
Model Checking PSL using HOL and SMV

Thomas Tuerk1
⋆
, Klaus Schneider1, and Mike Gordon2

1 Reactive Systems Group
Department of Computer Science, University of Kaiserslautern

P.O. Box 3049, 67653 Kaiserslautern, Germany
http://rsg.informatik.uni-kl.de

2 University of Cambridge Computer Laboratory
William Gates Building, JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

http://www.cl.cam.ac.uk

Abstract. In our previous work, we formally validated the correct-
ness of a translation from a subset of Accellera’s Property Specification
Language (PSL) to linear temporal logic (LTL) using the HOL theorem
prover. We also built an interface from HOL to the SMV model checker
based on a formal translation of LTL to ω-automata. In the present paper,
we describe how this work has been extended and combined to produce a
model checking infrastructure for a significant subset of PSL that works
by translating model checking problems to equivalent checks for the ex-
istence of fair paths through a Kripke structure specified in higher order
logic. This translation is done by theorem proving in HOL, so it is proven
to be correct. The existence check is carried out using the interface from
HOL to SMV. Moreover, we have applied our infrastructure to implement
a tool for validating the soundness of a separate PSL model checker.

1 Introduction

The Property Specification Language (PSL) [1] is an industrial-strength tempo-
ral logic. It was developed by the Functional Verification Technical Committee of
Accellera based on IBM’s Sugar language [3] and has now become an IEEE stan-
dard. It is designed both for formal verification and for simulation and has been
described as the most popular property specification language in industry [10].

The linear time subset of PSL is a complex language that includes many
special cases with subtle semantics. It is well known how LTL can be translated
to equivalent ω-automata [30, 9, 13, 12, 23], but PSL additionally provides a reset
(abort) operator whose semantics has been the subject of debate. In order to
study the impact of different kinds of abort operators on the complexity of the
translation and verification, a logic RLTL [2] was introduced that extends LTL by
a reset operator. It turned out that, in the worst case, Version 1.01 of PSL lead
to a non-elementary blow-up in the translation to ω-automata. For this reason,

⋆ This work has been done while this author visited the University of Cambridge
Computer Laboratory.

the semantics of PSL’s reset operator were changed in Version 1.1 (the current
version). Thus, a significant subset of PSL can now be translated to RLTL. A
further translation from RLTL to LTL has already been presented in [2].

Because of the subtle semantics of PSL, it is non-trivial to ensure that imple-
mentations accurately reflect the official language standard. Thus, we feel that
there is value in using automated formal methods to reason about the semantics
of PSL in general, and to verify model checking algorithms for this logic. PSL has
already been deeply embedded in HOL [15] and a translation from a significant
subset of PSL to ω-automata via RLTL and LTL has been verified [26, 25]. How-
ever, in this previous work only the correctness of these translations has been
proved.

In this paper, we use revised versions of the correctness translation theorems
to create PSL implementation infrastructure directly on top of the formalisation
of the standard PSL semantics. Model checking problems for PSL can be handled
fully automatically. We have used this infrastructure to build a specific tool to
check the accuracy of an implementation of PSL used by IBM’s RuleBase CTL

model checker. We were able to detect an incorrectness (unknown to us, but
known to IBM) in the implementation of clocked aborts (they are treated as
synchronous but should have been asynchronous).

Our infrastructure includes formal translators, implemented by theorem-
proving in HOL, from the linear time fragment of PSL to LTL and from LTL

to ω-automata. Although these are based on previous work, they were largely
rewritten so that they could be turned into a new automatic tool for translating
PSL to automata. To check the existence of fair paths, we use a link from HOL

to SMV. This is based on Schneider’s earlier work, though we changed from a
shallow to a deep embedding of LTL in HOL and modified many details. Model
checking problems for PSL can be translated, using theorem proving, to equiva-
lent checks for the existence of fair paths through a Kripke structure. A proof of
the correctness of the emptiness check is created by these translation procedures.
The resulting check is finally performed by SMV [19].

The rest of this paper is organised as follows. The formalisms we use are
explained in the next section. We then briefly sketch translations between them.
In Section 4, we describe the infrastructure and in Section 5, we outline its
application to build a tool to validate the handling of PSL by RuleBase. Finally,
we draw some conclusions and show directions for future work.

2 Basic notions

Temporal logics like LTL, RLTL and PSL use propositional logic to describe
(static) properties of the current point of time. The semantics of temporal prop-
erties is based on sequences of points of time called paths, which are usually
defined by transition systems. Thus, we first define propositional logic, paths
and transition systems in this section. Then, the logics LTL, RLTL, and PSL are
presented. Finally, ω-automata are introduced.

Definition 1 (Propositional Logic). Let V be a set of variables. Then, the
set of propositional formulas over V (short propV) is recursively given as follows:

– each variable v ∈ V is a propositional formula
– ¬ϕ ∈ propV , if ϕ ∈ propV
– ϕ ∧ ψ ∈ propV , if ϕ,ψ ∈ propV

An assignment over V is a subset of V. In our context, assignments are also
called states. The set of all states over V, which is the power set of V, is denoted
by P(V). The semantics of a propositional formula with respect to a state s is
given by the relation |=prop that is defined as follows:

– s |=prop v iff v ∈ s
– s |=prop ¬ϕ iff s 6|=prop ϕ
– s |=prop ϕ ∧ ψ iff s |=prop ϕ and s |=prop ψ

If s |=prop ϕ holds, then the assignment s is said to satisfy the formula ϕ.

We use the operators ∨, → and ↔ and the constants true and false as syntactic
sugar with their usual meaning.

A finite word v over a setΣ of length |v| = n+1 is a function v : {0, . . . n}→Σ.
An infinite word v over Σ is a function v : N → Σ and its length is denoted
by |v| = ∞. The set Σ is called the alphabet and the elements of Σ are called
letters. The finite word of length 0 is called the empty word (denoted by ε). For
reasons of simplicity, v(i) is often denoted by vi for i ∈ N. Using this notation,
words are often given in the form v0v1v2 . . . vn or v0v1 The set of all finite
and infinite words over Σ is denoted by Σ∗ and Σω, respectively.

Counting starts from zero, i. e. vi−1 refers to the i-th letter of v. Furthermore,
vi.. denotes the suffix of v starting at position i, i. e. vi.. = vivi+1 . . . for all i < |v|.
The finite word vivi+1 . . . vj is denoted by vi..j . Notice that in case j < i, the
expression vi..j evaluates to the empty word ε. For two words v1, v2 with v1 ∈ Σ∗,
we write v1v2 for their concatenation. The union v1∪v2 of two words v1, v2 with
|v1| = |v2| over sets is defined as the word v with |v| = |v1| = |v2| and vj = vj

1∪v
j
2

for all j < |v|. Analogously, the intersection v1 ∩ v2 of v1 and v2 is defined. We
write lω for the infinite word v with vj = l for all j.

2.1 Kripke Structures

Systems used with model checking techniques are usually given as labelled tran-
sition systems that are often called Kripke structures. In this paper, we use
symbolically represented Kripke structures as usual in symbolic model checking.

Definition 2 (Symbolically Represented Kripke Structures). A sym-
bolically represented Kripke structure K over a set of variables V is a tuple
K = (I,R) such that

– I is a propositional formula over V
– R is a propositional formula over V ∪ {Xv | v ∈ V}

A path p through K = (I,R) is an infinite word over V such that for all i, the
relation pi∪{Xv | v ∈ pi+1} |=prop R holds. A path p is called initial, iff p0 |=prop I
holds. A path is called fair according to some propositional formula f , called the
fairness condition, iff infinitely many letters of p satisfy the fairness condition,
i. e. iff the set {i | pi |=prop f} is infinite. The set of all initial paths through
K is denoted by IPath(K). The set of all initial paths that satisfy all fairness
constraints in the set fc is denoted by IPathfair(K, fc).

According to this definition, the new variable Xv is used to denote the value
of the variable v at the next state. It is often convenient to evaluate a whole
propositional formula instead of just one variable at the next state, so the X

operator is introduced as a shorthand for replacing every occurrence of a variable
v by Xv in a propositional formula. Similarly, X is also used to replace every
variable v in a set by Xv.

2.2 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) has been proposed for the specification of reactive
systems by Pnueli in [20]. LTL essentially consists of propositional logic enriched
with the temporal operators X and U. The formula Xϕ means that the property
ϕ holds at the next point of time, ϕ U ψ means that ϕ holds until ψ holds and
that ψ eventually holds.

Definition 3 (Syntax of Linear Temporal Logic (LTL)). The set ltlV of
LTL formulas over a given set of variables V is defined as follows:

– p ∈ ltlV for all p ∈ propV
– ¬ϕ, ϕ ∧ ψ ∈ ltlV , if ϕ,ψ ∈ ltlV
– Xϕ, ϕ U ψ ∈ ltlV , if ϕ,ψ ∈ ltlV

Further temporal operators can be defined as syntactic sugar, for example,
Fϕ := (true U ψ), Gϕ := ¬F¬ϕ, ϕ U ψ := ϕ U ψ ∨Gϕ, and ϕ B ψ := ¬(¬ϕ) U ψ.
LTL with the operators U and X is, however, already expressively complete with
respect to the first order theory of linear orders [23].

Definition 4 (Semantics of Linear Temporal Logic (LTL)). For b ∈ propV
and ϕ,ψ ∈ ltlV the semantics of LTL with respect to an infinite word v ∈ P(V)ω

and a point of time t ∈ N is given as follows:

– v |=t
ltl b iff vt |=prop b

– v |=t
ltl ¬ϕ iff v 6|=t

ltl ϕ
– v |=t

ltl ϕ ∧ ψ iff v |=t
ltl ϕ and v |=t

ltl ψ
– v |=t

ltl Xϕ iff v |=t+1

ltl ϕ

– v |=t
ltl ϕ U ψ iff ∃k. k ≥ t ∧ v |=k

ltl ψ ∧ ∀j. t ≤ j < k → v |=j
ltl ϕ

A word v ∈ P(V)ω satisfies a LTL formula ϕ ∈ ltlV (written as v |=ltl ϕ) iff v |=0
ltl

ϕ; a Kripke structure K satisfies ϕ (denoted K |=ltl ϕ) iff all paths v ∈ IPath(K)
satisfy ϕ.

2.3 Reset Linear Temporal Logic (RLTL)

To evaluate a formula ϕ U ψ, one has to consider a (potentially infinite) prefix
of a path, namely the prefix up to a state where ¬(ϕ∧¬ψ) holds. As simulations
may stop before that prefix is completely examined, the evaluation of formulas
could be incomplete, and is thus aborted. In order to return a definite truth
value, abort operators are introduced. The logic RLTL [2] extends LTL with an
abort operator called ACCEPT. This operator aborts the evaluation and accepts
a path, if a boolean condition is detected.

Definition 5 (Syntax of Reset Linear Temporal Logic (RLTL)). The fol-
lowing mutually recursive definitions introduce the set rltlV of RLTL formulas
over a given set of variables V:

– each propositional formula p ∈ propV is a RLTL formula
– ¬ϕ, ϕ ∧ ψ ∈ rltlV , if ϕ,ψ ∈ rltlV
– Xϕ, ϕ U ψ ∈ rltl, if ϕ,ψ ∈ rltlV
– ACCEPT(ϕ, b) ∈ rltlV , if ϕ ∈ rltlV , b ∈ propV

Definition 6 (Semantics of Reset Linear Temporal Logic (RLTL)). The
semantics of LTL is defined with respect to a word v and a point of time t. To
define the semantics of RLTL, an acceptance condition a ∈ propV and a rejection
condition r ∈ propV are needed in addition. These conditions are used to capture
the required information about ACCEPT operators in the context of the formula.
Thus, for b ∈ propV and ϕ,ψ ∈ rltlV , the semantics of RLTL with respect to
an infinite word v ∈ P(V)ω, acceptance/rejection conditions a, r ∈ propV and a
point of time t ∈ N is defined as follows:

– 〈v, a, r〉 |=t
rltl b iff vt |=prop a or (vt |=prop b and vt 6|=prop r)

– 〈v, a, r〉 |=t
rltl ¬ϕ iff 〈v, r, a〉 6|=t

rltl ϕ
– 〈v, a, r〉 |=t

rltl ϕ ∧ ψ iff 〈v, a, r〉 |=t
rltl ϕ and 〈v, a, r〉 |=t

rltl ψ
– 〈v, a, r〉 |=t

rltl Xϕ iff vt |=prop a or
(

〈v, a, r〉 |=t+1

rltl ϕ and vt 6|=prop r
)

– 〈v, a, r〉 |=t
rltl ϕ U ψ

iff ∃k. k ≥ t ∧ 〈v, a, r〉 |=k
rltl ψ ∧ ∀j. t ≤ j < k → 〈v, a, r〉 |=j

rltl ϕ
– 〈v, a, r〉 |=t

rltl ACCEPT(ϕ, b) iff 〈v, a ∨ (b ∧ ¬r), r〉 |=t
rltl ϕ

A word v ∈ P(V)ω satisfies a RLTL formula ϕ ∈ rltlV (written as v |=rltl ϕ) iff
〈v, false, false〉 |=0

rltl ϕ holds; a Kripke structure K satisfies ϕ (denoted K |=rltl ϕ)
iff all paths v ∈ IPath(K) satisfy ϕ.

2.4 Accellera’s Property Specification Language

PSL is a standardised industrial-strength property specification language [1]
chartered by the Functional Verification Technical Committee of Accellera. The
Sugar language [3] was chosen as the basis for PSL. The Language Reference
Manual for PSL Version 1.0 was released in April 2003. Finally, in June 2004,
Version 1.1 [1] was released, where some anomalies (like those reported in [2])
were corrected.

PSL is designed as an input language for formal verification and simulation
tools as well as a language for documentation. Therefore, it has to be as readable
as possible, and at the same time, it must be precise and highly expressive. In
particular, PSL contains features for simulation like finite paths, features for
hardware specification like clocked statements and a lot of syntactic sugar.

PSL consists of four layers: The Boolean layer, the temporal layer, the ver-
ification layer and the modelling layer. The Boolean layer is used to construct
expressions that can be evaluated in a single state. The temporal layer is the
heart of the language. It is used to express properties concerning more than one
state, i. e. temporal properties. The temporal layer is divided into the Foundation
Language (FL) and the Optional Branching Extension (OBE). FL is, like LTL,
a linear time temporal logic. In contrast, OBE is essentially the branching time
temporal logic CTL [11], which is widely used and well understood. The verifi-
cation layer has the task of instructing tools to perform certain actions on the
properties expressed by the temporal layer. Finally, the modelling layer is used
to describe assumptions about the behaviour of inputs and to model properties
that cannot be represented by formulas of the temporal layer or auxiliary hard-
ware that is not part of the design. PSL comes in four flavours, corresponding
to the hardware description languages SystemVerilog, Verilog, VHDL and GDL.
These flavours provide a syntax for PSL that is similar to the syntax of the
corresponding hardware description language.

In this paper, only the Boolean and the temporal layers will be considered.
Furthermore, mainly the formal syntax of PSL is used, which differs from the
syntax of all four flavours. However, some operators are denoted slightly differ-
ently to the formal syntax to avoid confusion with similar LTL operators.

In this paper, only the linear temporal logic FL is considered. It consists of:

– propositional operators
– future temporal (LTL) operators
– a clocking operator for defining the granularity of time, which may vary for

subformulas
– Sequential Extended Regular Expressions (SEREs), for defining finite regular

patterns, together with strong and weak promotions of SEREs to formulas
and an implication operator for predicating a formula on match of the pat-
tern specified by a SERE

– an abort operator

Due to lack of space, only the subset of FL that is interesting for the translation
will be presented (e.g. clocks are eliminated using standard rewriting rules). Note
that we do not handle SEREs yet.

As described in Version 1.1 of the PSL standard, two special states ⊤ and
⊥ are needed to define the formal semantics of FL. The state ⊤ satisfies every
propositional formula, even the formula false, and state ⊥ satisfies no proposi-
tional formula, even the formula true is not satisfied. Using these two special
states, the semantics of a propositional formula ϕ ∈ propV with respect to a
state s ∈ P(V) ∪ {⊤,⊥} is defined as follows:

– ⊤ |=xprop ϕ
– ⊥ 6|=xprop ϕ
– s′ |=xprop ϕ iff s′ |=prop ϕ for s′ ∈ P(V), i. e. for s′ /∈ {⊤,⊥}

For a given set of variables V, the set of extended states over V is denoted
by XP(V) := P(V) ∪ {⊤,⊥}. The definition of the formal syntax of PSL uses
a special function for words over these extended states. For finite or infinite
words w ∈ XP(V)∗ ∪ XP(V)ω, the word w denotes the word over states that is
obtained from w by replacing every ⊤ with ⊥ and vice versa, i. e. for all i < |w|,
the following holds:

wi :=

⊥ : if wi = ⊤
⊤ : if wi = ⊥
wi : otherwise

Using these extended states and words over these states, the formal syntax and
semantics of SERE-free, unclocked FL (which we call SUFL) is defined as follows.

Definition 7 (Syntax of SUFL). The set of SUFL formulas suflV over a given
set of variables V is defined as follows:

– p, p! ∈ suflV , if p ∈ propV
– ¬ϕ ∈ suflV , if ϕ ∈ suflV

– ϕ ∧ ψ ∈ suflV , if ϕ,ψ ∈ suflV

– Xϕ, ϕ U ψ3 ∈ suflV , if ϕ,ψ ∈ suflV

– ϕ ABORT b ∈ suflV , if ϕ ∈ suflV , b ∈ propV

Definition 8 (Semantics of SUFL). For propositional formulas b ∈ propV and
SUFL formulas ϕ,ψ ∈ suflV , the semantics of SUFL with respect to a finite or
infinite word v ∈ XP(V)∗ ∪ XP(V)ω is defined as follows:

– v |=sufl b iff |v| = 0 or v0 |=xprop b
– v |=sufl b! iff |v| > 0 and v0 |=xprop b
– v |=sufl ¬ϕ iff v 6|=sufl ϕ
– v |=sufl ϕ ∧ ψ iff v |=sufl ϕ and v |=sufl ψ
– v |=sufl Xϕ iff |v| > 1 and v1.. |=sufl ϕ
– v |=sufl ϕ U ψ iff ∃k. k < |v| s.t. vk.. |=sufl ψ and ∀j. j < k implies vj.. |=sufl ϕ
– v |=sufl ϕ ABORT b iff either v |=sufl ϕ or

∃j.j < |v| s.t. vj |=sufl b and v0..j−1⊤ω |=sufl ϕ

A word v satisfies a SUFL formula ϕ iff v |=sufl ϕ holds; a Kripke structure K
satisfies ϕ (denoted K |=sufl ϕ) iff all paths v ∈ IPath(K) satisfy ϕ.

Some standard syntactic sugar is defined for SUFL:

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
– ϕ→ ψ := ¬ϕ ∨ ψ
– ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)
– Xϕ := ¬X¬ϕ

– Fϕ := true U ϕ
– Gϕ := ¬F¬ϕ
– ϕ U ψ4 := ϕ U ψ ∨ Gϕ
– ϕ B ψ5 := ¬(¬ϕ U ψ)

3 written as ϕ U ψ in [1]
4 written as [ϕ W ψ] in [1]
5 written as [ϕ BEFORE! ψ] in [1]

All SUFL operators correspond to RLTL operators. A difference from RLTL is
that SUFL is able, in addition, to consider finite paths. Thus, for a propositional
formula b, a strong variant b! is introduced that does not hold for the empty word
ε, while every propositional formula b holds for the empty word. Analogously, X

is introduced as a strong variant of X. The semantics of X requires that a next
state exists, while Xϕ trivially holds if no next state exists. For the remaining
temporal operator U, a weak variant U is already available in RLTL. Apart from
finite paths, the meaning of the FL operators is the same as the meaning of the
corresponding RLTL operators. The role of the two special states ⊤,⊥ is played
by the acceptance/rejection conditions of RLTL.

2.5 ω-Automata

ω-automata were introduced by J.R. Büchi in 1960 [7]. They are similar to finite
state automata as introduced by Kleene in 1956 [18]. While finite state automata
decide whether a finite word belongs to some language, ω-automata decide this
property for infinite words. There are different kinds of ω-automata and some of
slightly different definitions. In this paper, we will use a symbolic representation
of nondeterministic ω-automata, which is closely related to the formalism of au-
tomaton formulas described in previous work [23]. For conciseness, some details
in this paper have been simplified.

Definition 9 (Symbolic Representation of ω-Automata). A symbolically
represented nondeterministic or universal ω-automaton over a set of variables V
is a tuple (Q, I,R, l) such that

– Q ⊆ V is a finite set of state variables,
– I and R represent a Kripke structure over V and
– l is a LTL formula over V called acceptance condition.

Symbolically represented nondeterministic ω-automata are often written in the
form A∃(Q, I,R, l), universal ones are denoted by A∀(Q, I,R, l). A run of some
input i ∈ P(V \Q)ω through A := A∃/∀(Q, I,R, l) is an infinite word r ∈ P(Q)ω

such that i∪ r is a path through the Kripke structure represented by (I,R). The
input i satisfies the ω-automaton (denoted by i |=omega A∃/∀(Q, I,R, l)) iff for
at least one run / all runs r of i through A the path r ∪ i satisfies l. For inputs
that contain state variables, this definition is extended by restricting the inputs:
i |=omega A := i∩ (V \Q)ω |=omega A. As usual, a Kripke structure K satisfies
A (denoted K |=omega A) iff all paths i ∈ IPath(K) satisfy A.

An ω-automaton A := A∃/∀(Q, I,R, l) is called total, iff for all i, i′ ⊆ V \Q,
s ⊆ Q a state s′ ⊆ Q exists such that i∪ s′ |=prop I and i∪ s∪Xi′ ∪Xs′ |=prop R
holds. A is called deterministic iff for all i, i′, s an unique s′ with these properties
exists.

For all input paths there is exactly one run through a deterministic au-
tomaton. Thus, the semantics of A∃(Q, I,R, l) and A∀(Q, I,R, l) coincide for
deterministic automata. Therefore, the notation Adet(Q, I,R, l) is used as well
in the deterministic case.

3 Translations

As already mentioned, all operators of the sublanguage SUFL of PSL correspond
to RLTL operators. As shown in previous work [26, 25] these correspondences lead
to a very simple translation procedure from SUFL on infinite words to RLTL.

However, during this translation not only the formula itself but also the input
words have to be translated, because in contrast to RLTL, inputs for PSL may
contain the special states ⊤ and ⊥. The translation used considers only infinite
proper words [17]. An infinite proper word over V is an infinite word v ∈ XP(V)ω

such that ∀j. vj=⊤ −→ vj+1=⊤ and ∀j. vj=⊥ −→ vj+1=⊥ hold.

The set of all infinite proper words over V is denoted by XP(V)ω⊤⊥

. At first
glance, it may seem to be a restriction to consider only proper words, however,
this is not the case. Special states are just an auxiliary means used to explain
the semantics; they do not occur in practise and proper words are sufficient to
explain the semantics.

Theorem 1. With the definitions of Figure 1, the following are equivalent for

all f ∈ suflV , all infinite proper words v ∈ XP(V)ω⊤⊥

and all t, b /∈ V:

– v |=sufl f
– 〈RemoveTopBottom(t, b, v), t, b〉 |=0

rltl PSL TO RLTL f
– RemoveTopBottom(t, b, v) |=rltl ACCEPT(REJECT((PSL TO RLTL f), b), t)

If v does not contain ⊤ and ⊥, i. e. in case v ∈ P(V)ω, this can be simplified to:

v |=sufl ϕ⇐⇒ v |=rltl PSL TO RLTL(ϕ)

RemoveTopBottom(t, b, v)j :=

8

<

:

{t} : if vj = ⊤
{b} : if vj = ⊥
vj : otherwise

function PSL TO RLTL(Φ)
case Φ of

b : return b;
b! : return b;
¬ϕ : return ¬PSL TO RLTL(ϕ);
ϕ ∧ ψ : return PSL TO RLTL(ϕ) ∧ PSL TO RLTL(ψ);
Xϕ : return X

`

PSL TO RLTL(ϕ)
´

;
ϕ U ψ : return PSL TO RLTL(ϕ) U PSL TO RLTL(ψ);
ϕ ABORT b : return ACCEPT(PSL TO RLTL(ϕ), b);

end

end

Fig. 1. Translation of SUFL to RLTL

After the translation to RLTL, the formula can easily be translated further to
LTL. This translation step is due to [2].

Theorem 2 (Translation of RLTL to LTL). With the definition of Figure 2,
the following holds for all infinite words v ∈ P(V)ω, all acceptance / rejection
conditions a, r ∈ propV , all RLTL formulas ϕ ∈ rltlV and all points of time t ∈ N:

〈v, a, r〉 |=t
rltl ϕ⇐⇒ v |=t

ltl RLTL TO LTL(a, r, ϕ)

Obviously, this can be instantiated to:

v |=rltl ϕ⇐⇒ v |=ltl RLTL TO LTL(false, false, ϕ)

function RLTL TO LTL(a, r, Φ)
case Φ of

b : return a ∨ (b ∧ ¬r);
¬ϕ : return ¬RLTL TO LTL(r, a, ϕ);
ϕ ∧ ψ : return RLTL TO LTL(a, r, ϕ) ∧ RLTL TO LTL(a, r, ψ);

Xϕ : return a ∨
“

X
`

RLTL TO LTL(a, r, ϕ)
´

∧ ¬r
”

;

ϕ U ψ : return RLTL TO LTL(a, r, ϕ) U RLTL TO LTL(a, r, ψ);
ACCEPT(ϕ, b): return RLTL TO LTL(a ∨ (b ∧ ¬r), r, ϕ);

end

end

Fig. 2. Translation of RLTL to LTL

IPath(K) ⊆ P(V)ω holds for all Kripke structures K over V. This leads to the
following corollary.

Corollary 1 (Direct translation of PSL to LTL). For all f ∈ suflV and all
Kripke structures K over V the following holds:

K |=sufl f ⇐⇒ K |=ltl RLTL TO LTL(false, false,PSL TO RLTL(f))

It remains to translate LTL to ω-automata. It is well known how this can be
achieved [30, 5, 13, 9, 12]. In this work, we use an algorithm by Klaus Schnei-
der [22, 23] to translate LTL to the symbolic representation of ω-automata intro-
duced above. This algorithm is very similar to the one used in [27] to translate
LTL to alternating ω-automata.

Theorem 3 (Translation of LTL to ω-automata). For all LTL formulas
Φ ∈ LTLV and (Q, I,R,F , p) := TopPropσ(Φ), where TopProp is defined as in
Figure 3, the following holds:

– for σ = true and all v ∈ P(V)ω, the following holds:

v |=ltl Φ⇐⇒ v |=omega A∃(Q, I ∧ p,R,
∧

ξ∈F

GF ξ)

– for σ = false and all v ∈ P(V)ω, the following holds:

v |=ltl ¬Φ⇐⇒ v |=omega A∃(Q, I ∧ ¬p,R,
∧

ξ∈F

GF ξ)

function TopPropσ(Φ)
case Φ of

p : return ({}, true, true, {}, p);
¬ϕ : (Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := TopProp

¬σ(ϕ);
return (Qϕ, Iϕ,Rϕ,Fϕ,¬pϕ);

ϕ ∧ ψ : return TopPropσ(ϕ) × TopPropσ(ψ);
Xϕ : (Qϕ, Iϕ,Rϕ,Fϕ, pϕ) := TopPropσ(ϕ);

q := new var;
return (Qϕ ∪ {q}, Iϕ,Rϕ ∧ (q ↔ Xpϕ),Fϕ, q);

ϕ U ψ : (QΦ, IΦ,RΦ,FΦ, pϕ∧pψ) := TopPropσ(ϕ)×TopPropσ(ψ);
q := new var;
RQ := q ↔ (pψ ∨ (pϕ ∧ Xq));
FQ := if σ then {q ∨ pψ} else {};
return (QΦ ∪ {q}, IΦ,RΦ ∧RQ,Fϕ ∪ FQ, q);

end

end

Fig. 3. Translation of LTL to ω-automata [22, 23]

4 Infrastructure

The HOL System [14, 16] is an interactive theorem prover for higher order logic.
In this work the HOL4 implementation is used. The version of higher order logic
used in HOL is predicate calculus with terms from the typed lambda calculus [8].
The interactive front-end of HOL is the functional programming language ML,
in which terms and theorems of the logic, proof strategies and logical theories
are implemented. This language is used to implement the translations described
here and also to interface to SMV.

In earlier work, Gordon deeply embedded PSL in HOL [15], Schneider cre-
ated a shallow embedding of symbolically represented ω-automata and a shallow
embedding of LTL and verified a translation between these two embeddings [24].
Also, we have previously deeply embedded RLTL, LTL and symbolically rep-
resented ω-automata, and verified the translations described in Sec. 3 [25, 26].
However, no automatic translations or other parts that could be used for tools
existed.

In this work, we describe such tools. In particular, we have implemented
validating compilers for all the translations described here, i. e. we have imple-
mented ML-functions that translate an LTL term to an ω-automaton and also

produce a correctness proof of the generated automaton. Thus, possible bugs in
these implementations may only lead to exceptions and failing translations, but
no wrong results can be produced. In addition, we have implemented validating
compilers to convert model checking problems for SUFL and LTL to check the
existence of fair paths through a Kripke structure. For example, we can translate
the check K |=sufl f to a Kripke structure M and a set of propositional formulas
fc such that K |=sufl f ⇐⇒ IPathfair(M, fc) = ∅ holds. This emptiness check can
be handled by CTL model checkers that can handle fairness. In this work, we use
the model checker SMV [19] and reuse an interface already developed in previous
work [24]. However, interfaces to other model checkers can easily be added.

As a result of this work, we can perform model checking for SUFL using HOL

and SMV. Assuming that SMV and HOL are correct, we have high confidence
that the whole tool is correct, since only the interface between HOL and SMV is
not verified and this interface is very small and simple.

Provably correct SUFL model checking is interesting in its own right as SUFL

is a significant subset of PSL and PSL is difficult to model check. PSL is a complex
language, so errors in designing and implementing model checking procedures
for it are potentially very easy to make. However, the main purpose of the work
reported here is to create a library of theorems and ML functions as a basis for
building special purpose tools. One example of such an tool is described in the
next section. This enables implementers of PSL tools to validate their code on
concrete examples with respect to the Version 1.1 PSL semantics.

5 Application: validating a translator from PSL to CTL

Our tool aims to validate how IBM’s model checker RuleBase [4] handles PSL.
RuleBase checks if a Kripke structure K satisfies a PSL specification f , by trans-
lating the specification f to a total transition system T = (Q, I,R) and a CTL

formula of the form AG p with propositional p. This translation is a blackbox
to us. Then K || T |=CTL AG p is checked. Neither CTL semantics nor this com-
bination of K and T are explained here, but note that K || T |=CTL AG p is
equivalent to K |= A∀(Q, I,R,G p). Thus, given f,Q, I,R and p one would like
to automatically prove

∀K. K |=omega A∀(Q, I,R,G p) ⇐⇒ K |=sufl f.

We are able to solve this problem for all SUFL formulas f with the library we
have developed. Moreover, clock operators can also be handled, since they can
be considered as syntactic sugar and eliminated by rewrite rules [1]. Thus only
regular expressions can not be handled. However, we have a preprocessing step
that tries to eliminate regular expressions by rewriting them to SUFL formulas.
Regular expression strictly increase the expressiveness of FL [28, 29, 25]. Thus,
we can not eliminate all of them. But luckily we can eliminate most of the regular
expressions occurring in practise.

It is of course vital to anybody using RuleBase with PSL specifications, that
the translation to CTL model checking is sound. However, we think our work

should be of interest to implementers of other model checking tools also. Note
that neither IBM’s translation nor our tool can handle full FL. Nevertheless,
the intersection between the subsets that our tool can handle and RuleBase can
handle is big enough to be interesting.

To implement a tool to solve the translation validation problem using our
library, formal translation (implemented by theorem proving) is used to convert
a PSL formula f to an equivalent LTL formula l. Then the quantification over the
models K is replaced by quantification over all paths i, which is equivalent for
this problem. A∀(Q, I,R,G p) is then translated to a deterministic automaton
Adet(Qdet, Idet,Rdet,G pdet), which is possible because the input automaton is
total [23]. Thus, the original problem is equivalent to

∀i. i |=omega A∀(Qdet, Idet,Rdet,G pdet) ⇐⇒ i |=ltl l.

This is in turn equivalent to (Idet,Rdet) |=ltl G pdet ↔ l. Thus, the library can be
used to translate the original problem to a LTL model checking problem, which
can be solved using the techniques described in Section 4. Moreover, all steps
needed for this translation to a LTL model checking problem are formally verified
in HOL. Therefore, we have an automatic tool to prove the correctness of the
translation for concrete examples.

We have validated several examples provided by IBM. Most of these exam-
ples can be verified in a few minutes, some take several hours. However, the
determinisation of the input automaton leads to an exponential blowup. Thus,
small PSL formulas may lead to huge model checking problems. However, we
have been able to show that the tool we developed is able to handle non toy
examples. Moreover, we have been able to detect an error in the translation of
the ABORT operator under clocks using it (though, unknown to us, this problem
was already known to the RuleBase developers).

6 Conclusions and Future Work

We have developed a library that allows us to handle a significant subset of
PSL using HOL and SMV. There are theorems about PSL and especially about
translations between PSL, LTL and ω-automata, and also ML-functions that solve
common problems automatically. Model checking problems of SUFL and LTL can
be tackled using these automatic procedures. However, the main purpose of the
library is to provide a basis to build tools that can handle special PSL problems.

We used the library to validate the handling of PSL by RuleBase. We were
able to show that our tool could handle interesting examples. Moreover, we were
even able to detect an error in IBM’s procedure.

A lot of implementation details could be improved. However, the main chal-
lenge will be to extend the subset of PSL. Adding regular expression strictly
increases the expressiveness such that the resulting subset of PSL can no longer
be translated to LTL [28, 29, 25]. However, it is possible to translate PSL di-
rectly to ω-automata. There is an approach by Bustan, Fisman and Havlicek [6]
which translates PSL to alternating ω-automata. Another approach by Zaks and

Pnueli [21] translates PSL to symbolically represented automata. It would be in-
teresting to use this work to verify a direct translation to symbolically described
nondeterministic ω-automata using HOL.

Acknowledgements

Thomas Tuerk’s visit to Cambridge is partly supported by an IBM Faculty
Award to Mike Gordon and partly by EPSRC grant GR/T06315/01. The prob-
lem of checking conformance of the PSL-to-CTL translation used by RuleBase

with the semantics of PSL in the official standard was originally formulated by
Cindy Eisner and Dana Fisman of IBM, and we thank them for much helpful
advice and for supplying examples.

References

1. Accellera. Property specification language reference manual, version 1.1.
http://www.eda.org, June 2004.

2. Armoni, R., Bustan, D., Kupferman, O., and Vardi, M. Resets vs. aborts
in linear temporal logic. In Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS) (Warsaw, Poland, 2003), H. Garavel and
J. Hatcliff, Eds., vol. 2619 of LNCS, Springer, pp. 65–80.

3. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., and Rodeh,

Y. The temporal logic Sugar. In Conference on Computer Aided Verification
(CAV) (Paris, France, 2001), vol. 2102 of LNCS, Springer, pp. 363–367.

4. Beer, I., Ben-David, S., Eisner, C., Geist, D., Gluhovsky, L., Heyman,

T., Landver, A., Paanah, P., Rodeh, Y., Ronin, G., and Wolfsthal, Y.

RuleBase: Model checking at IBM. In Conference on Computer Aided Verifica-
tion (CAV) (Haifa, Israel, 1997), O. Grumberg, Ed., vol. 1254 of LNCS, Springer,
pp. 480–483.

5. Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. Symbolic
model checking: 1020 states and beyond. In Symposium on Logic in Computer
Science (LICS) (Washington, D.C., June 1990), IEEE Computer Society, pp. 1–
33.

6. Bustan, D., Fisman, D., and Havlicek, J. Automata construction for PSL.
Technical Report MCS05- 04, The Weizmann Institute of Science, Israel, 2005.

7. Büchi, J. On a decision method in restricted second order arithmetic. In Interna-
tional Congress on Logic, Methodology and Philosophy of Science (Stanford, CA,
1960), E. Nagel, Ed., Stanford University Press, pp. 1–12.

8. Church, A. A formulation of the simple theory of types. Journal of Symbolic
Logic 5 (1940), 56–68.

9. Daniele, M., Giunchiglia, F., and Vardi, M. Improved automata genera-
tion for linear temporal logic. In Conference on Computer Aided Verification
(CAV) (Trento, Italy, 1999), N. Halbwachs and D. Peled, Eds., vol. 1633 of LNCS,
Springer, pp. 249–260.

10. DeepChip survey on assertions. http://www.deepchip.com/items/dvcon04-
06.html, June 2004.

11. Emerson, E., and Clarke, E. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2, 3 (1982), 241–266.

12. Gastin, P., and Oddoux, D. Fast LTL to Büchi automata translation. In
Conference on Computer Aided Verification (CAV) (Paris, France, 2001), vol. 2102
of LNCS, Springer, pp. 53–65.

13. Gerth, R., Peled, D., Vardi, M., and Wolper, P. Simple on-the-fly automatic
verification of linear temporal logic. In Symposium on Protocol Specification, Test-
ing, and Verification (PSTV) (Warsaw, June 1995), North Holland.

14. Gordon, M. HOL: A machine oriented formulation of higher order logic. Tech.
Rep. 68, Computer Laboratory, University of Cambridge, May 1985.

15. Gordon, M. PSL semantics in higher order logic. In Workshop on Designing
Correct Circuits (DCC) (Barcelona, Spain, 2004).

16. Gordon, M., and Melham, T. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

17. Havlicek, J., Fisman, D., and Eisner, C. Basic results on the semantics of
Accellera PSL 1.1 foundation language. Technical Report 2004.02, Accellera, 2004.

18. Kleene, S. Representation of events in nerve nets and finite automata. In Au-
tomata Studies, C. Shannon and J. McCarthy, Eds. Princeton University Press,
Princeton, NJ, 1956, pp. 3–41.

19. McMillan, K. Symbolic Model Checking. Kluwer, Norwell Massachusetts, 1993.
20. Pnueli, A. The temporal logic of programs. In Symposium on Foundations of

Computer Science (FOCS) (New York, 1977), vol. 18, IEEE Computer Society,
pp. 46–57.

21. Pnueli, A., and Zaks, A. PSL model checking and run-time verification via
testers. In FM (2006), J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol. 4085 of
Lecture Notes in Computer Science, Springer, pp. 573–586.

22. Schneider, K. Improving automata generation for linear temporal logic by con-
sidering the automata hierarchy. In International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR) (Havanna, Cuba, 2001),
vol. 2250 of LNAI, Springer, pp. 39–54.

23. Schneider, K. Verification of Reactive Systems – Formal Methods and Algorithms.
Texts in Theoretical Computer Science (EATCS Series). Springer, 2003.

24. Schneider, K., and Hoffmann, D. A HOL conversion for translating linear time
temporal logic to omega-automata. In Higher Order Logic Theorem Proving and its
Applications (TPHOL) (Nice, France, 1999), Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry, Eds., vol. 1690 of LNCS, Springer, pp. 255–272.

25. Tuerk, T. A hierarchy for Accellera’s property specification language. Master’s
thesis, University of Kaiserslautern, Department of Computer Science, 2005.

26. Tuerk, T., and Schneider, K. From PSL to LTL: A formal validation in HOL.
In International Conference on Theorem Proving in Higher Order Logics (TPHOL)
(Oxford, UK, 2005), J. Hurd and T. Melham, Eds., vol. 3603 of LNCS, Springer,
pp. 342–357.

27. Vardi, M. Branching vs. linear time: Final showdown. In Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (Genova,
Italy, 2001), T. Margaria and W. Yi, Eds., vol. 2031 of LNCS, Springer, pp. 1–22.

28. Wolper, P. Temporal logic can be more expressive. In Symposium on Foundations
of Computer Science (FOCS) (New York, 1981), IEEE Computer Society, pp. 340–
348.

29. Wolper, P. Temporal logic can be more expressive. Information and Control 56,
1-2 (1983), 72–99.

30. Wolper, P., Vardi, M., and Sistla, A. Reasoning about infinite computations
paths. In Symposium on Foundations of Computer Science (FOCS) (New York,
1983), IEEE Computer Society, pp. 185–194.

