
T U M
I N S T I T U T F Ü R I N F O R M A T I K

An Extended Version of Mini-Statecharts

Peter Scholz

������
TUM-I9628
Juni 1996

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-06-1996-I9628-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c�1996 MATHEMATISCHES INSTITUT UND
INSTITUT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

An Extended Version of Mini�Statecharts
�

Peter Scholz

Technische Universit�at M�unchen� Institut f�ur Informatik

D������ M�unchen� Germany

E�Mail� scholzp	informatik
tu�muenchen
de

�This work is partially sponsored by the German Federal Ministry of Education and Research �BMBF�
as part of the compound project �KorSys� and by BMW �Bayerische Motoren Werke AG��

�

Abstract

Statecharts are a visual speci�cation mechanism for specifying reactive� embed�
ded systems� They are implemented in commercial tools like Statemate� However�
some syntactic constructs impede the modular system speci�cation and have a con�
fusing semantics� In �NRS��� we presented Mini�Statecharts� a lean version of Stat�
echarts� Mini�Statecharts are restricted to the most important syntactic elements of
Statecharts but are nevertheless powerful enough to specify complex systems� In this
contribution� we extend the core language with local variables and integer�valued
signals to avoid state explosion� We show that the formal semantics� presented in
�NRS���� smoothly carries over to the semantics of the extended language�

�

Contents

� Introduction �

� The Core Language of Mini�Statecharts �

�
� Sequential Automata �

�
� Parallel Composition �

�
� Broadcast Communication �

�
� Hierarchical Decomposition �

�
� Hiding and Restriction �

� The Extended Language of Mini�Statecharts �

�
� Signals� Variables� Expressions� and Commands � � � � � � � � � � � � � � � ��

�
� Extended Sequential Automata ��

�
� Extended Hierarchical Decomposition ��

�
� Resolution of Con�icts ��

�
� The Formal Semantics of Mini�Statecharts � � � � � � � � � � � � � � � � � � ��

�
�
� Sequential Automata �

�
�
� Parallel Composition ��

�
�
� Hiding and Restriction ��

�
�
� Hierarchical Decomposition ��

�
�
� Delayed Communication ��

�
�
 Instantaneous Communication ��

�
�
� Macro��Micro�Step Communication � � � � � � � � � � � � � � � � � ��

� Conclusion and Future Work ��

�

� Introduction

Statecharts �Har��� are a visual speci�cation language proposed for specifying reactive
systems
 They extend conventional state transition diagrams with structuring and com�
munication mechanisms
 These mechanisms allow the description of large and complex
systems
 Due to this fact Statecharts have become quite successful in industry
 The full
Statecharts language� however� contains many mechanisms that cause problems concern�
ing both their syntax and semantics
 An overview of these problems can be found in
�vdB���

In this paper� we describe a small and slender version of Statecharts� called Mini�State�
charts
 In contrast to traditional Statecharts �Har���� Mini�Statecharts can be clearly de�
composed into subcharts
 Thus� they can be developed in a fully modular way by simply
sticking them together
 Mini�Statecharts are restricted to the most essential constructs

The basic components are sequential� deterministic automata
 Mini�Statecharts can be
orthogonally composed and hierarchically decomposed
 We introduce three di�erent syn�
tactic constructs for broadcasting� which di�er in their timing
 A scoping mechanism to
restrict broadcasting to certain subcharts is presented

�Mar��� and �HRdR��� already provided steps in the right direction
 Our work extends
their approaches by local variables� integer�valued signals� and the concept of explicit
feedback operators for communication
 Our language has a formal and at the same time
understandable semantics
 It has been developed by analyzing case studies from our
industrial partners

Although Mini�Statecharts are powerful enough to describe large and complex reactive
systems� we assign a concise� formal semantics to them
 It is given in a fully functional way�
based on the speci�cation methodology Focus
 Therefore� we can mix pure functional
Focus speci�cations �BDD���� SS��� GS��� with Mini�Statecharts
 The main intention
of this paper is to demonstrate

� how to restrict and modify the syntax of traditional Statecharts �Har��� in order to
get a modular speci�cation language�

� that in contrast to related approaches we are able to de�ne a formal� denotational�
compositional semantics for Mini�Statecharts� and

� that Mini�Statecharts are not a toy language but can be used to specify practical
systems with many complex states

Furthermore� the semantics can be immediately executed by a suitable interpreter
 Thus�
we do not only de�ne a theoretical semantics� but in addition provide a simple program
for simulating and prototyping Mini�Statecharts
 This is in contrast to existing tools like
Statemate �Har��� Inc���� where the semantic behavior of the prototyping tool sometimes
di�ers from the published Statecharts semantics
 Even the authors of Statemate admit
that the Statemate�s simulation and dynamic tests tools� and its various code generators
have a slightly di�erent semantics �HN���
 In our approach there exists exactly one
semantics
 It can be used to prototype and simulate reactive systems as well as to reason
about systems in a suitable theorem prover� like Isabelle �Pau���
 In the context of

�

veri�cation� the availability of a compositional semantics is desirable to get manageable
proofs

We presented our core language in �NRS��
 The interested reader is referred to this
report
 However� we want to mention that it is not necessary to study it before reading this
contribution
 We here repeat the most important issues
 Those readers who are interested
in an formal treatment and the semantic problems that can occur� are nevertheless invited
to a detailed lecture
 We show that the formal semantics� presented in �NRS��� smoothly
carries over to the semantics of the extended language

This paper is structured as follows
 In Section � we introduce the core language of Mini�
Statecharts and present a concise� abstract syntax for it
 For the reader who is familiar
with �NRS��� most of this part is a repetition
 In Section � we extend the core language
by the concept of local variables and integer�valued signals and develop a formal semantics
for it

� The Core Language of Mini�Statecharts

Our formalism assumes a global� discrete time
 We assume that every Mini�Statechart
can make a step � at least an idle step � at every single time point
 This assures time
progress because every single transition takes place in one time unit �GS���
 Informally
speaking� every Mini�Statechart consumes and yields a sequence of sets of signals
 Each
element of the sequence denotes the set of signals that are present at one time unit
 All
other signals that are not contained in this set are assumed to be absent
 Subsequent
sets denote subsequent instants of time
 Signals that occur between two consecutive time
ticks are considered to arrive simultaneously

In this section we propose an abstract� inductively de�ned textual syntax for Mini�State�
charts S
 It consists of sequential automata� parallel composition� feedback� hierarchical
decomposition� and hiding
 For a detailed introduction in the core language of Mini�
Statecharts the interested reader is referred to �NRS��
 Let M denote a �potentially
in�nite� set of signal names� States a nonempty �potentially in�nite� set of state�names�
and B�M� the Boolean terms over M
 �fin�X� denotes the set of �nite subsets of some
set X

��� Sequential Automata

Sequential automata are the basic elements of Mini�Statecharts
 The deterministic� se�
quential automaton

��� �d� �� ��

is an element of S i� the following syntactic constraints hold�

�
 � � �fin�States� denotes the nonempty �nite set of all states of the automaton

�
 �d� � � � represent the default state and the current state� respectively
 We need
the state �d to initialize Mini�Statecharts for re�entering non�history� hierarchically
decomposed states �see Section �
�
��

�

�
 � � � � B�M� � � � �fin�M� is the �nite� partial� deterministic state transition
function that takes a state and a Boolean term and yields the subsequent state
together with a �nite set of output signals
 For every Boolean variable a � M in the
term t � B�M� the occurrence of a means that signal a has to be present and �a
means that this signal has to be absent to enable the trigger condition
 Of course�
we also allow Boolean terms like ��a� b�
 In this case� a and b must not together be
present to enable the condition
 Trigger conditions formulated over Boolean terms
allow any combination of absent or present signals as guard

We do not explicitly denote the set of signals that the automaton A � ��� �d� �� �� can
react on
 This set is implicitly given by the transition function �
 � is exactly de�ned for
these signals that A can react on

At every instant of time� A consumes a set of signals x and instantaneously produces a
set of signals y� if there exists a transition with trigger condition t such that t is enabled
by x and ���� t� � ���� y�
 Otherwise it performs an idle step� which does not have to
be explicitly speci�ed in �
 For instance� ��a � b� is enabled by the signal sets fg� fag�
and fbg but not by fa� bg
 In Section �
�
�� we derive an equivalent� total state transition
function �� from �� which is directly triggered by sets of signals instead of Boolean terms

For convenience� �� is applied in the semantics and � in the syntax

��� Parallel Composition

Suppose S� and S� are Mini�Statecharts
 Then their parallel composition is denoted by

And �S�� S���

This leads to a Mini�Statechart that behaves like S� and S� simultaneously� output signal
sets of S� and S� are simply uni�ed at every single time tick
 In the graphical notation
parallel components are separated by splitting a box into components using dashed lines
�Har���
 Being in a parallel component means being in all of its substates at the same time�
independently and concurrently
 Note that the pure parallel composition does not contain
any broadcast communication mechanism as in the original literature
 Communication is
carried out explicitly by the aid of our feedback operators which will be introduced in the
next section

��� Broadcast Communication

Parallel composition is used to denote orthogonal components
 However� parallel systems
often are not completely independent
 Therefore� Statecharts provide a broadcast commu�
nication mechanism to pass messages between components working in parallel
 In �Har���
this behavior is already integrated in the orthogonal composition of Statecharts
 Broad�
casting is achieved by feeding back all generated signals to all components
 This means
that there exists an implicit feedback mechanism at the outermost level of a Statechart

Unfortunately� this implicit signal broadcasting leads to a non�compositional semantics

We avoid this problem by adding an explicit feedback operator
 In the literature di�erent
semantic views of the feedback mechanism can be found �vdB���
 Hence� we provide three

di�erent feedback operators for the most interesting views
 Suppose that S is in S and
L � �fin�M� is the set of signals which should be fed back� then the constructs

I�Feedback �S� L�� D�Feedback �S� L�� and M�Feedback �S� L�

are also in S
 They denote instantaneous� delayed� and macro��microstep feedback� re�
spectively
 These operators di�er in their signal propagation mechanisms� I�Feedback and
D�Feedback feed the signals back at the same instant of time �perfect synchrony hypothesis
�BG���� and at the next instant of time� respectively
 M�Feedback distinguishes between
two levels of time� namely macro� and microtime

Example � �TV Set� We introduce our syntax by the aid of an example which is adapted
from �HdR���� It models a television set with two sound levels �MUTE and SOUNDON��
Only two channels �CH� and CH�� can be received� The graphical notation is borrowed
from �Har	
�� The current state of every sequential automaton is characterized by a �lled
box and every transition between states � and �� is labeled with �tx�� i� ���� t� � ���� x��
The feedback operator is pictured in Fig� � as an extra box� sticked to the bottom of the
Mini�Statechart�

When we change from one channel to another� usually the sound is turned o� for a
moment to avoid unwanted noise� To model this� we de�ne two parallel components
SCHANNELS and SSM �SM for switching mode�� Pressing a channel button ���� ���
on the remote control� the internal signal �sm� is generated and the TV simultaneously
switches to the corresponding channel� The signal �sm� is instantaneously fed back by the
aid of I�Feedback� Therefore� the parallel automaton SSM also is immediately triggered�
i�e�� reacts on �sm� and simultaneously generates �mute�� The signal �mute� is also fed
back and therefore SSOUND reacts on �mute�� Finally� the sound will be turned o�� After
one time tick� the signal �sound� is generated to turn it on again�

I�Feedback �And �SCHANNELS�And �SSM � SSOUND��� fsm� sound�muteg�
SCHANNELS � �fCH��CH�g�CH��CH�� �CHANNELS�

�CHANNELS�CH�� �� � �CH�� fsmg�
�CHANNELS�CH�� �� � �CH�� fsmg�
�CHANNELS�CH�� �� � �CH�� fsmg�
�CHANNELS�CH�� �� � �CH�� fsmg�

SSM � �fSILENT�LOUDg�LOUD�LOUD� �SM�
�SM�LOUD� sm� � �SILENT� fmuteg�
�SM�SILENT��sm� � �LOUD� fsoundg�

SSOUND � �fMUTE�SOUNDONg�SOUNDON�SOUNDON� �SOUND�
�SOUND�MUTE� sound� � �SOUNDON� fg�
�SOUND�SOUNDON�mute� � �MUTE� fg��

��� Hierarchical Decomposition

Mini�Statecharts include a clear and e�ective way to express hierarchical structures
 In
contrast to original Statecharts �Har���� this decomposition is fully modular because we
prohibit inter�level transitions� i
e
� transitions between states of di�erent levels of hierar�
chy
 Suppose that ��� �d� �� �� is a sequential automaton
 Then

Dec ��� �d� �� �� by �

�

CH2

1 / {sm}

1 / {sm} 2 / {sm}

2 / {sm}

CH1

CHANNELS SM

SILENT

sm / {mute}

LOUD

SOUND

sm / {sound}

MUTE

SOUNDON

mute / {} sound / {}�

sm� sound� mute� I�Feedback

Figure �� TV Set

is also in S� where�

� � � � �S � fHistory�NoHistoryg� � fNoDecg

is a total� �nite function
 With respect to the construct Dec ��� �d� �� �� by � the sequen�
tial automaton ��� �d� �� �� is called the master
 A state � � � with ���� �� NoDec �where
NoDec stands for no decomposition� is called a re�ned state of the master whereas ��������
is called the slave of the master which is controlled by state �
 �i denotes the i�th projec�
tion
 The e�ect of this decomposition can be described by the following rules
 Whenever
the current state of the master is � and ���� � NoDec� then Dec ��� �d� �� �� by � has
a behavior according to ��� �d� �� ��
 Otherwise� when � is entered� Dec ��� �d� �� �� by �
starts behaving like master and slave simultaneously
 When � is left� the slave �rst ter�
minates its action concerning the current input signals and then is left
 This is called
non�preemptive interrupt�exit

��� Hiding and Restriction

Specifying large reactive systems possibly leads to large charts with many signal names

This may promote name clashes which could be avoided by the utilization of hiding and
restriction
 Suppose that S is in S and L�R � �fin�M�� then the constructs

Local �S� L� and Restrict �S�R�

are also in S
 Local �S� L� hides any generation of any l � L by S and makes S insensitive
to any l generated by the environment
 Restrict �S�R� has the opposite behavior
 It
restricts the input and output signals of S to signals in R
 Note that these operators
both are not available in conventional Statecharts
 However� in our opinion they are
essential to describe large reactive systems
 They can be used to restrict signals to certain
components of the system
 The restrict operator was not yet presented in �NRS��
 Note
that Restrict �S�R� can be expressed by the aid of Local �S� L� and vice versa

�

� The Extended Language of Mini�Statecharts

In spite of parallel composition and hierarchy� state explosion can occur� for example� if
we extend our TV set to �ve channels
 The result is pictured in Fig
 �
 It is unthinkable
to design a commercial TV set with ��� channels in this way� we would get an automaton
with ��� states and ������ transitions

2 / {sm}

1 / {sm}

2 / {sm}

1 / {sm}

1 / {sm}

3 / {sm}

5 / {sm}

CH2

CH3CH4

CH5

2 / {sm}

2 / {sm} 3 / {sm}

3 / {sm}

3 / {sm}

4 / {sm}

4 / {sm}

4 / {sm}

5 / {sm} 5 / {sm}

5 / {sm} 5 / {sm}

1 / {sm}

4 / {sm}

1 / {sm}

3 / {sm}

4 / {sm}

2 / {sm}

CH1

Figure �� Example� TV

Therefore� we decided to extend Mini�Statecharts with local variables in order to avoid this
state explosion
 Traditional Statecharts allow to declare and access to global variables

However� global variables impede the de�nition of a compositional semantics
 Moreover�
there exist two basic concepts for communication� message passing and global variables

Traditional Statecharts incorporate both
 In our opinion� there is no need to use both
concepts together in one language

In this section we propose a syntactic notation for Mini�Statecharts that has been extended
by the concept of local integer variables and integer�valued signals
 In contrast to a pure
signal� an integer�valued signal incorporates� in addition to the information about its
presence� an integer number denoting its value

�

��� Signals� Variables� Expressions� and Commands

In contrast to Section �� M is here disjointly partitioned in Mp and Mv� representing the
set of pure and integer�valued signals� respectively
 Furthermore� we assume a set V of
variables
 V has to be disjoint from the sets introduced so far
 The other syntactic sets
associated with T � a simple language for transitions �borrowed from �Win��� and adapted
for our purposes� are�

� integers Int�

� truth values Bool � ftrue� falseg�

� arithmetic expressions Aexp�

� Boolean expressions Bexp� and

� commands Com

In presenting the syntax of T we will follow the convention that

� n ranges over the numbers Int�

� X ranges over the variables V �

� Ev and Ep range over Mv and Mp� respectively�

� a�b range over arithmetic�Boolean expressions Aexp�Bexp and

� c ranges over commands Com

We describe the formation rules for arithmetic�Boolean expressions and commands by�

� a ��� n jX jEv j a� add a� j a� sub a� j a� mul a��

� b ��� true j false j a� equ a� j a� leq a� j not b j b� and b��

� c ��� skip jX �� a jEv �� a jEp j if b then c� else c� � j c�� c� jwhile b do c od

Note that we use if b then c � as an abbreviation for if b then c else skip �
 The meaning
of these expressions and commands is straightforward
 In contrast to �Inc��� HN���� we
use the semicolon as sequential and not as parallel composition
 To see the di�erence�
we take a look at the following example
 Suppose that the command c of a transition is
de�ned as X �� X � �� Y �� X and that X � � is the value X had before executing this
command
 Executing c in our setting would yield Y � �
 In �Inc��� HN��� however we
would get Y � �
 Thus� the semicolon there signi�es more �do this too than �and then
do

However� when two or more commands want to change the same variable in the same step
so�called racing conditions �HN��� can occur� which have to be detected by Statemate�s
simulation and dynamic test tools because the values of the variables are unknown before

��

runtime
 In our opinion� this is complicated and super�uous
 As a consequence� we
have chosen the sequential execution order to get a non�ambiguous meaning and to avoid
dynamic analysis

To de�ne the denotational semantics of T we �rst need a partial function � � Mv � ZZ

that holds the value for present integer�valued signals
 Here� we often interpret � as a set
G in �fin�Mv � ZZ�� where

��m�n� � �fin�Mv � ZZ� � �m�n� � G	 ��m� � n

��m�� n��� �m�� n�� � G � m� � m�
 n� � n��

We abbreviate Mv � ZZ to !
 We then de�ne an environment � as a total function
� � V � ZZ
 This function also is often interpreted as a set E in �fin�V � ZZ�� where the
following condition have to be ful�lled�

��v� n� � �fin�V � ZZ� � �m�n� � E 	 ��v� � n

��v�� n��� �v�� n�� � E � v� � v�
 n� � n�

�v � V �n � ZZ � �v� n� � E�

The set of all environments is denoted by E
 Note that E contains total functions whereas
! only contains partial functions� variables have a de�ned value at every single time point�
whereas signals have only when they are present
 With this background we are able to
de�ne the semantic functions�

AJ�K � Aexp� !� E � ZZ

BJ�K � Bexp� !� E � IB

CJ�K � Com� �fin�M�� !� E � �fin�M�� !� E �

where IB � ftt� ffg
 We de�ne the denotation of an arithmetic expression� by structural
induction� using the typed 	�calculus�

AJnK� � 	� � E �nZZ

AJXK� � 	� � E ���X�

AJEvK� � 	� � E ���Ev�

AJa� add a�K� � 	� � E ��AJa�K���AJa�K���

AJa� sub a�K� � 	� � E ��AJa�K���AJa�K���

AJa� mul a�K� � 	� � E ��AJa�K�� AJa�K����

Remember that every value�carrying signal Ev that occurs in a command on a transition
has also to occur positively in the trigger condition
 This implies that ��Ev� is de�ned

Therefore� AJEvK� is also de�ned
 The denotation of a Boolean expression is also de�ned
by structural induction�

BJtrueK� � 	� � E �tt

BJfalseK� � 	� � E �ff

BJa� equ a�K� � 	� � E ��AJa�K�� � AJa�K���

BJa� leq a�K� � 	� � E ��AJa�K�� � AJa�K���

BJ not bK� � 	� � E ���BJbK���

BJb� and b�K� � 	� � E ��BJb�K�� � BJb�K����

��

Let �let w � g in f be an abbreviation for �	w�f�g
 The de�nition of CJcK for commands
c is a bit more subtle than the de�nitions of AJ�K and BJ�K�

CJskipK � 	�x� �� �� � �fin�M�� !� E ��x� �� ��

CJX �� aK � 	�x� �� �� � �fin�M�� !� E �

let n � AJaK�� in �x� �� ��n
X��

CJEv �� aK � 	�x� �� �� � �fin�M�� !� E �

let n � AJaK�� in �x � fEvg� ��n
Ev�� ��

CJEpK � 	�x� �� �� � �fin�M�� !� E ��x � fEpg� �� ��

CJc�� c�K � CJc�K � CJc�K

CJif b then c� otherwise c� �K�x� �� �� �

�
CJc�K�x� �� �� if BJbK�� � tt
CJc�K�x� �� �� else

CJwK � CJif b then c�w �K

where while b do c od is abbreviated to w
 But this involves w on both sides of the
equation
 For the solution of this kind of recursive equations we refer to �Win���
 We
write ��n
Ev� for the function obtained from � by replacing its value in Ev by n

The execution of commands� separated by the semicolon is strictly sequential
 For exam�
ple� Ev �� ��X �� Ev � ��Ev �� Ev � � yields X � � and Ev � �
 This means that even
though the value of Ev in the current step is � and in the next step �� Ev can change its
value between these two time points
 However� to get a well�de�ned semantics� the value
that is used for communication is Ev � �

��� Extended Sequential Automata

Applying the concepts introduced above� we have to modify the syntactic notation for
our sequential automata and get�

�Vl� �d��� �d� �� ��

where �� �d and � are as in Section �
 The following� additional syntactic constraints
must hold�

�
 Vl � �fin�V � denotes the set of local� i
e
� private read�write variables
 These
variables can be only read and�or written by the automaton itself
 They have to be
initialized�

�
 �d � Vl � Int is a �nite� total function that describes the initial values of the local
variables

Furthermore� � has to be modi�ed�

� � �� B�M� � �� Com

is the �nite� partial state transition function that takes a state and a Boolean term and
yields the subsequent state together with a command� describing the modi�cation of the

��

internal variables and the generation of pure or value�carrying signals
 In contrast to the
version of � that was used in our core language� here �fin�M� is substituted by Com
 This
means that in the extended language� an action does not only consist of the generation
of a set of �pure� signals� but of a whole command

There is a further syntactic restriction on �
 For every transition with label t
c the
following must be valid� each integer�valued signal Ev that occurs on the right�hand�side
of an assignment in c also has to occur either �before on the left�hand�side of another
assignment in c or positively in t
 This condition must be ful�lled in order to guarantee
a de�ned value for Ev
 In this context� to occur positively means that we must be able to
derive that Ev is present in the trigger condition t
 This is the case whenever t
 Ev is a
tautology
 As in the core language we assume that every transition� i
e
� every command
can be computed in exactly one instant of time

Note that the trigger condition is a Boolean term as in the core language
 Also for integer�
valued signals� we only check absence or presence but not their values
 As a consequence�
the determinism of even the extended automata is easily decidable by static analysis and
we can avoid dynamic analysis

In the following we want to demonstrate how a TV with ��� channels can be speci�ed
using this kind of deterministic automaton �Fig
 ��
 In addition� state�of�the�art TV
sets provide the opportunity to simply switch through the programs by incrementing
or decrementing the channel number
 This can be done with buttons �� and �� �
modeled as pure signals
 Moreover� we have one integer�valued signal �changeto
 In the
graphical notation every transition between states � and �� is now labeled with �t�c � i�
���� t� � ���� c�
 The partial function �d is assumed to initialize the unique local variable
of Fig
 � X by �

CH then X �� X add �
else X �� � �� sm

changeto � X �� changeto� sm

� � if X leq ��

� � if � leq X then X �� X sub � else X �� ��� �� sm

Figure �� A TV with ��� channels� speci�ed in the extended language

The textual version of Fig
 � is de�ned in the sequel�

S � �fXg� �d� fCHg�CH�CH� �� where
��CH� changeto� � �CH� X �� changeto� sm�
��CH��� � �CH� if X � �� then X �� X add � else X �� � �� sm�
��CH��� � �CH� if � � X then X �� X sub � else X �� ��� �� sm�

and the partial function �d is assumed to initialize the unique local variable X by �

��

��� Extended Hierarchical Decomposition

The usage of the extended language also enforces a rede�nition of the decomposition
operator
 Suppose that �Vl� �d��� �d� �� �� is an extended sequential automaton
 Then

Dec �Vl� �d��� �d� �� �� by � res �

is an extended� hierarchical decomposed Mini�Statechart� where the decomposition func�
tion � is slightly adapted to the extended language�

� � � � �S � fHistory�NoHistoryg � fRefresh�NoRefreshg� � fNoDecg

is a total� �nite function
 Note that � is modi�ed
 In addition to the possibility to choose
whether a master state is history re�ned or not� we now can specify whether we want
to initialize all local variables of the slave when reentering it or not
 This is denoted by
Refresh and NoRefresh� respectively
 � denotes the resolution function and is de�ned in
the sequel

��� Resolution of Con�icts

Using integer�valued signals some problems can occur
 Let us assume that each of two
parallel components S�� S� tries to broadcast the integer�valued signal Ev
 Furthermore�
we suppose that S� assigns �� to Ev� while at the same instant of time S� assigns ��
 In
this case� we get a semantic con�ict
 However� the orthogonally composed Mini�Statechart
And �S�� S�� must produce the signal Ev with a unique value
 Hence� we introduce a total
resolution function �� which resolves this con�ict and produces a unique value�

� � �fin�S �M � ZZ�� ZZ�

For every set of con�icting integers� � yields the integer that will be calculated when a
con�ict occurs
 Using sets of triples of the form �S� x� n� � S �M � ZZ as possible input
values for �� we can de�ne subtle resolution functions
 For example� let M � fa� bg then
we can de�ne�

� ���f�S�� a� ��� �S�� a� ��g� � ��
���f�S�� b� ��� �S�� b� �g� � �

�� is a resolution function that always prefers the output of chart S�� independent
of the signal name

� ���f�S�� a� ��� �S�� a� ��g� � ��
���f�S�� b� ��� �S�� b� �g� �

In this case� �� is a resolution function that prefers the output of chart S� whenever
a con�ict for signal a occurs� while for b chart S� is preferred

� ���f�S�� a� ��� �S�� a� ��g� � ��
���f�S�� b� ��� �S�� b� �g� � ��

Here� �� simply adds all con�icting values

��

Of course� there are many other alternatives to de�ne the resolution function
 We include
� in the syntactic notation of the parallel composition and get instead of And �S�� S���

And �S�� S�� ���

In addition� contradictory integer�valued signals also can emerge when employing the
communication operators
 Though in this case we do not have two parallel� con�icting
Mini�Statecharts� we can get con�icts between signals from the environment and signals
that are fed back for communication
 Thus� the operators for the delayed� instantaneous�
and macro��microstep feedback operator are also straightforwardly adapted�

D�Feedback �S� L� ��� I�Feedback �S� L� ��� and M�Feedback �S� L� ���

Signal con�icts also can occur whenever applying the hierarchical decomposition
 This
can be the case when both master and slave broadcast the same signal with di�erent
integer values
 Hence� we also have to specify a resolution function for the hierarchical
decomposition and get Dec �Vl� �d��� �d� �� �� by � res �

The remaining constructs of the core language� Local �S� L� and Restrict �S�R�� need not
to be modi�ed

��� The Formal Semantics of Mini�Statecharts

Reactive systems continuously interact with their environment
 Thus� to de�ne their
semantics� their complete input�output behavior has to be described
 This can be done
by communication histories
 We model the communication history of Mini�Statecharts by
streams carrying tuples of sets of �pure and integer�valued� signals together with values of
integer�valued signals
 Mathematically� we describe the behavior of Mini�Statecharts by
stream processing functions
 Hence� we brie�y discuss the notion of streams and stream
processing functions
 For a detailed description we refer to �BDD���� and �SS���

Given a set X of signals� a stream over X� denoted by X�� is an in�nite sequence of
elements from X
 Our notation for the concatenation operator is "
 Given an element x
of type X and a stream s over X� the term x"s denotes the stream that starts with the
element x followed by the stream s
 The destructor ft selects the �rst element of a stream

A stream processing function is a function with type X� � X�
 Besides the constructor
and the destructor we need an auxiliary function s � k that yields for a positive natural
number k the k�th element of stream s

The de�nition of the semantics for the macro��microstep feedback operator causes prob�
lems concerning the compositionality
 We will give an example that re�ects the situation
in Section �
�
�
 In order to get a compositional semantics also for this operator� we have
to introduce a new special signal

Let y be an extra signal that is not yet contained in M
 The occurrence of y in a signal
set of the output stream indicates that the Mini�Statechart has not changed its current
state�s� in this step
 This signal will be called stop �signal�
 It is needed to indicate the
end of a so�called micro�cycle �see Section �
�
��
 In the sequel� the set M � fyg will be
abbreviated by My
 Note that the set of signals L � �fin�M�� which shall be fed back�

��

does not contain the stop signal
 The functionality of the denotational semantics is

DJ�K � S � ��fin�M�� !�� � ��fin�My�� !���

This semantics is denoted as a higher order function
 For its formal de�nition� we use an
auxiliary higher order function of type

J�K � S � E � ��fin�M�� !�� � ��fin�My�� !� E � S��

to take into account current�successor environment and successor chart
 For S � S and
s � ��fin�M�� !��� DJSKs is de�ned by

DJSKs � strip �JSK�refresh S� s�

where strip �w� x� y� z�"s � �w� x�"�strip s�
 The auxiliary function refresh initializes
the environment according to the initialization functions �d
 We now de�ne the stream
semantics for all syntactic constructs of Mini�Statecharts

�	�	� Sequential Automata

Informally� a sequential� deterministic� and reactive automaton �Vl� �d��� �d� �� �� takes
a set of �pure and value�carrying� input signals� the so�called stimuli� reacts on it while
manipulating its own� local variables� produces a set of �pure and value�carrying� signals
as output and then behaves like an automaton with modi�ed current state and modi�ed
environment function
 Note that the local variables are not visible to other automata

Thus� communication is done by events only
 In contrast to basic Mini�Statecharts� value�
carrying events are now allowed
 If we would restrict ourself to pure signals� extended
Mini�Statecharts would communicate exactly like Mini�Statecharts� presented in �NRS��

The transition function � is de�ned on Boolean terms
 Reactive systems� however� have to
react on a set of signals
 Thus� we have to de�ne which transition is triggered by a given
set of signals
 For this reason� we use a strict and total function trigger interpreting a
Boolean term over signals with respect to some given set of signals
 The function trigger
is exactly de�ned as in the core language

trigger � B�M�� �fin�M�� ftt� ff��g�

Remember that for every Boolean variable a � M in term t � B�M� the occurrence of
a means that signal a has to be present and �a means that this signal has to be absent
to enable the trigger condition
 Because ����� is a possible basis for Boolean terms we
de�ne trigger for these constructs only
 If one wants to deal with ��
� 	� etc
� trigger
simply has to be adapted in a straight forward fashion
 Let a � M � x � �fin�M� and
t� t�� t� � B�M� then

trigger �a� x� �� a � x

trigger �t� and t�� x� �� trigger �t�� x� � trigger �t�� x�

trigger �not t� x� �� �trigger �t� x��

�

Note that trigger is exactly the same as in �NRS��
 To get a semantics which deals with
sets of signals instead of Boolean terms� we consider in the sequel a total� deterministic
state transition function �� with the functionality

�� � �� �fin�M� � �� Com�

For � � � and x � �fin�M� we de�ne�

����� x� ��

���
��

���� t� if �t � B�M�� �� � �� c � Com �
���� t� � ���� c� � trigger �t� x� � tt�

��� skip� else

Note that the function � is only de�ned for �nitely many t � B�M�
 Therefore� the above
existential quanti�er is easily decidable
 Obviously� �� is a total function
 Every sequential
automaton with a total state transition function is reactive which means that it can make
a step at every single time tick
 This represents the characterizing property of reactive
systems
 Additionally� we require deterministic automata which is expressed by��

�� � �� x � �fin�M� ��t � B�M�� �� � �� c � Com �

���� t� � ���� c� � trigger �t� x� � tt�

This property ensures �� to be a well�de�ned function
 Notice that the above de�nition
of reactiveness and determinism are de�ned on the semantics
 However� it is straight
forward to formulate syntactic de�nitions of reactiveness and determinism�

� � is reactive� if �� � � �
�W

t�T���� t
�
	 tt�

� � is deterministic� if �� � �A �t�� t� � T���� � t� �� t�
 �t� � t� 	 ff��

where T���� �� ft � B�M� j ��� � �� c � Com � ���� t� � ���� c�g

Besides simulation� Statemate �Inc���� provides the opportunity to generate executable�
deterministic C code
 The non�determinism in a Statemate speci�cation is resolved by
the aid of complicated rules
 Therefore� we have decided to focus upon a deterministic
semantics right from the beginning
 However� from a theoretical point of view there is no
di#culty to handle nondeterministic sequential automata

J�Vl� �d��� �d� �� ��K� �x� ��"s � let ���� c� � ����� x��
�y� ��� ��� � CJcK�x� �� ���
S � � �Vl� �d��� �

�� ��
in if � �� ���

then �y� ��� ��� S ��"�JS �K�� s�
else �y � fyg� ��� ��� S ��"�JS �K�� s�

The sequential automaton takes the current environment � together with the tuple �x� ��
in every time point
 x represents the set of all �pure and integer�valued� signals that are
currently present
 � is de�ned for all integer�valued signals that are contained in x
 ��Ev�
denotes the current integer value for all signals Ev in x �Mv

�
�� means that there exists exactly one�

��

In the case that the automaton changes its current state �� �� ��� the semantics instan�
taneously yields the quadruple �y� ��� ��� S ��
 Here y denotes the set of generated output
signals� ��� ��� and S � the successors for �� �� and S� respectively
 If the automaton does
not change its current state� this is indicated by the additional output of y
 After that�
the automaton behaves like the automaton with modi�ed current state

�	�	� Parallel Composition

The parallel composition of And �S�� S�� �� behaves as S� and S� synchronously together

Generated signals of the parallel components are uni�ed� denoted by y� � y� and �� �� ���
where � denotes the standard union and �� the union of integer�valued signals w
r
t
 �

The union of the environments �� and �� has to be performed with care
 Both �� and ��
are total function on V
 However� unifying them must yield a total function again
 This
is achieved by �� �

V�
V�
��� which is �i for all variables in Vi with i � f�� �g� Here� Vi denotes

the set of signals that are used in chart Si

JAnd �S�� S�� ��K� �x� ��"s � let �y�� ��� ��� S
�
�� � ft�JS�K� �x� ��"s��

�y�� ��� ��� S
�
�� � ft�JS�K� �x� ��"s��

y� � y� � y�� �
� � �� �� ��� �� � �� �

V�
V�
���

S � � And �S �
�� S

�
�� ��

in if y � y� � y�
then �y�� ��� ��� S ��"�JS �K�� s�
else �y�nfyg� ��� ��� S ��"�JS �K�� s�

And �S�� S�� �� does not change its current states� if both S� and S� do not change theirs�
which is indicated by y � y� � y�
 Note that an equivalent condition to this would be
S� � S �

��S� � S �
�
 The reader might now why we did not choose this condition instead of

y � y� � y�
 One might argue that we then even could de�ne your semantics without stop
signal
 However� we will precisely explain the reason for our strategy in Section �
�
�

The formal semantics of And �S�� S�� �� demonstrates the advantage of our compositional
semantics� to de�ne JAnd �S�� S�� ��K we just have to calculate JS�K and JS�K and then
put the results together

�	�	� Hiding and Restriction

As already mentioned� Local �S� L� and Restrict �S�R� for S � S and L�R � �fin�M� are
used for encapsulation� which is formally denoted by�

JLocal �S� L�K� �x� ��"s � let �y� ��� ��� S �� � ft�JSK��xnL� �jMvnL�"s��
S �� � Local �S �� L�

in �ynL� ��jMvnL� �
�� S ���"JS ��K�� s

JRestrict �S�R�K� �x� ��"s � let �y� ��� ��� S �� � ft�JSK��x �R� �jMv�R�"s��
S �� � Restrict �S �� R�

in �y � R� ��jMv�R� �
�� S ���"JS ��K�� s

Again� �jMv�R denotes the restriction of � on signals in Mv �R
 It is obvious that one
of these constructs can be considered to be an abbreviation� either Restrict �S�R� can be
de�ned as Local �S�MnR� or Local �S� L� as Restrict �S�MnR�

��

�	�	� Hierarchical Decomposition

Decomposition of a single state occurs when one wants to re�ne the behavior of this
state
 This decomposition for a sequential automaton �Vl� �d��� �d� �� �� is denoted by the
total� �nite function �
 The formal semantics of hierarchical decomposition is denoted
as follows� where �Vl� �d��� �d� �� �� is abbreviated to A
 Variables with index m and s
denote master and slave� respectively

��� JDec A by �A res �K� �x� ��"s �
��� let �ym� �m� �m� A

�� � ft�JAK� �x� ��"s�
��� in if ���� � NoDec

��� then let S � � Dec A� by �
��� in �ym� �m� �m� S

��"JS �K�m s
�� else let f � if �������� � Refresh then �refresh ��������� else id�
��� �ys� �s� �s� S

�� � ft�J��������K�f �� �x� ��"s��
��� y � if y � ym � ys then ym � ys else �ym � ys�nfyg�
��� �� � �m �� �s�
���� �� � �m �

Vs
Vl
�s

���� in if �y � ym or �������� � History�
���� then let S �� � Dec ��� �d� A

�� �� by ���S �� ��������� ���������
��
���� in �y� ��� ��� S ���"JS ��K�� s
���� else let S �� � Dec ��� �d� A

�� �� by ���init�S ���NoHistory� ���������
��
���� in �y� ��� ��� S ���"JS ��K�� s

To de�ne the semantics of Dec A by �A we �rst let make the master one step� denoted by
ft�JAK��x� ��"s� in line ���
 If the current state � of the master is not decomposed at all
��� ���� � NoDec� the semantics immediately proceeds to the next step like a for a pure
sequential automaton ���

Otherwise ��� if ���� �� NoDec� then �������� denotes the slave and we use the following
abbreviations� f represents the function refresh if �������� � Refresh� i
e
� if the local
variables of the slave shall be initialized and otherwise the function id
 id represents
the identity and leaves the current environment unchanged� whereas �refresh ���������
initializes all variables of the slave according to their default values

Similar to the parallel composition� Dec A by �A only generates a stop signal in the current
step� when both master and slave generate one
 �� denotes the values of the integer�valued
signals y�Mv that are present in the next step� �� denotes the new environment
 In �����
Vl denotes the local variables of A and Vs all variables of the slave ��������

In line ���� we have again to distinguish between two di�erent cases
 If A does not
change its current state �y � ym�� the semantic function proceeds to the next step� where
the slave has to be modi�ed
 This is achieved by substituting S � for S in � ����
 The
same must be done if the state � of the master is history decomposed
 However� if the
master changes its current state from � to �� �� �� �� is indicated by y �� ym� and � is not
history decomposed� then the slave must be initialized ���������
 init is de�ned according
to �NRS��� init�S �� initializes all sequential automata in S � to their default states
 Note
that init does not initialize variables

��

�	�	� Delayed Communication

In �NRS�� we demonstrated that broadcast communication is the critical point of the
language
 We presented three di�erent feedback operators
 In the extended language� the
delayed feedback is� like in �NRS��� also the one with the �easiest formal semantics�

JD�Feedback �S� L� ��K� �x�� ���"�x�� ���"s �
let �y� ��� ��� S �� � ft�JSK� �x�� ���"�x�� ���"s��

S �� � D�Feedback �S �� L� ��
in �y� ��� ��� S ���"�JS ��K�� �x� � �y � L�� �� �� �

�jMv�L�"s�

The tuples �x�� ��� and �x�� ��� denote the input signals of the current and the next
instant of time� respectively
 Signals �y� ��� are instantaneously generated and fed back as
additional input in the next time point� �x���y�L�� ������jMv�L�� where �jMv�L denotes
the restriction of � on signals in Mv � L
 Whenever a con�ict for integer�valued signals
occur� the resolution function � speci�es whether the environment or the component itself
wins recognition

�	�	
 Instantaneous Communication

The synchrony hypothesis �Ber��� demands that action and the event causing this action
occur at the same instant of time
 As a consequence� the above mentioned delayed
feedback now instantaneously takes place
 The signals in z generated by Mini�Statechart
S are intersected with the signals L to be fed back and then uni�ed with the external
signals in x
 This signal set is passed to S at the same instant of time
 Hence� to de�ne
one step of the semantics of I�Feedback �S� L� ��� i
e
� ft�JI�Feedback �S� L� ��K� �x� ��"s�
we have to �nd a solution for the following equation�

z � ���ft�JSK� �x � �z � L�� ��"s���

This can be achieved by computing a �xed point for the subsequent function�

	z����ft�JSK� �x � �z � L�� ��"s���

We abbreviate this function by f �x��
 Because of negative trigger conditions� some problems
can emerge when de�ning the formal semantics of this operator
 This problems and how
to solve them was discussed in detail in �NRS��
 We there showed that we must reject
certain Mini�Statecharts� which are lacking in unique �xed points
 Charts to be rejected
can be detected by static analysis
 In this contribution� we assume that unproper charts
already have been rejected
 Formally� the semantics of the instantaneous feedback for not
rejected charts is de�ned by�

JI�Feedback �S� L� ��K� �x� ��"s �
let f �x�� � 	z����ft�JSK� �x � �z � L�� ��"s���

�y� ��� ��� S �� � ft�JSK�x � �lfp�f �x��� � L��"s��
��� � � �� ���

in �y� ���� ��� S ��"�JI�Feedback �S �� L� ��K�� s�

where lfp computes the least �xed point of a monotonic function w
r
t
 the subset ordering
and is de�ned as follows�

lfp � ��fin�M�� �fin�My��� �fin�M�

��

where lfp�fx� � ilfp�fx� �� and

ilfp�fx� y� � if f �x���y�nfyg � y then y else ilfp�f �x��� f
�
x���y�nfyg��

In the sequel� we want to demonstrate the functionality of lfp
 Let us take a look at Fig

�
 We assume that the environment currently produces x � fa� bg� where the value of
a and b is � and �� respectively� i
e
� ��a� � � and ��b� � �
 For all other signals � is
unde�ned in the current time point
 Both automata do not have any local variables and
so we simply have � � �
 First of all� we get f �x����� � fbg
 Applying this function once
more yields f �x���fbg� � fb� cg� The last application produces f �x���fb� cg� � fb� cg and a
�xed point is reached

�����

��

fa� bg � I�Feedback

���

a
b �� �

b
c �� �

Figure �� Example� instantaneous feedback

Due to the de�nition of our state transition function the concept of �NRS�� smoothly
carries over to the extended language
 Note that we only can achieve this result because
transitions are triggered by the presence or absence of �even pure� signals
 If transitions
were also triggered by the values of signals� it would not be possible to lift the concept
for instantaneous feedback as easy as demonstrated

�	�	� Macro��Micro�Step Communication

In this section we describe a further semantic view of the feedback operator
 The basis
of the macro��micro�step feedback M�Feedback �S� L� is to distinguish between signals x
which are generated by the environment� or stimuli in short� and internal signals y which
are generated by the system S itself

We assume that a reactive system gets a set of stimuli x and starts reacting ��
�����
�����
��
on it while the stream s of external stimuli is interrupted ��
��
 Internal signals are fed
back ��
��� the system reacts on these signals� and proceeds until �useful signals cannot
be produced any longer ��
�����
��
 However� in contrast to the instantaneous feedback
the generated signals are fed back at the next instant of �micro� time ��
��
 Hence� the
feedback mechanism results in a stream of signal sets ��
�����
�� and we get di�erent
levels of system time
 If this stream contains no �useful signals anymore we say that the
feedback operator terminates �see below� ��
��
 If the feedback terminates� the generated
signals are transmitted to the environment and the next stimulus set is reacted on ��
��

Every single step ��
�� of this chain reaction is called a micro�step� whereas a series of
micro�steps ��
�����
��� starting with the �rst step after the input stream was interrupted

��

�

a
fg

�a
fbg

Figure �� Restart after �Termination

and ending with the last step before the feedback operator terminates� is called a micro�
cycle or macro�step
 In one macro�step we can distinguish eight di�erent variants for
lifetime of stimuli and internal signals
 Lifetime of both kinds of signals can be one
micro�step as well as the whole micro�cycle
 However� due to space limitations in this
paper we only present the following variant �for some arbitrary stream t��

�steps�S� L�� �x� �� � let �y� ��� ��� S �� � ft�JSK� �x� ��"t� ��
��
in if �y � y� � �y � L � x� � ��jL�Mv

� � ��
��
then �y� ��� ��� S�"�fyg� S�� ��
��
else �y� ��� ��� S ��"�steps�S �� L��� �y � L� ��jL�Mv

�
 ��
��

where lifetime of both stimuli x and internal signals y is one micro�step ��
��
 For the
other variants� the interested reader is referred to �NRS��
 To de�ne the semantics of the
macro��micro�step feedback operator� we have to discuss the notion of termination �rst

According to �HPSS��� a macro�step terminates if no transition is possible anymore
 At
�rst glance� this notion of termination seems to be sensible
 At second glance� however� the
following two problems arise
 First of all� reactive systems never terminate in a classical
sense
 This is assured by our total transition function ��
 To achieve a similar behavior
as proposed in �HPSS��� we could de�ne a macro�step to terminate if no current state is
changed and no signals are generated
 However� this solution is not adequate
 Because
of the existence of negative trigger conditions the Mini�Statechart is able to restart if no
signals are generated

Example � The automaton A in Fig� � shows an example for this phenomenon� Let
us assume that state � has been reached� Now� let signal a be sent by the environment�
Thus� A generates the empty set of signals and stays in state �� i�e�� the current state
does not change and no signals are generated� However� the empty set of signals triggers
the condition �a� Hence� A �restarts� and produces fbg as new output�

As a consequence� we have to de�ne another notion of termination�

Let S � S and L � �fin�M� then we say that �steps�S� L�� �x� �� terminates for stimulus
�x� �� � �fin�M�� ! and �current� environment � in step k � IN i�

k � minfi � IN j �j � i � fyg � �����steps�S� L�� x��j�g�

This means that � beginning with step k � the feedback operation produces the same
signal set in every single successor�step and the corresponding Mini�Statechart does not
change its internal structure forever ��
��
 We say it has reached a stable state
 In
the sequel� we will abbreviate this termination predicate to term �S� L� k� �x� ��� ��
 The
behavior of the stream semantics is now formally denoted by�

��

JM�Feedback �S� L�K� �x� ��"s � if �k � IN � term �S� L� k� �x� ��� �� ��
��
then let �y� ��� ��� S �� � ��steps�S� L�� �x� ����k ��
��
in �y� ��� ��� S ��"JM�Feedback�S �� L�K�� s ��
��
else �
 ��
��

Note that only internal signals of the very last� i
e
� the k�th micro�step are transmitted
to the environment ��
��
 However� it would not be hard to rede�ne this step semantics in
such a way that all internal signals are collected and transmitted to the environment after
termination
 Theoretically� we only require the semidecideability of the predicate term
��
��
 Of course the termination of each macro�step is in practice even �fully� decidable by
static analysis because our Mini�Statecharts only deal with a �nite state and signal space

Hence� we also could have de�ned a total step semantics as for the instantaneous feedback

If the micro cycle does not terminate we assign � as semantics ��
�� which coincides with
the e�ect of testing termination of the micro cycle
 Testing may not terminate itself which
would yield a � result

We now want to motivate the need of the stop signal
 We say that our denotational
semantics is compositional if for all S�� S� � S the following is valid �Win����

DJS�K � DJS�K �
 DJC�S��K � DJC�S��K�

This de�nition needs the notion of context
 In our setting� a context C��� intuitively is a
Mini�Statechart S � S with exactly one �hole ��� of type S
 In this hole we can plug
another Mini�Statechart S �
 De�ning the semantics for the macro��microstep feedback
operator without stop signal� we can �nd Mini�Statecharts that produce the same output
streams� but do not agree in all contexts
 This will be demonstrated in Example �

Example � �Motivation for the Stop Signal� Let S and S � denote the automata that
are pictured in Fig� � �a� and �b�� respectively� We suppose that the environment supplies
both components with the input stream ��� Once being initiated� both automata start
reacting forever because all transitions are labeled with �true��

First of all� we assume that we would have de�ned the semantics without stop signal� then
S� produces an in�nite stream of which all all elements are empty signal sets by proceeding
idle steps� In contrast� S� toggles between �� and ��� but also produces an in�nite stream
of empty sets� We get DJS�K��� ��� � DJS�K��� ��� � ��� ��� as denotational semantics�

Let us now assume that both automata are embedded in the Macro�Microstep Feedback
operator� i�e�� we have M�Feedback �S�� �� and M�Feedback �S�� ��� In contrast to above�
now � can be fed back� As we will see in the sequel� this is not trivial� M�Feedback �S�� ��
takes the �rst element of the input streams� makes an idle step� produces the empty set of
signals� and terminates� Now the chart can consume a further element of the input stream
and starts reacting on that set again� In spite of this complicated internal behavior� like
S�� also M�Feedback �S�� �� produces ��� ��

� as output�

M�Feedback �S�� ��� in contrast� has a di�erent behavior� Here� the micro cycle never
terminates because the automaton carries on changing its current state forever� Hence�
we get � as overall semantics� Thus� the overall result is DJM�Feedback �S�� ��K �� DJM�

Feedback �S�� ��K in contradiction to the compositionality�

The introduction of the stop signals easily solves this problem� because we get DJS�K��� ��� �
�fyg� ��� �� ��� ��� � DJS�K��� ��� as denotational semantics and S�� S� can be distin�
guished by their output streams�

��

true � fg

�a� �b�

true � fg

true � fg
�� ����

Figure � Motivation for the stop signal

The reason for the failure of a semantics without this extra signal is near at hand
 Though
without using the stop signal we could check whether the current state has changed with
a condition like S � S �� we never would recognize this internal behavior in the output
stream
 As a consequence� we would distinguish the semantics of components that one
the one hand have the same output stream� but on the other hand a di�erent termination
behavior

� Conclusion and Future Work

We presented the textual and visual speci�cation language �Mini�Statecharts
 Mini�
Statecharts are a subclass of Statecharts� which were �rst introduced by David Harel

We restricted our language to the essential syntactic constructs of Statecharts
 Mini�
Statecharts are� in contrast to Harel�s Statecharts� well�suited for the modular develop�
ment of parallel� reactive systems
 Because of their modularity� we were able to assign a
compositional� formal semantics to them

However� the author admits that the assumption of a global clock impedes the usage of
Mini�Statecharts for the speci�cation of distributed systems
 Each distributed component
normally is driven by its own� local clock
 Thus� the communication of distributed com�
ponents has to be synchronized
 To develop a formal semantics that deals with a number
of local clocks instead of one single� global clock is left to future work

Also left to further work is the development of a formal semantics for a non�deterministic
version of Mini�Statecharts
 This goal can be achieved either by using sets of stream
processing functions or relations
 Non�determinism is the most appropriate possibility to
express underspeci�cation
 Re�ning a non�deterministic speci�cation step by step� we get
a deterministic and therefore implementable speci�cation in the end
 In the semantics�
re�nement is denoted by set inclusion
 Each re�nement step must not enlarge the set
of possible implementations
 To formalize this iterative re�nement process� we have to
develop a re�nement calculus
 It �xes the set of feasible syntactic transformations for
every re�nement step

Acknowledgment

Thanks are owed to Manfred Broy� Olaf M�uller� Christian Prehofer and especially Jan
Philipps who read an earlier version of this paper and provided many helpful comments

��

References

�BDD���� M
 Broy� F
 Dederichs� C
 Dendorfer� M
 Fuchs� T
 F
 Gritzner� and R
 Weber

The Design of Distributed Systems� An Introduction to Focus � Revised
Verison
 Technical Report TUM�I������� Technische Universit�at M�unchen�
Fakult�at f�ur Informatik� ����� M�unchen� Germany� ����

�Ber��� G
 Berry
 Real time programming� special purpose or general purpose lan�
guages
 Information Processing 	�� ����

�BG��� G Berry and G
 Gonthier
 The ESTEREL Synchronous Programming Lan�
guage� Design� Semantics� Implementation
 Technical Report ���� INRIA�
����

�GS��� R
 Grosu and K
 St$len
 A Denotational Model for Mobile Point�to�Point
Data�ow Networks
 Technical Report SFB ��������� A� Technische Univer�
sit�at M�unchen� ����

�Har��� D
 Harel
 Statecharts� A Visual Formalism for Complex Systems
 Science of
Computer Programming� ����� � ���� ����

�Har��� D
 Harel
 Statemate� A working environment for the development of complex
reactive systems
 IEEE Transactions on Software Engineering� ����� � ����
����

�HdR��� C
 Huizing and W
�P
 de Roever
 Introduction to design choices in the seman�
tics of statecharts
 Information Processing Letters� ��� ����

�HN��� D
 Harel and A
 Naamad
 The STATEMATE Semantics of Statecharts
 Sub�
mitted to� ACM Transations Software Engineering Methods� ����

�HPSS��� D
 Harel� A
 Pnueli� J
P
 Schmidt� and R
 Sherman
 On the Formal Semantics
of Statecharts
 Proceedings on the Symposium on Logic in Computer Science�
pages �� � �� ����

�HRdR��� J
J
M
 Hooman� S
 Ramesh� and W
P
 de Roever
 A compositional axiomati�
zation of Statecharts
 Theoretical Computer Science� ������� � ���� ����

�Inc��� i�Logix Inc
 Languages of Statemate
 i�Logix Inc
� �� Third Avenue� Burling�
ton� Mass
 ������ U
S
A
� January ����

�Mar��� F
 Maraninchi
 Operational and Compositional Semantics of Synchronous
Automaton Compositions
 volume �� of Lecture Notes in Computer Science�
pages ��� � ��
 Springer�Verlag� ����

�NRS�� D
 Nazareth� F
 Regensburger� and P
 Scholz
 Mini�Statecharts� A Lean Ver�
sion of Statecharts
 Technical Report TUM�I���� Technische Universit�at
M�unchen� ���
 Also available in the WWW� http���wwwbroy
informatik
tu�
muenchen
de�reports�TUM�I���
html

��

�Pau��� L
C
 Paulson
 Isabelle� A Generic Theorem Prover� volume ��� of Lecture
Notes in Computer Science
 Springer� ����

�SS��� B
 Sch�atz and K
 Spies
 Formale Syntax zur logischen Kernsprache der Focus�
Entwicklungsmethodik
 Technical Report TUM�I����� Technische Universit�at
M�unchen� ����

�vdB��� M
 von der Beeck
 A Comparison of Statecharts Variants
 In H
 Langmaack�
W
�P
 de Roever� and J
 Vytopil� editors� Formal Techniques in Real�Time and
Fault�Tolerant Systems � Third International Symposium Organized Jointly
with the Working Group Provably Correct Systems � ProCoS� volume �� of
Lecture Notes in Computer Science
 Springer� ����

�Win��� G
 Winskel
 The Formal Semantics of Programming Languages
 The MIT
Press� ����

�

