
From PSL to LTL: A Formal Validation in HOL

Thomas Tuerk and Klaus Schneider

Reactive Systems Group, Department of Computer Science,
University of Kaiserslautern, P.O. Box 3049,

67653 Kaiserslautern, Germany
{tuerk, klaus.schneider}@informatik.uni-kl.de

http://rsg.informatik.uni-kl.de

Abstract. Using the HOL theorem prover, we proved the correctness
of a translation from a subset of Accellera’s property specification lan-
guage PSL to linear temporal logic LTL. Moreover, we extended the tem-
poral logic hierarchy of LTL that distinguishes between safety, liveness,
and more difficult properties to PSL. The combination of the transla-
tion from PSL to LTL with already available translations from LTL to
corresponding classes of ω-automata yields an efficient translation from
PSL to ω-automata. In particular, this translation generates liveness or
safety automata for corresponding PSL fragments, which is important
for several applications like bounded model checking.

1 Introduction

Model checking and equivalence checking are state of the art in hardware circuit
design flows. Standardised languages like the hardware description languages
VHDL [2,30] and Verilog [21] are widespread and allow the convenient exchange of
modules, which can also be sold as IP blocks. However, specifications of temporal
properties that are required for model checking cannot be easily described with
these languages [23,6]. Hence, the research on model checking during the last
two decades considered mainly temporal logics like LTL [22], CTL [9] and CTL∗

[10], and other formalisms like ω-automata [29], monadic second order logics,
and the µ-calculus [25].

The discussed temporal logics differ dramatically in terms of syntax, seman-
tics, expressiveness and the complexity of the related verification problem. For
example, LTL model checking is PSPACE-complete, while CTL model checking
can be done in polynomial time. Of course, this corresponds to the different ex-
pressive powers of these logics: It can be shown that temporal logics, ω-automata,
monadic predicate logics, and the µ-calculus form a hierarchy in terms of expres-
siveness [25].

The incompatibility of temporal logics used for specification complicates the
exchange of data between different tools; which is a situation similar to circuit
design before the standardisation of hardware description languages. Hence, the
increased industrial interest in verification naturally lead to standardisation ef-
forts for specification logics [5,4]. Accellera’s Property Specification Language
(PSL) [1] is a result.
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However, the translation from (the linear time fragment of) PSL to equiva-
lent ω-automata, as required for model-checking, turned out to be quite difficult,
although many partial results of this translation already exist: It is well known
how LTL can be translated to equivalent ω-automata [33,8,13,28,12]. There is a
hierarchy of ω-automata [18,17,31,25] that distinguishes between safety, liveness
and four other classes of increasing expressiveness. Recently, the related sub-
sets of LTL of this hierarchy have been syntactically characterised [24,25] and
linear-time translations have been presented [24,25] that translate the temporal
logic classes to corresponding symbolic descriptions of ω-automata (these can be
directly used for symbolic model checking).

In addition to the temporal operators of LTL, PSL also provides certain abort
operators whose semantics turned out to be problematic: In [3], a logic RLTL was
introduced that extends LTL by an abort operator in order to show the impact
of different abort operators on the complexity of the translation and verification.
As a result, it turned out that in the worst case, the previous version of PSL lead
to a non-elementary blow-up in the translation to ω-automata. For this reason,
the semantics of PSL’s reset operator has been changed in version 1.1 following
the ideas in [3]. Thus, it is not surprising that a significant subset of PSL can
now be translated to RLTL. A further translation from RLTL to LTL has already
been presented in [3].

The subtle differences of the reset operators in PSL version 1.01 and version
1.1 demonstrate that the semantics of complex temporal logics like PSL should
not be underestimated. In fact, PSL is a complex language that includes many
special cases. Therefore, we feel the need to formally verify all parts of the
translation of PSL to ω-automata by a theorem prover like HOL. To this end, we
implemented deep embeddings of RLTL, LTL and ω-automata in HOL1. Using
the existing deep embedding2 of PSL [14] and the existing LTL library [26], we
have formally proved the correctness of the entire translation from PSL to ω-
automata via RLTL and LTL. By a detailed examination of the translation from
PSL to LTL, we could moreover extend the known temporal logic classes of LTL
to corresponding classes of PSL. In particular, we will present in this paper
a syntactic characterisation of subsets of PSL in the spirit of [24] that match
with corresponding ω-automata classes for safety, liveness and other properties.
Translations to safety or liveness automata are of particular interest for bounded
model checking as shown in [27].

The paper is organised as follows: In the next section, we present the temporal
logics PSL, RLTL and LTL in detail. Then, we briefly sketch the translations from
PSL to RLTL and from RLTL to LTL. In Section 5, we then define classes of PSL
that correspond with the temporal logic hierarchy [18,24,25] and hence, also
with the ω-automaton hierarchy [17,31,25]. Finally, we draw some conclusions
and show directions for future work.

1 The HOL library is available at http://rsg.informatik.uni-kl.de/tools .
2 Although some members of the Accellera Formal Property Language Technical Com-

mittee reviewed this embedding, we found a small, until then unknown bug in the
embedding.

http://rsg.informatik.uni-kl.de/tools
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2 Basics

Temporal logics like LTL, RLTL and PSL use propositional logic to describe
(static) properties of the current point of time. The semantics of dynamic, i. e.,
temporal properties is based on a sequence of points of time, a so-called path.
Thus, we first define propositional logic and paths in this section.

Definition 1 (Propositional Logic). Let V be a set of variables. Then, the
set of propositional formulas over V (short propV) is recursively given as follows:

– each variable v ∈ V is a propositional formula
– ¬ϕ ∈ propV , if ϕ ∈ propV
– ϕ ∧ ψ ∈ propV , if ϕ, ψ ∈ propV

An assignment over V is a subset of V. In our context, assignments are also
called states. The set of all states over V, which is the power set of V, is denoted
by P(V). The semantics of a propositional formula with respect to a state s is
given by the relation |=prop that is defined as follows:

– s |=prop v iff v ∈ s
– s |=prop ¬ϕ iff s �|=prop ϕ
– s |=prop ϕ ∧ ψ iff s |=prop ϕ and s |=prop ψ

If s |=prop ϕ holds, then the assignment s is said to satisfy the propositional
formula ϕ.

Moreover, we use the following abbreviations as syntactic sugar:

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
– ϕ → ψ := ¬ϕ ∨ ψ
– ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)
– true := v ∨ ¬v for an arbitrary variable v ∈ V
– false := ¬true

A finite word v over a set Σ of length |v| = n+1 is a function v : {0, . . . n} → Σ.
An infinite word v over Σ is a function v : N → Σ and its length is denoted
by |v| = ∞. The set Σ is called the alphabet and the elements of Σ are called
letters. The finite word of length 0 is called the empty word (denoted by ε). For
reasons of simplicity, v(i) is often denoted by vi for i ∈ N. Using this notation,
words are often given in the form v0v1v2 . . . vn or v0v1 . . .. The set of all finite
and infinite words over Σ is denoted by Σ∗ and Σω, respectively.

Counting of letters starts with zero, i. e. vi−1 refers to the i-th letter of v.
Furthermore, vi.. denotes the suffix of v starting at position i, i. e. vi.. = vivi+1 . . .
for all i < |v| . The finite word vivi+1 . . . vj is denoted by vi..j . Notice that in
case j < i the expression vi..j evaluates to the empty word ε. For two words
v1, v2 with v1 ∈ Σ∗, we write v1v2 for their concatenation. Finally, we write lω

for the infinite word v with vj = l for all j.
A path of a labelled transition system corresponds to a word whose letters

are the labels of the states of the path. However, the terminology of PSL does
not distinguish between paths and words [1]. Therefore, the terms ‘path’ and
‘word’ are also used synonymously in this work.
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2.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) has been introduced by Pnueli in [22]. LTL essen-
tially consists of propositional logic enriched with the temporal operators X and
U. The formula Xϕ means that the property ϕ holds at the next point of time,
ϕ U ψ means that ϕ holds until ψ holds and that ψ eventually holds. The oper-
ators

←−
X and

←−
U express the same properties for the past instead of the future.

Therefore, the operators X and U are called future operators, while
←−
X and

←−
U

are called past operators.
LTL without past operators is as expressive as LTL with past operators [11].

For this reason, past operators are often neglected, although new results advo-
cate the use of past operators [19] since some properties require an exponential
blow-up when past operators are eliminated. Hence, our deep embedding of LTL
contains past operators as well, so that we distinguish between the full logic LTL
and its future fragment FutureLTL.

Definition 2 (Syntax of Linear Temporal Logic (LTL)). The set ltlV of
LTL formulas over a given set of variables V is defined as follows:

– p ∈ ltlV for all p ∈ propV
– ¬ϕ, ϕ ∧ ψ ∈ ltlV , if ϕ, ψ ∈ ltlV

– Xϕ, ϕ U ψ ∈ ltlV , if ϕ, ψ ∈ ltlV
–

←−
Xϕ, ϕ

←−
U ψ ∈ ltlV , if ϕ, ψ ∈ ltlV

As usual a lot of further temporal operators can be defined as syntactic sugar like
Fϕ := (true U ψ), Gϕ := ¬F¬ϕ, ϕ U ψ := ϕ U ψ ∨ Gϕ, and ϕ B ψ := ¬(¬ϕ) U ψ.
LTL with the operators U and X is, however, already expressively complete with
respect to the first order theory of linear orders [25].

Definition 3 (Semantics of Linear Temporal Logic (LTL)). For b ∈ propV
and ϕ, ψ ∈ ltlV the semantics of LTL with respect to an infinite word v ∈ P(V)ω

and a point of time t ∈ N is given as follows:

– v |=t
ltl b iff vt |=prop b

– v |=t
ltl ¬ϕ iff v �|=t

ltl ϕ
– v |=t

ltl ϕ ∧ ψ iff v |=t
ltl ϕ and v |=t

ltl ψ
– v |=t

ltl Xϕ iff v |=t+1
ltl ϕ

– v |=t
ltl ϕ U ψ iff ∃k. k ≥ t ∧ v |=k

ltl ψ ∧ ∀j. t ≤ j < k → v |=j
ltl ϕ

– v |=t
ltl

←−
Xϕ iff t > 0 ∧ v |=t−1

ltl ϕ

– v |=t
ltl ϕ

←−
U ψ iff ∃k. k ≤ t ∧ v |=k

ltl ψ ∧ ∀j. k < j ≤ t → v |=j
ltl ϕ

A word v ∈ P(V)ω satisfies a LTL formula ϕ ∈ ltlV (written as v |=ltl ϕ) iff
v |=0

ltl ϕ.

2.2 Reset Linear Temporal Logic (RLTL)

To evaluate a formula ϕ U ψ, one has to consider a (potentially infinite) prefix
of a path, namely the prefix up to a state where ¬(ϕ∧¬ψ) holds. As simulations
may stop before that prefix is completely examined, the evaluation of formulas
could be incomplete, and is thus aborted. In order to return a definite truth value,
abort operators are introduced. In particular, RLTL [3] is such an extension of
FutureLTL:
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Definition 4 (Syntax of Reset Linear Temporal Logic (RLTL)). The fol-
lowing mutually recursive definitions introduce the set rltlV of RLTL formulas
over a given set of variables V:

– each propositional formula p ∈ propV is a RLTL formula
– ¬ϕ, ϕ ∧ ψ ∈ rltlV , if ϕ, ψ ∈ rltlV
– Xϕ, ϕ U ψ ∈ rltl, if ϕ, ψ ∈ rltlV
– ACCEPT(ϕ, b) ∈ rltlV , if ϕ ∈ rltlV , b ∈ propV

Some operators like ¬, ∧ or U are used by several logics discussed in this paper.
In most cases, it is clear by the context or it does not matter to which logic one
of these operators belongs. If it matters, we use subscripts like ¬prop, ¬ltl and
¬rltl. For example, with a, b, c ∈ V , note that 〈{a, b}∅ω, a, b〉 |=0

rltl ¬propc holds,
but 〈{a, b}∅ω, a, b〉 |=0

rltl ¬rltlc does not hold.

Definition 5 (Semantics of Reset Linear Temporal Logic (RLTL)). The
semantics of LTL is defined with respect to a word v and a point of time t. To
define the semantics of RLTL, an acceptance condition a ∈ propV and a rejection
condition r ∈ propV are additionally needed. These conditions are used to capture
the required information about ACCEPT operators in the context of the formula.
Thus, for b ∈ propV and ϕ, ψ ∈ rltlV , the semantics of RLTL with respect to an
infinite word v ∈ P(V)ω, acceptance / rejection conditions a, r ∈ propV and a
point of time t ∈ N is defined as follows:

– 〈v, a, r〉 |=t
rltl b iff vt |=prop a or (vt |=prop b and vt �|=prop r)

– 〈v, a, r〉 |=t
rltl ¬ϕ iff 〈v, r, a〉 �|=t

rltl ϕ
– 〈v, a, r〉 |=t

rltl ϕ ∧ ψ iff 〈v, a, r〉 |=t
rltl ϕ and 〈v, a, r〉 |=t

rltl ψ
– 〈v, a, r〉 |=t

rltl Xϕ iff vt |=prop a or
(
〈v, a, r〉 |=t+1

rltl ϕ and vt �|=prop r
)

– 〈v, a, r〉 |=t
rltl ϕ U ψ

iff ∃k. k ≥ t ∧ 〈v, a, r〉 |=k
rltl ψ ∧ ∀j. t ≤ j < k → 〈v, a, r〉 |=j

rltl ϕ
– 〈v, a, r〉 |=t

rltl ACCEPT(ϕ, b) iff 〈v, a ∨ (b ∧ ¬r), r〉 |=t
rltl ϕ

A word v ∈ P(V)ω satisfies a RLTL formula ϕ ∈ rltlV (written as v |=rltl ϕ) iff
〈v, false, false〉 |=0

rltl ϕ holds.

ACCEPT(ϕ, b) aborts the evaluation of the formula ϕ as soon as the propositional
condition b holds: assume we have to check v |=rltl ACCEPT(ϕ U ψ, b) with
propositional formulas ϕ, ψ and b, but only know a finite prefix of v, say v0..t.
Assume further that on every state vi with i ≤ t, we have vi |=prop ϕ ∧ ¬ψ.
Then, we can not decide whether v |=ltl ϕ U ψ holds, but nevertheless v |=rltl

ACCEPT((ϕ U ψ), b) holds, provided that vt |=prop b holds.
For example, the word {a}{c}∅ω does not satisfy the RLTL formula a U b

(since b is never satisfied), but it satisfies the formula ACCEPT(a U b, c), since
c aborts the until then incomplete evaluation of a U b. On the other hand,
the word ∅{c}∅ω does not satisfy ACCEPT(a U b, c), since the evaluation of
a U b is completed before c occurs. To understand the impact of the acceptance
and rejection conditions and thus, to understand the semantics of the ACCEPT
operator, the following lemma is important:
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Lemma 1 (Immediate Accept or Reject). For all infinite words v ∈ P(V)ω,
all formulas ϕ ∈ rltlV , all acceptance / rejection conditions a, r ∈ propV and all
points of time t ∈ N, the following holds:

(
vt |=prop a ∧ vt �|=prop r

)
=⇒ 〈v, a, r〉 |=t

rltl ϕ and(
vt �|=prop a ∧ vt |=prop r

)
=⇒ 〈v, a, r〉 �|=t

rltl ϕ

The lemma can be easily proved by structural induction3 and states that if the
acceptance condition immediately holds, every formula (even false) is true. On
the other hand, if the rejection condition holds, every formula (even true) is false.

If the acceptance and the rejection condition would hold at the same point
of time, then a lot of problems would occur with the semantics. Fortunately, all
pairs of acceptance / rejection conditions (a, r) that appear during the evaluation
of RLTL formulas satisfy the invariant ∀s. s |=prop ¬(a ∧ r): Initially, the pair
(false, false) is used, and the rules that determine the semantics are easily seen
to maintain the invariant.

Therefore, ∀s. s |=prop ¬(a ∧ r) can be assumed for pairs of acceptance /
rejection conditions (a, r). This assumption simplifies some proofs, because un-
reasonable cases can be excluded. In particular, it does not matter if ¬prop or
¬rltl is used, if ∀s. s |=prop ¬(a ∧ r) holds4. Moreover, the invariant ¬(a ∧ r) is
necessary to formulate certain important lemmata like the following one:

Lemma 2. For all infinite words v1, v2 ∈ P(V)ω, all formulas ϕ ∈ rltlV , all
acceptance / rejection conditions a, r ∈ propV and all points of time t ∈ N, the
following holds5:

(
∃k.k ≥ t ∧ vt..k−1

1 = vt..k−1
2 ∧

((
vk
1 |=prop a ∧ vk

2 |=prop a ∧ vk
1 �|=prop r ∧ vk

2 �|=prop r
)

∨
(
vk
1 �|=prop a ∧ vk

2 �|=prop a ∧ vk
1 |=prop r ∧ vk

2 |=prop r
)))

=⇒
(

〈v1, a, r〉 |=t
rltl ϕ ⇐⇒ 〈v2, a, r〉 |=t

rltl ϕ
)

Lemma 2 states that if either the acceptance or the rejection condition holds at
some point of time k ≥ t, then it is sufficient to consider the finite prefix vt..k to
evaluate arbitrary RLTL formulas at position t. This does no longer hold if both
the acceptance and the rejection condition would hold at some point of time:
For example, we have 〈{a, b}∅ω, a, b〉 |=0

rltl a U ¬rltlc, but 〈{a, b}{c}∅ω, a, b〉 �|=0
rltl

a U ¬rltlc. The remaining RLTL operators have the same semantics as the corre-
sponding LTL operators (since RLTL is a superset of LTL).

2.3 Accellera’s Property Specification Language

As mentioned above, PSL is a standardised industrial-strength property specifi-
cation language [1]. PSL was chartered by the Functional Verification Technical
3 Theorem RLTL ACCEPT REJECT THM in theory ResetLTL Lemmata.
4 Theorem RLTL SEM PROP RLTL OPERATOR EQUIV in theory ResetLTL.
5 Theorem RLTL EQUIV PATH STRONG THM in theory ResetLTL Lemmata.
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Committee of Accellera. The Sugar language [5] was chosen as the basis for PSL.
The Language Reference Manual for PSL version 1.0 was released in April 2003.
Finally, in June 2004 version 1.1 [1] was released, where some anomalies (like
those reported in [3]) were corrected.

PSL is designed as an input language for formal verification and simulation
tools as well as a language for documentation. Therefore, it has to be easy
to read, and at the same time, it must be precise and highly expressive. In
particular, PSL contains features for simulation like finite paths, features for
hardware specification like clocked statements and a lot of syntactic sugar.

PSL consists of four layers: The Boolean layer, the temporal layer, the ver-
ification layer and the modelling layer. The Boolean layer is used to construct
expressions that can be evaluated in a single state. The temporal layer is the
heart of the language. It is used to express properties concerning more than one
state, i. e. temporal properties. The temporal layer is divided into the Founda-
tion Language (FL) and the Optional Branching Extension (OBE). FL is, like
LTL, a linear time temporal logic. In contrast, OBE is essentially the branching
time temporal logic CTL [9], which is widely used and well understood. The
verification layer has the task to instruct tools to perform certain actions on
the properties expressed by the temporal layer. Finally, the modelling layer is
used to describe assumptions about the behaviour of inputs and to model aux-
iliary hardware that is not part of the design. Additionally, PSL comes in four
flavours, corresponding to the hardware description languages SystemVerilog,
Verilog, VHDL and GDL. These flavours provide a syntax for PSL that is similar
to the syntax of the corresponding hardware description language.

In this paper, only the Boolean and the temporal layers will be considered.
Furthermore, mainly the formal syntax of PSL is used, which differs from the
syntax of all four flavours. However, some operators are denoted differently to
the formal syntax to avoid confusion with LTL operators that have the same
syntax, but a different semantics.

In this paper, only FL is considered. Therefore, only this subset of PSL is
formally introduced here. FL is a linear temporal logic that consists of:

– propositional operators
– future temporal (LTL) operators
– a clocking operator for defining the granularity of time, which may vary for

subformulas
– Sequential Extended Regular Expressions (SEREs), for defining finite regular

patterns, together with strong and weak promotions of SEREs to formulas
and an implication operator for predicating a formula on match of the pat-
tern specified by a SERE

– an abort operator

Due to lack of space, only the subset of PSL that is interesting for the translation
will be presented. Therefore, clocks and SEREs are omitted in the following.

The definition of the formal semantics of PSL makes use of two special states
� and ⊥. State � satisfies every propositional formula, even the formula false,
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and state ⊥ satisfies no propositional formula, even the formula true is not sat-
isfied. Using these two special states, the semantics of a propositional formula
ϕ ∈ propV with respect to a state s ∈ P(V) ∪ {�, ⊥} is defined as follows:

– � |=xprop ϕ

– ⊥ �|=xprop ϕ

– s′ |=xprop ϕ iff s′ |=prop ϕ for s′ ∈ P(V), i. e. for s′ /∈ {�, ⊥}

For a given set of variables V , the set of extended states over V is denoted
by XP(V) := P(V) ∪ {�, ⊥}. The definition of the formal syntax of PSL uses
a special function for words over these extended states. For finite or infinite
words w ∈ XP(V)ω ∪ XP(V)∗, the word w denotes the word over states that is
obtained from w by replacing every � with ⊥ and vice versa, i. e. for all i < |w|,
the following holds:

wi :=

⎧
⎨

⎩

⊥ : if wi = �
� : if wi = ⊥
wi : otherwise

Using these extended states and words over these states, it is possible to define
the formal syntax and semantics of SERE-free, unclocked FL (short SUFL):

Definition 6 (Syntax of Unclocked, SERE-free Foundation Language
(SUFL)). The set of SUFL-formulas suflV over a given set of variables V is
defined as follows:

– p, p! ∈ suflV , if p ∈ propV
– ¬ϕ ∈ suflV , if ϕ ∈ suflV
– ϕ ∧ ψ ∈ suflV , if ϕ, ψ ∈ suflV
– Xϕ, ϕ U ψ6 ∈ suflV , if ϕ, ψ ∈ suflV
– ϕ ABORT b ∈ suflV , if ϕ ∈ suflV , b ∈ propV

Definition 7 (Semantics of SUFL). For propositional formulas b ∈ propV and
SUFL formulas ϕ, ψ ∈ suflV , the semantics of unclocked SUFL with respect to a
finite or infinite word v ∈ XP(V)∗ ∪ XP(V)ω is defined as follows:

– v |=sufl b iff |v| = 0 or v0 |=xprop b

– v |=sufl b! iff |v| > 0 and v0 |=xprop b

– v |=sufl ¬ϕ iff v �|=sufl ϕ

– v |=sufl ϕ ∧ ψ iff v |=sufl ϕ and v |=sufl ψ

– v |=sufl Xϕ iff |v| > 1 and v1.. |=sufl ϕ

– v |=sufl ϕ U ψ iff ∃k. k < |v| s.t. vk.. |=sufl ψ and ∀j < k. vj.. |= ϕ

– v |=sufl ϕ ABORT b iff either v |=sufl ϕ or
∃j.j < |v| s.t. vj |=sufl b and v0..j−1�ω |=sufl ϕ

A word v satisfies an unclocked FL formula ϕ iff v |=sufl ϕ holds.

6 Written as ϕ U ψ in [1].
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As usual, some syntactic sugar is defined for SUFL:

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
– ϕ → ψ := ¬ϕ ∨ ψ
– ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)
– Xϕ := ¬X¬ϕ

– Fϕ := true U ϕ
– Gϕ := ¬F¬ϕ
– ϕ U ψ7 := ϕ U ψ ∨ Gϕ
– ϕ B ψ8 := ¬(¬ϕ U ψ)

All SUFL operators correspond to RLTL operators. A difference to RLTL is, that
SUFL is able to additionally consider finite paths. Thus, for a propositional
formula b, a strong variant b! is introduced that does not hold for the empty word
ε, while every propositional formula b holds for the empty word. Analogously, X
is introduced as a strong variant of X. The semantics of X requires that a next
state exists, while Xϕ trivially holds if no next state exists. For the remaining
temporal operator U, a weak variant U is already available in RLTL. Apart from
finite paths, the meaning of the FL operators is the same as the meaning of the
corresponding RLTL operators. The role of the two special states �, ⊥ is played
by the acceptance / rejection conditions of RLTL. The proof of this connection
between PSL and RLTL is one important part of the translation presented in this
work and will be explained in Section 3.

3 From PSL to RLTL

As mentioned above, the temporal layer of PSL consists of FL and OBE. OBE
is essentially the well known temporal logic CTL [9]. Since CTL can be directly
used for model checking without further translations [7,25], this work only con-
siders FL.

FL with SEREs is strictly more expressive than LTL. For example, it is well
known that there is no LTL formula expressing that a proposition ϕ holds at every
even point of time [20,32,25]. However, there is an unclocked FL formula with
SEREs expressing this property9. As RLTL is as expressive as LTL [3], FL with
SEREs cannot be translated to RLTL. Therefore, only SERE-free FL formulas are
considered. Moreover, clock-statements can be omitted for reasons of simplicity,
because clocked formulas can be easily rewritten to equivalent unclocked ones
[1]. Thus, we only consider the translation of unclocked, SERE-free FL to RLTL.

The semantics of SUFL is similar to the semantics of RLTL. There are only
two important differences: first, SUFL is able to additionally consider finite paths,
and second, SUFL additionally makes use of the special states � and ⊥, while
RLTL makes use of acceptance and rejection conditions. The first difference is
not important in the scope of this paper, because the overall goal is to translate
SUFL to ω-automata. Therefore, only infinite paths are of interest. To handle

7 Written as [ϕ W ψ] in [1].
8 Written as [ϕ BEFORE! ψ] in [1].
9 Theorem PSL WITH SERES STRICTLY MORE EXPRESSIVE THAN LTL EXAMPLE in

theory PSLToRLTL.
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the second difference, the special states � and ⊥ are simulated with the ac-
ceptance / rejection conditions of RLTL. However, the special states and accep-
tance / rejection conditions have slightly different semantics: The states � and
⊥ determine whether an arbitrary proposition is fulfilled by the current state.
However, the remaining states are still important. In contrast, if either the ac-
ceptance or the rejection condition occurs, the remaining states can be neglected
according to Lemma 2. An example showing this difference is ⊥{p}ω |=sufl Xp,
but 〈{r}{p}ω, a, r〉 �|=0

rltl Xp for a, r, p ∈ V . To overcome this slightly different
semantics only special inputs are considered:

Definition 8 (PSL-Paths). A finite PSL-path over a set of variables V is a
finite word v ∈ P(V)∗, i. e. a finite word not containing the states � and ⊥.
An infinite PSL-path over V is an infinite word v ∈ XP(V)ω with the following
properties:

– ∀j. vj=� −→ vj+1=�
– ∀j. vj=⊥ −→ vj+1=⊥

The set of all infinite PSL-paths over V is denoted by XP(V)ω�⊥
. Notice that

P(V)ω ⊂ XP(V)ω�⊥
holds.

In this work, we only consider infinite PSL-paths. At the first glance, this may
seem to be a restriction, however, this is not the case: Note that special states
are just an auxiliary means used to explain the semantics; however, they do
not occur in practice. Hence, only paths that fulfil the additional property of
PSL-paths are considered in the following. In [15], PSL-paths are called proper
words.

Since paths containing the special states � and ⊥ are allowed as input of
SUFL formulas, but these special states are not allowed as input of RLTL formu-
las, both paths and formulas have to be translated. To translate the paths, two
new atomic propositions t and b are chosen, i. e. t and b do neither occur on the
path nor in the formula. Every occurrence of � on the path is replaced by the
state {t}. In the same way, every occurrence of ⊥ is replaced by {b}. For the
formula itself, only minor changes are required: Essentially, only the PSL opera-
tors are exchanged with the corresponding RLTL operators. Additionally, t and
b are used as acceptance and rejection conditions, respectively, while evaluating
the translated formula on the translated path.

Lemma 3. With the definitions of Figure 1, the following are equivalent10 for
all f ∈ suflV , all infinite PSL-paths v ∈ XP(V)ω�⊥

and all t, b /∈ V:

– v |=sufl f
– 〈RemoveTopBottom(t, b, v), t, b〉 |=0

rltl PSL TO RLTL f
– RemoveTopBottom(t, b, v) |=rltl ACCEPT(REJECT((PSL TO RLTL f), b), t)

Note that t and b never occur at the same point of time on the translated path
RemoveTopBottom(t, b, v).
10 Theorems PSL TO RLTL THM and PSL TO RLTL ELIM ACCEPT REJECT THM in theory

PSLToRLTL.
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RemoveTopBottom(t, b, v)j :=

��
�

{t} : if vj = �
{b} : if vj = ⊥
vj : otherwise

function PSL TO RLTL(Φ)
case Φ of

b : return b;
b! : return b;
¬ϕ : return ¬PSL TO RLTL(ϕ);
ϕ ∧ ψ : return PSL TO RLTL(ϕ) ∧ PSL TO RLTL(ψ);
Xϕ : return X

�
PSL TO RLTL(ϕ)

�
;

ϕ U ψ : return PSL TO RLTL(ϕ) U PSL TO RLTL(ψ);
ϕ ABORT b : return ACCEPT(PSL TO RLTL(ϕ), b);

end
end

Fig. 1. Translation of SUFL to RLTL

The proof of Lemma 3 is based on a structural induction and requires some
lemmata about RLTL. In particular, Lemma 1 and 2 are important. To express
other important properties in a convenient way, some abbreviations about the
occurrence of propositions on a path are convenient:

NAND ON PATH(v, a, r) := ∀t. ¬(vt |=prop a ∧ vt |=prop r)
IS ON PATH(v, p) := ∃t. vt |=prop p

BEFORE ON PATH(v, a, b) := ∀t. (vt |=prop b) ⇒ ∃t0. (t0 ≤ t ∧ vt0 |=prop a)

Using these abbreviations, we can formulate the following lemma:

Lemma 4. For all v ∈ P(V)ω, a1, a2, r ∈ propV , all ϕ ∈ rltlV and all points of
time t ∈ N, the following holds11:

(
NAND ON PATH(vt.., a1, r) ∧ BEFORE ON PATH(vt.., a1, a2)

)
=⇒

(
〈v, a2, r〉 |=t

rltl ϕ ⇒ 〈v, a1, r〉 |=t
rltl ϕ

)

Informally, this lemma states that valid RLTL formulas do not become invalid
if the acceptance condition is strengthened. That is an important property of
RLTL. A consequence of Lemma 4 is:

Lemma 5. For all v ∈ P(V)ω, a1, a2, r ∈ propV , all ϕ ∈ rltlV and all points of
time t ∈ N, the following property holds12:

(
NAND ON PATH(vt.., a1, r) ∧ NAND ON PATH(vt.., a1, r)

)
=⇒

(
〈v, a1 ∨ a2, r〉 |=t

rltl ϕ ⇐⇒
(
〈v, a1, r〉 |=t

rltl ϕ ∨ 〈v, a2, r〉 |=t
rltl ϕ

))

11 Theorem RLTL SEM TIME ACCEPT BEFORE ON PATH in theory ResetLTL Lemmata.
12 Theorem RLTL SEM TIME ACCEPT OR THM in theory ResetLTL Lemmata.
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Using these lemmata about the acceptance / rejection conditions of RLTL, the
remaining proof of Lemma 3 by structural induction is mainly technical. The
cases for b, b!, ¬ϕ and ϕ ∧ψ are obvious. The case for Xϕ uses the fact that only
infinite PSL-paths are considered, the rest it is technical. The same holds for
ϕ U ψ. Therefore, the only interesting case is that for ϕ ABORT b, where the
presented lemmata about RLTL are required in a case analysis.

The usage of HOL to formally prove Lemma 3 has been shown valuable.
The case analysis used to prove the case for ABORT is quite tricky. During
this case analysis, a small, until then unknown bug in Mike Gordon’s deep-
embedding of PSL has been discovered: The unclocked semantics of ABORT is
defined by v |=sufl ϕ ABORT b iff either v |=sufl ϕ or ∃j.j < |v| s.t. vj |=sufl b
and v0..j−1�ω |=sufl ϕ holds. This has been literally implemented in HOL. In
case of j = 0, the word v0..0−1�ω is evaluated to �ω by the formal semantics of
PSL. However, because the datatype used to model j in HOL represents natural
numbers, v0..0−1�ω evaluated to v0..0�ω and therefore, to v0�ω in the HOL
representation. After reporting this bug to Mike Gordon, it has been fixed.

Lemma 3 is the central result for the translation of PSL to RLTL. It considers
arbitrary infinite PSL-paths as inputs. However, one is usually interested only
in paths without special states. Restricting the allowed input paths, Lemma 3
directly leads to the following theorem:

Theorem 1 (Translation of SUFL to RLTL). For all infinite words v ∈ P(V)ω

and all ϕ ∈ suflV13, the following holds:

v |=sufl ϕ ⇐⇒ v |=rltl PSL TO RLTL(ϕ).

4 From RLTL to LTL

The translation of RLTL to LTL that is used here is due to [3]. The correctness
of this translation can be easily proved by structural induction.

Theorem 2 (Translation of RLTL to LTL). With the definition of Figure 2,
the following holds14 for all infinite words v ∈ P(V)ω, all acceptance / rejection
conditions a, r ∈ propV , all RLTL formulas ϕ ∈ rltlV and all points of time t ∈ N:

〈v, a, r〉 |=t
rltl ϕ ⇐⇒ v |=t

ltl RLTL TO LTL(a, r, ϕ)

Obviously, this can be instantiated to:

v |=rltl ϕ ⇐⇒ v |=ltl RLTL TO LTL(false, false, ϕ)

13 Theorem PSL TO RLTL NO TOP BOT THM in theory PSLToRLTL.
14 Theorem RLTL TO LTL THM in theory ResetLTL Lemmata.



354 T. Tuerk and K. Schneider

function RLTL TO LTL(a, r, Φ)
case Φ of

b : return a ∨ (b ∧ ¬r);
¬ϕ : return ¬RLTL TO LTL(r, a, ϕ);
ϕ ∧ ψ : return RLTL TO LTL(a, r, ϕ) ∧ RLTL TO LTL(a, r, ψ);
Xϕ : return a ∨

�
X
�
RLTL TO LTL(a, r, ϕ)

�
∧ ¬r

�
;

ϕ U ψ : return RLTL TO LTL(a, r, ϕ) U RLTL TO LTL(a, r, ψ);
ACCEPT(ϕ, b): return RLTL TO LTL(a ∨ (b ∧ ¬r), r, ϕ);

end
end

Fig. 2. Translation of RLTL to LTL

5 Temporal Logic Hierarchy for PSL

In [25], LTL classes LTLF, LTLG, LTLPrefix, LTLFG, LTLGF and LTLStreett are syn-
tactically identified, that are as expressive as deterministic, noncounting live-
ness (TDETF), safety (TDETG), prefix (TDETPrefix), persistence (TDETFG), Büchi
(TDETGF) and Streett automata (TDETStreett), respectively.

The translation from PSL to LTL adds additional Boolean expressions to the
translated formulas. Adding Boolean expressions does not affect the membership
of a formula in these classes. Therefore, it is straightforward to identify classes of
unclocked, SERE-free FL, which correspond to the classes of LTL (see Figure 3).
Similarly, we have identified a hierarchy of RLTL.

b ∈ SUFLG
b! ∈ SUFLG

¬ϕ ∈ SUFLG = ϕ ∈ SUFLF
ϕ ∧ ψ ∈ SUFLG = ϕ ∈ SUFLG ∧ ψ ∈ SUFLG

Xϕ ∈ SUFLG = ϕ ∈ SUFLG
ϕ U ψ ∈ SUFLG = false

ϕ ABORT b ∈ SUFLG = ϕ ∈ SUFLG

b ∈ SUFLGF
b! ∈ SUFLGF

¬ϕ ∈ SUFLGF = ϕ ∈ SUFLFG
ϕ ∧ ψ ∈ SUFLGF = ϕ ∈ SUFLGF ∧ ψ ∈ SUFLGF

Xϕ ∈ SUFLGF = ϕ ∈ SUFLGF
ϕ U ψ ∈ SUFLGF = ϕ ∈ SUFLGF ∧ ψ ∈ SUFLF

ϕ ABORT b ∈ SUFLGF = ϕ ∈ SUFLGF

b ∈ SUFLPrefix
b! ∈ SUFLPrefix

¬ϕ ∈ SUFLPrefix = ϕ ∈ SUFLPrefix
ϕ ∧ ψ ∈ SUFLPrefix = ϕ ∈ SUFLPrefix ∧ ψ ∈ SUFLPrefix

Xϕ ∈ SUFLPrefix = Xϕ ∈ SUFLG ∪ SUFLF
ϕ U ψ ∈ SUFLPrefix = ϕ U ψ ∈ SUFLG ∪ SUFLF

ϕ ABORT b ∈ SUFLPrefix = ϕ ∈ SUFLPrefix

b ∈ SUFLF
b! ∈ SUFLF

¬ϕ ∈ SUFLF = ϕ ∈ SUFLG
ϕ ∧ ψ ∈ SUFLF = ϕ ∈ SUFLF ∧ ψ ∈ SUFLF

Xϕ ∈ SUFLF = ϕ ∈ SUFLF
ϕ U ψ ∈ SUFLF = ϕ ∈ SUFLF ∧ ψ ∈ SUFLF

ϕ ABORT b ∈ SUFLF = ϕ ∈ SUFLF

b ∈ SUFLFG
b! ∈ SUFLFG

¬ϕ ∈ SUFLFG = ϕ ∈ SUFLGF
ϕ ∧ ψ ∈ SUFLFG = ϕ ∈ SUFLFG ∧ ψ ∈ SUFLFG

Xϕ ∈ SUFLFG = ϕ ∈ SUFLFG
ϕ U ψ ∈ SUFLFG = ϕ ∈ SUFLFG ∧ ψ ∈ SUFLFG

ϕ ABORT b ∈ SUFLFG = ϕ ∈ SUFLFG

b ∈ SUFLStreett
b! ∈ SUFLStreett

¬ϕ ∈ SUFLStreett = ϕ ∈ SUFLStreett
ϕ ∧ ψ ∈ SUFLStreett = ϕ ∈ SUFLStreett ∧ ψ ∈ SUFLStreett

Xϕ ∈ SUFLStreett = Xϕ ∈ SUFLGF ∪ SUFLFG
ϕ U ψ ∈ SUFLStreett = ϕ U ψ ∈ SUFLGF ∪ SUFLFG

ϕ ABORT b ∈ SUFLStreett = ϕ ∈ SUFLStreett

Fig. 3. Classes of SUFL
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We formally proved in HOL that the presented translation translate every PSL
class to the corresponding classes of RLTL and LTL. Moreover, the classes of
FutureLTL are as expressive as the classes of LTL [25], and FutureLTL is a subset
of RLTL and SUFL. Therefore, we formally proved in HOL that the classes of
FutureLTL can be translated to the corresponding classes of PSL and RLTL. This
leads to the following theorem:

Theorem 3 (Hierarchy of PSL). For any κ ∈ {G, F, Prefix, GF, FG, Streett},
the logics LTLκ, FutureLTLκ, RLTLκ and SUFLκ are as expressive as TDETκ.
Furthermore, LTL, FutureLTL, RLTL and SUFL are as expressive as TDETStreett.

6 Conclusion and Future Work

We presented a translation of a significant subset of PSL to LTL. This transla-
tion is interesting by its own, since it allows an efficient translation from this
significant subset of PSL to ω-automata. Moreover, it is possible to extend the
temporal logic hierarchy [18,24,25] to PSL. In particular, we were able to charac-
terise subsets of PSL that can be translated to liveness and safety automata. This
is of practical evidence, since these kinds of automata are very useful to handle
finite inputs which is required for bounded model checking or for simulation.

Our main goal is to translate PSL to ω-automata. Since the translation of
LTL to ω-automata is well known, we have already done a big step. Unfortu-
nately, regular expressions can, in general, not be translated to LTL. However,
they can be translated to finite state automata [16]. Therefore, the next step
will be to translate PSL directly to ω-automata. We have already deeply em-
bedded automaton formulas [24,25], a symbolic representation of ω-automata.
Furthermore, we have validated a basic and an improved translation of LTL to
ω-automata, which are both presented in [24,25]. The improved translation al-
lows us to formally validate the translation of SUFLF, SUFLG and SUFLPrefix to
TDETF, TDETG or TDETPrefix, respectively. Next, we will validate more opti-
mised translations. This will allow us to formally validate that also the other
classes of PSL can be translated to the corresponding classes of ω-automata.
Then, we can use these optimised translations to directly translate a subset of
PSL including regular expressions to ω-automata.
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