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Abstract

We show that techniques for monad composition can be used nicely

for modeling object�oriented programming concepts� In this functional

setting� we develop a new model for composing objects from individual

features in a modular way� Features are similar to abstract subclasses�

but separate the core functionality of a subclass from overwriting meth�

ods� We view method overwriting more generally as resolving interactions

between two features� The interaction handling is speci�ed separately and

added when features are composed� This generalizes inheritance as found

in object�oriented languages and leads to a new view of objects in a func�

tional setting� Our concepts are implemented in Gofer and generalize some

monadic programming techniques� where objects correspond to monads�

features to monad transformers� and feature interactions are resolved by

lifting functions through monad transformers�

� Introduction

In this paper we model object�oriented programming concepts in a functional lan�
guage and present generalizations of conventional object�oriented programming�
Whereas the latter allows to develop classes of objects in an incremental man�
ner� we just compose objects from a set of features� which replace classes� This
approach was motivated by the recent interest in feature interactions in telecom�
munications� where service unit provides for of a set of �telephone� features� The
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crucial point is that some features may interact and have to be adapted in the
presence of each other� This idea will be used for a novel approach to object�
oriented programming� We consider such interaction handling for two features at
a time and compose features with the appropriate interaction handling in a way
which generalizes inheritance and method overwriting as in object�oriented pro�
gramming� The �exible composition of features is achieved by advanced concepts
of functional programming� in particular the monads and monad composition
techniques� Our techniques allow to use object�oriented techniques while pre�
serving the bene�ts of a higher�order lazy functional language� and also advance
object�oriented programming concepts�
The feature model allows to compose objects from individual features �or

abstract subclasses� in a fully �exible and modular way� Its main advantage is
that objects with individual services can be created just by selecting the desired
features� unlike object�oriented programming� A feature is similar to an abstract
subclass and consists of a base implementation which

� adds functionality to an object

� may assume that the extended object provides other features�

� may add local state to the object �or may extend the used domains� e�g� by
error cases�

Features are similar to abstract subclasses or mixins �	� 
�� The main di�erence
is that we separate the core functionality of a subclass from overwriting methods
of the superclass� We view overwriting more generally as a mechanism to resolve
dependencies or interactions between features� i�e� some feature must behave
di�erently in the presence of another one� For this purpose� we need to provide
lifters� which adapt a feature to the context of another feature by overwriting
methods� This leads to a new view of inheritance� as feature interactions are
resolved between two features on a mutual basis� In contrast� inheritance just
overwrites the method of the superclass�
The base functionality of a new feature is based on the functionality of the

required ones and on the newly added state� This idea of assuming other features
is a further di�erence to usual abstract subclass concepts� Note that the extended
object can obviously have more than just the required features�
We use a modular architecture for composing features and the required in�

teraction handling to a full object� As we only compose objects� there is no real
notion of a class� which is hence often confused with the �type of� objects� The
techniques we use for composing features have been developed for composing
monads ��� �	� and have been used for handling interactions in interpreters for
programming languages with several features ���� ��� We program such feature
interactions by lifting functions of one feature to the context of the other� This
gives an architecture for composing features and interactions�





Whereas inheritance is used to extend a class with local state and functional�
ity� we generalize this process and compose objects with individual services from
a set of features� Although inheritance can be used for such feature combinations�
all needed combinations� including feature interactions� have to be programmed
explicitly� In contrast� we can �re�use features by simply selecting the desired
ones when creating an object�
We claim that feature�oriented programming is advantageous for the following

reasons�

� It yields more �exibility� as objects with individual services can be composed
from a set of features� This is clearly desirable� if many di�erent variations
of one software component are needed or if new functionality has to be
incorporated frequently�

� As the core functionality is separated from interaction handling� it provides
more structure and clari�es dependencies between features� Hence it en�
courages to write independent� reusable code� as in many cases subclasses
should be an independent entity� and not a subclass�

Our main technical contributions towards object� or feature�oriented program�
ming are as follows�

� Using concepts for monad composition� we introduce a novel model for
programming features in a modular and composable way which generalizes
inheritance or subclassing�

� We show that some functionality �an undo function� which depends on
several features can be implemented abstractly for any feature combination
using type computations via type classes�

� We generalize some programming techniques used in ���� to generic classes
of stateful and error monads�

An exposition of feature�oriented programming as an extension of an imperative
language� namely Java� appears in �
�� This paper also includes a detailed com�
parison to object�oriented programming� Here� we focus the functional essence
of this approach and on more advanced concepts� such as exception handling�
This can also be viewed as semantical model of the core of the imperative version
in �
��
We demonstrate our concepts by two examples� including some telecommu�

nication features� where feature interactions have recently attracted great at�
tention ��� ��� For more examples in this area of telecommunications we refer
to �	��
For implementing our concepts with monads we generalize techniques devel�

oped in ����� In our model� classes correspond to monads� which can be viewed
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as particular abstract data types� The interesting point is that �some classes of�
monads compose nicely and that we can build monad transformers� which trans�
form an abstract data type to another� This is used to add features to objects�
For instance� the mainly used monad transformers add �local� state �and extra
functionality�� from which we draw the comparison to inheritance� We show that
implicit state via monads is essential for our abstract programming techniques�
Similarly� overloading via type classes is important� as the type of polymorphic
functions in feature implementations can only be determined after an object is
composed from a set of features�
To compare this work with earlier results on monads� note that Moggi ���

aimed at lifting monads just by their types� This was extended to liftings for
particular types of monads in ����� using their speci�c properties� Our technique
is to name concrete instances of monad classes �e�g� state monads� and to program
liftings depending on the names� but using generic liftings for the class of monads�
As the names are identi�ed with features� this clearly goes along the ideas of
inheritance� Furthermore� we mostly use just state monads� which compose easily�
In the following� we present our concepts for writing features by an example�

which will be the running example� Although we only use functions to access
local variables of an object� the relation to object�oriented programming and to
other concepts of inheritance should be clear� It is examined in detail in �
��
After a brief introduction to the technical concepts in Section � we show

the concepts of stateful features in Section � and of error features in Section 
�
The problems of multi�feature interaction are discussed in Section 	� followed by
examples for stack features in Section �� Another example for feature interactions
in telecommunications is presented in Section ��

��� A First Example

In the following� we show a small example modeling stacks with the following
features�

�Basic� Stack� providing push and pop operations on a stack implemented by
a list�

Counter� which adds a local counter �used for the size of the stack��

Undo� adding an undo function� which restores the state as it was before the
last access to the object�

In an object�oriented language� one would extend a class of stacks by a counter
and then extend this by undo� In general� a concrete class is added onto another
concrete class� We will extend this to independent features which can be added
to any object� For instance� we can run a counter object independently� or with
undo�






The full implementation of the stack example contains six features which can
be used modularly in many combinations�� It includes variations of the counter
and the undo function� For instance� there is a version with a one�step undo and
one with many�step undo� Another feature for handling stack under�ow� based
on a class of error features� is shown later in Section 
� We show in Figure �

Undo: undo

Stack: 

Counter: size, inc, dec

Environment

push, pop

Figure �� Composing features �rounded boxes� by lifters �boxes with arrows�

an example for feature composition with liftings� many more combinations are
shown in Section �� In this example we �rst add the counter to the basic stack�
For this new object to support the stack feature� we have to lift the functions
push and pop� indicated by arrows in the box denoting the lifting� This gives�
like inheritance� a new object with two features� consisting of the inner two
boxes� Since there are interactions between the two features� we must provide
individual lifters for push and pop� Otherwise� one can use the default ones
for composing orthogonal� independent features� With the undo component� we
proceed similarly� Note that the functions push and pop are lifted again to undo�
now with the lifter from stack to undo�
Clearly� these features are not independent� For instance� when adding the

counter� the functions push and pop must� in addition� increment or decrement
the counter� With traditional inheritance� this is achieved by overwriting of
methods and by possibly calling the method of the superclass� In our setting�
such dependencies are described by a lifting from one feature to a new context�
Thus� liftings depend on two features�
To compose several features� liftings have to be more general� For any object

having the set of features A� we can add feature b and lift the functions of each

�Code available via the autor�s home page�

	



feature in A individually to the new context� Then we have an object which
provides b as well� Using the structure of liftings� it is easy to model classical
inheritance� Consider adding a feature b to an object with features A� To obtain
a concrete subclass� one just has to merge the code of the feature a with all
the lifters from a � A to b� Repeating this for all features� we can create a
concrete class hierarchy for a particular object composed from some features�
This amounts to the main di�erence to inheritance�
In the example� there are two lifters needed �two boxes� for adding undo to

the object with counter and basic stack features� This is the main di�erence to
inheritance� where a concrete class undo would extend a class with counter and
stack and would rede�ne some of their functions� Whereas all this happens in one
subclass� it is separated �and much more reusable� in three entities� one feature
and two lifters�
Note further that lifting push and pop to undo does not depend on the counter�

only the lifted versions of push and pop are lifted again by a lifter which depends
on undo and basic stack�
We argue that liftings can nicely resolve many typical interactions between

features� such as handling an extended local state� For instance� there is another
interesting interaction between undo and counter� If a size request is followed by
undo� shall the state before size or the one before the last push�pop request be
restored� Such choices motivate a modular design� where not only the compo�
nents are decoupled� but also their interaction� For instance� if the counter is not
used� we do not want to bother with this complication�

��� Programming Features

To give a �rst idea of how to program features� we show �some of� the code for the
stack and the counter features� Our concepts are provided by Gofer functions ����
and type constructions� We use the constructor classes of Gofer ��
�� which extend
Haskell�s type classes ��� and have been partly adopted in Haskell ��� ���
We use monadic state transformers modeling implicit state as in imperative

languages� which is essential for the desired �exibility and modularity� Composing
features is done by the type system of Gofer with type constructions and type
classes� A type class declares certain functions for its member types� Observe
that type classes do not correspond to classes in object�oriented programming�
but determine if a type has some feature� Thus a type can be in several type
classes� vaguely reminiscent of multiple inheritance� Compared to object�oriented
programming� type classes resemble the idea of interfaces� as e�g� in Java �����
A type is in a type class �e�g� StackMonad or CountMonad� if the corresponding

functions are provided in an instance declaration� as shown below� We use the
type constructors StackT� CountT to add features to a type� For instance� if m
is the type of an object �a monad�� then StackT s m is a new type which also
supports the stack feature with a local state of type s�
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In the following code� the �rst type declaration for StackT declares that
StackT is a state transformer� adding implicit state to the object of type m��

The second statement declares that StackT �Int� m is in the class StackMonad

of stacks of integers�� �Note that �Int� is the type of lists over Int�� Furthermore�
we have to give implementations for the functions which the feature provides� here
push and pop� Note that we write types� type constructors and type declarations
in italics�

�� add implicit state of type s

�� to m �simplified here�

type StackT s m � StateTrans s m

instance StackMonad �StackT �Int� m�
where

push a � dof s �� get�

put �a�s� g
pop � dof s �� get�

put �tail s��

result �head s�g
is�empty � dof s �� get�

result �s���	� g

In the above implementation� the do�notation for sequential computations in
monads is used� Each statement in the do construct may compute a value and
assign it to a local variable� e�g� s �� get assigns the result of get to s� In such
a monad computation the added� implicit state can be modi�ed via the functions
put and get� Note that these access functions always refer to the implicit state
of the �current� feature�
Next we show the counter feature� whose functions are also implemented via

state transformers�

type CountT Int m � StateTrans Int m

instance CountMonad �CountT Int m�
where

size � get

inc � dof i �� get�

put �i
�� g
dec � dof i �� get�

put �i��� g

�State transformers will be explained in detail later� Also� the following type declaration is
shortened� The full code and the class declarations are shown later�

�Polymorphic stacks are possible via a binary class StackMonad� using the extra argument
for the type of the stack� However� this leads to ambiguous types later�
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It remains to lift the functionality of stack to the context of a counter� The
following instance declaration states that �CountT Int m� has the stack feature�
under the preconditions �stated before the ��� that m has the stack feature� i�e�
StackMonad m� and that �CountT Int m� is a CountMonad�

instance �StackMonad m

CountMonad �CountT Int m�� ��

StackMonad �CountT Int m�
where

push a � dof inc �

lift �push a�g
pop � dof dec �

lift popg

The code for push �rst calls the increment function of the counter and then
via lift �push a� the push function of the inner object ��superclass�� of type
m� Roughly speaking� lift corresponds to the function super as e�g� in Smalltalk
and is� like get and put� de�ned later� Alternatively� if there is no interaction�
one would just write

pop � lift pop

which could also be made a default �as implicit in object�oriented programming��
With the above code� an object of type

CountT Int �StackT �Int� m�

provides both features and behaves as expected� In general� liftings should pre�
serve the functionality of the lifted features� i�e� an individual feature always
behaves identically �if no others are used in between�� For the standard lifting�
this can be shown similar to �����
The implementation of the undo feature is more involved and is presented in

Section 	� The idea of the simple undo implementation is to save the local state
of the object each time a function of the other features is applied �e�g� push� pop��
The undo feature raises several new issues�

� The lifting of functions of the other used features is schematic� Always save
the state �rst and then call the function to be lifted� In contrast to object�
oriented programming� this can be done once and for all by a particular
function

lift�undo f �

dof local�s �� lift gets �

put �Some local�s� �

�lift f� g

�



which lifts any function f to the undo feature� Note that lift gets refers
to the state of the inner object�

� undo depends essentially on all �inner� features� since it has to know the
internal state of the composed object� Since we work in a typed environ�
ment� the type of the state to be saved has to be known� This multi�feature
interaction is solved by an extra feature� which allows to read and write the
local state�

� Monads� Type Classes and Features

In the following� we explain the technical background needed for our feature
model� The ideas are based on investigations on features in programming lan�
guages ����� The concept of monads has been introduced to programming for
modeling state in functional languages ���� and for writing code which is easy to
modify ���� Both aspects will be essential in our context�

��� Type Classes

A type class in Haskell is essentially a set of types �which all happen to provide
a certain set of functions�� Each class declaration introduces a new class and a
set of new function names� which are overloaded for each member of a class� For
instance

class Eq a where

eq �� a � a � Bool

introduces the class Eq of all those types a which provide a function eq �� a �
a� Bool� A class declaration is like a module interface� it separates declarations
from implementations� Instance declarations provide the members of classes and
concrete implementations for the member functions� e�g�

instance Eq Int where

eq � eq�int

In general we can instantiate classes not just by base types but also by type
terms� For example� we may wish to express that a type �a� admits equality
provided a does� This is achieved by the following instance declaration� where
the Haskell notation �� allows to add a list of type assumptions �here Eq a� for
the new instance Eq �a��

instance Eq a �� Eq �a� where
eq �	 �	 � True

eq �a�as� �b�bs� �

and �eq a b eq as bs	
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Note that the last two eq expressions refer to two di�erent instances of Eq� one
for a and one for �a��

��� Constructor Type Classes

The extension to constructor classes of Gofer ��
� � allows n�ary type classes�
Furthermore� these arguments may not just be types� but can be type construc�
tors� Let � be the kind of types ���� Then� for instance� the type constructor � �
�in mix�x notation� is of �kind� � � �� as it maps types to types� Constructor
classes are often used when standard type classes are too coarse to describe the
types of the member functions� The standard example is the binary container
class� whose instances typically are lists and trees�

class Container c a where

member �� a � �c a� � Bool

Here we can express that the type c a depends on a� If c a is replaced by a type
s� in a class Container� s� then the type of member �� a � s � Bool would
be too general� we cannot write a sensible function which for any type a checks
membership in a type s� Typical instance declarations are�

instance Container List a where

member e �	 � False

member e a�s � or �eq e a

member e s	

data Tree a � Leaf a

� Node �Tree a �

�Tree a �

instance Container Tree a where

member e �Leaf a� � eq e a

member e �Node a b� �

or �member e a member e b	

��� Monads

Programming with monads provides a compromise between imperative languages�
where statements a�ect an implicit� global state� and stateless functional lan�
guages� where all information �ow is � sometimes tediously � explicit� Monads
also separate building computation �e�g� composing state transformers� and run�
ning a computation�
A monad is a type constructor m with some operations and laws� If a is a

type� then m a is the type of a larger object which �wraps� a� often a function
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type �e�g� a state transformer� as shown later� In monadic style� a function from
a to b is assigned the type a � m b� There are standard functions to work with
monads� de�ned in the type class for monads� which builds upon the functor
class�

class Functor m where

map �� �a � b� � �m a � m b�

class Functor m �� Monad m where

result �� a � m a

bind �� m a � �a � m b� � m b

Function result inserts a value into the �empty� monad and bind applies a
monadic function to a value of type m a� Note that we use the do�notation for
bind� de�ned as

do f x �� m � tg �def m bind �x�t

This notation extends canonically to sequences of bind applications� The monad
laws for result illustrate the �empty� monad�

�result a� bind �b� t � �a�b	 t

m bind �b� result b � m

where �a�b	 is a substitution mapping b to a� �See ��� for more details on monad
laws��

��� Features� Monads with Operations

Features are de�ned as monads with additional operations� These can be viewed
as predicates over types which characterize the features� For instance� for the
basic stack and counter features we de�ne�

�� type of stack elements

type St � Int

class Monad m ��

StackMonad m where

push �� St � m ��
pop �� m St

is�empty �� m Bool

type Ct � Int �� type of counter

class Monad m ��
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CountMonad m where

size �� m Ct

inc �� m ��
dec �� m ��

This declares the two classes used in the introduction� StackMonad and CountMonad�
with their corresponding functions� It assumes that m is a monad� �Note that ��
is the empty type��

� A Class of Stateful Monads

We show in the following the underlying machinery for features which add state
to some object� The basis of state monads is a type

type StateTrans s m a � s� m�s� a�

which extends any monad m to a type of a state transformer for a state of type
s� This transformer can be applied repeatedly� i�e� StateTrans s m is again a
monad� as shown below� For the following general model� we generalize over this
type and just assume the functions closeS and openS� These access the internal
structure of state monads and are only used internally�
The ternary class StateMonadT c s m� where s is the type of the added state�

m a monad and c an appropriate type constructor� declares that �c s m� is a
stateful monad with the following functions �for some of which de�nitions are
included��

class Monad m ��

StateMonadT c s m where

closeS ���s � m�s� a�� � c s m a

openS ��c s m a � s � m�s� a�

get �� c s m s

get � closeS��s�result�ss��

put �� s � c s m ��
put a � closeS��s�result�a����

lift �� m a � c s m a

lift m � closeS��s� dof
x �� m� result�s x�g�

For the functions get� put and lift� also de�nitions are provided in the class
declarations� The functions closeS and openS are used to show that any state
monad is a monad�
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instance StateMonadT c s m ��

Functor �c s m� where

map f xs � closeS �

�s� �openS xs� s bind

��s�x�� result�s� f x��

instance StateMonadT c s m ��

Monad �c s m� where

result x � closeS�

�s�result�sx��

m bind k � closeS�

�s�� �openS m� s� bind

��s� a�� openS �k a� s��

This generic class generalizes the various stateful monads in ����� where the above
de�nition of monads is repeated for stateful monads�

��� De�ning a Stateful Feature

With the above concepts� we can show in detail the de�nition of basic stack
features� Only the following data type declaration is needed�� as well as declaring
it to be a stateful monad�

data StackT s m a �

STM�StateTrans s m a�

instance StateMonadT StackT s m where

closeS x � STM x

openS �STM x� � x

Similar declarations are needed for the counter feature� The instance declarations
for StackT and CountT can be found in Section ���

� A Class of Error Monads

As for stateful monads� we can similarly de�ne a generic monad which adds extra
values to the computation� For instance� with the above de�nition of stacks� stack
under�ow results in a program error� Using error monads� we can cope nicely
with such cases� In applications it is then possible to use stacks with or without
error handling as needed�
Whereas stateful monads build upon a particular function type �StateTrans��

we use a sum type here�

�Note that we use an extra constructor STM to de�ne StackT via a data type de�nition�
This is needed for type checking�

��



data Err e a � Data a j Error e

type ErrT e m a � m�Err e a�

Thus ErrT adds error elements of type e to a monad m� Note that this composes
with state monads� For instance� we obtain the type

�ErrT e �StackT s Id�� a �
STM� s � Id�s� Err e a��

The class of error monads supports open and close functions as for state monads�
plus generic functions to inject and check errors �put�err read�err�� and the
canonic lifting function lifterr��

class Monad m ��

ErrMonadT c s m where

openE �� c s m a � m�Err s a�
closeE �� m�Err s a� � c s m a

put�err �� s � c s m a

read�err �� c s m a � c s m Bool

lifterr �� m a � c s m a

lifterr c � closeE �map Data c�

put�err s �

closeE�result�Error s��

read�err m �

closeE�map isError �openE m��

where

isError �Error s� � Data True

isError �Data x� � Data False

Showing that ErrMonadT c s m is a monad is more complicated� It can for
instance be shown if we assume that m is any StateMonad� For this we use the
concepts of ��	�� which can be generalized to classes of monad transformers�
For instance� an error handler for stack under�ow is written by lifting stack

over Err� using Int for error values� Since we only use the base functions of
ErrMonadT� we don�t need to introduce an extra class and a type constructor for
this� �An example with an explicit class is shown in Section ����

instance �StackMonad m 

�Due to the type system� the function cannot be overloaded to work under the same name
as in stateful monads� Adding an extra class for monad transformer is no solution� as typing
does not permit to declare instances for both classes of monads�
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ErrMonadT ErrT Er m���

StackMonad �ErrT Er m�
where

pop � dof
b �� is�empty �

if b then �put�err ��

else �lifterr pop�g
push a � lifterr �push a�

is�empty � lifterr is�empty

Lifting other� independent features is canonical�

instance �CountMonad m

ErrMonadT ErrT s m� ��

CountMonad �ErrT s m� where

size � lifterr size

inc � lifterr inc

dec � lifterr dec

This lifting can even be generalized to any state monad� if CountMonad is inde�
pendent of all other stateful features�
In the current model for features� we have just provided generic monad compo�

sition for a set of stateful features with one error feature� Although it is possible
to use several error features� it is easier to use one error monad transformer and
to build other features on top of it� For instance� we only use the integer � as
error message here and leave others open for other error cases� �In case several
features use the same error message� we can treat this as an interaction��

� The Undo Feature� Multi�Feature Interaction

We continue the stack example by introducing the undo feature� which has in�
teresting interactions with several other features� The problem is that the undo
feature must access the local states of all �stateful� features the object already
has� Since we work in a typed setting� we also need the type of all local states�
Hence undo depends on several features� As we work with standardized monads�
it is possible to add an auxiliary feature�� which determines the state of an object
and provides access to it� Thus undo can be added to any feature combination�
The additional class SMonad for stateful monads is declared via

class Monad m �� SMonad s m where

gets �� m s

puts �� s � m s

�Not shown in Figure ��
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This binary class declares that monadm has state s and provides access functions�
Instances can be de�ned schematically for both classes of monads� e�g��

instance �SMonad s� m

StateMonadT c s m� ��

SMonad �s� s�� �c s m�
where

gets � dofs �� lift gets �

s� �� get �

result �s�s� g
puts �ab� � dofs �� lift �puts b��

put a g

This expresses that c s m has state �s� s��� if m has state s�� Now we can de�ne
the undo feature via SMonad as follows� Since there may be no saved state for
undo� we use the data type Option for the copy of the local state in the following
code�

data Option a � Some a j None

data UndoT s m a �

UTM�StateTrans s m a�

instance StateMonadT UndoT s m where

closeS x � UTM x

openS �UTM x� � x

class Monad m �� UndoMonad m where

undo �� m ��

instance SMonad s m ��

UndoMonad �UndoT �Option s� m�
where

undo � dof
u �� get �

case u of

None �� result ��

Some u� ��

lift �puts u��g

The other interesting point about undo is lifting of functions of other features�
The advantage is that lifting proceeds via the following generic scheme� which
�rst extracts the local state of the object� updates the saved state and then calls
the lifted function�

��



liftundo f �

doflocal�s �� lift gets �

put �Some local�s� �

�lift f� g

Lifting for the basic stack features proceeds canonically�

instance �SMonad s� m

StackMonad m � ��

StackMonad �UndoT �Option s�� m�
where

push a � liftundo �push a�

pop � liftundo pop

There is an interesting interaction when the counter is used� For lifting size�
which does not a�ect the state� we can either overwrite the saved state or leave
it unchanged �as shown in the comment in the code below�� In the former case�
undo after size will have no e�ect� With our model of feature interaction� we
just have to use the appropriate lifting function for interaction resolution�

instance �SMonad s m

CountMonad m � ��

CountMonad �UndoT �Option s� m�
where

size � liftundo size

�� alternative� � lift size

inc � liftundo inc

dec � liftundo dec

Currently� just one lifting between two features is possible due to the type system�
A further step would be to allow more liftings and to parameterize over liftings�

� Using the Stack Features

A simple example for an object �monad� with two features is the following� which
uses the identity monad Id with no features as base monad� By the following type
declarations features are selected�� Running the above state transformers requires
extra machinery for injecting an initial state and for extracting the computed
value�

�� stack with counter

�Gofer can infer the types without these declarations� but the inferred type is too general�
as Gofer allows several �base� implementations for a type class�

��



test� �� �CountT Ct �StackT �St� Id�� St
test� � dof

push � �

push � �

size g �� computes �

�� stack with undo

test� �� �UndoT �Option ��St�� ����
�StackT �St� Id�� �St�

test� � dof
push � �

push � �

push � �

undo �

p� �� pop �

undo �

p� �� pop �

result �p�p�	g �� computes �� �	

�� stack with counter 
 undo

test� �� �UndoT �Option �Ct� ��St�� �����
�CountT Ct �StackT �St� Id��� �St�

test� � dof
push � �

push � �

push � �

undo �

p� �� pop �

s �� size �

p� �� pop �

result �p�p�s	g
�� computes �� � �	

�� counter with undo

test� �� �UndoT �Option �Ct� ����
�CountT Ct Id�� St

test� � dof
inc�

inc�

undo�

size g �� computes �

��



	 Feature Interaction in Telecommunications

In telecommunications� feature interaction problems have led to a new research
branch ��� �� focusing on such interaction problems which hinder the rapid cre�
ation of new services� The problem in feature interaction stems from the abun�
dance of features telephones �will� have� For instance� consider the following
con�ict occurring in telephone connections� B forwards calls to his phone to C� C
screens calls from A �ICS� incoming call screening�� Should a call from A to B be
connected to C� In this example� there is a clear interaction between forwarding
�FD� and ICS� which can be resolved in several ways� For many other examples
we refer to ����
We demonstrate our techniques� including an example for virtual functions�

with the following set of features for this domain of connecting calls�

� ICS �incoming call screening�

� Forwarding of calls

� Error handling for busy phones �also used for disallowed calls�

The �rst two of these features add local state� i�e� the origin of the call� which is
not needed for the other features�
In this application� there are similar feature interactions as in the last section�

The interactions mostly stem from extending the environment or from resource
con�icts� The �rst can be handled by liftings� the second by the order on features�
Our full implementation contains another feature� called OCS �outgoing call

screening�� which is similar to ICS� Already with four features and several reso�
lutions to the interactions� there are many di�erent feature combinations�

��� Forwarding

The goal in the following is to provide functionality for connecting calls�

�� type for phone numbers

type Dn � Int

class PMonad m ��

FWDMonad m where

forward �� Dn � m Dn

Forwarding only uses two �constant� lookup functions fd�check and fd with
forwarding information and adds no local state� For simplicity� we use a state
transformer which adds no state�

��



data FwdT s m a �
FTM �StateTrans �� m a�

instance StateMonadT FwdT �� m where

closeS x � FTM x

openS �FTM x� � x

instance FWDMonad �FwdT �� m� where

forward nr �

if �fd�check nr�

then result �fd nr�

else result nr

��� The Busy Monad

The Busy monad provides a function for raising a busy signal and is based on
the error monad�

class Monad m �� PMonad m where

raise�busy �� m a

type PhoneT � ErrT ��

instance ErrMonadT ErrT �� m ��

PMonad �PhoneT m� where

raise�busy � put�err ��

��� Incoming Call Screening

For ICS we use a state monad with the origin of the call as local state�

data IcsT m a �
ITM �StateTrans Dn m a�

instance StateMonadT IcsT Dn m where

closeS x � ITM x

openS �ITM x� � x

class IcsMonad m where

check�ics �� Dn � m Dn

The corresponding implementation uses a function check�ics�� which checks
disallowed callers�

�



instance IcsMonad �IcsT Dn m� where

check�ics dest � dof
orig �� get�

if �check�ics� orig dest�

then result dest

else raise�busy g

��� Resolving the ICS�Forward	Interaction

To resolve the interaction between forwarding and ICS� we lift the forward func�
tion to ICS� If we choose the standard lifting by

instance �FWDMonad m

StateMonadT IcsT a m� ��

FWDMonad �IcsT a m� where

forward a � lift �forward a�

then the local state added by ICS is not a�ected by forwarding� Hence� the ICS
check uses the origin of the call� If the intermediate hop is to be used� we would
write

forward a � dofput a�

lift �forward a�g

instead� Note that get and put refer to the ICS feature here� Again� lifting
allows a modular resolution of the interaction between two features�


 Conclusions and Related Work

We have presented a novel model for feature�based programming where features
can be de�ned individually and are separated from interactions with other fea�
tures� This is the main di�erence to other concepts of abstract subclasses or
inheritance� Thus it is much more �exible and has a larger potential for reuse�
We have shown that the architecture of monad compositions is suitable for

typical feature and interaction handling� It should be noted that we use monads
mostly to provide an abstract interface to implicit state� Apart from this� our
composition techniques are essentially just composition of abstract data types�
for which we use type classes� This� however� does not hold anymore if other
�programming features�� e�g� error handling� are involved�
Note that we only construct one object from some set of features� Using

several objects can be done by some model of object identi�ers �as for instance
in ������ This� however� is orthogonal to the feature model� Modeling a global
object store with monads is possible� but the type system of Gofer cannot express
all the needed construction nicely�� For this extension� dependent types would

�A Gofer program is available from the author�
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be useful� as an object should have information about the type of its instance
variables� which are maintained in a global store� Hence� we currently work on
formalizing this using LEGO ������

Another extension to our presentation are virtual methods with late binding�
Using virtual methods in a feature can just be seen as an assumption on the
full object� which is composed of several features� When creating an object� this
assumption can be discharged� As this requires to have a notion of objects� it is
practical to model this with a global object store� as discussed above�
Type classes provide for a nice implementation� but do not fully match our

programming concepts� First� we generally assume an interface �or class� de�ni�
tion for a feature with just one concrete base implementation plus several liftings�
whereas type classes would allow for more implementations��	 Furthermore� some
features cannot be made polymorphic� as the Gofer type class system requires all
type variables in the parameters of a class to appear in the type declarations of
member functions�
Another approach to model subclassing and inheritance with type classes was

presented in ���� In this extension of Haskell� classes can be de�ned by extending
�or reusing� other classes� but the work does not go beyond the concepts of object�
oriented languages�
Compared to the modular interpreter in ����� we develop a concept of features

on the language level� instead of describing semantics of a programming language�
Furthermore� we generalize the programming techniques used in ���� and also
address the problem of dependencies between several features� For the model
of features� we also need the idea of assuming certain other features� as shown
above� In earlier works ���� ��� monads are used to write easy to modify code with
stateful features� We go the step beyond and write easy to con�gure components�
In other words� we make the possible modi�cations explicit�
Type theoretic approaches� e�g� �� �� ��� aim at modeling object�oriented

phenomena� but not at features� The essential di�erence is that features are
designed such that we can add a feature to any object which supports the required
other features�
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