are disjoint. For the same reason, the combination of the cases
of the structural induction becomes also complicated. The renaming of state variables
is used to ensure that all relevant sets of state variables are disjoint. This leads to
the theorems LTL TO OMEGA BASIC THM and LTL TO OMEGA OPTIMIZED THM. Addition-

53

5 The HOL System

ally, the theorem LTL TO OMEGA OPTIMIZED THM IS LTL G states that the improved
translation of LTL to ω-automata translates a LTLG formula to a NDETG automaton
formula.

5.5 Translation of PSL to RLTL

To translate PSL to RLTL, some lemmata about PSL and a lot of lemmata about RLTL
have to be proved. The most important lemmata about RLTL are presented in Sec-
tion 3.1. The lemmata about PSL are mostly technical. Compared to the translation
presented in Section 3.1, propositional formulas have to be translated additionally,
because the propositional formulas of PSL and RLTL are modelled by different HOL
types. Apart from these differences, the correctness of the translation of PSL to RLTL is
proved as described in Section 3.1. The correctness of the translation of SUFL to RLTL
is shown in theorem PSL TO RLTL THM. There are also other theorems that consider
clocked statements or paths without special states.

54

6 Conclusion and Future Work

In this work, an efficient translation of SERE-free FL to LTL and further to ω-automata
is presented. This translation is used to identify classes of unclocked SERE-free FL.
Furthermore, it has been shown that these classes are as expressive as the corresponding
classes of noncounting, deterministic ω-automata. That is the best possible result
of an approach that uses a translation to LTL, since the identified classes of PSL
are as expressive as the corresponding LTL-classes. In particular, with SUFLF and
SUFLG, subsets of PSL are syntactically identified that are as expressive as noncounting
liveness and safety automata. Moreover, an efficient translation is presented. This is
of practical evidence, because these kinds of automata are very useful to handle finite
inputs. For example, they can be used for bounded model checking or on the fly
validation during simulation.

The translations and class hierarchies presented in this work can directly be used in
practice. However, they are not optimal with respect to syntactic sugar. In Section 4.3,
this is discussed for the example of the U operator. It is shown that a formula of the
form ϕ U ψ with ϕ,ψ ∈ SUFLG does not belong to SUFLG. However, the formula

¬
(
¬ψ U (¬ϕ ∧ ¬ψ)

)
∈ SUFLG is on infinite PSL-paths equivalent to ϕ U ψ [31].

Furthermore, the algorithm presented in Section 3.3.2 is not able to translate ϕ U ψ

to a NDETG automaton, however, ¬
(
¬ψ U (¬ϕ ∧ ¬ψ)

)
∈ SUFLG is translated to a

NDETG automaton. Therefore, the translations and the definitions of the classes should
be extended by cases for the U operator. For other operators defined as syntactic sugar,
the situation may be similar. Therefore, all operators defined as syntactic sugar of FL
should be investigated in further work. Then, the translations and the definitions of
the classes should be extended by cases for operators defined as syntactic sugar. As
shown by the example of the U operator, this is important for practice.

This work does not consider SEREs. In general, FL with SEREs cannot be translated
to LTL. Therefore, the approach to translate subsets of FL to LTL and further to ω-
automata, cannot handle SEREs. However, it is well known how to translate regular
expressions to finite state automata [3, 7, 10, 33, 55]. Therefore, a direction for future
work is to translate FL with SEREs directly to ω-automata.

Another interesting question for future work is how to handle finite inputs. In [46], a
variant of LTL for finite words is introduced. This variant of LTL is translated to a kind
of finite automata on finite words. It should be investigated whether this approach
can be used to handle SUFL on finite PSL-paths.

55

Bibliography

[1] Accellera. Property specification language reference manual, version 1.0.
http://www.haifa.il.ibm.com/projects/verification/sugar, January 2003.

[2] Accellera. Property specification language reference manual, version 1.1.
http://www.eda.org, June 2004.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princiles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[4] ANSI/IEEE Std 1076-1987. IEEE Standard VHDL Language Reference Manual.
New York, USA, March 1987.

[5] R. Armoni, D. Bustan, O. Kupferman, and M.Y. Vardi. Resets vs. aborts in linear
temporal logic. In H. Garavel and J. Hatcliff, editors, Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume 2619
of LNCS, pages 65–80, Warsaw, Poland, 2003. Springer.

[6] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic Sugar. In Conference on Computer Aided Verification (CAV),
volume 2102 of LNCS, pages 363–367, Paris, France, 2001. Springer.

[7] G. Berry and R. Sethi. From regular expressions to deterministic automata. Theor.
Comput. Sci., 48(1):117–126, 1986.

[8] C. Berthet, O. Coudert, and J.C. Madre. New ideas on symbolic manipulations
of finite state machines. In Conference on Computer Aided Design (ICCD), pages
224–227. IEEE, 1990.

[9] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[10] J.A. Brzozowski. Derivates of regular expression. Journal of the ACM, 11:481–494,
1964.

[11] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequential circuit verifi-
cation using symbolic model checking. In Design Automation Conference (DAC),
pages 46–51, Orlando, Florida, USA, 1990. IEEE.

I

Bibliography

[12] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In Symposium on Logic in Computer
Science (LICS), pages 1–33, Washington, D.C., June 1990. IEEE Computer So-
ciety.

[13] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170, June 1992.

[14] J.R. Büchi. On a decision method in restricted second order arithmetic. In
E. Nagel, editor, International Congress on Logic, Methodology and Philosophy of
Science, pages 1–12, Stanford, CA, 1960. Stanford University Press.

[15] J.R. Büchi. Weak second order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

[16] K.-H. Chang, W.-T. Tu, Y.-J. Yeh, and S.-Y. Kuo. A temporal assertion extension
to Verilog. In International Symposium on Automated Technology for Verification
and Analysis (ATVA), volume 3299 of LNCS, pages 499–504. Springer, 2004.

[17] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[18] K. Claessen and J. Mårtensson. An operational semantics for weak PSL. In A.J.
Hu and A.K. Martin, editors, Conference on Formal Methods in Computer-Aided
Design (FMCAD), volume 3312 of LNCS, pages 337–351, Austin, Texas, USA,
2004. Springer.

[19] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems (TOPLAS), 8(2):244–263, April 1986.

[20] M. Daniele, F. Giunchiglia, and M.Y. Vardi. Improved automata generation for
linear temporal logic. In N. Halbwachs and D.A. Peled, editors, Conference
on Computer Aided Verification (CAV), volume 1633 of LNCS, pages 249–260,
Trento, Italy, 1999. Springer.

[21] E.A. Emerson and E.M. Clarke. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

[22] E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
strikes back. Science of Computer Programming, 8:275–306, 1987.

[23] D.M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Symposium on Principles of Programming Languages (POPL), pages
163–173, New York, 1980. ACM.

II

Bibliography

[24] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Conference
on Computer Aided Verification (CAV), volume 2102 of LNCS, pages 53–65, Paris,
France, 2001. Springer.

[25] R. Gerth, D.A. Peled, M.Y. Vardi, and P.L. Wolper. Simple on-the-fly auto-
matic verification of linear temporal logic. In Protocol Specification, Testing, and
Verification (PSTV), Warsaw, June 1995. North Holland.

[26] Mike Gordon. Psl semantics in higher order logic. In Workshop on Designing
Correct Circuits (DCC), 2004.

[27] M.J.C. Gordon. HOL: A machine oriented formulation of higher order logic.
Technical Report 68, Computer Laboratory, University of Cambridge, May 1985.

[28] M.J.C. Gordon, J. Hurd, and K. Slind. Executing the formal semantics of the
Accellera property specification language by mechanised theorem proving. In
D. Geist and E. Tronci, editors, Conference on Correct Hardware Design and Ver-
ification Methods (CHARME), volume 2860 of LNCS, pages 200–215, L’Aquila,
Italy, 2003. Springer.

[29] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[30] M.J.C. Gordon, R. Milner, and C.P. Wadsworth. A Mechanized Logic of Compu-
tation, volume 78 of LNCS. Springer, New York, 1979.

[31] J. Havlicek, D. Fisman, and C. Eisner. Basic results on the semantics of Accellera
PSL 1.1 foundation language. Technical Report 2004.02, Accellera, 2004.

[32] J.G. Henriksen, J.L. Jensen, M.E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In E. Brinksma,
R. Cleaveland, K.G. Larsen, T. Margaria, and B. Steffen, editors, Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 1019 of LNCS, pages 89–110, Aarhus, Denmark, 1995. Springer.

[33] S.C. Kleene. Representation of events in nerve nets and finite automata. In
C. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton
University Press, Princeton, NJ, 1956.

[34] L. Lamport. The temporal logic of actions. Technical Report 79, Digital Equip-
ment Cooperation, 1991.

[35] L.H. Landweber. Decision problems for ω-automata. Mathematical Systems The-
ory, 3(4):376–384, 1969.

[36] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Symposium on
Principles of Distributed Computing, pages 377–408, 1990.

III

Bibliography

[37] Z. Manna and A. Pnueli. The temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

[38] N. Markey. Temporal logic with past is exponentially more succinct. Bulletin of
the European Association for Theoretical Computer Science, 79:122–128, 2003.

[39] R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9(5):521–530, 1966.

[40] R. McNaughton and S. Papert. Counter-free Automata. MIT, 1971.

[41] P. Moorby. History of Verilog. IEEE Design and Test of Computers, pages 62–63,
September 1992.

[42] A. Pnueli. The temporal logic of programs. In Symposium on Foundations of Com-
puter Science (FOCS), volume 18, pages 46–57, New York, 1977. IEEE Computer
Society.

[43] M.O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transaction of the American Mathematical Society, 141:1–35, 1969.

[44] M.O. Rabin. Automata on infinite objects and Church’s problem. In Regional
Conference Series in Mathematics, volume 13. American Mathematical Society
(AMS), 1972.

[45] R. Reetz, K. Schneider, and T. Kropf. Formal specification in VHDL for formal
hardware verification. In Design, Automation and Test in Europe (DATE). IEEE
Computer Society, February 1998.

[46] J. Ruf, D.W. Hoffmann, T. Kropf, and W. Rosenstiel. Simulation-guided property
checking based on multi-valued AR-automata. In Design, Automation and Test
in Europe (DATE), Munich, Germany, 2001. IEEE Computer Society.

[47] K. Schneider. Ein einheitlicher Ansatz zur Unterstützung von Abstraktionsmech-
anismen der Hardwareverifikation, volume 116 of DISKI (Dissertationen zur
Künstlichen Intelligenz). Infix, Sankt Augustin, 1996. ISBN 3-89601-116-2.

[48] K. Schneider. Improving automata generation for linear temporal logic by consid-
ering the automata hierarchy. In Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), volume 2250 of LNAI, pages 39–54, Havanna, Cuba, 2001.
Springer.

[49] K. Schneider. Verification of Reactive Systems – Formal Methods and Algorithms.
Texts in Theoretical Computer Science (EATCS Series). Springer, 2003.

[50] K. Schneider and D.W. Hoffmann. A HOL conversion for translating linear time
temporal logic to omega-automata. In Y. Bertot, G. Dowek, A. Hirschowitz,

IV

Bibliography

C. Paulin, and L. Théry, editors, Higher Order Logic Theorem Proving and its
Applications (TPHOL), volume 1690 of LNCS, pages 255–272, Nice, France, 1999.
Springer.

[51] T. Schuele and K. Schneider. Bounded model checking of infinite state systems:
Exploiting the automata hierarchy. In Formal Methods and Models for Codesign
(MEMOCODE), pages 17–26, San Diego, CA, June 2004. IEEE.

[52] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In E.A.
Emerson and A.P. Sistla, editors, Conference on Computer Aided Verification
(CAV), volume 1855 of LNCS, pages 248–263, Chicago, IL, USA, 2000. Springer.

[53] R.S. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control, 54(1-2):121–141, 1982.

[54] W. Thomas. Automata on Infinite Objects, volume B, chapter Automata on
Infinite Objects, pages 133–191. Elsevier, 1990.

[55] Ken Thompson. Programming techniques: Regular expression search algorithm.
Commun. ACM, 11(6):419–422, 1968.

[56] IEEE Standard VHDL Language Reference Manual. New York, USA, June 1993.
ANSI/IEEE Std 1076-1993.

[57] J. von Wright. Mechanizing the temporal logic of actions in HOL. In M. Archer,
J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, Higher Order Logic Theorem
Proving and its Applications (TPHOL), pages 155–159, Davis, California, August
1991. IEEE Computer Society.

[58] K. Wagner. On ω-regular sets. Information and Control, 43:123–177, 1979.

[59] P.L. Wolper. Temporal logic can be more expressive. In Symposium on Foun-
dations of Computer Science (FOCS), pages 340–348, New York, 1981. IEEE
Computer Society.

[60] P.L. Wolper. Temporal logic can be more expressive. Information and Control,
56(1-2):72–99, 1983.

[61] P.L. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computations
paths. In Symposium on Foundations of Computer Science (FOCS), pages 185–
194, New York, 1983. IEEE Computer Society.

V

	Introduction
	Motivation
	Main Objective
	Document Structure

	Basics
	Linear Temporal Logic (LTL)
	Reset Linear Temporal Logic (RLTL)
	Accellera's Property Specification Language (PSL)
	Omega-Automata
	Finite State Automata on Finite Words
	Omega-Automata
	Symbolic Representation
	Automaton Formulas
	Syntactic Sugar
	Flat Automaton Formulas
	Classes of Omega-Automata

	Translation
	From PSL to RLTL
	From RLTL to LTL
	From LTL to Omega-Automata
	Basic Translation
	Improved Translation

	Overall Translation

	Temporal Logic Hierarchy for PSL
	A Hierarchy of LTL
	A Hierarchy of RLTL
	A Hierarchy of PSL

	The HOL System
	Deep Embedding of PSL
	Deep Embedding of LTL and RLTL
	Deep Embedding of Omega-Automata
	Translations of LTL to Omega-Automata
	Translation of PSL to RLTL

	Conclusion and Future Work

