
Relationship between Alternating
ω-Automata and Symbolically Represented

Nondeterministic ω-Automata

Thomas Tuerk and Klaus Schneider

Internal Report

No. 340/05

November 2005

Reactive Systems Group

Department of Computer Science, University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

{tuerk, klaus.schneider}@informatik.uni-kl.de
http://rsg.informatik.uni-kl.de

Abstract

There is a well known relationship between alternating automata on finite words
and symbolically represented nondeterministic automata on finite words. This re-
lationship is of practical relevance because it allows to combine the advantages of
alternating and symbolically represented nondeterministic automata on finite words.
However, for infinite words the situation is unclear. Therefore, this work investigates
the relationship between alternating ω-automata and symbolically represented non-
deterministic ω-automata. Thereby, we identify classes of alternating ω-automata
that are as expressive as DETG, DETF and DETPrefix automata, respectively. More-
over, some very simple symbolic nondeterminisation procedures are developed for
the classes corresponding to DETG and DETF.

1

http://rsg.informatik.uni-kl.de

Contents

1 Motivation 3

2 Basics 4

2.1 Propositional Logic . 4
2.2 Finite State Automata on Finite Words 5
2.3 ω-Automata . 9
2.4 Classes of ω-Automata . 11
2.5 Boolean Operations on Alternating Automata 12
2.6 Symbolic Representation . 15

2.6.1 Automaton Formulas . 19
2.6.2 Flat Automaton Formulas . 22
2.6.3 Classes of Flat Automaton Formulas 22

3 Comparison of Alternating ω-Automata and Automaton Formulas 24

4 Consequences 29

5 Conclusions and Future Work 34

2

1 Motivation

Classically, finite state automata on finite [10] and infinite [6] words allow an existential
choice. Those automata are called nondeterministic. In addition, universal automata
that allow an universal choice and deterministic automata that do not allow any choice
are used, too. A natural extension of these kinds of automata are alternating automata
that allow both universal and existential choice [8].

Alternating automata are interesting, because they are exponentially more succinct
than nondeterministic automata [8]. Moreover, in contrast to nondeterministic automata
it is easy to complement alternating automata [14, 22].

For finite words, good data structures and algorithms for alternating automata are
known. Therefore, alternating automata on finite words are used in practice. How-
ever, for infinite words, the situation is different: usually symbolic representations of
nondeterministic automata are used.

Similar to alternating automata these symbolic representations are exponentially more
succinct than nondeterministic automata. Moreover, there are efficient implementations
using BDDs. However, these representations have the same limitations as nondeter-
ministic automata. For example, it is not easily possible to complement a symbolically
represented automaton. On the other hand, it is not easily possible to transfer the
efficient implementations for nondeterministic automata to alternating automata.

Interestingly, alternating automata on finite words are strongly connected to symboli-
cally represented nondeterministic automata on infinite words. In fact, one can consider
alternating automata on finite words as a special normal form of symbolically represented
nondeterministic automata on finite words. Thus, for finite words one can combine the
benefits of alternating and symbolically represented nondeterministic automata.

For infinite words, the situation is unclear. Therefore, in this paper the relationship
between symbolically represented nondeterministic and alternating automata on infinite
words will be investigated. Especially translations of alternating automata to symboli-
cally represented nondeterministic automata are interesting. To avoid errors, the most
important lemmata are formally proved using the interactive theorem prover HOL. How-
ever, the HOL theories consider only alternating automata on infinite words, while this
paper considers finite words, too. The HOL libraries containing these proofs can be
found at http://rsg.informatik.uni-kl.de/tools.

There are many slightly different definitions of alternating automata and of symboli-
cally represented nondeterministic automata. This is especially true in the case of infinite
words. Moreover, many definitions which are used in the context of nondeterministic
automata mean something slightly different in the context of alternating automata and
vice versa. Therefore, we have to define alternating, nondeterministic and symbolically
represented nondeterministic automata carefully before we can start. Then the situation
for finite words is presented.

3

http://rsg.informatik.uni-kl.de/tools

2 Basics

The very basic formalism we will use is propositional logic. Although it is very well
standardised it is shortly defined in the following for reasons of completeness:

2.1 Propositional Logic

Definition 2.1 (Propositional Logic)
Let V be a set of variables. Then, the set of propositional formulas over V (short B(V))
is recursively given as follows:

• each variable v ∈ V is a propositional formula

• ¬ϕ ∈ B(V), if ϕ ∈ B(V)

• ϕ ∧ ψ ∈ B(V), if ϕ,ψ ∈ B(V)

An assignment s over V is a subset of V. The semantics of a propositional formula with
respect to an assignment s is given by the relation |=prop that is defined as follows:

• s |=prop v iff v ∈ s

• s |=prop ¬ϕ iff s 6|=prop ϕ

• s |=prop ϕ ∧ ψ iff s |=prop ϕ and s |=prop ψ

If s |=prop ϕ holds, then the assignment s is said to fulfil (or to model) the propositional
formula ϕ. Therefore, s is called a model of ϕ. A model s of a formula ϕ is called
a minimal model (short s |=min

prop ϕ) iff all proper subsets of s do not model ϕ, i. e.

s |=min
prop ϕ ⇐⇒ s |=prop ϕ ∧ ∀s′. s′ ⊂ s → s′ 6|=prop ϕ. Two propositional formulas

ϕ1 and ϕ2 are called equivalent (short ϕ1 ≡ ϕ2) iff for all assignments s the relation
s |= ϕ1 ⇔ s |= ϕ2 holds.

For reasons of simplicity, the operator ∧ is often omitted. For example, x1x2 means
x1 ∧ x2. Additionally, further propositional operators like ∨,→,↔ etc. are added as
syntactic sugar, i. e. they are added as shorthands for formulas not containing these
operators:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ := ¬ϕ ∨ ψ

• ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

• true := v ∨ ¬v for an arbitrary variable v ∈ V

• false := ¬true

4

Definition 2.2 (Positive propositional formulas)
A propositional formula ϕ ∈ B(V) is called positive, iff for all s ⊆ V the following
equivalence holds:

s |=prop ϕ⇐⇒ ∀s′. s ⊆ s′ ⊆ V → s′ |=prop ϕ

The set of all positive propositional formulas is denoted over V is denoted by B+(V).

The last definition defines positive propositional formulas by their semantics. Often
they are defined by the syntax. Obviously, for every positive propositional formula
ϕ ∈ B+(V) an equivalent formula ϕ′ of the form

ϕ′ = (ϕ1,1 ∧ ϕ1,2 ∧ . . . ∧ ϕ1,n1
) ∨ . . . ∨ (ϕm,1 ∧ . . . ∧ ϕm,nm

)

with ϕi,j ∈ V exists. On the other hand, every formula of this normal form is a posi-
tive propositional formula. Therefore, this normal form can be used to define positive
propositional formulas syntactically.

2.2 Finite State Automata on Finite Words

In this section, we introduce alternating automata on finite words. Therefore, words,
semiautomata, runs and paths are introduced first. Then these definitions are used to
define automata on finite words. In the following section these concepts are used to
define alternating automata on infinite words.

Definition 2.3 (Words)
A finite word v over a set Σ of length |v| = n + 1 is a function v : {0, . . . n} → Σ. An
infinite word v over Σ is a function v : N → Σ. Its length is denoted by |v| = ∞. The set
Σ is called alphabet. The elements of Σ are called letters. The finite word of length 0
is called the empty word (denoted by ε). For reasons of simplicity, v(i) is often denoted
by vi for i ∈ N. Using this notation, words are often given in the form v0v1v2 . . . vn or
v0v1 The set of all finite words over Σ is denoted by Σ∗, and the set of all infinite
words over Σ is denoted by Σω.

Counting of letters starts with zero, i. e. vi−1 refers to the i-th letter of v. Furthermore,
vi.. denotes the suffix of v starting at position i, i. e. vi.. = vivi+1 . . . for all i < |v|. The
finite word vivi+1 . . . vj is denoted by vi..j. Notice that in case j < i the expression vi..j

evaluates to the empty word ε. For two words v1, v2, we use v1v2 for the concatenation
of v1 and v2. Finally, we use lω for the infinite word v with vj = l for all j.

Definition 2.4 (Semiautomata)
A semiautomaton A = (Σ,Q,I,R) is a tuple where Q is the finite set of states, Σ a
finite alphabet, I ∈ B+(Q) is the initial condition and R : Q × Σ → B+(Q) is the
transition function of A.

5

Definition 2.5 ((Minimal) Run of a Word)
Given a semiautomaton A = (Σ,Q,I,R) and a finite or infinite word α over Σ. Then,
each directed graph G = (V,E) with

• V ⊆ Q× {i | i ∈ N ∧ i ≤ |α|}

• E ⊆
⋃
l>0

(Q× {l}) × (Q× {l + 1})

• for every (q, l + 1) ∈ V exists a q′ ∈ Q, such that
(
(q′, l), (q, l + 1)

)
∈ E.

• {q | (q, 0) ∈ V } is a (minimal) model of I

• for all (q, l) ∈ V with l < |α| the set {q′ |
(
(q, l), (q′, l + 1)

)
∈ E} is a (minimal)

model of R(q, αl)

is called a (minimal) run of α through A. The set of all runs of a word α through a
semiautomaton A is denoted by RUNA(α), the set of all minimal runs is denoted by
RUNMIN

A (α). Obviously, every minimal run is a run.

Definition 2.6 (Path trough a Run)
Let r = (V,E) be a run through a semiautomaton A = (Σ,Q,I,R). If V = ∅ holds,
then ε is the unique path through r. Otherwise, each finite or infinite word p over Q
with

• |p| > 0

• (p0, 0) ∈ V

•
(
(pi, i), (pi+1, i+ 1)

)
∈ E for all i < |p| − 1

• ∀q′.
(
(p|p|−1, |p| − 1), (q′, |p|)

)
/∈ E if p is finite

is called a path through r.

Definition 2.7 (Subrun)
A run r is called a subrun of a run r′ iff every path through r is also a path through r′.

Definition 2.8 (Finite Automata on Finite Words)
A finite automaton on finite words is a tuple A = (B,F) where B = (Σ,Q,I,R) is a
semiautomaton and F ⊆ Q a set of final states. A accepts a finite word α ∈ Σ∗ (denoted
by α |= A) iff a run β ∈ RUNA(α) exists such that every path γ of length |α|+1 through
β ends in a final state, i. e. γ|α| ∈ F holds. The set of all words that are accepted by A –
i. e. the language recognised by A – is denoted by L(A). A finite automaton over finite
words A is often denoted by (Σ,Q,I,R,F).

6

Lemma 2.9 For every run r of a word α through a semi-automaton A, a minimal run
r′ of α through A exists, such that r′ is a subrun of r1.

The semantics of finite automata are defined with respect to arbitrary runs. However,
it is sufficient to consider only minimal runs.

Lemma 2.10 Let A = (B,F) be a finite automaton with B = (Σ,Q,I,R). Then A

accepts a finite word α ∈ Σ∗ iff a minimal run β ∈ RUNA(α) exists such that every path
γ of length |α| + 1 through β ends in a final state.

Proof In case such a minimal run β exists, obviously α |= A holds, because β is a run.
On the other hand, assume α |= A. Then, a run β of α through B exists such that
every path of length |α| + 1 through β ends in a final state. According to Lemma 2.9 a
subrun β′ of β exists such that β′ is a minimal run of α through B. Every path through
this minimal run β′ of length |α| + 1 is also a path through β. Thus, it ends in a final
state. ⊓⊔

Example 2.11 (Finite Alternating Automata on Finite Words) Consider the fi-
nite automaton on finite words A = (B,F) with B = (Σ,Q,I,R), Σ = {a, b}, Q =
{q0, q1, q2}, I = q0 ∨ q2, F = {q1} and R given by

a b

q0 q0 ∨ q1 ∨ q2 q1q2
q1 false q0q2
q2 q0 ∨ q1 true

Then runs r1, r2 and r3 shown in Figure 1 are runs of the word bbaa through B. The
runs r1 and r3 are minimal runs, r2 is not minimal. Moreover, r1 is a proper subrun of
r2. There are 3 paths through r1: q0q2, q0q1q2q0q1 and q0q1q0q0q1. As all paths through
r1 of length 5 end in q1, the input bbaa is accepted by A. However, there are paths
of length 5 through r3 that do not end in q1. For example, q0q1q2q0q0 is such a path.
Notice that for inputs that start with ba there are no runs through B.

Definition 2.12 (Classes of automata)
A general semiautomaton A = (Σ,Q,I,R) as defined above is called alternating. For
some input an alternating semiautomaton may have arbitrary many runs and every run
may contain arbitrary many paths. According to Lemma 2.10 the semantics of finite
automata check that there exists a minimal run such that for all paths through this run
some property holds. In this sense, alternating semiautomata provide an existential and
an universal choice.

Iff I and R(q, i) are of the form q1∨. . .∨qn the semiautomaton A is called nondetermin-
istic. Notice, that the case n = 0, i. e. false is allowed. For some input a nondeterministic

1theorem ALTERNATING RUN ALTERNATING MIN RUN EXISTS in theory Alternating Omega Automata

7

b

b

a

a

q0

q1 q2

q0 q2

q0

q1

r1

q0

q1 q2

q0 q2

q0

q1

q2

r2

q0

q1 q2

q0 q2

q2 q0

q0

r3

Figure 1: Example 2.11

semiautomaton may have arbitrary many minimal runs, but every minimal run contains
exactly one path. Therefore, nondeterministic semiautomata provide only existential
choice.

On the other hand, A is called universal iff I and R(q, i) are of the form q1 ∧ . . . ∧
qn. Notice, that the case n = 0, i. e. true is allowed. For any input, an universal
semiautomaton has exactly one minimal run, but this run may contain arbitrary many
paths. Thus, universal semiautomata provide universal choice.

Iff I 6≡ false and R(q, i) 6≡ false hold for all q ∈ Q and all i ∈ Σ, A is called existentially
total. Iff I 6≡ true and R(q, i) 6≡ true hold for all q ∈ Q and all i ∈ Σ, A is called
universally total. If A is existentially and universally total it is called total. For any
input, an existentially total automaton has at least one run and therefore at least one
minimal run. Every path through a run of α through an universally total automaton is of
length |α|+1 if α is finite or of infinite length if α is infinite. Notice, that nondeterministic
automata are universally total while universal automata are existentially total.

Iff A is nondeterministic and universal, it is called deterministic. For every input a
deterministic semiautomaton has exactly one minimal run and this run contains exactly
one path. Therefore, deterministic semiautomata provide no choice. For all q ∈ Q and
all i ∈ Σ the transition function R(q, i) of an deterministic semiautomaton is of the
form q. The initial condition I is of the same form. Thus, following this definition
all deterministic semiautomata are total. (Notice, that this is a difference to some
definitions in literature [19]. There, nondeterministic semiautomata, whose transition
function R(q, i) is for all q ∈ Q and all i ∈ Σ of the form q or false are called deterministic.
However, in most cases only total, deterministic automata are considered, which are
deterministic automata in the sense of the definitions above.)

An automaton is called alternating, nondeterministic, universal, total or deterministic
iff the corresponding semiautomaton is alternating, nondeterministic, universal, total or
deterministic, respectively.

8

2.3 ω-Automata

ω-automata are finite automata on infinite words. Similarly to the case of finite words, a
set of accepting states is often used to define the acceptance condition. However, in the
case of infinite words, there are several reasonable definitions of acceptance conditions.
For example, an infinite word α could be accepted by an automaton A iff there exists a
run of α through A that

• never leaves the set of accepting states

• visits the set of accepting states at least once

• from some point of time never leaves the set of accepting states

• visits the set of accepting states infinitely often.

The last acceptance condition is the one used by Büchi. Therefore, the resulting ω-
automata are called Büchi automata. However, the other acceptance conditions and a
lot of similar ones are used in practice, too. They lead to different classes of ω-automata
with different expressive power.

Definition 2.13 (Finite Automata on Infinite Words)
A finite automaton on infinite words is a tuple A = (B,AC) where B = (Σ,Q,I,R)
is a semiautomaton and AC an acceptance component. There are different kinds of
acceptance components, which lead to automata with different expressive power. A

accepts an infinite word α ∈ Σω (short α |= A) iff a run β ∈ RUNA(α) exists such
that every infinite path γ through β is accepted by the acceptance component (short
γ |=AC AC). The set of all words that are accepted by A – i. e. the language recognised
by A – is denoted by L(A).

Similar to the finite case, it is sufficient to consider only minimal runs:

Lemma 2.14 Let A = (B,AC) be an alternating automaton on infinite words with
B = (Σ,Q,I,R). Then A accepts a infinite word α ∈ Σω iff a minimal run β ∈ RUNA(α)
exists such that every infinite path γ through β is accepted by AC2.

Proof In case such a minimal run β exists, obviously α |= A holds, because β is a run.
On the other hand, assume α |= A hold. Then a run β of α through B exists such that
every infinite path through β is accepted by AC. According to Lemma 2.9 a subrun β′

of β exists such that β′ is a minimal run of α through B. Every path p through this
minimal run β′ is also a path through β. Thus, p |=AC AC holds. ⊓⊔

2theorem ALT SEM ALT SEM MIN EQUIV in theory Alternating Omega Automata

9

Definition 2.15 (Acceptance Components)
There are a lot different acceptance components. Therefore, a logic for acceptance com-
ponents is defined in the following that is able to express the most common acceptance
components:

Let Q be a set of states. Then, the set acQ of all acceptance components over Q is
given by:

• F ∈ acQ if F ⊆ Q

• B(F) ∈ acQ if F ⊆ Q

• WB(F) ∈ acQ if F ⊆ Q

• P(p) ∈ acQ if p : Q → N

• WP(p) ∈ acQ if p : Q → N

• ¬a ∈ acQ if a ∈ acQ

• a1 ∧ a2 ∈ acQ if a1, a2 ∈ acQ

• G a ∈ acQ if a ∈ acQ

To define the semantics of acceptance components, two definitions are needed: For some
path γ over an alphabet V let occ(γ) denote the set {γi | i ∈ N}, i. e. the set of all states
that occur on γ. Further, let inf(γ) denote the set of all states that occur infinitely often
in γ, i. e. the set {s | {i | γi = s} is infinite}. Using these definitions, the semantics of
acceptance components are for a path γ given by:

• γ |=AC F iff γ0 ∈ F

• γ |=AC B(F) iff inf(γ) ∩ F 6= ∅

• γ |=AC WB(F) iff occ(γ) ∩ F 6= ∅

• γ |=AC P(p) iff min{p(q) | q ∈ inf(γ)} is even

• γ |=AC WP(p) iff min{p(q) | q ∈ occ(γ)} is even

• γ |=AC ¬a iff not γ |=AC a

• γ |=AC a1 ∧ a2 iff γ |=AC a1 and γ |=AC a2

• γ |=AC G a iff γi.. |=AC a holds for all i ∈ N

Two acceptance components a1, a2 ∈ acQ are said to be equivalent (short a1 ≡ a2) iff
for all paths γ over Q the proposition γ |=AC a1 ⇔ γ |=AC a2 holds.

Additionally, some syntactic sugar is used:

• false := ∅

10

• true := ¬false

• a1 ∨ a2 := ¬((¬a1) ∧ (¬a2))

• F a := ¬G¬a

• co − B(F) := ¬B(F)

• co − WB(F) := ¬WB(F)

There are two groups of acceptance components. The acceptance components B(F)
(Büchi condition), co − B(F) (co-Büchi condition), WB(F) (weak Büchi condition),
co − WB(F) (weak co-Büchi condition), P(p) (parity condition) and WP(p) (weak parity
condition) are usually used in the context of alternating automata. When talking about
symbolic representations of nondeterministic ω-automata, the remaining acceptance con-
ditions are more common. Notice, that some of the defined acceptance conditions are just
introduced to pay respect to these two worlds. For example, the following equivalences
hold:

• ¬¬a ≡Q a

• ¬F ≡Q Q \ F

• B(F) ≡Q GFF

• WB(F) ≡Q FF

• co − B(F) ≡Q FG¬F

• FGF ≡Q co − B(¬F)

• co − WB(F) ≡Q G¬F

• GF ≡Q co − WB(¬F)

2.4 Classes of ω-Automata

Definition 2.16 (Classes of Acceptance Components)
Let Φi,Ψi be subsets of Q and p : Q → N. Then, the following classes of acceptance
components over Q are defined [13]:

11

True condition: true

False condition: false

Initial condition: Φ0

Safety / weak co-Büchi condition: GΦ0

Liveness / weak Büchi condition: FΦ0

Büchi condition [6, 7]: GFΦ0

Persistence / co-Büchi condition [13]: FGΦ0

Rabin condition [16]:
f∨

j=0

(
GFΦ0 ∧ FGΨ0

)

Streett condition [20]:
f∧

j=0

(
FGΦ0 ∨ GFΨ0

)

Prefix condition (1. kind) [13, 17]:
f∧

j=0

(
GΦ0 ∨ FΨ0

)

Prefix condition (2. kind) [13, 17]:
f∨

j=0

(
FΦ0 ∨ GΨ0

)

Parity condition: P(p)
Weak parity condition: WP(p)

Definition 2.17 (Classes of ω-Automata)
The classes of ω-automata are defined by the transition relation of the corresponding
semiautomaton, i. e. alternating, nondeterministic, etc., and by the class of the accep-
tance component. They are denoted by expressions of the form XZ

Y . X denotes the
class of transition relation: alternating (A), nondeterministic (NDET), universal (U) or
deterministic (DET). Y is used to denote the class of the acceptance component: true
(True), false (False), initial (Initial), safety (G), liveness (F), Büchi (GF), persistence (FG),
Rabin (Rabin), Streett (Streett), prefix (1st kind) (Prefix1), prefix (2nd kind) (Prefix2),
prefix (1st and 2nd kind) (Prefix), parity (P) or weak parity (WP). Finally, Z is used
to denote special restrictions of the class. For example, Utotal

GF denotes the class of total,
universal, Büchi-automata.

These classes form a hierarchy in terms of expressiveness. To explain this hierarchy
some definitions are needed before. For a class C let LC denote the set of all languages
that are recognisable by automata in C, i. e. LC := {L(A) | A ∈ C}. A class C1 is strictly
more expressive than a class C2 (denoted by C2 � C1) iff LC2

⊂ LC1
holds. Further, C1 is

as expressive as C2 (denoted by C1 ≈ C2) iff LC1
= LC2

holds. C1 and C2 are dual (denoted
by C1 ‖ C2) iff L ∈ LC1

⇔ (Σω \ L) ∈ LC2
holds for all input sets Σ and all languages

L ⊆ Σω. Notice, that C1 ‖ C2 and C2 ‖ C3 imply C1 ≈ C3. Using these notations an
important part of the hierarchy of ω-automata is shown in Figure 2 [12, 19].

2.5 Boolean Operations on Alternating Automata

One advantage of alternating automata is that boolean operations are very easy to
perform. For nondeterministic and universal automata it is also easy to compute dis-

12

NDETtrue

Utotal
G

UF

Ufalse

NDETG

DETG

DETF

NDETtotal
F

≈
≈

≈
≈

≈
≈

DETPrefix1

DETPrefix2

DETweak parity

�

�

≈
≈

Uweak parity

UG

AG

DETGF

DETFG

NDETF

NDETPrefix1

NDETPrefix2

NDETFG

AF

NDETweak parity

≈
≈

≈
≈

≈
≈

≈
≈

≈

�

�

NDETGF

�

�

NDETRabin

NDETStreett

DETRabin

DETStreett

Aweak parity

DETparity

≈

≈

≈
≈

≈
≈

Figure 2: Hierarchy of ω-Automata [12, 19]

13

junctions and conjunctions of automata. However, the negation of nondeterministic and
universal automata is difficult in general. Although it is simple to negate alternating
automata, some definitions are needed to present the negation:

negVars(v) := ¬v
negVars(¬ϕ) := ¬negVars(ϕ)

negVars(ϕ1 ∧ ϕ2) := negVars(ϕ1) ∧ negVars(ϕ2)

ϕ̃ := ¬negVars(ϕ)

R̃(q, s) := R̃(q, s)

p̃(q) := p(q) + 1

Using these definitions one can state the following lemmata [15]:

Lemma 2.18 Let A = (Σ,Q,I,R,F) be an alternating automaton on finite words that
accepts a language L. Then Ã := (Σ,Q, Ĩ, R̃,Q \ F) accepts Σ∗ \ L.

Lemma 2.19 Let A = (Σ,Q,I,R,P(p)) be an alternating automaton that accepts a
language L. Then Ã := (Σ,Q, Ĩ , R̃,P(p̃)) accepts Σω \ L.

Ã is called the dual of A. Therefore, the construction described in Lemma 2.18 and
Lemma 2.19 is called dualisation. The proof of these lemmata is quite complicated and
needs some concepts such as logical games and strategies. Therefore, it is omitted here.

Disjunction and conjunctions of alternating automata are also very easy to compute.
Essentially the initial conditions have to be combined:

Lemma 2.20 Let A1 = (Σ,Q1,I1,R1,F1) and A2 = (Σ,Q2,I2,R2,F2) be two alter-
nating automata on finite words with Q1 ∩ Q2 = ∅. Further, let A for ⊙ ∈ {∨,∧} be
defined by

A := (Σ,Q1 ∪ Q∈,I1 ⊙ I2,R,F1 ∪ F2)

with R(q, i) := R1(q, i) if q ∈ Q1 and R(q, i) := R2(q, i) otherwise. Then for all inputs
w ∈ Σ∗ the relation w |= A ⇔

(
w |= A1 ⊙ w |= A2

)
holds.

Lemma 2.21 Let A1 = (Σ,Q1,I1,R1,AC1) and A2 = (Σ,Q2,I2,R2,AC2) be two al-
ternating automata on infinite words with Q1 ∩ Q2 = ∅. Further, let A for ⊙ ∈ {∨,∧}
be defined by

A := (Σ,Q1 ∪Q∈,I1 ⊙ I2,R,AC)

with the transition relation

R(q, i) :=

{
R1(q, i) ifq ∈ Q1

R2(q, i) otherwise

14

and some acceptance condition AC such that

p ∈ Qω
1 =⇒ p |=AC AC ⇔ p |=AC AC1

p ∈ Qω
2 =⇒ p |=AC AC ⇔ p |=AC AC2

holds. For

(p1 ∪ p2)(q) :=

{
p1(q) if q ∈ Q1

p2(q) otherwise
,

some possible constructions of such an combined acceptance condition are shown in the
following table:

AC1 AC2 AC
true true true

false false false

Φ1 Φ2 Φ1 ∪ Φ2

GΦ1 GΦ2 G(Φ1 ∪ Φ2)
FΦ1 FΦ2 F(Φ1 ∪ Φ2)

GFΦ1 GFΦ2 GF(Φ1 ∪ Φ2)
FGΦ1 FGΦ2 FG(Φ1 ∪ Φ2)
P(p1) P(p2) P(p1 ∪ p2)

WP(p1) WP(p2) WP(p1 ∪ p2)

Then for all inputs w ∈ Σω, the relation w |= A ⇔
(
w |= A1 ⊙ w |= A2

)
holds3.

2.6 Symbolic Representation

Although good model checking procedures for CTL were known [9], first implementations
of these procedures were not able to verify large systems, because no efficient data
structures were used. Verification tools were only able to handle systems with a thousand
states. A breakthrough was achieved by representing the systems with Boolean functions,
which are stored as binary decision diagrams (BDDs) [2]. The resulting symbolic model
checking procedures [1, 3, 4, 5] allow checking of systems with more than 1020 states. In
general, the symbolic representation of an nondeterministic automaton is exponentially
more succinct than the corresponding automaton.

To explain the symbolic representation of nondeterministic automata, nondetermin-
istic semiautomata are considered first: Let A = (Σ,Q,I,R) be a nondeterministic
semiautomaton. As the set Σ and the set of states Q are finite, they can be encoded
by a finite set of propositional variables. So, let Σ = P(VΣ) with VΣ = {i0, . . . , in} and
Q = P(VQ) with VQ = {q0, . . . , qm} hold. With these settings, a state of A is a subset
of VQ, and a letter of the input alphabet Σ is a subset of VΣ. Those subsets of a set
of propositional variables can be interpreted as assignments. Therefore, it is possible to
encode a set of those subsets S by a propositional formula ΦS that has the following
property: s ∈ S ⇔ s |=prop ΦS (see Example 2.24).

3theorem ALTERNATING AUTOMATA CONJUNCTION and theorem ALTERNATING AUTOMATA DISJUNCTION

in theory Alternating Omega Automata

15

Because we will translate between symbolic and explicit representations of automata,
some denotations are introduced: For some finite set S let VS denote a sufficient large
set of variables to encode S. Further let encS : S → P(VS) denote such an encoding.
The definition of encS is extended to words by the following definition: for all words
w over S let encS(w) denote the word v with |v| = |w| and vi = encS(wi) for all
i < |w|. Additionally, let EncS : P(S) → B(VS) denote an encoding of subsets of S by
propositional formulas, i. e. for all T ⊆ S and all m ⊆ VS the following holds: m |=prop

EncS(T) ⇐⇒ ∃ t ∈ T. encS(t) = m. For reasons of simplicity, let EncS(s1 ∨ . . . ∨ sn) be
defined as EncS({s1, . . . , sn}).

For nondeterministic semiautomata the initial condition I and all parts of the transi-
tion R(q, i) are of the form q1 ∨ . . . ∨ qn. Therefore, it is sufficient to encode these sets
{q1, . . . , qn} of states by a propositional formula over VQ. Let for example I = q1∨. . .∨qn
hold. Then ΦI := EncQ({q1, . . . qn}) is a symbolic representation of I. Using this set-
tings, Q |=min

prop I ⇐⇒ ∃q. (Q = {q}) ∧ encQ(q) |=prop ΦI holds. Thus, models of the
symbolic representation correspond to minimal models of the original initial condition.
According to Lemma 2.10 this is sufficient.

Thus, it is easily possible, to encode the initial condition I. Notice, that with n
propositional variables 2n states can be encoded. Moreover, small propositional formulas
can encode large sets. For example, if every state of the semiautomaton is an initial state,
the set of initial states I can be encoded by the propositional formula true.

It is much harder to encode the transition function R : Q× Σ → B+(Q) of alternat-
ing automata. However, for this work it is sufficient to consider only nondeterministic
automata. For nondeterministic automata, we are already able to encode R(q, i) for all
q, i. To encode the entire function, we have to be able to distinguish between the states
occuring as the input of the transition function and the states occuring in the result.
Therefore, for every state variable q ∈ VQ, a new state variable is introduced. These new
state variables are used to describe the states occuring in the result of Q. Thus, the new
state variable corresponding to a variable q ∈ VQ represents the value of the variable q
at the next point of time. Therefore, it is denoted by Xq following usual temporal logic
notations. Further let Xϕ denote the formula that results from replacing every variable
q in ϕ with Xq.

Using this denotations a transition function can for example be encoded by the fol-
lowing propositional formula :

ΦR :=
∨

q∈Q,s∈Σ

EncQ({q}) ∧ EncΣ({s}) ∧ XEncQ(R(q, s))

Again, the models of the symbolic representation correspond to minimal models of the
original transition function:

Q |=min
prop R(q, s) ⇐⇒

∃q′. (Q = {q′}) ∧ {Xq′′ | q′′ ∈ encQ(q′)} ∪ encQ(q) ∪ encΣ(s) |=prop ΦR

Altogether, a nondeterministic semiautomaton A = (Σ,Q,I,R) can be symbolically

16

represented by Asym = (VΣ,VQ,ΦI ,ΦR). To use this symbolic representation, it remains
to translate the concept of runs to the symbolic representation.

Definition 2.22 (Symbolic Runs)
Let Asym = (VΣ,VQ,ΦI ,ΦR) be a symbolically represented nondeterministic semiau-
tomaton and let w be a finite or infinite word over P(VΣ). Then, each word r over
P(VQ) with

• |r| = |w| + 1 if w is finite and r infinite otherwise

• r0 |=prop ΦI

• ∀n < |w|. rn ∪ wn ∪ {Xq | q ∈ rn+1} |=prop ΦR

is called a symbolic run of w through Asym. The set of all symbolic runs of a word w
through a symbolically represented nondeterministic semiautomaton Asym is denoted by
SymRUNAsym

(w).

Lemma 2.23 Let A = (Σ,Q,I,R) be a nondeterministic semiautomaton and let Asym =
(VΣ,VQ,ΦI ,ΦR) be its symbolic representation. Then for all inputs α ∈ Σ∗∪Σω and for
all words r ∈ Q∗∪Qω, the symbolic representation of r denoted by encQ(r) is a symbolic
run of encΣ(α) through Asym if and only if R = (V,E) with V = {(ri, i) | i < |r|} and
E = {((q1, i), (q2, i+ 1)) | (q1, i), (q2, i+ 1) ∈ V } is a minimal run of A.

Notice that in Lemma 2.23 r is the unique path through R. Moreover, as A is nondeter-
ministic, every minimal run through A has the form of R. Therefore, the symbolic runs
of Asym correspond to minimal runs of A. They are the symbolic representation of the
unique paths through these minimal runs.

Together with the concept of symbolic runs the symbolic representation of semi-
automata directly leads to a symbolic representation of nondeterministic automata
over finite words, since the set of final states can be encoded in the same way. Let
Afin

∃ (VΣ,VQ,ΦI ,ΦR,ΦF) denote the symbolic representation of the nondeterministic
automaton A := (Σ,Q,I,R,F). Using Lemma 2.10 and Lemma 2.23 one can easily
show that the following relation holds between the nondeterministic automaton and its
symbolic representation:

∀w ∈ Σ∗. w |= A ⇐⇒ ∃r ∈ SymRUN(VΣ,VQ,ΦI ,ΦR)(encΣ(w)). r|r|−1 |=prop ΦF

For ω-automata, it is also possible to get a symbolic representation quite easily, be-
cause the acceptance component can be described symbolically. This leads to automaton
formulas [18, 19].

Example 2.24 Let A = (Σ,Q,I,R,F) be a automaton (see Figure 3) with:

• Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

17

• Q = {Q0, Q1, Q2}

• I = Q0

• R(Qi, s) = Q(i+s mod 3)

• F = {Q0}

Obviously A is nondeterministic and even deterministic.

Q0

Q1 Q2

1, 4, 7

2, 5, 8

2, 5, 8

2, 5, 8

0, 3, 6, 9

0, 3, 6, 9 0, 3, 6, 9
Figure 3: Example 2.24

The ten letters of Σ can be encoded by four propositional variables. For the state set
Q, two variables are sufficient. Thus let VΣ, VQ, encΣ and encQ be defined by:

VΣ = {i0, i1, i2, i3} VQ = {q0, q1}

0 1 2 3 4 5 6 7 8 9

encΣ ∅ {i0} {i1} {i1, i0} {i2} {i2, i0} {i2, i1} {i2, i1, i0} {i3} {i3, i0}

Q0 Q1 Q2

encQ ∅ {q0} {q1}

With these settings, the initial condition of A can be encoded by the formula ¬q0¬q1.
By encoding Σ and S by propositional variables, additional states and inputs are

introduced. For example, the state {q0, q1} was not present before. However, these
additional states and inputs will not influence the semantics of an automaton, provided
that no additional accepted runs are introduced. This is obviously guaranteed by the
representation of the transition function.

The transition function can be encoded by

ΦR :=
∨

q∈Q,s∈Σ

EncQ({q}) ∧ EncΣ({s}) ∧ XEncQ(R(q, s))

18

As for all M1,M2, S the two propositional formulas EncS(M1)∨EncS(M2) and EncS(M1∪
M2) are equivalent, the inputs can be grouped according to the labels of the transitions
in Figure 3. This leads to the following encodings:

• EncΣ({0, 3, 6, 9}) = ¬i0¬i1¬i2¬i3 ∨ i0i1¬i2¬i3 ∨ ¬i0i1i2¬i3 ∨ i0¬i1¬i2i3

• EncΣ({1, 4, 7}) = i0¬i1¬i2¬i3 ∨ ¬i0¬i1i2¬i3 ∨ i0i1i2¬i3

• EncΣ({2, 5, 8}) = ¬i0i1¬i2¬i3 ∨ i0¬i1i2¬i3 ∨ ¬i0¬i1¬i2i3

Using these encodings, the transition relation can be encoded by:

Q0
1,4,7
−−−→ Q1: ¬q0¬q1 ∧ EncΣ({1, 4, 7}) ∧ Xq0¬Xq1 ∨

Q0
2,5,8
−−−→ Q2: ¬q0¬q1 ∧ EncΣ({2, 5, 8}) ∧ ¬Xq0 Xq1 ∨

Q1
0,3,6,9
−−−−→ Q1: q0¬q1 ∧ EncΣ({0, 3, 6, 9}) ∧ Xq0¬Xq1 ∨

Q1
1,4,7
−−−→ Q2: q0¬q1 ∧ EncΣ({1, 4, 7}) ∧ ¬Xq0 Xq1 ∨

Q1
2,5,8
−−−→ Q0: q0¬q1 ∧ EncΣ({2, 5, 8}) ∧ ¬Xq0¬Xq1 ∨

Q2
0,3,6,9
−−−−→ Q2: ¬q0 q1 ∧ EncΣ({0, 3, 6, 9}) ∧ ¬Xq0 Xq1 ∨

Q2
1,4,7
−−−→ Q0: ¬q0 q1 ∧ EncΣ({1, 4, 7}) ∧ ¬Xq0¬Xq1 ∨

Q2
2,5,8
−−−→ Q1: ¬q0 q1 ∧ EncΣ({2, 5, 8}) ∧ ¬Xq0 Xq1

This formula has not been simplified to show the relation between the original trans-
lation relation and its encoding. Finally the set of final states can be encoded by
ΦF = EncΣ(F) = ¬q0¬q1. Thus, Asym := Afin

∃ (VΣ,VQ,ΦI ,ΦR,ΦF) is the symbolic
representation of A.

Consider the input w = 825. The unique minimal run of w through A is R = (V,E)
with

V =
{
(Q0, 0), (Q2, 1), (Q1, 2), (Q0, 3)

}
and

E =
{(

(Q0, 0), (Q2, 1)
)
,
(
(Q2, 1), (Q1, 2)

)
,
(
(Q1, 2), (Q0, 3)

)}
.

The unique path through R is r = Q0Q2Q1Q0. It ends in the set F = {Q0}. Thus,
w is accepted by A. The symbolic representation of w is encΣ(w) = {i3}{i1}{i0, i2}.
The unique symbolic run of encΣ(w) through Asym is Rsym = ∅{q1}{q0}∅. Notice, that
Rsym = encQ(r) holds. The last state of Rsym models ΦF . Thus encΣ(w) is accepted by
Asym.

2.6.1 Automaton Formulas

Definition 2.25 (Syntax of Flat Acceptance Conditions)
The following mutually recursive definitions introduce the set of flat acceptance condi-
tions symacV over a set of variables V:

• every propositional formula p ∈ B(V) is an acceptance condition over V

• ¬ϕ ∈ symacV , if ϕ ∈ symacV

19

• ϕ ∧ ψ ∈ symacV , if ϕ,ψ ∈ symacV

• Gϕ ∈ symacV , if ϕ ∈ symacV

Definition 2.26 (Syntax of Automaton Formulas)
The following mutually recursive definitions introduce the set of automaton formulas
Lω(V) over a set of variables V:

• every flat acceptance condition ΦF ∈ symacV is an automaton formula over V

• ¬ϕ ∈ Lω(V), if ϕ ∈ Lω(V)

• ϕ ∧ ψ ∈ Lω(V), if ϕ,ψ ∈ Lω(V)

• A∃(Q,ΦI ,ΦR,ΦF) ∈ Lω, if ΦF ∈ Lω(Q) and Q,ΦI ,ΦR are the symbolic repre-
sentations of the set of states, the set of initial states and the transition relation
of a semiautomaton, i. e. Q is a set of variables with Q ∩ V = ∅, ΦI ∈ propQ and
ΦR ∈ propQ∪V∪{Xq|q∈Q}. As automaton formulas can be nested, the set of input
variables is omitted for reasons of simplicity.

Flat acceptance conditions are used to distinguish between the parts of an automaton
formula that may contain automaton operators and the parts that may not contain these
operators. This could as well be achieved without explicitly introducing flat acceptance
conditions.

The semantics of alternating automata is defined with respect to runs and paths. How-
ever, for nondeterministic automata, these concepts do not need to be distinguished, be-
cause every run through a nondeterministic automaton contains exactly on path. There-
fore, the semantics of symbolically represented nondeterministic automata is just defined
with respect to paths. However, for reasons of simplicity, the paths are often called runs.
Moreover, in contrast to alternating automata the semantics of symbolically represented
nondeterministic automata are defined with respect to minimal runs. According to
Lemma 2.10 this does not make a difference.

Definition 2.27 (Semantics of Flat Acceptance Conditions)
Flat acceptance conditions are a symbolic representation of a subset of acceptance com-
ponents. Therefore, the semantics of a flat acceptance condition is given by the semantics
of acceptance components. The semantics of a flat automaton formula ϕ ∈ symacV is
for an infinite word v ∈ P(V)ω and a point of time t ∈ N given by

• v |=AC p iff v0 |=prop p

• v |=AC ¬ϕ iff v 6|=AC ϕ

• v |=AC ϕ ∧ ψ iff v |=AC ϕ and v |=AC ψ

• v |=AC Gϕ iff ∀k. vk.. |=AC ϕ

20

If v |=AC ϕ holds for a word v ∈ P(V)ω and a flat acceptance condition ϕ, then v is said
to model ϕ.

Definition 2.28 (Semantics of Automaton Formulas)
The semantics of an automaton formulas ϕ ∈ Lω(V) is for an infinite word v ∈ P(V)ω

given by:

• v |=omega ΦF iff v |=AC ΦF

• v |=omega ¬ϕ iff v 6|=omega ϕ

• v |=omega ϕ ∧ ψ iff v |=omega ϕ and v |=omega ψ

• v |=omega A∃(Q,ΦI ,ΦR,ΦF) iff an infinite word β ∈ Qω exists with

– β0 |=prop ΦI

–
(
βi ∪ vi ∪ {Xq | q ∈ βi+1}

)
|=prop ΦR for all i ∈ N

– β |=omega ΦF

Notice, that this implies, that β is a symbolic run through the described semiau-
tomaton.

A word v ∈ P(V)ω is said to satisfy an automaton formula ϕ iff v |=omega ϕ holds. An
automaton formula ϕ is equivalent to an automaton formula ψ (denoted by ϕ ≡omega ψ)
iff for all v the relation v |=omega ϕ holds iff v |=omega ψ holds.

Definition 2.29 (Syntactic Sugar)
Automaton formulas are able to express most of the nondeterministic and universal
automata classes mentioned before. However, to be able to express these classes in
a convenient way, some syntactic sugar for automaton formulas and flat acceptance
conditions is needed:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ := ¬ϕ ∨ ψ

• ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ

• Fϕ := ¬G¬ϕ

• A∀(Q,ΦI ,ΦR,ΦF) := ¬A∃(Q,ΦI ,ΦR,¬ΦF)

Especially, the operator A∀ is interesting. It describes universal automata!

21

2.6.2 Flat Automaton Formulas

Automaton formulas are a convenient way to represent nondeterministic and universal
ω-automata. However, the connection between automaton formulas and ω-automata is
not obvious in general, because some automaton formulas like

A∃(Q1,ΦI1
,ΦR1

,¬A∃(Q2,ΦI2
,ΦR2

,ΦF)) or

A∃(Q1,ΦI1
,ΦR1

,ΦF1
) ∧ A∃(Q2,ΦI2

,ΦR2
,ΦF2

)

contain more than one automaton operator and other automaton formulas like Gq contain
no automaton operators.

On the other hand, automaton formulas of the form A∃(Q,ΦI ,ΦR,ΦF) and A∀(Q,ΦI ,
ΦR,ΦF) where ΦF is a flat acceptance condition are obviously related to nondetermin-
istic or universal ω-automata, respectively. Those automaton formulas are called flat.
Since a flat automaton formula ϕ directly corresponds to an ω-automaton Aϕ, it is said
that ϕ is total or deterministic iff Aϕ is total or deterministic.

For every automaton formula ϕ, there is a flat automaton formula ϕflat that is equiv-
alent to ϕ [19]. However, the flattening of automaton formulas has nonelementary com-
plexity [19, 21]. In the following, only flat automaton formulas will be considered.

2.6.3 Classes of Flat Automaton Formulas

Flat automaton formulas are symbolic representations of nondeterministic or universal
ω-automata. Therefore, their classes are defined according to the classes of the corre-
sponding ω-automata. To find a suitable syntactic characterisation is quite easy, because
flat acceptance conditions are a symbolic representation of a subset of acceptance com-
ponents:

Definition 2.30 (Classes of Acceptance Conditions)
Let Φi,Ψi be propositional formulas for all i ∈ {0, . . . , f}. Then, the following classes of
acceptance conditions are defined [13]:

22

True condition: true

False condition: false

Initial condition: Φ0

Safety condition: GΦ0

Liveness condition: FΦ0

Büchi condition [6, 7]: GFΦ0

Persistence condition [13]: FGΦ0

Rabin condition [16]:
f∨

j=0

(
GFΦ0 ∧ FGΨ0

)

Streett condition [20]:
f∧

j=0

(
FGΦ0 ∨ GFΨ0

)

Prefix condition (1. kind) [13, 17]:
f∧

j=0

(
GΦ0 ∨ FΨ0

)

Prefix condition (2. kind) [13, 17]:
f∨

j=0

(
FΦ0 ∨ GΨ0

)

23

3 Comparison of Alternating ω-Automata and Automaton

Formulas

In the previous chapter the basic definitions and lemmata have been explained. This
enables us to compare alternating automata with symbolically represented nondetermin-
istic automata. For finite words the situation is well known. Alternating, nondeterminis-
tic, universal and deterministic automata on finite words share the same expressiveness.
All these classes can express the set of regular languages. However, there are alternating
automata with n states such that the smallest deterministic automaton needs 2n − 1
states [22]. Interestingly, symbolic represented nondeterministic automata need only n
state variables to express these 2n − 1 states. Therefore, symbolic represented nondeter-
ministic automata need at most as many state variables as a corresponding alternating
automaton needs states. Moreover, it is very easy to translate an alternating automaton
to a symbolically represented nondeterministic automaton:

Lemma 3.1 (Nondeterminisation) Let A = (Σ,Q,I,R,F) be an alternating au-
tomaton on finite words. Further, let B be defined by

B := Afin

∃ (VΣ,Q,I,
∧

q∈Q

(
q ↔

(∨

s∈Σ

EncΣ({s}) ∧ XR(q, s)
))
,

∧

q∈Q\F

¬q)

Then any word α ∈ Σ∗ is accepted by A, iff encΣ(α) is accepted by B.

As this translation is very easy and as it preserves the structure of the alternating
automaton, one could even consider alternating automata as symbolically represented
nondeterministic automata in a special normal form. Thus, the benefits of alternating
and symbolically represented nondeterministic automata can be combined in the case of
finite words.

In contrast, the situation is unclear for infinite words. Therefore, it will be investigated
in this work. As explained in Section 2.4 there are many different classes of ω-automata.
Therefore, we will first investigate semiautomata and runs through semiautomata. In
particular, constructions similar to the nondeterminisation of alternating automata on
finite words are interesting. Therefore, the following definition is of special interest:

Definition 3.2 (SymNDET↔)
Let A = (Σ,Q,I,R) be an alternating semiautomaton. Then let SymNDET↔(A) be
defined by

SymNDET↔(A) := (VΣ,Q,I,
∧

q∈Q

(
q ↔

(∨

s∈Σ

EncΣ({s}) ∧ XR(q, s)
))

)

24

However, to show the connections between an alternating semiautomaton A and
SymNDET↔(A), the following is interesting as an intermediate step:

Definition 3.3 (SymNDET→)
Let A = (Σ,Q,I,R) be an alternating semiautomaton. Then let SymNDET→(A) be
defined by

SymNDET→(A) := (VΣ,Q,I,
∧

q∈Q

(
q →

(∨

s∈Σ

EncΣ({s}) ∧ XR(q, s)
))

)

The idea of the construction of SymNDET→ is that if R = (V,E) is a run of some word
w through a semiautomaton A, then r defined by |r| := |w|+1 and ri := {q | (q, i) ∈ V }
is a symbolic run of encΣ(w) through SymNDET→(A). This means that the levels of a
run of the original semiautomaton are collapsed to one state of the symbolic run of the
nondeterministic symbolically described semiautomaton. On the other hand, a symbolic
run can be used to construct a run of the original automaton. More formally, this means:

Definition 3.4 (Collapsed Run)
Let R = (V,E) be a run of a word w through an alternating semiautomaton A. Then
the collapsed run of R (denoted by coll(R)) is defined by:

• |coll(R)| = |w| + 1

• coll(R)i = {q | (q, i) ∈ V }

Definition 3.5 (Decollapsed Run)
Let r be a symbolic run. Then the decollapsed run of r (denoted by decoll(r)) is defined
by decoll(r) := (V,E) with

• V = {(q, i) |
(
∀j.j < i⇒ rj 6= ∅

)
∧ q ∈ ri}

• E = {
(
(q, i), (q′, i+ 1)

)
| (q, i), (q′, i+ 1) ∈ V }

Lemma 3.6 Let A = (Σ,Q,I,R) be an alternating semiautomaton. Further let R =
(V,E) be a run of some word w through A. Then coll(R) is a symbolic run of encΣ(w)
through SymNDET→(A)4.

Proof |coll(R)| = |encΣ(w)| + 1 = |w| + 1 and coll(R)0 |=prop I hold obviously. Thus, is
remains to show that for all n < |w| the following holds:

coll(R)n∪encΣ(w)n∪{Xq | q ∈ coll(R)n+1} |=prop

∧

q∈Q

(
q →

(∨

s∈Σ

EncΣ({s}) ∧ XR(q, s)
))

4theorem COLLAPSED ALTERNATING RUN IMPL COLLAPSED THM in theory

Alternating Omega Automata Lemmata

25

This can be simplified to:

∀q ∈ coll(R)n. coll(R)n+1 |=prop R(q, wn)

q ∈ coll(R)n is equivalent to (q, n) ∈ V . As R = (V,E) is a run of w through A,
{q′ | ((q, n), (q′, n+ 1)) ∈ E} is a model of R(q, wn). By the definition of collapsed runs,
{q′ | ((q, n), (q′, n + 1)) ∈ E} ⊆ coll(R)n+1 holds. Moreover, we know that R(q, wn) is a
positive boolean formula. Thus, coll(R)n+1 |=prop R(q, wn) holds. ⊓⊔

Lemma 3.7 Let A = (Σ,Q,I,R) be an alternating semiautomaton. Further let r be
a symbolic run of some encoded word encΣ(w) through SymNDET→(A). Then R =
(V,E) := decoll(R) is a run of word w through A5.

Proof To show that decoll(r) is really a run of w through A, we have to show:

• for every (q, l + 1) ∈ V exists a q′ ∈ Q, such that
(
(q′, l), (q, l + 1)

)
∈ E.

• {q | (q, 0) ∈ V } is a model of I

• for all (q, l) ∈ V with l < |w| the set {q′ |
(
(q, l), (q′, l + 1)

)
∈ E} is a model of

R(q, wl)

If (q, l + 1) ∈ V holds, rj 6= ∅ holds for all j < l + 1. This implies that there exists
some q′ with (q′, l) ∈ V . By definition of E we know ((q′, l), (q, l + 1)) ∈ E. Next,
{q | (q, 0) ∈ V } = r0 |=prop I holds by the definition of symbolic runs. Finally, let
(q, l) ∈ V hold for some l < |w|. This implies q ∈ rl. Therefore the transitions relation
of SymNDET→(A) implies, rl+1 = {q′ |

(
(q, l), (q′, l + 1)

)
∈ E} |=prop R(q, wl). ⊓⊔

Thus, runs of an alternating semiautomaton A are strongly related to symbolic runs
of SymNDET→(A). However, when collapsing a run, information is lost. Thus, it is not
possible to reconstruct the original run from the collapsed run. Moreover, in general R
does not has to be a run through A if coll(A) is a symbolic run through SymNDET→(A).
However, a symbolic run through SymNDET→(A) can be used to construct a run through
A.

Example 3.8 Consider the finite semiautomaton A = (Σ,Q,I,R) with Σ = {a, b},
Q = {q0, q1, q2}, I = q0 ∨ q2 and R given by

a b

q0 q0 ∨ q1 ∨ q2 q1q2
q1 false q0q2
q2 q0 ∨ q1 true

5theorem DECOLLAPSED RUN IMPL COLLAPSED THM in theory

Alternating Omega Automata Lemmata

26

b

b

a

a

q0

q1 q2

q0 q2

q0

q1

r1

{q0}

{q1, q2}

{q0, q2}

{q0}

{q1}

coll(r1)

q0

q1 q2

q0 q2

q0

q1

decoll(coll(r1))

q0

q1 q2

q0 q2

q0

q1

G1

Figure 4: Example 3.8

from Example 2.11. Further let VΣ := {i0} and encΣ(a) := ∅, encΣ(b) := {i0} be the
encoding used for SymNDET→(A). Then SymNDET→(A) is given by

SymNDET→(A) = ({i0}, {q0, q1, q2}, q0 ∨ q2,

(q0 →
((

¬i0 ∧ (q0 ∨ q1 ∨ q2)
)
∨ i0q1q2

)
) ∧

(q1 → i0q0q2) ∧

(q2 →
((

¬i0 ∧ (q0 ∨ q1)
)
∨ i0

)
)

)

Reconsider the run r1 shown in Figure 1 and Figure 4. It is a run of the word bbaa through
A. The encoding encΣ(bbaa) equals to {i0}{i0}∅∅. Then coll(r1) = {q0}{q1q2}{q0q2}{q0}
{q1} is a symbolic run of encΣ(bbaa) through SymNDET→(A). Consider the graph G1

given in Figure 4. coll(G1) = coll(r1) holds, but G1 is not a run of bbaa through A.
In contrast decoll(coll(r1)) is a run of bbaa through A. Notice that decoll(coll(r1)) 6= r1
holds.

After we have seen the connection between an alternating semiautomaton A and
SymNDET→(A), we can have a look at SymNDET↔(A) now. Obviously every symbolic
run through SymNDET↔(A) is also a symbolic run through SymNDET→(A):

Lemma 3.9 Let A be a semiautomaton and r be a symbolic run of some word w through
SymNDET↔(A). Then r is also a symbolic run of w through SymNDET→(A)6.

Moreover, every symbolic run through SymNDET→(A) can be extended to a symbolic
run through SymNDET↔(A).

6theorem EQ COLLAPSED RUN IMPLIES IMPL COLLAPSED RUN in theory

Alternating Omega Automata Lemmata

27

Lemma 3.10 Let A = (Σ,Q,I,R) be a semiautomaton and r be a symbolic run of
some word w through SymNDET→(A). Then there is a symbolic run s of w through
SymNDET↔(A) with |r| = |s| and ri ⊆ si for all i < |s|. Additionally, s|r|−1 = r|r|−1 if r
is finite7.

Proof Let f : (VQ
∗ ∪ VQ

ω) → (VQ
∗ ∪ VQ

ω) and s ∈ VQ
∗ ∪ VQ

ω be defined by

f(v)n :=

{
vn ∪ {q | vn+1 |=prop R(q, enc−1

Σ (wn))} if n < |v| − 1
vn otherwise

|s| := |r|

sn :=
⋃

j∈N

(
f j(r)

)n

Using these definitions s is a symbolic run of w through SymNDET↔(A) with the de-
manded properties. Obviously ∀i.∀v. vi ⊆ f(v)i holds. Thus ∀i. ri ⊆ si holds. Moreover,
s|r|−1 = r|r|−1 holds if r is finite.
r0 |=prop I holds, because r is a symbolic run of w through SymNDET→(A). As I

is a positive propositional formula, s0 |=prop I holds. It remains to show that for all
i < |s| − 1 and all q ∈ Q the proposition q ∈ si ⇔ si+1 |=prop R(q, enc−1

Σ (wi)) holds.
Thus let i < |s| − 1 and q ∈ Q be arbitrary but constant values.

The definition of f implies q ∈ f(s)i ⇐ si+1 |=prop R(q, enc−1
Σ (wi)) for all q and all

i < |s| − 1. As f(s) = s holds, one direction of the proposition is proved. It remains to
show that q ∈ si ⇒ si+1 |=prop R(q, enc−1

Σ (wi)) holds.
As Q is finite there is for all n a m0 such that for all m > m0 the proposition

(fm(r))n = (fm0(r))n holds. Obviously sn = fm0(r)n holds for this m0. Thus, an m0

exists with si = fm0(r)i and si+1 = fm0(r)i+1.
q ∈ ri ⇒ ri+1 |=prop R(q, enc−1

Σ (wi)) holds, because r is a symbolic run of w through
SymNDET→(A). This property is preserved by the application of f to a path, i. e. for all

j the proposition q ∈ f j(r)
i
⇒ f j(r)

i+1
|=prop R(q, enc−1

Σ (wi)) holds. This implies q ∈

fm0(r)i ⇒ fm0(r)i+1 |=prop R(q, enc−1
Σ (wi)). Thus q ∈ si ⇒ si+1 |=prop R(q, enc−1

Σ (wi))
holds. ⊓⊔

Thus also runs through an alternating semiautomaton A are connected to symbolic
runs through SymNDET↔(A). These result can be used to prove a lot of interesting result
about alternating automata. For example, it is easily possible to prove Lemma 3.1 using
Lemma 3.6, Lemma 3.7, Lemma 3.9 and Lemma 3.10.

Lemma 3.11 (Lemma 3.1) Let A = (A′,F) be an alternating automaton on finite
words. Further, let B be defined by

B := Afin

∃ (SymNDET↔(A′),
∧

q∈Q\F

¬q)

7theorem IMPL COLLAPSED RUN EQ COLLAPSED RUN ENRICHMENT in theory

Alternating Omega Automata Lemmata

28

Then any word α ∈ Σ∗ is accepted by A, iff encΣ(α) is accepted by B.

Proof Let α be accepted by A. Then a run R = (V,E) of α through A′ exists such that
all paths through R of length |α|+1 end in F . This implies {q | (q, |α|) ∈ V } ⊆ F . Then
coll(R) is a symbolic run of encΣ(α) through SymNDET→(A′) according to Lemma 3.6.
According to Lemma 3.10 an extension r′ of coll(R) exists such that r′ is a symbolic
run of encΣ(α) through SymNDET↔(A′) and r′|α| = coll(R)|α| holds. Then r′|α| = {q |
(q, |α|) ∈ V } ⊆ F holds, because for all (q, |α|) ∈ V a path p of length |α|+ 1 through R
with p|α| = q exists. Thus r′|α| |=prop

∧
q∈Q\F ¬q. Therefore, encΣ(α) is accepted by B.

Thus, let encΣ(α) be accepted by B. Then a symbolic run r′ of encΣ(α) through
SymNDET↔(A′) exists such that r′|α| ⊆ F holds. Then according to Lemma 3.9 r′ is a
run of encΣ(α) through SymNDET→(A′). Therefore decoll(r′) is a run of α through B.
Every path through decoll(r′) of length |α| + 1 ends in r′|α| and therefore in F . Thus α
is accepted by A. ⊓⊔

4 Consequences

In the previous section, the relationship between alternating semiautomata and the
symbolically described nondeterministic automata SymNDET→ and SymNDET↔ have
been presented. This relationship has been used to give an alternative proof of the
well known symbolic nondeterminisation algorithm for alternating automata on finite
words. In this section, the presented relationship will be used to prove new results for
alternating automata on infinite words. Let us start with the very basic case, where only
the existence of runs is of interest:

Lemma 4.1 (Nondeterminisation of Atrue) Let A = (A′, true) be an alternating au-
tomaton on infinite words over an alphabet Σ. Further, let B and C be defined by

B := A∃(SymNDET→(A′), true)

C := A∃(SymNDET↔(A′), true)

Then any infinite word α ∈ Σω is accepted by A, iff encΣ(α) is accepted by B. Further-
more, encΣ(α) is accepted by B iff it is accepted by C8.

Proof That encΣ(α) is accepted by B iff it is accepted by C, is a direct consequence of
Lemma 3.9 and Lemma 3.10. That α is accepted by A iff encΣ(α) is accepted by B is a
consequence of Lemma 3.6 and Lemma 3.7. ⊓⊔

Remark 4.2
One could guess that similar to Lemma 4.1 the automaton A = (A′, false) corresponds
to B := A∃(SymNDET→(A′), false) and C := A∃(SymNDET↔(A′), false). However, this

8theorem NDET TRUE A TRUE IMPL and theorem NDET TRUE A TRUE EQ

in theory Alternating Omega Automata

29

is not true. In fact, an nondeterministic false automaton does not accept any word,
because its semantics demands that a symbolic run exists that fulfils the acceptance
condition false.

A little bit more complicated than the nondeterminisation algorithm in this simple
case is the nondeterminisation of A

universally total
G automata.

Lemma 4.3 (Nondeterminisation of A
universally total
G) Let A = (A′,GF) be an alter-

nating automaton on infinite words such that A′ is universally total. Further, let B be
defined by

B := A∃(SymNDET→(A′),G
∧

q∈Q\F

¬q)

Then any word α ∈ Σ∗ is accepted by A, iff encΣ(α) is accepted by B9.

Proof Let α be an infinite word that is accepted by A. Then, a run R = (V,E) of α
through A exists such that every infinite path p through R contains only states from
F . As A′ is universally total, every run through R is infinite. Thus, (q, i) ∈ V implies
q ∈ F . Thus coll(R)i ⊆ F holds for all i, i. e. coll(R) fulfils the acceptance condition of
B. Moreover, Lemma 3.6 implies that coll(R) is a symbolic run of encΣ(α) through B.
Thus, encΣ(α) is accepted by B.

On the other hand, let encΣ(α) be accepted by B. Then a symbolic run r of encΣ(α)
through B exists with ri ⊆ F for all i. Then, decoll(r) is a run of α through A according
to Lemma 3.7. As A′ is universally total, there is a infinite path through decoll(r). This
path contains only states from F . Thus, α is accepted by A.

In contrast to the nondeterminisation of alternating automata on finite words and
of Atrue automata the A

universally total
G automata cannot be extended to an equational

transition function, as the following counterexample shows:

Example 4.4 Let A := (A′,GF) be an alternating automaton with A′ := (Σ,Q,I,R),
Σ := {a}, Q := {q0, q1}, I := q0, R(q, s) := q0 for all q, s and F := {q0}. Then
R = (V,E) with V = {(q0, i) | i ∈ N} and E = {((q0, i), (q0, i + 1)) | i ∈ N} is a run of
aω through A′. The unique path through R is qω

0 . Therefore, aω is accepted by A.
Let B be defined by B := A∃(SymNDET↔(A′),G

∧
q∈Q\F ¬q). Then {q0, q1}

ω is the
unique symbolic run of encΣ(aω) through B. Therefore, encΣ(aω) is not accepted by B.

However, for every A
universally total
G automaton an equivalent symbolically represented

NDETG automaton with an equational transition relation exists, because a A
universally total
G

automaton can be translated to an Atrue automaton. This automaton can be translated

9theorem NDET G A UNIVERSALLY TOTAL WEAK CO BUECHI IMPL

in theory Alternating Omega Automata

30

to a symbolically represented NDETtrue automaton with an equational transition func-
tion according to Lemma 4.6. However, a NDETtrue automaton is a special NDETG

automaton.

Lemma 4.5 Let A := (A′,GF) be an alternating automaton such that A′ := (Σ,Q,I,R)
is universally total. Further let B := (B′, true) with B′ := (Σ,Q,I,R′) such that

R′(q, s) :=

{
R′(q, s) if s ∈ F
false otherwise

Then a word w ∈ Σω is accepted by A iff w is accepted by B10.

Proof Let w ∈ Σω be accepted by A. Then a run R = (V,E) of w through A′ exists such
that pn ∈ F holds for all infinite paths p through R and all n ∈ N. As A′ is universally
total, for all (q, n) ∈ V an infinite path p through R exists with pn = q. Therefore,
(q, n) ∈ V implies q ∈ F . Thus, R is a run through B′ and w is accepted by B.

Thus, let w be accepted by B. Then a run R = (V,E) of w through B′ exists. The
definition of B′ implies that R is also a run of w through A′. Moreover, it implies that
only states from F occur in R. Thus, every infinite path through R contains only states
from F and w is accepted by A. ⊓⊔

Similar to the translation of of A
universally total
G automata into NDETtrue automata with

an equational transition, the negation of alternating automata by dualisation [12, 15]

can be used as an intermediate step to translate A
existentially total
F and Afalse automata

to Ufalse automata efficiently. Although the negation of alternating automata can be
computed easily, the correctness proof of this negation is quite complicated and needs
some concepts such as logical games and strategies. Therefore, neither the negation of
alternating automata nor the translations to Ufalse automata will be explained in detail
here.

The presented translations can be used to extend the hierarchy of ω-automata shown
in Figure 2.

Lemma 4.6 Atrue ≈ NDETtrue

Proof The direction NDETtrue � Atrue is clear by definition. The direction Atrue �
NDETtrue is a consequence of Lemma 4.1. ⊓⊔

Lemma 4.7 Afalse ≈ Ufalse

Proof The classes Afalse and Atrue are dual. This can be easily shown using the nega-
tion of alternating automata described in [15]. As Ufalse and NDETtrue are dual too,
Lemma 4.6 implies Afalse ≈ Ufalse. ⊓⊔

10theorem A TRUE A UNIVERSALLY TOTAL WEAK CO BUECHI in theory Alternating Omega Automata

31

Lemma 4.8 A
universally total
G ≈ NDETG

Proof The direction NDETG � A
universally total
G is clear by definition, because every non-

deterministic automaton is universally total. The direction A
universally total
G � NDETG is

a consequence of Lemma 4.3. ⊓⊔

Lemma 4.9 A
existentially total
F ≈ DETF

Proof The classes A
existentially total
F and A

universally total
G are dual. This can be easily shown

using the negation of alternating automata described in [15]. As DETF and NDETG are

also dual, Lemma 4.8 implies A
existentially total
F ≈ NDETF. ⊓⊔

For most of the classes of ω-automata shown in Figure 2 we have presented an equiva-
lent class of alternating ω-automata. The only exception are classes that are equivalent
to DETPrefix. However, the results DETG ≈ Atrue and DETF ≈ Afalse can be used to
identify such a class:

Theorem 4.10
DETPrefix ≈ AInitial

Proof Let A be a DETPrefix automaton. Then there exists A1,1, . . . A1,n1
, A2,1 . . .,

Am,nm
∈ DETG ∪ DETF such that

∨
i=1..m

∧
j=1..nm

Ai,j is equivalent to A, because
DETPrefix is the boolean closure of DETG and DETF [19]. As DETG ≈ ATRUE and DETF ≈
AFALSE hold, there are Bi,j ∈ ATRUE∪AFALSE of the form Bi,j = (Σ,Qi,j ,Ii,j,Ri,j ,ACi,j)
such that L(Bi,j) = L(Ai,j) holds for all i, j and the sets Qi,j are pairwise distinct. Let
R :

⋃
i,j Qi,j × Σ → B+(

⋃
i,j Qi,j) be defined as R(q, s) = Ri,j(q, s) for all q ∈ Qi,j. As

all Qi,j are pairwise distinct, this definition is sound. Then A is equivalent to

B :=
(
Σ,

⋃

i,j

Qi,j,
∨

i=1..m

∧

j=1..nm

Ii,j,R,
⋃

Bi,j∈Atrue

Qi,j

)

This equivalence can be easily shown using Lemma 2.21. Obviously, B is a AInitial

automaton. Thus, DETPrefix � AInitial holds.
On the other hand, let B = (Σ,Q,R,F) be a AInitial automaton. As I is a positive

propositional formula there are qi,j ∈ Q such that
∨

i=1..m

∧
j=1..nm

qi,j is equivalent to
I. Let Bi,j be defined by Bi,j := (Σ,Q, qi,j ,R,ACi,j) with ACi,j := true if qi,j ∈ F and
ACi,j = false otherwise. Using this definition, B is equivalent to

∨
i=1..m

∧
j=1..nm

Bi,j.
Such a decomposition is not possible for arbitrary alternating ω-automata. However, it
is possible for AInitial automata. The proof is omitted here, because it is long but mainly
technical. It can be found in the HOL theories11.
11theorem ALT SEM S0 TRUE, theorem ALT SEM S0 FALSE, theorem ALT SEM S0 OR SPLIT,

theorem ALT SEM S0 AND SPLIT INITIAL and theorem ALT SEM INITIAL S0 P PROP

in theory Alternating Omega Automata

32

As Bi,j ∈ ATRUE∪AFALSE for all i, j there are Ai,j ∈ DETG∪DETF such that L(Ai,j) =
L(Bi,j) holds for all i, j. Thus, B is equivalent to

∨
i=1..m

∧
j=1..nm

Ai,j. Since DETPrefix

is the boolean closure of DETG and DETF, there is also a DETPrefix automaton that is
equivalent to B. Thus, AInitial � DETPrefix holds.

Alltogether, these results lead to the extended hierarchy of alternating ω-automata
shown in Figure 5.

Atrue

Afalse

A
universally total
G

A
existentially total
F

NDETtrue

U
(universally) total

G

UF

Ufalse

NDETG

DETG

DETF

NDET
(existentially) total

F

≈
≈

≈
≈

≈
≈

≈
≈

≈
≈

AInitial

DETPrefix1

DETPrefix2

DETweak parity

�

�

≈
≈

≈

Uweak parity

UG

AG

DETGF

DETFG

NDETF

NDETPrefix1

NDETPrefix2

NDETFG

AF

NDETweak parity

≈
≈

≈
≈

≈
≈

≈
≈

≈

�

�

NDETGF

�

�

NDETRabin

NDETStreett

DETRabin

DETStreett

Aweak parity

DETparity

≈

≈

≈
≈

≈
≈

Figure 5: Extended Hierarchy of ω-Automata

33

5 Conclusions and Future Work

In this paper, we investigated the relationship between alternating and symbolically rep-
resented nondeterministic automata. There is a well known strong relationship between
alternating automata and symbolically represented nondeterministic automata for finite
words. One can even regard alternating automata on finite words as a special normal
form of symbolically represented nondeterministic automata on finite words.

In this work, we have been able to lift this strong relationship to alternating automata
on infinite words, that represent safety properties. Although this class is one of the
weakest classes in the presented hierarchy, the results are nevertheless of practical rel-
evance, because safety properties are widely used. Moreover, the results can be used
to handle liveness properties, too. Additionally, we could use the results to extend the
hierarchy of ω-automata. We identified classes of alternating ω-automata that are as
expressive as DETF, DETG and DETPrefix.

However, our results can not be used for other classes like for example AG. During
the nondeterminisation, similar problems as during determinisation occur. For simple
classes of automata, the Rabin-Scott subset construction is sufficient for determinisation.
This subset construction is similar to the concept of SymNDET→ automata. For more
expressive classes of ω-automata, more information about the individual runs is needed.
Therefore, additional variables are needed to determinise for example NDETF automata.
However, is is sufficient to store information about the past of a path in these additional
variables. For example, it is stored, whether a path has visited some set of accepted states
yet or which states have been visited in the past. For alternating automata the problem
is even more complicated. Also the future of a path through a run has to be considered,
because paths may be accepted by the occurrence of true. A practical consequence is
that NDetG automata can be determinised using the Rabin-Scott subset construction,
but SymNDET→-automata can not be used to nondeterminise AG automata. However,
there is a well known nondeterminisation procedure for alternating Büchi automata
[11, 14]. This nondeterminisation procedure can be used to translate Büchi automata
with n states directly to a symbolically represented nondeterministic automaton with
2n state variables. This is sufficient for practice. However, in a future work, it would be
interesting to investigate how much additional state variables are really needed and if
this nondeterminisation procedure can be simplified. Thereby, one should try to preserve
the structure of the original automaton as much as possible.

References

[1] C. Berthet, O. Coudert, and J.C. Madre. New ideas on symbolic manipulations of
finite state machines. In International Conference on Computer Design (ICCD),
pages 224–227. IEEE, 1990.

[2] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

34

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequential circuit verifica-
tion using symbolic model checking. In International Design Automation Conference
(DAC), pages 46–51, Orlando, Florida, USA, 1990. IEEE.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In Symposium on Logic in Computer
Science (LICS), pages 1–33, Washington, D.C., June 1990. IEEE Computer Society.

[5] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

[6] J.R. Büchi. On a decision method in restricted second order arithmetic. In E. Nagel,
editor, International Congress on Logic, Methodology and Philosophy of Science,
pages 1–12, Stanford, CA, 1960. Stanford University Press.

[7] J.R. Büchi. Weak second order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

[8] A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1981.

[9] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 8(2):244–263, April 1986.

[10] S.C. Kleene. Representation of events in nerve nets and finite automata. In C. Shan-
non and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, Princeton, NJ, 1956.

[11] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.
In Israeli Symposium on Theory of Computing and Systems, pages 147–158. IEEE
Computer Society, 1997.

[12] C. Löding and W. Thomas. Alternating automata and logics over infinite words. In
Conference on Theoretical Computer Science (TCS), volume 1872 of LNCS, pages
521–535. Springer, 2000.

[13] Z. Manna and A. Pnueli. The temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

[14] S. Miyano and T. Hayashi. Alternating automata on ω-words. Theoretical Computer
Science, 32:321–330, 1984.

[15] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

35

[16] M.O. Rabin. Automata on infinite objects and Church’s problem. In Regional Con-
ference Series in Mathematics, volume 13. American Mathematical Society (AMS),
1972.

[17] K. Schneider. Ein einheitlicher Ansatz zur Unterstützung von Abstraktions-
mechanismen der Hardwareverifikation, volume 116 of DISKI (Dissertationen zur
Künstlichen Intelligenz). Infix, Sankt Augustin, 1996. ISBN 3-89601-116-2.

[18] K. Schneider. Improving automata generation for linear temporal logic by consider-
ing the automata hierarchy. In International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), volume 2250 of LNAI, pages 39–54,
Havanna, Cuba, 2001. Springer.

[19] K. Schneider. Verification of Reactive Systems – Formal Methods and Algorithms.
Texts in Theoretical Computer Science (EATCS Series). Springer, 2003.

[20] R.S. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control, 54(1-2):121–141, 1982.

[21] T. Tuerk. A hierarchy for Accellera’s property specification language. Master’s
thesis, University of Kaiserslautern, Department of Computer Science, 2005.

[22] S. Yu. Regular Languages, chapter 2, pages 41–110. Springer, 1997.

36

	Motivation
	Basics
	Propositional Logic
	Finite State Automata on Finite Words
	-Automata
	Classes of -Automata
	Boolean Operations on Alternating Automata
	Symbolic Representation
	Automaton Formulas
	Flat Automaton Formulas
	Classes of Flat Automaton Formulas

	Comparison of Alternating -Automata and Automaton Formulas
	Consequences
	Conclusions and Future Work

