
T U M
I N S T I T U T F Ü R I N F O R M A T I K

State Transition Diagrams

Radu Grosu
Cornel Klein

Bernhard Rumpe
Manfred Broy

������
TUM-I9630
Juli 1996

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-07-1996-I9630-250/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c�1996 MATHEMATISCHES INSTITUT UND
INSTITUT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

State Transition Diagrams �

Radu Grosu� Cornel Klein� Bernhard Rumpe� Manfred Broy

Institut f�ur Informatik� Technische Universit�at M�unchen

����� M�unchen� Germany

e�mail� �grosujkleinjrumpejbroy�	informatik
tu�muenchen
de

July ��� ����

Abstract

In this paper� we present a general concept of state transition diagrams
well�suited for various modeling purposes� Our notation is tailored for the
description of asynchronous time�independent agents� We start by proposing a
graphical and textual syntax� and de�ne an abstract syntax for both notations�
The semantics of state transition diagrams de�ned by translating the abstract
syntax into timed port automata and to timed input�output relations on
streams� To make the graphical notation practical� we partition the �possibly
in�nite� state space of the state transition diagrams with state predicates and
de�ne transitions with pre� and post�conditions�

�This work is partly sponsored by the Deutsche Forschungs Gemeinschaft �DFG� project
Syslab

Contents

� Introduction �

� Example� Stacks �

� Syntax �

�
� Context

 �

�
� Abstract Syntax

�
� BNF Syntax

 ��

�
� Graphical Syntax

 ��

� Semantics ��

�
� Timed Port Automata Semantics

 ��

�
�
� Timed Port Automata

 ��

�
�
� The Translation

 ��

�
� Timed IO�Relation semantics

 ��

�
�
� Timed IO�Relations

 ��

�
�
� The Translation

 ��

�
�
� Discussion

 ��

�
� Non�Overlapping State Predicates

 ��

� Conclusions and Further Work ��

� Introduction

The purpose of this technical report is to de�ne a description formalism for inter�
active components which is not only well�suited to be used in engineering practice
but also provided with a solid formal basis
 By an interactive component we mean a
component which processes messages received on a bunch of input ports and sends
the results along a bunch of output ports
 The �nite or in�nite sequence of mes�
sages �owing along one port is called a communication history
 The behavior of a
component is modeled by the relationship between the histories of the input ports
and the histories of the output ports
 A formal model in which systems and their
components are modeled this way is given in �KRB�� and �GKR��

The behavior of a component can be modeled in a functional way by �sets of� stream
processing functions� in a relational way with relations between input and output
histories� in a trace oriented way with interleaved sequences of messages and last but
not least� in a state based way �BDD���
 In contrast to the other techniques� the
state based description explicitly uses the concept of component�s state
 Depending
on the intention of use of the modeling technique� the state space of a component
may be more or less abstract
 A more abstract state space may be appropriate if
the state automaton should be used to describe purely the semantic interface of
a component� while a more concrete state space will be used if one aims at also
specifying implementation details

All state based speci�cation techniques can be seen as a notation to de�ne a state
transition diagram �or automaton�
 It is the aim of this paper� to provide a general
concept of state transition diagram
 The semantics of the state transition diagrams
is given in two di�erent ways
 Firstly by translating them into timed port automata
�GR��
 Secondly� by translating them into timed input�output relations �Bro��

We will also discuss the relationship between these approaches

Moreover� we also present two notations for state transition diagrams� a textual one
and a graphical one
 Of course� the preferred notation in a project is a matter of
taste and skill of the various persons reading and writing the speci�cations� and also
of the available tool support
 Therefore� the notations we present should only be
viewed as a proposal� which may be modi�ed and changed if necessary
 The main
goal of the paper is to provide the necessary syntactic and semantic concepts of state
transition diagrams

The paper is organized as follows� In Section � we introduce state transition dia�
grams using the example of interactive stacks
 In Section � we �x the context in
which state transition diagrams are used� and de�ne the concrete and the abstract
syntax for state transition diagrams
 In Section � we de�ne the semantics of state
transition diagrams by translating them into timed port automata as well as by
translating them into timed input�output relations
 In section �
� we discuss some
extensions
 Finally in Section � we draw some conclusions and discuss future work

�

� Example� Stacks

In order to informally present our ideas� we use an interactive stack as an example

An interactive stack is a component storing a stack of integers
 The stack can only
be accessed by sending to it messages
 The message Push�a� requests the stack to
push the integer a on the top of the stack
 The message Pop requests the stack to
throw away its top element and the message Top requests the stack to deliver its
top element
 The input� and output ports of the interactive stack are named i and
o
 i and o carry messages of the datatypes In and Out� which using Gofer �Jon��
notation can be de�ned as follows�

data In � Push Int j Pop j Top
type Out � Int

In the graphical notation annotated by declarations we propose� the stack can be
speci�ed as follows�

std stack � f
input i �� In

output o �� Out

attributes l �� �Int�

std�states estack
def
� �l � ��

nestack
def
� �l � �

start estack

estack nestack

PUSH

TOP

POP�

PUSH

POP�

name precondition input output postcondition
PUSH i��Push�a�� l� � a � l
POP� �l � � i��Pop� l� � ��
POP� �l � � i��Pop� l� � rest l
TOP i��Top� o��first l� l� � l

g

This speci�cation can be understood as follows�

�

� The speci�cation of a state transition diagram starts with the keyword std�
followed by the name of the state transition diagram
 The body of the speci�
�cation is enclosed in braces f � � �g

� The stack has one input port i carrying messages of type In and one output
port o carrying messages of type Out

� The state space of a component is given by a set of attributes� each having a
name and a type
 In our case� the stack has an attribute l of type �Int�� where
�Int� denotes lists of integers

� To specify the behavior of a component� we also use a �nite set of control states
�or �vertices��
 Each control state is labeled by a condition which has to hold
when the automaton is in that state
 In our example� the control states are
named estack and nestack� representing the empty stack and the non�empty
stack� respectively

� Initially� the automaton is in the start state estack

� Transitions are given by a precondition� a set of input patterns� a postcondition
and a set of output expressions
 Input patterns� well�known from functional
programming languages such as Gofer� provide a convenient way to de�ne
the message sequences read from the input port during the execution of a
transition� and to decompose these sequences into their components
 Output
expressions are arbitrary expressions which specify the outputs of a transition
on the di�erent ports
 In patterns and expressions� input and output ports are
indicated merely by a question mark � and respectively an exclamation mark
� following the port name� similarly to CSP �Hoa���

Because transitions may be bulky and because the same transition may occur
more than once in a state transition diagram� transitions may be named �e
g

by PUSH� and arranged in a table

The table only de�nes macros
 If one doesn�t want to use macros� the tran�
sitions may be directly written within the state transition graph diagram

Transition TOP may be written for instance as

fg i��Top�� o��first l� fl� � lg

In both cases� in patterns� a one�element sequence �a� may be written as a�
and a pattern with an empty sequence �� may be omitted at all

� The transition relation is speci�ed by a �nite� directed graph� were nodes
represent control states and arcs are labeled by transitions
 A start state is
indicated by an arrow without source state

Intuitively� the automaton may go from state s to state s� if there exists a
transition such that

�

	 input x according to the input patterns of the transition has been received
on the input ports and

	 input x and state s satisfy the precondition and

	 there exists an output y such that the postcondition for s� x� s� and y is
satis�ed and

	 y is written to the output ports

A more formal description of the syntax is given in section � and of the semantics
in section �

� Syntax

Before we start to propose the syntax of time�independent state transition diagrams�
let us have a look at the basic concepts
 In the remainder of this section we �rst
introduce the abstract syntax� then the textual syntax in BNF Notation� and �nally
the graphical syntax

��� Context

State transitions diagrams are not intended to be a stand�alone description tech�
nique� but we see them as part of an integrated suite of description techniques
which are tailored for modeling di�erent views of a system and its components

These views may for instance describe the data types of the system� the structure
of a system� or the processes performed by a system

In particular� we assume that there exists a type language for de�ning datatypes

Data types are used to provide a type discipline for state values and messages
 The
set of all types is denoted by the non�terminal �type�exp�
 Throughout this paper�
� denotes type expressions
 The interpretation of a type � � denoted by I���� is a
set of values
 For convenience instead of I��� we often simply write D

The set of all expressions is denoted by �expr�� and we assume that all expressions
are well�typed
 The set of patterns is a subset of the set of expressions� each pattern
consisting only of constructive functions and variables
 The interpretation of an
expression e is denoted by I�e�
 If e is a closed expression of type � � i
e
 an
expression without variables� I�e� is a value in I���
 The interpretation of an
expression with free variables v�� � � � vn is a mapping from a record of values for the
variables v�� � � � vn to I���
 If fv� � val�� � � � vn � valng is such a named product�
and if the sequence v� � � � vn of all free variables in e is clear from the context�
I�e��fv� � val�� � � � � vn � valng� is liberally abbreviated as e�val�� � � � � valn�

�

To represent lists of messages� we assume that there exists a type constructor ���
constructing the type � � of all sequences of elements from a given type �
 If e�� � � � en
are expressions of type � � the notation �e�� � � � � en� is used to write a �nite list of type
� � with elements e� � � � en
 A one element lists �e� may be abbreviated as e

We further presuppose the existence of a description technique for predicate expres�
sions �formulas�
 The set of all predicate expressions is denoted by the non�terminal
�pred�exp�
 The predicate expressions may be arbitrary �rst� or higher�order for�
mulas
 We view predicate expressions as expressions of type Bool� such that the
above conventions for the interpretation of closed and open expressions carry over
to predicate expressions

We require that if c denotes a variable of type � � for some � and e an expression
of type � �� then c � e denotes a predicate expression
 The variable c� called a
port variable� denotes a port of a component from which the sequence of messages
denoted by e is read or written
 Predicate expressions of this kind are called pattern
predicates

If c is an input port� the expression e is only allowed to be a pattern expression
 Pat�
tern expressions� denoted by �pattern�exp�� are well�known from many functional
languages such as Gofer �Jon��
 Usually� they may only be built from variables
using constructor functions of the respective datatype
 They therefore provide a
convenient notation to decompose incoming message sequences into their compo�
nents� and they may also be used to automate some checks� e
g
 for overlapping
predicates
 An example for a pattern is i � �Push�m��
 It consists of the port
variable i and the pattern �Push�m��

If c is an output port� e is not restricted to be a pattern� and therefore it may be an
arbitrary expression

Patterns for multiple input� and output ports are just conjunctions of patterns for
single ports� i
e
 predicate expressions of the form c� � e� � � � � � cn � en

The above syntactic categories may be provided by a functional programming lan�
guage such as Gofer� as well as by an algebraic speci�cation language such as
Spectrum �BDD���
 In SysLab� a simpli�ed version of Spectrum� calledMini�

Spectrum �Het�� is used to de�ne datatypes
 Mini�Spectrum is tailored for the
needs of SysLab
 Therefore� in the remainder of this section we assume that types�
expressions� and predicate expressions are provided by Mini�Spectrum

��� Abstract Syntax

In order to de�ne the semantics of state transition diagrams as well as to reason
about them� we now get rid of the syntactic sugar of the concrete graphical and tex�
tual notations used in this paper
 The abstract syntax of state transition diagrams
can easily be extracted from both
 It is de�ned as follows�

De
nition � �Abstract STDs� An abstract state transition diagram is a tuple
STD � �I� O�A� V� Vo�V� �� T� T � where�

� I� O� A and V are disjoint sets of identi�ers for the input ports� the output
ports� the attributes and the vertices �or control states�� V� � V is the set of
start vertices�

� V is a mapping from the set of vertices V to the corresponding predicate ex�
pressions�

V � V � �pred�exp�

� � is a typing mapping such that �c is the type of the identi�er c � �I �O�A��

� � I � O � A� �type�exp�

� T is a set of control transitions� i�e� T � V � V � If �v� v�� � T � v is called the
source vertex and v� the destination vertex�

� T is a mapping from the set of transitions to the corresponding transition
labels�

T � T � P��pred�exp�� �pred�exp�� �pred�exp�� �pred�exp��

If for a transition t� �pre� ipat� oexp� post� � T �t�� then pre� post � �pred�exp�
are the precondition and the postcondition predicate expressions and ipat� oexp �
�pred�exp� are the input and the output pattern predicates� Powersets of pat�
tern predicates are used� because the same control transition may be labeled by
di�erent automaton transition�

This context free syntax will be restricted below by introducing some context condi�
tions� �

Example � �The stack automaton abstract syntax� The abstract syntax for
the state transition diagram of stacks is as follows�

stackSTD��fig� fog� flg� festack� nestackg� festackg�V� �� T� T �

where

�i�In� �o�Out� �l��Int�

Vestack
def
� �s�l��� Vnestack

def
� �s�l � �

T�f�estack� nestack�� �nestack� nestack�� �nestack� estack�g

T �estack� nestack� � f �True� ��i��Push�a��� ��o���� s��l��a��g

T �nestack� nestack� � f �True� ��i��Push�a��� ��o���� s��l�a � s�l��
��s�l � �� ��i��Pop�� ��o���� s��l�rest�s�l���
�True� ��i��Top�� ��o��first�s�l��� s��l�s�l�g

T �nestack� estack� � f ��s�l��� ��i��Pop�� ��o���� s��l����g

��

�

The identi�ers for the input ports� the output ports and the attributes of the com�
ponent speci�ed by a state transition diagram are given by the sets I� O and A

The types of the messages on the input� and output ports� as well as the types of
the attributes� are given by the mapping �

The data state space S of an automaton is not monolithic but it is a named product

Let A � fa� � � � akg
 Then the data state is of record type fa� � �a� � � � � � ak � �akg� i
e

it is a record type with ai as record labels and with �ai as types for the labels ai
 In
the following we use

Q
a�A �a where A � fa�� � � � � akg� as a compact notation for the

above record type
 If s is a data state of a record type with attribute a� then s�a is
the content of s for the attribute a

Usually the set of data states of a component as well as the set of messages are
in�nite
 To get a �nite representation of a possible in�nite state space we had
to do some abstraction
 We therefore introduced a �nite set of control states or
vertices V
 The two di�erent layers of states are connected via a predicate expression
V�v� for each control state v
 V�v� contains a free state variable s of type S
 By
interpreting the V�v� a set of data states is associated with the control state v

However� in contrast to other approaches �RK�� we do not require that the control
states partition the data states
 Arbitrary overlapping data states as well as data
states with no corresponding control states are allowed

Similar to the state layers� we get two layers of transitions
 The �nite representation
of the state transition relation is a directed graph consisting of control states from V
and of a set of edges T � V � V � called control transitions
 The non�empty subset
V� � V contains at least one start state
 For each �abstract� control transition
t � �v� v��� t � T a set of labels of the form �pre� ipat� oexp� post� exist

By interpreting these predicate expressions� the transitions between control states
are mapped onto a �ne grained set of transitions on data states� for short data tran�
sitions
 This set is denoted by the predicate expression P�v�v��
 P�v�v�� characterizes
a set of data transitions
 Therefore� P�v�v�� contains the following free variables�

� The variable s � S denotes the source data state satisfying the source control
state predicate� i
e
 Vv�s� has to hold�

� The variable s� � S denotes the destination data state satisfying the destination
control predicate� i
e
 Vv��s�� has to hold�

� The action variable � � Act denotes the action performed during the transition
�see below�

In this way� we can give a �nite representation of an in�nite transition space S �
Act� S

��

To keep the notation general� we allow sequences of messages to be sent or received
within one transition
 I�O�automata ��LS�� SHB��� as well as the automata in
�RK�� � that allow just one input message� but arbitrary sequences of output mes�
sages per transition � are therefore particular cases of our notation
 Even spon�
taneous ���transitions are allowed
 We call the exchange of input�output messages
during one transition an action and denote the set of actions by Act
 Hence� the
actions we consider are the receiving of sequences of messages over a set of input
ports I and the sending of sequences of messages over a set of output ports O
 Let
C � I �O be the set of all ports
 Each port c � C has a particular type �c
 There�
fore� the type of actions Act is the record type fc� � � �c�� � � � � ck � �

�
ck
g where � �ci is the

type of �nite sequences with elements of type �ci
 In the following we use
Q

c�C D
�
c

as a compact notation for the above record type

A Message usually contains a message name and a bunch of arguments� each of
them with its own type
 Regarding the message name as constructor with according
�proper� arguments� the set of messages can itself be seen as a functional datatypes

Moreover� �nite sequences of messages� that �ow on ports� can as well be seen and
used as functional datatypes
 We therefore use patterns to decompose messages and
sequences of messages into their components
 Recall that from a logical point of
view� a pattern is a predicate of the form c � e� where c denotes a sequence of
messages read from port c� and e is an expression built from free variables using
constructor functions
 The free variables in e may be used in the precondition� in
the postcondition as well as in the output patterns to refer to the components of
the incoming messages

Therefore� Pt where t � �v� v��� is usually considered as a predicate expression of
the following form�

P�v�v���s� �� s
�� �

W
�pre�ipat�oexp�post��T �v�v��

��� � � Vv�s� � Vv��s�� �
ipat��jI � �� � pre�s� �jI� �� � post�s� s�� �� �� �� � oexp�s� s�� �� �� ��

The predicate is the disjunction of predicates for the di�erent labels of a control
transition �

W
����
 � and � are existentially quanti�ed tuples of values for the variables

bound by the input and respectively the output patterns
 The input pattern ipat
may refer to the input part of action � and to �
 The precondition pre may in
addition also refer to the source data state s
 The postcondition post� as well as the
output pattern oexp� may refer to �� �� �� s as well as to the destination data state
s�
 This way� the postcondition can be used to relate source and destination data
state

This form of expressing transitions clearly distinguishes the input� the output� the
next state and the conditions they have to satisfy
 We therefore support this form
in the concrete syntax
 Burying the input in the precondition and the output in the

��

postcondition could be in some cases advantageous but it would also lead to a loss of
structuring information
 However� if desired� input patterns and output expressions
can be omitted� and speci�cations� consisting of pre� and postconditions only� are
obtained

We do not enforce the precondition to be an enabling condition
 In our approach�
it may happen that the precondition holds but no output and destination data
state can be found that satisfy the postcondition
 In addition� we also do neither
require the explicit stated precondition Pre�v�v�� to be consistent with the source
state predicate Vv�s�� nor do we require that the postcondition is consistent with
the destination state predicate Vv��s��
 This gives the speci�er a lot of freedom� but
may possibly make a state transition diagram somewhat less intuitive as for e
g

�RK��

��� BNF Syntax

The example in the introduction already contained some textual parts
 The dif�
ference between the textual notation and the graphical notation is that the state
transition relation is described textually in the textual notation
 Therefore� the
stack example is written as follows�

Example � �Interactive stack textual version�

std stack � f
input i �� In

output o �� Out

attributes l �� �Int�

std�states estack
def
� �l � ��

nestack
def
� �l � �

start estack

transitions
from estack�nestack to nestack

fg i	Push�a�� fl� � a � lg
from nestack to nestack

f�l � �g i	Pop� fl� � rest lg�
fg i	Top� o
�first l� fl� � lg

from nestack to estack

f�l � �g i	Pop� fl� � ��g
g

Note that transition names are not used within the textual representation� �

��

The syntax for state transition diagrams in BNF notation is given below
 Here� we
assume that the nonterminals �stateid�� �inpid�� �outid�� �attid� and �stdid�
denote identi�ers and are de�ned elsewhere�

�spec���� std �stdid� � f
input f�inpid� �� �type� ���g�

output f�outid� �� �type� ���g�

attributes f�attid� �� �type� ���g�

std�states f�state�spec� ���g�

start f�stateid� ���g�

transitions f�transition�spec� g� g

�state�spec� ��� �stateid�
def
� �pred�exp�

�transition�spec���� from f�stateid����g� to f�stateid����g�

f f�pre�g f �act����g� f�post� g��� g�

�act� ��� �inpid���pattern�exp�
� �outid���expr�

�pre���post� ��� �pred�exp�

The translation of the concrete textual syntax to the abstract syntax is obvious and
has already been exploited in the example
 However we want to point out that�

� The input and output pattern predicates are obtained from the abstract syn�
tax by replacing �rst � and � with � in each �act� of all �transition�spec��
and then by conjoining the resulting actions of a transition together
 The
shorthand for empty and one�element lists are expanded
 For example the in�
put expression i��Push�a�� i��Pop is transformed into the predicate expression
i� � �Push�a�� � i� � �Pop�

� Moreover� in each predicate expression

	 each attribute a is replaced by s�a�

	 each primed attribute a� is replaced by s��a�

	 each port name c is replaced by ��c

Thevariabless and s� are the state variables for the current state and the next
state� respectively� and � is the action variable
 Thus� the predicate expression
i� � �Push�a��� i� � �Pop� is further translated into ��i� � �Push�a��� ��i� �
�Pop�

��

� In addition� the equation s��b � s�b is introduced for all attributes b� if b�

does not occur explicitly on the left side of a pattern predicate
 Likewise� the
condition ��c � �� is added for all not explicitly mentioned ports

��� Graphical Syntax

The concrete textual representation can be visualized by a graphic representation
straightforwardly
 Vice versa� the graphic representation can easily be translated
into the textual representation
 We therefore regard them as equal with respect to
their expressiveness
 However the user is free to use the representation� that is more
suitable in his or her context
 The only di�erence is the use of macros for transitions
and their de�nition in an additional table to simplify the state transition diagram

� Semantics

We model an interactive system by a network of autonomous components commu�
nicating via directed ports in a time�synchronous and message�asynchronous way

Time�synchrony is achieved by using a global clock splitting the time axis into dis�
crete� equidistant time units
 Message�asynchrony is achieved by allowing arbitrary�
but �nitely many messages to be sent along a port in each time unit

We model the communication histories of directed ports by in�nite sequences of
�nite sequences of messages
 Each �nite sequence represents the communication
history within a time unit
 The �rst �nite sequence contains the messages received
within the �rst time unit� the second the messages received within the second time
unit� and so on
 Since time never halts� any complete communication history is
in�nite

If D is a set of messages� then �D��� is the set of all complete communication
histories� over D� and �D��� is the set of all partial communication histories over
D
 In the following we abbreviate �D��� by D�
 Given 	 � D� and i � N � then
		i � �D��� is the partial communication history consisting of the �rst i �nite
sequences in the complete communication history 	

Given a timed communication history 	� we denote by 	 the communication history
with time information abstracted away
 This is achieved by concatenating all the
�nite sequences in 	
 Clearly 	 � D� if only �nitely many �nite sequences in 	 are
di�erent from �� and 	 � D� otherwise
 We denote by D� � D� �D� the set of all
untimed communication histories

Each component has a set of input ports I and a set of output ports O
 Each port

�Given an arbitrary set D� we denote by D� and D� the set of �nite and respectively in�nite
sequences over D� �D��� is the set of �nite sequences over D� and therefore di�erent from D

��

��

is typed� hence each port c � I � O has a corresponding type of messages Dc
 As a
consequence� the complete input and output communication histories of components
are named sequence�tuples contained in

Q
i�I D

�
i and

Q
o�O D�

o
 The partial and
the untimed input and output communication histories are named sequence�tuples
contained in

Q
i�I�D

�
i �
� and

Q
o�O�D

�
o�
� and respectively

Q
i�I D

�
i and

Q
o�OD

�
o

Time abstraction
 and cutting
	i are overloaded to named communication histo�
ries
 and to sets of communication histories in a pointwise style
 In the following
we also refer to named communication histories as to communication histories when
no confusion arises

��� Timed Port Automata Semantics

The timed port automata semantics of state transition diagrams is given by trans�
lating state transition diagrams into timed port automata
 In Section �
�
� we intro�
duce timed port automata �TPA�
 In section �
�
� we de�ne the semantic translation

����� Timed Port Automata

Timed port automata were de�ned in �GR��
 We only repeat the relevant de�nitions
here and extend them to the case of typed ports
 For a detailed treatment of timed
port automata� their operational and denotational semantics see �GR��

The interface of a timed port automaton consists of a set of typed input and output
ports

De
nition � �Port signature� Let I� O�H be pairwise disjoint sets of input� out�
put and hidden or internal ports respectively� Denote by C � I � O �H the set of
all ports� Let D be a typing mapping assigning to each port c � C a set Dc of data
values� A port signature is a tuple � � �D� I� O�H�� �

Timed port automata are supposed to communicate asynchronously
 As a conse�
quence� they are not allowed to block their environment
 Therefore� in every state�
they have to react to every possible input
 Since the automata are timed� each
reaction �or transition� takes place in a constant� least time interval
 The input or
output associated to a transition may consist of a �nite sequence of messages
 The
empty sequence denotes the absence of any message

The set
Q

c�C D
�
c is called the set of all actions over �
 Similarly

Q
c�I D

�
c �
Q

c�OD
�
c

and
Q

c�H D�
c are called the sets of input� output and hidden actions over � respec�

tively
 Input and output actions are also called external actions

De
nition � �Timed port automaton� A timed port automaton A � ��� S� S�� ��
is a tuple where�

��

� � is a port signature�

� S is a set of states�

� S� � S is the set of start states�

� � � S�
Q

c�C D
�
c �S is the transition relation� which is required to be reactive�

s � S� � �
Q

c�I D
�
c � �t � S� � �

Q
c�C D

�
c � �s� �� t� � � � �jI � �� �

Note that timed port automata are semantic entities
 This is also the case for the
signature� where Dc are sets denoted by abstract syntax type expressions �c
 Note�
that a record type

Q
c�C D

�
c is de�ned by

Q
c�C D

�
c � f� � C �

S
c�C D

�
c j ��c� � D�

cg�
the set of type respecting mappings

If �s� �� t� � � we also write it as s
�
�� t or simply as s

�
� t if � is clear from the

context

De
nition � �Execution schedule behavior� An execution of an automaton

A is an in�nite sequence s�� ��� s�� ��� � � � such that
i � si
�i

� si��� We denote the
set of executions by execs�A��

The schedule sched�	� of an execution 	 is a subsequence of 	 containing only
actions in 	� We denote the set of schedules by scheds�A��

The behavior beh�	� of an execution or schedule 	 is the subsequence of 	 containing
only external actions
 We denote by behs�	� the set of all behaviors of 	� �

Note that schedules and behaviors are named communication histories
 Given an
automaton A and an input sequence�tuple � �

Q
i�I D

�
i
 We denote the set of

behaviors of A with input � by A���
 Formally�

A��� � f	 � behs�A� j 	jI � �g

����� The Translation

The semantic of a state transition diagram STD is given by constructing a timed
port automaton A
 This automaton has an important property� its behavior de�
pends only on the sequence of messages it receives and not on their granularity in
time

More formally� for any two input sequences 	 and such that 	 � the sets of
untimed behaviors of the automaton are identical� i
e
� A�	� � A��

Abstracting from time granularity is achieved by bu�ering
 Bu�ering of input mes�
sages is performed because the sequence of messages that is processed by one tran�
sition of the state transition diagram �� need not arrive within the same time unit

After an internal transition of �� has �red� and the output messages have been pro�
duced� these messages may as well be bu�ered� modeling the fact that an internal

��

ib

�jI�jI � � �
inputoutput

ib�

��

�

Figure �� The timed port automaton A with input bu�er

transition needs more than one unit of time to take place
 Since bu�ering output
messages does not change the behavior modulo time abstraction� it is not necessary
to bu�er output messages at all
 Since it is simpler as well� we treat the variant
with input bu�ers only
 A graphical illustration where an input bu�er is provided
for each port c � I is given in Figure �
 In Figure �� ib denotes the input bu�er
before a transition of the timed port automaton� and ib� denotes the input bu�er
after a transition of the port automaton
 ib� is obtained from ib by removing the
messages processed by the state transition diagram from the �front� and by adding
the incoming messages within a time interval at the �rear�

We translate the abstract syntax of state transition diagrams �rst into a partial
transition relation ��
 This untimed transition relation is then transformed into a
timed port automaton� whose timed transition relation is called �
 The behavior
of the timed port automaton can be then described as follows
 If the input bu�er
contains a sequence
 such that �s�
� s�� is a transition in �� then the automaton
is allowed to perform this transition� to update the input bu�er accordingly and
to deliver the output
 If there is another possible transition in ��� that is not yet
enabled� but could perhaps become enabled by further input� the automaton is
nondeterministically allowed to await this input as well
 If no sequence
 can be
found to perform a transition then there are two cases
 In the �rst case� the input
bu�er can be extended to a sequence which has a corresponding transition in ��
 In
that case the automaton remains in the same state and waits for future input
 In the
second case� such an extension is not possible
 Then the automaton delivers arbitrary
output from this point on
 In other words� the component behaves chaotically

De
nition � �Semantics of STDs� Given a state transition diagram STD �
�I� O�A� V� V��V� �� T �� and an interpretation function I� The corresponding timed
port automaton TPA � ��� S� S�� �� is de�ned as follows�

� � �D� I� O� ���

S �
Q

c�I D
�
c �

Q
a�ADa

S �
� � f���� s� j �n � V� � Vn�s�g�

��

� � f� �ib� s�� �� �ib�� s�� � j Accept � Wait � Chaos where

The predicates Accept� Await and Chaos are de�ned and explained below� They refer
to the partial untimed transition relation ��� which is de�ned as follows�

� �� � f�s� �� s�� j ��v� v�� � T � P�v�v���s� �� s
��g

�

Let us comment the above de�nition
 The internal transition relation �� occurring
in the de�nition of � is untimed and contains transitions according to the given
abstract state transition diagram
 Just the predicates are expanded within ��
 As
we see� the pre� and the postcondition are used symmetrically within the de�nition
of ��
 Between pre� and the postcondition there is only the syntactic di�erence� that
in the precondition the next state variable as well as the variables of the output may
not be used
 Thus it is always possible to remove the precondition and add it to the
postcondition

Let us now have a look at the de�nition of the external transition relation �
 First
of all� the timed transitions are of form � �ib� s�� �� �ib�� s�� �� where �ib� s� denotes
the source state and �ib�� s�� the destination state
 Both of these states contain the
�nite� untimed input bu�er and the state of the internal state transition diagram ��

� is a disjunction of the predicates Accept� Wait and Chaos�

� The predicate Accept is de�ned as follows�

Accept
def
� �
 � s

�
��� s� � ibb�jI �
jI bib� � �jO �
jO

It describes all external transitions that also have a corresponding internal
transition
 In this case� there is an internal action
 that enables �� in state
s to perform a transition resulting in destination state s�
 The input part of
the internal action
jI is removed from the input bu�er� and the output part

jO is immediately sent
 Note that
jO may contain simultaneous reactions
to inputs arrived in �jI

� The predicate Wait is de�ned as follows�

Wait
def
�

ibb�jI � ib� � s � s� � �jO � ��� ��
� �� s
�� � s

�
��� s�� �
jI v ib�b� �
jI v ib��

It allows the external transition relation to wait for further input messages
and therefore to emit no messages and to perform no internal transition� if
the input bu�er ib� can be enlarged� such that a pre�x
jI of the enlarged
bu�er causes the internal transition relation �� to �re
 It is assumed that
jI
is initially not contained in ib�

�

� Finally the predicate Chaos is de�ned as�

Chaos
def
� ibb�jI � ib� � s � s� � ��
� �� s�� � s

�
��� s�� �
jI v ib� b�

It handles the case that no internal transition is possible at the moment and
no additional input � will ever enable an internal transition
 In this case�
arbitrary output �chaos� is allowed by the transition relation � of the timed
port automaton
 transition system
 The internal relation �� just starves within
the same state and while the timed port automaton just enlarges its input
bu�er

We therefore implicitly get a set of error states E� that can be characterized
as follows�

E�ib� s� � ��
� �� s�� �
 v ibb� � s
�
��� s��

Obviously E is closed under concatenation of arbitrary input to ib
 This simply
means� that once trapped in an error state� the set of error states is never left
again

The predicates Accept� Wait and Chaos are connected by an �� so if more than one
possibility exist� either of this possibilities can be chosen nondeterministically
 This
means that even if there are su�cient messages in the input bu�er for an internal
transition to �re� if there is another one� that could possibly �re some time in the
future� if more messages arrive� the timed port automaton is allowed to wait
 Since
we do not have fairness incorporated� it may happen that external transition relation
waits in�nitely long� if no further message arrives
 The user is responsible to prevent
this situation� or to cope with it

For example� let us look at the timed port automaton A for the state transition
diagram of stacks

Example � �The stack automaton� Given the abstract syntax for stacks from
Section 	�
� Then we can easily construct the partial transition relation as follows�

�� �
Q

c�flgDc �
Q

c�fi�ogDc �
Q

c�flgDc

�� � f�st� �� st�� j

�a� �s�l�� � �s��l� � True � ��i��Push�a�� � ��o��� � s��l��a� �
�a� �s�l� � �s��l� � True � ��i��Push�a�� � ��o��� � s��l�a � s�l �

�s�l� � �s��l� � �s�l� � ��i��Pop� � ��o��� � s��l�rest�s�l��
�s�l� � �s��l� � True � ��i��Top� � ��o��first�s�l�� � s��l�s�l �
�s�l� � �s��l�� � �s�l�� � ��i��Pop� � ��o��� � s��l��� g

Each conjunct describes a set of transitions �st� �� st�� � ��� The disjunctions take
the union of these sets� Note that we allow vertex predicates to overlap as well as to

��

be false� The input patterns for di�erent transitions may be overlapping �unifyable�
as well�

The timed port automaton A � ��� S� S�� �� is then de�ned as follows�

� � �D� fig� fog� fg��
S � Di �Dl�

S� � f�b� st� j st�l � �� � b�i � �� g

The transition relation � is de�ned as above by using ��� �

��� Timed IO�Relation semantics

The timed input�output relation semantics of state transition diagrams is given by
translating state transition diagrams into timed input�output relations
 In Section
�
�
� we introduce timed input�output relations
 In section �
�
� we de�ne the
semantic translation

����� Timed IO�Relations

Timed input�output relations are de�ned in �Bro��
 We only repeat the relevant
de�nitions here and extend them to the case of typed ports
 For a detailed treatment
of timed input�output relations� see �Bro��

The behavior of an interactive component is given in this case by a relation be�
tween complete input communication histories and complete output communication
histories
 For convenience� the relation is written as a set valued function

F �
Q

i�I D
�
i � ��

Q
o�O D�

o �

mapping complete input histories to sets of complete output histories

De
nition � �Timed and consistent relations� We call an input�output rela�
tion F �

Q
i�I D

�
i � ��

Q
o�O D�

o � timed� if for all 	� �
Q

i�I D
�
i and i � N

		i � 	i � F �	�	i � F ��	i

We call an input�output relation time guarded� if the following stronger condition
holds

		i � 	i � F �	�	i�� � F ��	i��

We call an input�output relation fully consistent or realizable if there is a time
guarded function f �

Q
i�I D

�
i �

Q
o�O D�

o such that for all input histories 	 �
Q

i�I D
�
i

f�	� � F �	�

We call F inconsistent if there is an input history 	 �
Q

i�I D
�
i � F �	� � � and weakly

consistent if it is not inconsistent� �

��

In �GR�� we show that all port automata A are timed �called weakly pulse�driven
there�� and therefore the set behs�A� of behaviors denotes a timed� weakly consistent
input�output relation
 If a port automaton A is moreover time�guarded �strongly
pulse�driven�� then the set behs�A� of behaviors denotes a time�guarded and fully
consistent input�output relation

����� The Translation

The semantics of a state transition diagram STD is given by constructing a timed
input�output relation F
 As with timed port automata� this relation has an im�
portant property� its de�nition depends only on the sequence of input messages
messages and not on their granularity in time

More formally� for any two input sequences 	 and such that 	 � the sets
of untimed outputs of the relation F are identical� i
e
� F �	� � F ��
 In case of
input�output relations� additional bu�ering is not necessary� because the relations
are already de�ned over in�nite sequences of �nite sequences of messages

As with timed port automata semantics� the abstract syntax of a state transition
diagram is �rst translated into a partial transition relation �
 This untimed transi�
tion relation is then transformed in a timed input�output relation F parameterized
over the data state space S of the state transition diagram

F � S �
Q

i�I D
�
i � ��

Q
o�OD

�
o �

Given a state s we write for convenience Fs for F �s�
 The behavior of the timed
input�output relation Fs can then be described as follows
 If the time abstracted
input communication history contains a pre�x sequence
 such that �s�
 �� s�� is
a transition in �� then the time abstracted output of the relation Fs contains the
pre�x �
 Moreover� the relation Fs switches to Fs�
 If there are several alternatives�
one of these alternatives is nondeterministically chosen
 If no �nite pre�x sequence

 can be found such that �s�
 �� s�� is a transition in �� then the output of Fs is
arbitrary� i
e
 the component behaves chaotically

De
nition � �IO�Relation Semantics of STDs� Let a state transition diagram
STD � �I� O�A� V� V��V� �� T � be given� The corresponding timed input�output re�
lation F is the largest time guarded relation �with respect to set inclusion� such
that

F � S �
Q

i�I D
�
i � ��

Q
o�O D�

o �

Fs�	� � f �
Q

o�O D�
o j

��
 �
Q

i�I D
�
i � � �

Q
o�OD

�
o� s

� � S� 	� �
Q

i�I D
�
i �

� �
Q

o�OD
�
o �

	 �
b	� � � � b � � s
���
��� s

� � � � Fs��	��� �

��
 �
Q

i�I D
�
i � � �

Q
o�O D�

c � s
� � S �
 v 	 � s

���
��� s

�g

��

holds� The partial untimed transition relation � is constructed as before�

�� � f�s� �� s�� j ��v� v�� � T � P�v�v���s� �� s
��g

�

����� Discussion

Both semantic de�nitions are equal in the sense that they describe the same time
abstracted behavior�

	 � A�	� �
S
s�Vo Fs�	�

However� the important point about the second semantic de�nition is that we require
F to be time guarded
 This can easily be observed in the following example

Example � Suppose the state transition diagram contains two states s� and s� and

one transition s�
i�aa
�� s�� Let the input stream on i contain a b ��� In this case� if

we had not required F to be time guarded� the component would behave chaotically�
i�e� Fs��i� � D�

o would hold� Time guardedness ensures that the component delivers
only one output� ��� as it does the constructed timed port automaton� �

We think that both semantics have its advantages
 The timed port automaton
de�nes the behavior in a constructive way� which may be easier to understand for
many users of state transition diagrams
 On the other hand� the relational semantics
is more abstract� since it is not based on the explicit construction of a bu�er
 This
may make reasoning about a speci�cation easier

��� Non�Overlapping State Predicates

Often� it is convenient to use non overlapping state predicates
 This can be easily
achieved by extending the state with a control variable �attribute� ctrl with an
enumeration type
 This enumeration type can be constructed by using state names
as constants
 Then the state of a component can be immediately retrieved from its
data state
 For example� in the case of stacks one can use the datatype StackCtrl
and rede�ne the state predicates�

data StackCtrl � Estack j Nestack

estack��s�
def
� ctrl � Estack � �s � �

nestack��s�
def
� ctrl � Nestack � �s ��

Surely� in case of stacks this extension is not necessary because the predicates were
already non overlapping

��

� Conclusions and Further Work

In this article we have de�ned the syntax and the semantics of time independent
state transition diagrams
 The semantical framework developed is however power�
ful enough to allow both the de�nition of composition and the extension to state
transition diagrams with time constraints
 These topics are of high priority for
future development
 Moreover� we have to investigate re�nement and hierarchical
structuring �!a l"a state�charts�

Another important topic is the de�nition of constructive re�nement techniques for
state transition diagrams� that correlate with the re�nement relation on the used
semantics

Equally important� and already at work� is the implementation of a tool prototype�
that allows us to test and to demonstrate the practical usefulness of the syntax and
semantics of the description technique presented in this paper

Acknowledgments

We thank Eva Geisberger� Barbara Paech� Jan Philipps� Alexander Schmidt and
Veronika Thurner for discussions and for reading draft versions of this paper

��

References

�BDD��� M
 Broy� F
 Dederichs� C
 Dendorfer� M
 Fuchs� T
 F
 Gritzner� and
R
 Weber
 The Design of Distributed Systems # An Introduction to
focus $ revised version $
 SFB�Bericht ��������� A� Technische Uni�
versit�at M�unchen� January ��

�Bro�� M
 Broy
 Some Relational Hocus Pocus with focus
 To be published�
��

�GKR�� R
 Grosu� C
 Klein� and B
 Rumpe
 Enhancing the syslab system
model with state
 Technical Report TUM�I���� Technische Universit�at
M�unchen� ��

�GR�� R
 Grosu and B
 Rumpe
 Concurrent timed port automata
 Technical
Report TUM�I���� Technische Universit�at M�unchen� ��

�Het�� R
 Hettler
 Description techniques for data in the syslabmethod
 Syslab
Project� to appear as Technical Report� ��

�Hoa��� C
A
R
 Hoare
 Communicating sequential processes
 Prentice�Hall Inter�
national series in computer science
 Prentice Hall� Inc
� Englewood Cli�s�
New Jersey� ���

�Jon�� M
 P
 Jones
 Introduction to Gofer �
��
 Technical report� Yale Univer�
sity� September ��

�KRB�� C
 Klein� B
 Rumpe� and M
 Broy
 A stream based mathematical model
for distributed information processing systems
 In Elie Najm� editor� �st
Workshop on Formal Methods for Open Object�based Distributed Sys�
tems� Paris ���� Proceedings
 Chapmann % Hall� ��
 to appear

�LS�� N
 Lynch and E
 Stark
 A Proof of the Kahn Principle for Input�Output
Automata
 Information and Computation� �����$�� ��

�RK�� B
 Rumpe and C
 Klein
 Automata describing object behavior
 In
H
 Kilov and W
 Harvey� editors� Speci�cation of Behavioral Seman�
tics in Object�Oriented Information Modeling� pages ���$���� Norwell�
Massachusetts� ��
 Kluwer Academic Publishers
 to appear

�SHB�� B
 Sch�atz� H
 Hu&mann� and M
 Broy
 Graphical Development of Consis�
tent System Speci�cations
 In Marie�Claude Gaudel James Woodcock�
editor� FME��� Industrial Bene�t and Advances In Formal Methods�
pages ���$���
 Springer� ��
 Lecture Notes in Computer Science ����

��

