T UM

INSTITUT FUR INFORMATIK

A Denotational Model for
Mobile Many-to-Many
Data-flow Networks

Radu Grosu
Ketil Stglen

TUM | 9622
Mai 1996

TECHNISCHEUNIVERSITATMUNCHEN

TUM | NFO 05- 1996-19622- 350/ 1. - FI
Al l e Rechte vorbehal ten
Nachdruck auch auszugswei se verbot en

©1996 MATHEMATI SCHES | NSTI TUT UND
| NSTI TUT FUR | NFORMATI K
TECHNI SCHE UNI VERSI TAT MUNCHEN

Typescript: ---

Dr uck: Mat henati sches I nstitut und
Institut fur Infornati k der
Techni schen Uni versitat Minchen

TLTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

A Denotational Model for
Mobile Many-to-Many

Data-flow Networks

Radu Grosu, Ketil Stglen

TUM-19622
SFB-Bericht Nr.342/13/96 A
Mai 1996

TUM-INFO-05-96-122-350/1.—FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

©1996 SFB 342

Anforderungen an:

Druck:

Methoden und Werkzeuge fiir
die Nutzung paralleler Architekturen

Prof. Dr. A. Bode

Sprecher SKFB 342

Institut fiir Informatik
Technische Universitat Miinchen
D-80290 Miinchen, Germany

Fakultat fur Informatik der
Technischen Universitat Minchen

A Denotational Model for Mobile
Many-to-Many Data-flow Networks

Radu Grosu, Ketil Stglen

Institut fiir Informatik, TU Miinchen, D-80290 Miinchen
email:grosu,stoelen@informatik.tu-muenchen.de

June 11, 1996

Abstract

We present a fully abstract, denotational model for mobile, timed, nondetermin-
istic data-flow networks whose components communicate in a many-to-many fash-
ion. In this model components and networks of components are represented by sets
of stream processing functions. Each stream processing function is required to be
strongly guarded and generic. A stream processing function is strongly guarded if it is
contractive with respect to the standard metric on streams. This property guarantees
the existence of unique fix-points. The genericity property can be thought of as an
invariant, or alternatively, a privacy requirement, that is satisfied by any mobile sys-
tem. It guarantees that a function never accesses, depends on or forwards a port whose
name it does not already know. Our model allows the description of a wide variety
of networks — in particular, the description of unbounded nondeterministic networks.
We demonstrate some features of our model by specifying a mobile telephone network.

1 Introduction

One of the most prominent theories for interactive computation is the theory of data-flow
networks. In this theory, an interactive system is represented by a network of autonomous
components which communicate solely by asynchronous transmission of messages via di-
rected channels.

A very elegant model for static, deterministic data-flow networks whose components com-
municate in a point-to-point fashion, was given by Kahn in [Kah74]. Despite of its elegant
foundation, this class of networks is, however, too restrictive for many practical applica-
tions. In this paper we extend Kahn’s model in a number of ways.

Firstly, contrary to [Kah74], we model nondeterministic behavior. Like Park [Par83], Broy
[Bro87] and Russell [Rus90], we represent nondeterministic data-flow networks by sets of
stream processing functions. However, in contrast with [Par83] and [Bro87], our model
is fully abstract. This is achieved, by considering only sets of functions which are closed
with respect to the external observations. The closure idea was used by [Rus90] for the
same purpose. However, contrary to [Rus90], we use a timed model and a different notion
of observation. This allows us to describe a considerably greater class of networks. In

particular, we can describe all fair merge components discussed in [PS92]. In fact, we
can describe any liveness property that can be expressed in standard property oriented
specification languages for distributed systems [CM88], [Lam91], [BDD'93]. Moreover,
since our model is fully abstract, we obviously avoid the expressiveness problem known as
the Brock/Ackermann anomaly [BA81].

Secondly, contrary to [Kah74], and also contrary to [Par83], [Bro87], [Rus90], we handle
many-to-many communication. This is achieved by building implicit fair merge com-
ponents into the network operators — the operators used to build networks from basic
components. Despite the fact that several components may have both receive and send
access to the same channel, each component is described by a set of functions mapping
input streams to output streams. The input streams contain the messages sent by the
environment; the output streams contain the messages sent by the component. Thus, we
model the shared-state interference caused by the many-to-many communication at a very
abstract level — the interference is isolated and placed in the network operators.

Thirdly, contrary to [Kah74] and also contrary to [Par83], [Bro87], [Rus90], we describe
dynamically reconfigurable or mobile networks — networks in which every component
may change its communication partners on the basis of computation and interaction. The
formal modeling of mobility has been a very popular research direction in recent years.
However, most models published so far have been formalized mainly in operational terms.
Examples of such models are the Actor Model [HBS73, AMST92], the 7—Calculus [EN86,
MPW92a, MPW92b], the Chemical Abstract Machine [BB90], the Rewriting Logic [Mes91]
and the Higher Order CCS [Tho89]. On the contrary, our model gives a denotational
formalization of mobility. As in the above models, this formalization is based on two
assumptions. Firstly, ports are allowed to be passed between the network components.
Secondly, the components preserve privacy: their behavior do not depend on ports they do
not know. Although it is well understood how to express privacy operationally, there is less
denotational understanding. Our solution is to require each stream processing function
to be generic. This requirement can be thought of as an invariant satisfied by any mobile
system. Informally speaking, the genericity property makes sure that a function accesses,
depends on and forwards only ports it already knows. By “the ports it already knows” we
basically mean any port which is in its initial interface, it has already received or it has
already created itself. Any port created by the function itself is assigned a “new” name
taken from a set that is “private” to the component in question.

Although we could have formulated our semantics in a cpo context, we decided to base
it on the topological tradition of metric spaces [Niv82, dBZ82, AdBKR®89]. Firstly, we
wanted to understand the exact relationship between our approach and those based on
metric spaces. Secondly, the use of metric spaces seems more natural since our approach
is based on infinite streams, and since our strong guardedness constraint, guaranteeing
the existence of a unique fix-point, corresponds straightforwardly to contractivity.

The rest of the paper is split into seven sections. Section 2 introduces basic notions
like communication histories and stream processing functions. Section 3 formalizes the
genericity constraint. Section 4 introduces mobile components. Section 5 describes the
modeling of interference. Section 6 is devoted to the network operators. Section 7 gives an
example. Section 8 relates our approach to other approaches known from the literature.
Finally, there is an appendix reviewing some basic stuff on metric spaces and streams.

2 Basic Notions

We model an interactive system by a network of autonomous components communicat-
ing via directed channels in a time-synchronous and message-asynchronous way. Time-
synchrony is achieved by using a global clock splitting the time axis into discrete, equidis-
tant time units. Message-asynchrony is achieved by allowing arbitrary, but finitely many
messages to be sent along a channel in each time unit.

2.1 Communication Histories

We model the communication histories of directed channels by infinite streams of finite
streams of messages. Each finite stream represents the communication history within a
time unit. The first finite stream contains the messages received within the first time unit,
the second the messages received within the second time unit, and so on. Since time never
halts, any complete communication history is infinite. Let M be the set of all messages.
Then [M*] is the set of all complete communication histories, and (M*)* is the set of all

partial communication histories!.

In the introduction we anticipated that components may transmit ports. A port is a
channel name together with an access right, which is either a receive right, represented
by 7, or a send right, represented by !. Hence, if N is the set of all channel names, then
?N = {?n | n € N} is the corresponding set of receive ports, and IN = {In | n € N}
is the corresponding set of send ports. We also write ?IN for 7N U IN. We assume
that 71N C M. Let D be the set of all messages not contained in the set of ports, i.e.,
D=M\ ?N.

Since components may exchange ports, each component can potentially access any chan-
nel in V. For that reason we model the complete input and output histories of a compo-
nent by named stream tuples contained in N — [M*]. The partial ones are modeled by
N — (M*)*. In the sequel we refer to named stream tuples of these signatures as named
communication histories. Thus, each named communication history assigns a communi-
cation history to each channel name in N.

2.2 Guarded Functions

A deterministic component is modeled by a stream processing function
fe(N—=[M]) = (N —[M])

mapping complete named communication histories for its input channels to complete
named communication histories for its output channels. Note that if no message is com-
municated along an input channel within a time unit then the empty stream occurs in
the communication history for that channel. The lack of this information causes the fair
merge anomaly [Kel78].

The functions process their inputs incrementally — at any point in time, their outputs
do not depend on future inputs. Functions satisfying this constraint are called weakly

'For an arbitrary set S, by S* we denote the set of finite streams over S and by [S] the set of infinite
streams over S. See also the appendix.

guarded. If the outputs they produce in time unit ¢ are not only independent of future
inputs, i.e., the inputs received during time unit ¢ + 1 or later, but also of the inputs
received during time unit ¢, then they are called strongly guarded. Intuitively, the strongly
guarded functions introduce a delay of at least one time unit between input and output.
The weakly guarded functions allow in addition zero-delay behavior.

Let 6|; represent the prefix of 6 of length j, i.e., the result of cutting 6 after the j’th time
unit. Then weak and strong guardedness can be formalized as below:

Definition 1 (Guarded functions) A function f € (N — [M*]) - (N — [M*]) is
weakly guarded if
and strongly guarded if

VO,p0,5: 0L =¢lj =[O = fle)ljm. -

We use the arrow = to characterize sets of weakly guarded functions.

A weakly guarded function is non-ezpansive and a strongly guarded function is contractive
with respect to the metric on streams (see appendix). As a consequence, by Banach’s fix-
point theorem, strong guardedness not only replaces the usual monotonicity and continuity
constraints of domain theory but also guarantees unique fix-points of feedback loops.

3 Genericity

A stream processing function f € (N — [M*]) — (N — [M*]) used to model a component
is not only required to be strongly guarded but also to be generic. That it is generic means
that it accesses, depends on and forwards only ports it already knows. Thus, the genericity
property basically characterizes the way the function gains access to ports. In this section
we formalize this additional property.

ap o p®f@),] f ap, o p(6,1(8)),

Figure 1: Generic Stream Processing Function

The behavior of a generic function can be described with respect to Figure 1, as follows.
Initially, f receives from a designated set of input channels I and sends on a designated
set of output channels O. These two sets name the static channels or the initial wiring. To
make sure that channels created by the different components in a network have different

names, each mobile function is assigned a set of private names P. Obviously, this set
should be disjoint from the static interface. Thus, we require that (I UO) NP = .

During the computation, the sets of accessible channels gradually grow. For example, if
the function receives a receive port 7 (7 ¢ P) then it may receive from the channel 7, and
if it receives a send port lo (0 ¢ P) then it may send on the channel o. Similarly, whenever
the function sends a send port !j, whose channel j € P it has created itself, it may later
receive what is sent along j, or whenever it sends a receive port 7p, whose channel p € P
it has created itself, it may itself send messages along p which eventually are received by
the components which received the receive port.

To formally characterize this behavior we introduce some additional notation. For a given
point in time n and named input history 6, by ap(#, f(0))(n) we denote the set of active
input and output ports, and by pp(6, f(0))(n) we denote the set of passive input and
output ports. At any point in time n these two sets are disjoint. For any channel p, by
7 we denote its complement, i.e., Ip =7p and "7\]/) =lp. A port p in pp(#, f(#))(n) remains
passive as long as its complement port p is unknown to the environment. After all, if p
is unknown to the environment then there is no way the environment can receive what f
sends along p if p is a send port, and there is no way the environment can influence what
f receives on p if p is a receive port. Formally:

Definition 2 (Active and passive ports) For any n,I,0, P,0 and 0, let

def def
3PI,0,P(9a5)(") = aPp, PPI,O,P(9a5)(") = PPn,

where ap,, and pp,, are defined recursively as follows:
def

ap, ?7 U 10, pp;, = op,

def def
a1 = AP, UTnUbn, PPayti = PPn \ Gn
where

Tn = Uricap, {P | P € PP, Ap € 0(i)(n)},
gn = Uticap, {P | P € PP, AP € 6(i)(n)}.

The sets r, and g, are the sets of received and generated ports, respectively.

Theorem 1 For any n,I,0,P,0 and §

PPr,0.p(0,0)(1) C ap; o p(0,0)(n) U ppro.p(0,6)(n)

PPro.p(0,0)(n) C pprop(0,0)(1)
Proof: Follows trivially since anything that is removed from the set of passive ports
is added to the set of active ports, and since nothing is ever added to the set of passive
ports. O

With dom; o,p and rng; o p we describe how f dynamically gain access to ports. The
expression domy o p(6, f(0))(n) characterizes the input history that is actually considered
by f in time unit n. Accordingly, gy o p(6, f(€))(n) is the output history that is actually
produced by f in time unit n. In the definition of genericity below, dom; o p and rng; o p
constrain f to maintain the privacy invariant described above. Since the function f runs in
an open environment this constraint is of course not sufficient unless also the environment

sticks to the rules of the game. There are basically two ways in which the environment
of f can break the rules of the game. Firstly, the environment can send f a port p €!7P
which the environment has not yet received from f, i.e., a port “it does not yet know”
because it has not yet been output by f. Secondly, the environment can send along a
channel ¢ € P without first having received !c.

There are two ways to deal with this problem. One alternative is to impose an environment
assumption in all definitions characterizing exactly those input histories in which the
environment sticks to the rules of the game. The other alternative, which is used in this
paper, is to constrain the functions to ignore the input messages which do not respect
the privacy restrictions. This is okay, because we are only interested in environments that
can be understood as mobile components in accordance with the definition below. Such
components will never break the rules of the game. For that reason, dom; o p and rmg; o p
have been defined in such a way that, in addition to their main task of characterizing the
actual domain and range of a function, they also correct environment mistakes. Ports
sent by the environment that should be unknown to the environment are filtered away.
Moreover, messages sent by the environment along channels it does know are removed.
Formally:?

Definition 3 (Domain and range) For any n,I,0,P,0 and §, we define
—) o
dom; 0.p(8,6)(i)(n) def | (pp, UD) © 0(:)(n) if 7i€ap,

€ otherwise
, def | (ppp, Uap, UD) © 4(i)(n) if li€ap,
rgr.o,p(0,9)(i)(n) = i otherwise
where ap,, = apI,O,P(07 d)(n) and pp, = apI,O,P(ea d)(n). =

Theorem 2 The functions pp and ap are strongly guarded, and the functions dom and
rng are weakly guarded.

Proof: PPr,0,p(0,0)(n) and ap; o p(#,6)(n) depend only on 6l, 1 and o, 1.
domy 0, p(0,0)(n) and gy o p(0,0)(n) depend only on 6, and ;. 0

Theorem 3 The functions dom and rng have the following properties:

d0m1707p(9, (5) = dom[,o,p(dom[,o,p(t?, 5), 5) = d0m1707p(9, rngI,O,p(H,
mg[,O,P(ga §) = mg[,O,P(domI,O,P(Ha §),0) = mg[,O,P(ga rngI,O,P(ea d
Proof: The proof is based on the inductive definitions of ap and pp.

5))7
))-

Induction hypothesis:

aPI,o,P(9a5)(") = 3P1,0,P(d°mI,O,P(9a5)a5)(”) = apI,O,P(ea mg[,O,P(Oaa))(n)a

PPI,O,P(9a5)(") = ppI,O,P(domI,O,P(075)75)(”) = PP[,O,P(& mg[,o,P(eafs))(")-
To simplify the notation we write:

ap, = aPI,OP(9 d)(n),

ap,, aP1,0, p(domr0 p(0,9),0)(n), ap, = apI,O,P(Oa rngI,O,P(ea(s))(n)a

PP PPr,0, p(0,0)(n),

PPn = PP1,0, P(domlop(f9 §),6)(n), PPZ = ppI,O,P(Oa rngI,O,P(ea(s))(n)'

/

2The operator € 1s overloaded to test for containment in a list. Moreover, for any set of ports S C?!N,
SE N \ S and = {p | p € S}. When convenient, we also view 6(i)(n) as a set.

Base case: ap; = ap| = ap] =71 U !0 and pp; = pp}
Induction Step: By induction hypothesis ap, = ap], = ap), and pp,, = pp,, = PP

definition of ap and pp:
APp+1 = (apn U

ap;1+1= (aP;L U

ap%+1: (ap% U

ppf =71P.

U?ieapn{c | cE m NcéE 0(1)(’”)} U

Usicap, 1¢ | ¢ € PP, A €€ 6(i)(n)}),

Uricap {c | c € ppl, A ¢ € dom; o p(0,0)(i)(n)} U
Usicap, {¢ | ¢ € ppy, A €€ 6(i)(n)}),

Uricapric | c €ppf A c€0(i)(n)}) U

Usicapz {c | ¢ € ppy A € € gy p(8,0)(4)(n)}),

PPrt1 = PPn\ Uricap, {¢| c € pp, A €€ 6(i)(n)},

PPrs1 = PPn\ Uricapy {¢ | ¢ € pp, A €€ (i) (n)},

PPnt1 = PPn\ Uncapric | c € ppy A €€ mgpo p(0,0)(i)(n)}.
By definition of dom and rng:

dom[,o,p(e, 5) (’L) (n)
mg;r.0,p(0,0)(1)(n)

The first union in the definition of ap,,, |, ap},; and ap;, ,; is taken over ?i € ap,, = ap},

apl. As a consequence

domy 0 p(0,0)(i)(n)

= (ﬁu D) © 6(i)(n) if ?i€ap, =apl, =ap,
= (pp, Uap, UD) © 4(i)(n) if i €ap, = ap, = apy,.

= (pp, U D) © 6(i)(n)

inside this union. It is enough to show that
cef(i)(n) < c€(pp,UD)OO)(n)

under the assumption that ¢ ¢ ap,, and ¢ € pp,,. This follows trivially since ¢ € pp; < ¢ €
pp;, Theorem 1 and the two assumptions imply that ¢ & pp,,.

The second union in the definition of ap,,, ap},,; and ap],; is taken over !i € ap, =
ap,, = apll. As a consequence

mg[,O,P(Oa 6)(4)(n)

= (pp, Uap, UD) © 4(i)(n)

inside this union. It is enough to show that

ced()(n) <« ¢€(pp,Vap,UD)©d(i)(n)

under the assumption that ¢ € pp,,.

This follows trivially since ¢ € pp; < ¢ € ppy,

Theorem 1 and the assumption imply that ¢ € pp, U ap,. This proves that ap,,; =
ap,,1 = apy1- That pp,,; = pp),.; = pp;4 follows accordingly.

Finally, because of these equalities, domy o p(#,9)(¢)(n) simplifies to 6(i)(n) inside the
definition of dom; o p and rng; o p(0,0)(7)(n) simplifies to §(i)(n) inside the definition of
rgr.o,p- This immediately proves the theorem.

We can now characterize what it means for a function to be generic.

a

Definition 4 (Generic functions) A function f € (N — [M*]) — (N — [M?]) is called
generic with respect to the initial wiring (I,0) and the private names P iff:

VO : f(0) = f(domr,0,p(0,£(0))) = e 0,p(0, f(0)).

We use the Mob(I,0, P) to characterize the set of all strongly guarded functions that are
generic with respect to (1,0, P). In the sequel we refer to these functions as mobile.

4 Mobile Components

We model a nondeterministic component by a set of mobile functions F'. Any pair (0, f(0)),
where f € F, is a possible behavior of the component. Intuitively, for any input history
each mobile function f € F represents one possible nondeterministic behavior. For any set
of functions ' we define O(F') to be the set of all behaviors of F', i.e., O(F) = {(z, f(x)) |

f e F}

Different sets of mobile functions may have the same set of behaviors. The reason is that
for some sets of mobile functions we may find additional mobile functions which can be
understood as combinations of the functions already in the set. For example, we may find
a mobile function g which for one input history behaves as the function f € F and for
another input history behaves as the function f’ € F', and so on. This means, a model in
which a nondeterministic component is represented by an arbitrary set of mobile functions,
is too distinguishing, and consequently, not fully abstract. To achieve full abstraction we
consider only closed sets, i.e., sets F', where each combination of functions in F, which
gives a mobile function, is also in F'.

Definition 5 (Mobile components) A mobile component, with initial wiring (I,0) and
private names P, where PN(IUO) =, is modeled by a nonempty set of stream processing
functions

F C Mob(I,0, P)
that is closed in the sense that for any f € Mob(I,0O, P)
(Ve (N — [M*]):3f' e F: f(0)=f'(0) = f €F. O

It follows straightforwardly that if F} and F» are mobile components then Fy; = F iff
O(F1) = O(F3). Thus, our notion of a component is fully abstract with respect to the
corresponding set of behaviors. Note the relationship to [Rus90]. That our semantics is
fully abstract with respect to O is of course trivial. Nevertheless, this notion of observation
characterizes the expectations one has to a semantics dealing with time.

Note that if ¢ € N and (0,9) € O(F) then the communication history €(c) contains the
history of all messages sent by the environment along the channel ¢. On the other hand,
the communication history d(c) contains the history of all messages sent by F' along the
channel c. Thus, although we model many-to-many communication, each component can
be understood as a pure relation between input and output histories where each input
history contains only messages sent by the environment, and each output history contains
only messages sent by the component.

5 Interference and Implicit Merge

Interference occurs when two mobile components send on the same channel. As should
be clear from the discussion in the previous section, interference is not considered at the

10

component level. This allows us to describe each component in a very abstract and, in
our opinion, intuitive way. Instead, interference is modeled by building implicit merge
components into the network operators. Each such merge component MC takes two
named communication histories as input and yields their merge as output. Since M C is
hidden in the semantics, it should neither add nor reduce delay. Remember, we want to be
able to express timing constraints. This means that its output history during time unit &
should be a merge of the two finite streams characterizing the input histories in time unit
k. Moreover, M C should not fix the interleaving. Thus, any interleaving of the messages
received within a time unit should be allowed. This means that M C is nondeterministic.
MC is now formally defined in two steps.

We first characterize what it means for a finite stream to be a merge of two finite streams.
To do so, we introduce some operators. For any tuple ¢ we use m(¢) to denote the first
component of ¢; for any stream s we use #s to denote the length of s. For a set of
messages A and a stream of messages s, A(©s denotes the stream we obtain by removing
any message in s that is not contained in A. This operator is overloaded to sets of pairs
of messages A x B and pairs of streams of messages (r,s) in a straightforward way: for
each 7, (r(7), s(j)) is filtered away iff it is not in A x B.

Definition 6 (The merge relation on finite streams) Let FM be the function such
that:
FM € M* x M* — P(M*)
FM(s1,s2) ={s|pe{l,2}" : #p=#sAVie {1,2}:
si=m((M x {i}) © (s,p))} O

It is now straightforward to define the implicit merge component.

Definition 7 (The merge component) The merge component is a set of weakly guarded
functions defined as follows:

MC C (N = [M*]) x (N = [M*]) = (N — [M*])
MC ={f € (N —[M])x (N = [M]) = (N = [M])]
Vi, 0 Non € N: f(p,9) () (n) € FM(p(i)(n), (i) (n)) } O

Note that the functions contained in M C are only required to be weakly guarded. Nev-
ertheless, due to the way this implicit component is used in the definitions of network
operators, this does not lead to any problem.

Theorem 4 MC is a nonempty set.

Proof: Trivial O

6 Network Operators

In this section we introduce three network operators, namely an operator for parallel
composition with mutual feedback, a feedback operator and a hiding operator.

11

6.1 Many-to-Many Composition

The parallel composition with mutual feedback of two components £} and F5 is charac-
terized by the network in Figure 2.

Figure 2: Many-to-many communication

Definition 8 (Many-to-many composition) Given two mobile components
Fy C Mob(I,,04,Py), FyC Mob(Iz,09,P,),
where Py N (P, Ul UO2) = PN (PLULUOy) = 0. Let
I=hLUL, O=0,U0y, P=PUP;,
then
Fy ® F, C Mob(I,0, P)
FieF,={f € Mob(I,O,P) | V0 :3f € Fi, fo € Fo3,mi,mao,mg € MC :

f(6) =gy 0,p(0,5) where
6 = m3(p,7), ¥ =doms o p(0,0)
¢ = fi(mi(9,%)), ¢ = fa(ma(d,p))} O

Note the role of dom; o p and rng; o p in maintaining privacy. If F; sends a private send
port !p €!P; on a feedback channel (and it does not send 7p), then both the environment
and F5 can send along p, but only F} is allowed to receive on p. As a consequence, the
output of F» along p should not be observed by the environment. This is ensured by
rngy o.p- Similarly, if F} sends a private receive port 7p €7P; on a feedback channel (and
it does not send !p), then both the environment and F5 can receive on p, but only Fj
is allowed to send along p. As a consequence, the input of F5 on p should contain only
messages sent by Fy. This is ensured by dom; o p.

Theorem 5 F; & F, # ().

Proof: Since F; and F5 are mobile components and MC is not empty we may find
functions f; € F1, fo € F» and mq,me, m3g € MC'. Based on these functions we construct
a function f which is strongly guarded, generic and satisfies the recursive definition above.

12

Let g be defined as follows:
g € (N = [M*]) x (N = [M*])) x (N = [M*]) = (N = [M"]) x (N = [M"])
9((,%),0) = (fr(m1(9,4)), f2(m2(V,¢)), where & =dom o p(6,6), & =ms(p,).

Theorem 12 and the way ¢ is defined in terms of strongly and weakly guarded functions
imply that ¢ is strongly guarded. Thus ug is well-defined, in which case Theorem 14
implies that p g is strongly guarded. That the function f defined below is also strongly
guarded follows by a similar argument:

fe(N = [M*]) = (N —[M])
f(0) =mgrop(0,0) where §=mz(p,¢), (p,9) = (1g)0)
That f is generic is a consequence of the next two lemmas.

Lemma 1 f(6) = f(domy,0,p(6, f(0))).
Proof: The idea of the proof is to transform f(0) to f(dom; o p(8, f(6))) by using the
equalities from Theorem 3. By definition
f(domy,0,p(0, f(0))) = g o p(domro,p(0, f(6)),d') where
&' =ms(¢',9"), ¥ =domyo p(domsop(0,f(0)),5),
o' = filmi (9, 4"), P = fa(ma(¥',¢')).
By Theorem 3 and definition of f
domy0,p(0,6) =domyo p(0,mgro p(0,0)) =domrop(8,f(0)),
domy,0,p(#,0) = domyo p(domro,p(6,0),0) =domso p(domrop(f,f(0))
r”gI,O,P(9a5) = rngI,O,P(domI,O,P(9a5 ,0) = mg[,O,P(domI,O,P(Haf(g))a
Replacing dom; 0 p(0,0) and rng; o p(0,) in the definition of f we obtain

(o) = rngI,O,P(domLo’p(O,f(0)),5) where
6 =m3(p,9), ¥ =domy o p(doms o p(8,f(0)),0),
e = filmi(9,9)), ¥ = fa(m2(9,¢)).
Now the fact that we have unique fix-points implies that § = ¢, ¢ = ', ¢ = ¢’ and 9 =’
and consequently that f(0) = f(domy o p(6, f(8))). O

75)’
5).

Lemma 2 f(6) = rng; o p(0, f(0)).
Proof:
rngI,O,P(Haf(H)) =
rngr.o,p(0,mgr0.p(0,0)) = {by definition of f}
rgro,p(0,0) = {by Theorem 3}
f(0) {by definition of f} O

Finally, since df1, fo,m1,ma, ms : VO : P implies VO : Af1, fo,m1,ma, m3 : P it follows
that f € F1 & F5. a

Theorem 6 F| @& F, is a mobile component.

Proof: That Fy & Fy # () follows from Theorem 5. To see that Fy @ F5 is closed, let
f € Mob(I1,0, P), and assume that

13

VO:3f' e L@ Fy: £(6) = f(0).

The definition of @ implies that for any 6 there are f' € Fy ® Fy, f1 € F|, fo € Fy and
m1,meo, m3 € MC such that:

f(0)=f'(0) = rngI,O,P(ga §) where
o = filmi(9,9)), ¢ = fa(ma(d,9)), ¥ =domro,p(0,0), §=ms(p,))
By the definition of @, it follows that f € F| & Fs. O

6.2 Feedback

As we have already pointed out, if (0,0) is a behavior of a mobile component F' then
the communication history #(c) contains the messages sent by the environment along the
channel ¢, and §(c) contains the messages sent by the component along the channel c.
Clearly, the behavior of F' has only indirect influence on its input via the environment.
Thus, there is no direct interference. To allow the component’s output to interfere with
its input a simple feedback operator can be used. We then get the network pictured in
Figure 3. Formally, the feedback operator can be defined as below:

Figure 3: Feedback

Definition 9 (Feedback) Given a mobile component F' C Mob(I,0,P). Then
wF C Mob(1,0,P)
pwF ={f € Mob(I,O,P) | VO:3g € F,m € MC:
7(0) = mgr.0.p(6,0) where 5 = g(m{dom; 0.p(6,5),6)}. .

Note the close relationship between Figure 3 and the definition. If INO # () it is completely
clear that interference will occur. However, interference can take place also if I N O = ().
For example, this is the case if F' receives a receive port ¢ to a channel in O.

Theorem 7 pF # .

Proof: Since F' is a mobile component and MC' is not empty we may find functions
g € Fand m € MC'. Based on these functions we construct a function f which is strongly
guarded, generic and satisfies the recursive definition above. Let h be defined as follows:

14

h € (N — [M*]) x (N = [M*]) = (N — [M*])

h(4,0) = g(m(domy,0,p(0,6),0))
Theorem 12 and the way h is defined in terms of strongly and weakly guarded functions
imply that h is strongly guarded. Thus uh is well-defined, in which case Theorem 14

implies that ph is strongly guarded. By a similar argument, f defined below is also
strongly guarded:

f(0) =rgro p(0,6) where &= h(0)

That f is generic is a consequence of the next two lemmas.

Lemma 3 f(6) = f(domr o p(0, f(9))).
Proof: The idea of the proof is to transform f(#) to f(domr o p(f, f(#))) by using the
equalities from Theorem 3. By definition
F(dom,0,6(0, £ (9))) = g o, p(domy.0,p(6, £(8)), 5') where
= g(m(domLo’p(dom[,o,p(H, f(@)), 5’), 5’))
By Theorem 3 and definition of f
dom[,o,p(e, 5) = domLo’p(O, rngI,O,P(H,)) = domLo’p(O, f(0))
dom[,o,p(e, 5) = domLo’p(dom[,o,p(H, 5), 5) = domLo’p(dom[,o,p(H, f(@))
rng[,o,P(9a5) = r"gI,O,P(domI,O,P(9a5 ,0) = rngLO’P(domI,o,p(H,f(0)),
Replacing dom; o p(0,0) and rng; o p(0,) in the definition of f we obtain

f(0) =rg; o p(domy o p(0, f(0)),5) where
d = g(m(domy o p(domro p(0, f(8)),0),0)).

Now the fact that we have unique fix-points implies that § = ¢ and consequently that

f(0) = f(domy,0,p(6, £(0)))- -

75)
5).

Lemma 4 f(0) = mg[,o,P(Ha f(9)).
Proof:

gy o.p(0, f(0)) =
gy o.p(0,mgr o p(0,9)) = {by definition of f}

gy o.p(0,6) = {by Theorem 3}
f(6) {by definition of f} 0
Finally, since dg, m : V0 : P implies VO : g, m : P it follows that f € uF. O

Theorem 8 pF is a mobile component.

Proof: That uF # 0 follows from Theorem 7. To see that uF is closed, let f €
Mob(1,0, P), and assume that

VO :3f e uF: f(0) = f'(0).

The definition of feedback implies that for any 6 there are f' € uF, g € F and m € MC
such that:

f(0) = f'(0) = gy 0,p(0,0) where & =g(m(doms o p(0,9),0))}
By the definition of p, it follows that f € pF. O

15

6.3 Hiding

The privacy of a non-static port is guaranteed by the genericity property. The privacy of a
static port, i.e., a port from the initial wiring, can be ensured by using a hiding operator.
If = is a port from the initial wiring of the component F, then vz : F' is a component
where z is added to the set of private channel names and deleted from the static interface.
The domain and range of the functions modeling vz : F' are changed accordingly. As a
consequence, only components receiving !z or 7z as a message can access this channel later
on.

Definition 10 (Hiding) Given a mobile component F C Mob(I',0', P') and a channel
name x such that v ¢ P'. Let:

I=I'\{z}, 0=0'\{z}, P=PU{z}.

Then:
vr: F C Mob(I,0,P)
ve:F = {f € Mob(I,O,P)|V0:3g € F:
f(0) =gy o,p(0,0) where = g(dom; o p(0,0))} O

Note the role of dom; o p and mgro,p in maintaining privacy: dom; o p makes sure that
the behavior of vx : F' is independent of what the environment sends along x before the
environment has received the send port !z; rng; o p makes sure that vz : F' does not send
messages along = before it has sent the receive port 7x.

Theorem 9 vz : F # (.

Proof: Since F' is a mobile component we may find a strongly guarded function g € F.
Based on g we construct a function f which is strongly guarded, generic and satisfies the
recursive definition above.

Let h be defined as follows:
h(6,6) = g(domy 0,r(0,5))

Theorem 12 and the way h is defined in terms of strongly and weakly guarded functions
imply that h is strongly guarded. Thus ph is well-defined, in which case Theorem 14
implies that ph is strongly guarded. By a similar argument, f defined below is also
strongly guarded:

f(0) =rngr o p(0,0) where &= pg(f)

That f is generic is a consequence of the next two lemmas.

Lemma 5 f(6) = f(domr o p(0, f(9))).

Proof: The idea of the proof is to transform f(#) to f(domr o p(f, f(0))) by using the
equalities from Theorem 3. By definition

f(domy0,p(8, F(6))) = gy o p(domy.0,p(0, £(6)),8') where
¢' = g(domy,o,p(domy,0,p(8, f(0)),0")).
By Theorem 3 and definition of f

16

dom[,o,p(t?,é) = domLO,p(H, rngI,O,p(H,é)) = domLO,p(H,f(O))
dom[,o,p(g,(s) = d0m1707p(d0m[,0,p(9,5),5) = d0m1707p(d0m[,0,p(9,f(@)),(s)
mgI,O,P(ea 5 = mg[,O,P(domI,O,P(Oa §),6) = mgI,O,P(domI,O,P(Ha f(9)),9).

Replacing domy o p(6,9) and rng; o p(6,0) in the definition of f we obtain
f(0) = mg; o p(domy 0 p(0, f(0)),5) where
6 = g(domy,0,p(domy0 p(0, f(6)),0)).

Now the fact that we have unique fix-points implies that § = ¢’ and consequently that

f(0) = f(domy,0,p(0, f(0))). O

Lemma 6 f(0) =rng; o p(0, f(9)).
Proof:

rngI,O,P(eaf(g)) =
rngr.o,p(0,mgro.p(0,0)) = {by definition of f}

rgro,p(0,0) = {by Theorem 3}
f(6) {by definition of f}
Finally, since dg : V0 : P implies V0 : dg : P it follows that f € vz : F. O

Theorem 10 vz : F' is a mobile component.

Proof: That vz : F # () follows from Theorem 9. To see that vz : F is closed, let
f € Mob(I,0, P), and assume that
VO:3f eve: F: f(0) = f'(6).
The definition of hiding implies that for any # there are f’ € vx : F and g € F such that:
7(6) = '(6) = mg; 0 p(6,8) where & = g(domy,0,r(0,9))}
By the definition of v, it follows that f € vz : F. O

7 Mobile Telephones

Our denotational model is very expressive. In this section we show how we can deal with
the mobile telephone example discussed in [Mil91]. A center is in permanent contact with
two base stations; each in a different part of the country. A car with a mobile telephone
moves about the country; it should always be in contact with a base. If it gets rather
far from its current base contact, then a hand-over procedure is initiated, and as a result
the car relinquishes contact with one base and assumes contact with another. The initial
configuration of the network is illustrated by Figure 4.

17

Figure 4: The initial system configuration

In this example there are no real-time constraints to be imposed. We therefore introduce a
time abstraction operator: the untimed stream tuple 0 is obtained from the timed stream
tuple € by removing time information. This is achieved by concatenating for each i € N
all the finite sequences in #(¢). The operation {¢ — m} & ¢ appends the message m to
the head of the stream ¢(c). The other streams in ¢ remain unchanged. This operator is
overloaded to streams in the obvious way.

Figure 4 shows the initial configuration of system. car is in contact with base;. However,
there is no connection between car and base;. The system is specified as follows:

system(>ot) def vitky,tks, gui, guo, aky, aks :

car(tky > ot) @ base(gvy > thy,aky) @ base(guy > tho, aks) ®
center(tky, tka)(aky, ako > gui, gus)

The car is parametric upon a receive port tk and a send port ot. On tk it can either
receive talk messages m or switch messages 7z. Any talk message is forwarded along ot.
The arrival of a receive port ?c¢ forces the component to receive on 7c¢ instead of on tk.

car(th > ot) & { f € Mob({tk},{ot},0) |

— ~

VO : f(0) =g(tk)(#) where VI,m,c:
g(tk)({tk — m} &9) = {ot — m} & g(tk)(9)
g(tk)({th =?c} &d) = g(c)(d) }

A base can talk repeatedly with the car; but at any time it can receive on its give channel gv
a new port which it should communicate to the car and then become idle itself. Whether
it ignores the give channel or not is controlled with a prophecy stream. An idle base is
reactivated upon receipt of an act message on its give channel.

base(gv > th,ak) % { f € Mob({gv}, {tk,ak},0) |

—

VO :3pe[{1,2}]: f(0)=h(p)(d) where Vp, 9, z:

h(p)({gv = act}&d) = g(p)(9)
9(1&p)(9) = {tk — m} & g(p)(9)
9g2&p)({gv —?z} & V) = {tk —Tz,ak — ok} & h(p)(¥) }

18

The center which initially knows that the car is in connection with base;, can decide
(according to information which we do not model) to transmit the receive port 7tks to the
car via base;. Upon receipt of an acknowledgment on ak; from base; it alerts bases of this
fact.

center(tky, tho)(aky, aks > gy, gus) def { f € Mob({aky,aks},{gv1,gva},0) |
VO : f(0) =g(1)(f) where Vic {1,2},9
g(i)(9) = {gvi — act} & {gv; =7tk_;} & h(i)(9)
h(i)({aki — ok} &) = g(—1)(d) }
It is here assumed that -1 = 2 and that -2 = 1.

8 Discussion

Our main contribution is that we have extended a denotational model for timed, many-
to-many, nondeterministic data-flow networks to handle mobility. Our model is fully
compositional. It allows us to reason about mobility at a very abstract level. In fact,
we believe our semantics is well-suited as a foundation for a method for the specification
and development of mobile systems. The exact relationship between our model and other
models like for instance the w-calculus [Mil91] and actor-based approaches [AMST92] is
an interesting area for future research. For example, we believe that our model can be
used to give a denotational semantics for the asynchronous m-calculus. We also believe
that the actor languages can be smoothly integrated within our formalism.

Our semantics can easily be adapted to model other kinds of communication. For example,
in [GS96b, GS96a] we show how two different kinds of point-to-point communication can
be modeled in our approach.

Our approach is related to the work of Kok [Kok87, Kok89]. The major difference is that
Kok does not deal with mobility. Moreover, his handling of nondeterminism differs from
ours. In [Kok89], where he uses a metric on relations, he can basically handle only bounded
nondeterminism. In [Kok87], which is not based on metric spaces, an automaton is used
to generate the behavior of basic agents. This guarantees the existence of fix-points. We
use sets of strongly guarded functions for the same purpose.

References

[AABKRS89] P. America, J. de Bakker, J. N. Kok, and J. Rutten. Denotational semantics
of a parallel object-oriented language. Information and Computation, 83:152—
205, 1989.

[AMST92] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. Towards a theory
of actor computation. In Proc. CONCUR’92, Lecture Notes in Computer
Science 630, pages 565-579, 1992.

19

[BASI]

[BBYO]

[BDD*93]

[Bro87]

[CM88]

[dBZ82]

[ENS6]

[Eng77]

[GS96a]

[GS96b]

[HBS73]

[Kah74]

[Kel78]

[Kok8?7]

[Kok89]

[Lam91]

J. D. Brock and W. B. Ackermann. Scenarios: A model of non-determinate
computation. In Proc. Formalization of Programming Concepts, Lecture
Notes in Computer Science 107, pages 252-259, 1981.

G. Berry and G. Boudol. The chemical abstract machine. In Proc. POPL’90),
pages 81-94, 1990.

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber.
The design of distributed systems — an introduction to Focus (revised ver-
sion). Technical Report SFB 342/2/92 A, Technische Universitdt Miinchen,
1993.

M. Broy. Semantics of finite and infinite networks of concurrent communi-
cating agents. Distributed Computing, 2:13-31, 1987.

K. M. Chandy and J. Misra. Parallel Program Design, A Foundation.
Addison-Wesley, 1988.

J. W. de Bakker and J. I. Zucker. Denotational semantics of concurrency. In
Proc. 14, ACM Symposium on Theory of Computing, pages 153-158, 1982.

U. Engberg and M Nielsen. A calculus of communicating systems with label-
passing. Technical Report DAIMI PB-208, University of Aarhus, 1986.

R. Engelking. General Topology. PWN — Polish Scientific Publishers, 1977.

R. Grosu and K. Stglen. A denotational model for mobile point-to-point
dataflow networks with channel sharing. To appear as technical report, Tech-
nische Universitat Miinchen, 1996.

R. Grosu and K. Stglen. A model for mobile point-to-point dataflow networks
without channel sharing. To appear in the Proc. of AMAST’96, 1996.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism
for artificial intelligence. In Proc. IJCAI’73, pages 235245, 1973.

G. Kahn. The semantics of a simple language for parallel programming. In
Proc. Information Processing 74, pages 471-475. North-Holland, 1974.

R. M. Keller. Denotational models for parallel programs with indeterminate

operators. In Proc. Formal Description of Programming Concepts, pages
337-366. North-Holland, 1978.

J. N. Kok. A fully abstract semantics for data flow nets. In Proc. PARLE’87,
Lecture Notes in Computer Science 259, pages 351-368, 1987.

J. N. Kok. An iterative metric fully abstract semantics for nondeterministic
dataflow. In Proc. MFCS’89, Lecture Notes in Computer Science 379, pages
321-331, 1989.

L. Lamport. The temporal logic of actions. Technical Report 79, Digital,
SRC, Palo Alto, 1991.

20

[Mes91] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Technical Report SRI-CSL-91-05, SRI, 1991.

[Mil91] R. Milner. The polyadic m-calculus: A tutorial. Technical Report ECS-LFCS-
91-180, University of Edinburgh, 1991.

[MPS86] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive poly-
morphic types. Information and Control, 71:95-130, 1986.

[MPW92a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I.
Information and Computation, 100:1-40, 1992.

[MPW92b] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part II.
Information and Computation, 100:41-77, 1992.

[Niv82] M Nivat. Behaviours of processes and synchronized systems of processes. In
Proc. Theoretical Foundations of Programming Methodology, pages 473-551,
1982.

[Par83] D. Park. The “fairness” problem and nondeterministic computing networks.

In Proc. 4th Foundations of Computer Science, Mathematical Centre Tracts
159, pages 133-161. Mathematisch Centrum Amsterdam, 1983.

[PS92] P. Panangaden and V. Shanbhogue. The expressive power of indeterminate
dataflow primitives. Information and Computation, 98:99-131, 1992.

[Rus90] J. R. Russell. On oraclizable networks and Kahn’s principle. In Proc.
POPL’90, pages 320-328, 1990.

[Tho89] B. Thomsen. A calculus of higher order communicating systems. In Proc.
POPL’89, 1989.

A Metric Space Definitions

A.1 DMetric Space Basics

The fundamental concept in metric spaces is the concept of distance.

Definition 11 (Metric Space) A metric space is a pair (D, d) consisting of a nonempty
set D and a mapping d € D x D — R, called a metric or distance, which has the following
properties:

(1) Vz,yeD: dlz,y) =0 & =zxz=y
(2) Vz,yeD: d(z,y) =dy,z)
(3) Va,y.,z€D: d(z,y) <d(z,2) +d(z,y) O

A very simple example of a metric is the discrete metric.

21

Definition 12 (The discrete metric) The discrete metric (D, d) over a set D is defined
as follows:

)0 ifz=y

Measuring the distance between the elements of a sequence (z;);cn in D we obtain the
familiar definitions for convergence and limits.

Definition 13 (Convergence and limits) Let (D, d) be a metric space and let (x;)ien

be a sequence in D.

(1) We say that (z;)ien is a Cauchy sequence whenever we have:
Ve>0:3IN e N:Vn,m > N :d(z,,zm) <e€.

(2) We say that (x;)i;en converges to © € D denoted by x = limp_oox; and call x the
limit of (z;)ien whenever we have:
Ve>0:3dN e N:Vn > N :d(zy,z) <e.

(8) The metric space (D,d) is called complete whenever each Cauchy sequence converges
to an element of D.

O
Theorem 11 The discrete metric is complete.
Proof: Each Cauchy sequence is constant from a given V. O

A very important class of functions over metric spaces is the class of Lipschitz functions.

Definition 14 (Lipschitz functions) Let (D1, d;) and (D2, ds) be metric spaces and let
f € Dy — D3 be a function. We call f Lipschitz function with constant c if there is a
constant ¢ > 0 such that the following condition is satisfied:

d(f(z), f(y)) < c-d(z,y)

For a function [with arity n the above condition generalizes to:

d(f(z1,.. .y zn), fyr, .-y yn)) < ¢-mazx{d(z;,y;) | i € [L..n]}

If c =1 we call f non-expansive. If ¢ < 1 we call f contractive. O

Theorem 12 The composition of two Lipschitz functions f € D1 — Dy and g € Dy — Dj3
15 a Lipschitz function with constant cq - co.

Proof: d(g(f(z1)),g(f(z2)) < ca-d(f(z1), f(22)) <e2-c1-d(z1,22) O

Lemma 1 The composition of a contractive and a non-expansive function is contrac-
tive. The composition of two non-expansive functions is non-expansive. Identity is non-
eTpansive. O

The main tool for handling recursion in metric spaces is the Banach’s fixed point theorem.
It guarantees the existence of a unique fixed point for every contractive function.

22

Theorem 13 (Banach’s fixed point theorem) Let (D,d) be a complete metric space
and f € D — D a contractive function. Then there exists an © € D, such that the
following holds:

(1) z=f(x) (z is a fized point of f)

(2) YyeD: y=f(y)=y=x (v is unique)

(83) Vze€D: z=limpyoof"(z) where

flz) ==z
fz) = f(f"(2))
Proof: See [Eng77]. O

Usually we want to use a parameterized version of this theorem.

Definition 15 (Parameterized fixed point) Let f € D x Dy X ... x D, — D be a
function of non-empty complete metric spaces that is contractive in its first argument. We
define the parameterized fixed point function pf as follows:

(wf) €D1x ...x Dy — D
(Mf)(ylaayn):ZE

where x is the unique element of D such that x = f(z,y1,...,Yyn) as guaranteed by Ba-
nach’s fized point theorem. O

Theorem 14 If f is contractive (non-expansive) so is pf.
Proof: See for example [MPS86] pages 114-115. O

A.2 Streams and Named Stream Tuples

A stream is a finite or infinite sequence of elements. For any set of elements F, we use
E* to denote the set of all finite streams over E, and [E] to denote the set of all infinite
streams over E. For any infinite stream s, we use s|; to denote the prefix of s containing
exactly j elements. We use € to denote the empty stream.

We define the metric of streams generically with respect to an arbitrary discrete metric
(E,p).

Definition 16 (The metric of streams) The metric of streams ([E],d) over a discrete
metric (E, p) is defined as follows:

[E] = HiENE
d(s,t) = inf{277 | sl =tl;}

a
This metric is also known as the Baire metric [Eng77].
Theorem 15 The metric space of streams ([E],d) is complete.
Proof: See for example [Eng77]. O

A named stream tuple is a mapping 6 € (I — [E]) from a set of names to infinite streams.
| is overloaded to named stream tuples in a point-wise style, i.e., 6]; denotes the result of
applying |; to each component of 6.

23

Definition 17 (The metric of named stream tuples) The metric of named stream
tuples (I — [E],d) with names in I and elements in (E,p) is defined as follows:

I — [E] is the set of functions from the countable set I to the metric [E],
d(s,t) = inf{277 | sl = tl;}

Theorem 16 The metric space of named stream tuples (I — [E],d) is complete.

Proof: This metric is equivalent to the Cartesian product metric [];c;[£] which is
complete because [E] is [Eng77]. O

24

SFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A
342/1/90 A
342/2/90 A

342/3/90 A

342/4/90 A

342/5/90 A
342/6/90 A
342/7/90 A
342/8/90 A

342/9/90 A

342/10/90 A
342/11/90 A

342/12/90 A
342/13/90 A
342/14/90 A

342/15/90 A
342/16/90 A
342/17/90 A

342/18/90 A

Robert Gold, Walter Vogler: Quality Criteria for Partial Order Seman-
tics of Place/Transition-Nets, Januar 1990

Reinhard FoBmeier: Die Rolle der Lastverteilung bei der numerischen
Parallelprogrammierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-

guous Circuits, Februar 1990

Michael Griebel: Zur Losung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-
Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letz: PARTHEO: A High Performance
Parallel Theorem Prover

Johann Schumann, Norbert Trapp, Martin van der Koelen:
SETHEO/PARTHEO Users Manual

Christian Suttner, Wolfgang Ertel: Using Connectionist Networks for
Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml: TOP-
SYS, Tools for Parallel Systems (Artikelsammlung)

Walter Vogler: Bisimulation and Action Refinement

Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice Sys-
tems

Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement

Rob van Glabbeek: The Linear Time - Branching Time Spectrum
Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsanalyse
von verteilten Beobachtungs- und Bewertungswerkzeugen

Peter Rossmanith: The Owner Concept for PRAMs

G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

P. Slavkovsky, U. Riide: Schnellere Berechnung klassischer Matrix-
Multiplikationen

Christoph Zenger: SPARSE GRIDS

25

Reihe A

342/19/90 A
342/20/90 A
342/21/90 A
342/22/90 A

342/23/90 A

342/24/90 A

342/25/90 A

342/26/90 A

342/27/90 A
342/28/90 A

342/29/90 A

342/30/90 A
342/31/90 A

342/32/90 A
342/33/90 A
342/1/91 A
342/2/91 A
342/3/91 A
342/4/91 A

342/5/91 A
342/6/91 A

Michael Griebel, Michael Schneider, Christoph Zenger: A combination
technique for the solution of sparse grid problems

Michael Griebel: A Parallelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-
commutations-decidability and complexity results

Manfred Broy, Claus Dendorfer: Functional Modelling of Operating Sys-
tem Structures by Timed Higher Order Stream Processing Functions
Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence for
Action Refinement

Manfred Broy: On the Design and Verification of a Simple Distributed
Spanning Tree Algorithm

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiiller: TOPSYS - Tools for Parallel Systems
(User’s Overview and User’s Manuals)

Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:
MMK - Multiprocessor Multitasking Kernel (User’s Guide and User’s
Reference Manual)

Wolfgang Ertel: Random Competition: A Simple, but Efficient Method
for Parallelizing Inference Systems

Rob van Glabbeek, Frits Vaandrager: Modular Specification of Process
Algebras

Rob van Glabbeek, Peter Weijland: Branching Time and Abstraction in
Bisimulation Semantics

Michael Griebel: Parallel Multigrid Methods on Sparse Grids

Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of Aux-
iliary Pushdown Automata and Circuits

Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive Read
PRAMs

Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes

Walter Vogler: Is Partial Order Semantics Necessary for Action Refine-
ment?

Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber: Char-
acterizing the Behaviour of Reactive Systems by Trace Sets

Ulrich Furbach, Christian Suttner, Bertram Fronhdfer: Massively Par-
allel Inference Systems

Rudolf Bayer: Non-deterministic Computing, Transactions and Recur-
sive Atomicity

Robert Gold: Dataflow semantics for Petri nets

A. Heise; C. Dimitrovici: Transformation und Komposition von P/T-
Netzen unter Erhaltung wesentlicher Eigenschaften

Reihe A
342/7/91 A

342/8/91 A
342/9/91 A

342/10/91 A
342/11/91 A
342/12/91 A

342/13/91 A

342/14/91 A
342/15/91 A
342/16/91 A

342/17/91 A
342/18/91 A

342/19/91 A
342/20/91 A
342/21/91 A
342/22/91 A
342/23/91 A
342/24/91 A

342/25/91 A
342/26/91 A

342/27/91 A

Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

Walter Vogler: Generalized OM-Bisimulation

Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf diinnen
Gittern mit hierarchischen Basen

Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Parallelism
in a Relational Database System

Michael Werner: Implementierung von Algorithmen zur Kompakti-
fizierung von Programmen fiir VLIW-Architekturen

Reiner Miller: Implementierung von Algorithmen zur Optimierung von
Schleifen mit Hilfe von Software-Pipelining Techniken

Sally Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert
Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hofstetter,
Rainer Knodlseder, Jaroslav Kremenek, Siegfried Langenbuch, Robert
Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner, Bernhard Ries,
Thomas Treml: TOPSYS - Tools for Parallel Systems (Artikelsamm-
lung); 2., erweiterte Auflage

Michael Griebel: The combination technique for the sparse grid solution
of PDE’s on multiprocessor machines

Thomas F. Gritzner, Manfred Broy: A Link Between Process Algebras
and Abstract Relation Algebras?

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Thomas
Treml, Roland Wismiller: The Design and Implementation of TOPSYS

Ulrich Furbach: Answers for disjunctive logic programs

Ulrich Furbach: Splitting as a source of parallelism in disjunctive logic
programs

Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden zur
Losung elliptischer Randwertprobleme

M. Jobmann, J. Schumann: Modelling and Performance Analysis of a
Parallel Theorem Prover

Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hierarchical
Bases and Sparse Grids

Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Christian
B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Languages for
Specifying Parallel Inference Systems

Astrid Kiehn: Local and Global Causes

Johann M.Ph. Schumann: Parallelization of Inference Systems by using
an Abstract Machine

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition
Thomas F. Gritzner: A Simple Toy Example of a Distributed System:
On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-
troduction to the Parallel and Distributed Programming Language
ParMod-C

Reihe A

342/28/91 A
342/29/91 A

342/30/91 A
342/31/91 A
342/32/91 A
342/1/92 A

342/2/92 A

342/2-2/92 A

342/3/92 A

342/4/92 A
342/5/92 A
342/6/92 A
342/7/92 A
342/8/92 A
342/9/92 A
342/10/92 A

342/11/92 A

342/12/92 A
342/13/92 A

342/14/92 A

Claus Dendorfer: Funktionale Modellierung eines Postsystems

Michael Griebel: Multilevel algorithms considered as iterative methods
on indefinite systems

W. Reisig: Parallel Composition of Liveness

Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres, Bern-
hard Ries: Programming Tools for Distributed Multiprocessor Comput-
ing Environments

Frank Leke: On constructive specifications of abstract data types using
temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the Workshop
on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS - Revised Version (erschienen im Januar 1993)

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: Summary of Case Studies in FOCUS - a
Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and Implementation of a
Communication Protocol - An Exercise in FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstit- zung
paralleler und verteilter Programmierung

Thomas F. Gritzner: The Action Graph Model as a Link between Ab-
stract Relation Algebras and Process-Algebraic Specifications

Sergei Gorlatch: Parallel Program Development for a Recursive Numer-
ical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms for
Slicing Based Final Placement

Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed

Logic Simulation Using Time Warp

H. Bungartz, M. Griebel, U. Riide: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

M. Griebel, W. Huber, U. Rude, T. Stortkuhl: The Combination Tech-
nique for Parallel Sparse-Grid-Preconditioning and -Solution of PDEs
on Multiprocessor Machines and Workstation Networks

Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms for
Computing Recursively Defined Functions

Rainer Weber: Eine Methodik fiir die formale Anforderungsspezifkation
verteilter Systeme

Michael Griebel: Grid— and point—oriented multilevel algorithms

Reihe A

342/15/92 A
342/16/92 A
342/17/92 A

342/18/92 A

342/19/92 A
342/20/92 A
342/21/92 A

342/22/92 A

342/23/92 A
342/24/92 A

342/25/92 A
342/26/92 A

342/1/93 A
342/2/93 A
342/3/93 A

342/4/93 A

342/5/93 A
342/6/93 A
342/7/93 A

342/8/93 A

342/9/93 A

M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms for
full and sparse grid problems

J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine eines
kompositionalen Beweiskalkiils fiir netzmodellierte Systeme

Frank Dederichs: Transformation verteilter Systeme: Von applikativen
zu prozeduralen Darstellungen

Andreas Listl, Markus Pawlowski: Parallel Cache Management of a
RDBMS

Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation
of Parallel Queries

Jorg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets
Robert Balder, Christoph Zenger: The d-dimensional Helmholtz equa-
tion on sparse Grids

Ilko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen von
Heuristiken

Wolfgang Reisig: Elements of a Temporal Logic. Coping with Concur-
rency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for the
singularity at the angular point of the lid driven cavity

Ekkart Kindler: Invariants, Compositionality and Substitution
Thomas Bonk, Ulrich Riide: Performance Analysis and Optimization of
Numerically Intensive Programs

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics Prob-
lems by the Combination Technique

Ketil Stolen, Frank Dederichs, Rainer Weber: Assumption / Commit-
ment Rules for Networks of Asynchronously Communicating Agents
Thomas Schnekenburger: A Definition of Efficiency of Parallel Programs
in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, Christoph
Zenger: A Proof of Convergence for the Combination Technique for
the Laplace Equation Using Tools of Symbolic Computation

Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sorting
and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory of
Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distributed
Logic Simulation of VLSI Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incremental
State Saving

Peter Slavkovsky: The Visibility Problem for Single-Valued Surface (z
= f(x,y)): The Analysis and the Parallelization of Algorithms

Reihe A

342/10/93 A
342/11/93 A

342/12/93 A
342/13/93 A
342/14/93 A
342/15/93 A

342/16/93 A

342/17/93 A

342/18/93 A
342/19/93 A
342/20/93 A

342/01/94 A

342/02/94 A

342/03/94 A

342/04/94 A

342/05/94 A

342/06/94 A
342/07/94 A
342/08/94 A

342/09/94 A

Ulrich Ride: Multilevel, Extrapolation, and Sparse Grid Methods
Hans Regler, Ulrich Riide: Layout Optimization with Algebraic Multi-
grid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Modal Mu-
Calculus using Gaufl Elimination

Christoph Pflaum, Ulrich Riide: Gaufl’ Adaptive Relaxation for the
Multilevel Solution of Partial Differential Equations on Sparse Grids
Christoph Pflaum: Convergence of the Combination Technique for the
Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, Christoph
Zenger: Pointwise Convergence of the Combination Technique for
Laplace’s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas Ludwig,
Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Developing Multicom-
puter Applications on Networks of Workstations Using NXLib

Max Fuchs, Ketil Stolen: Development of a Distributed Min/Max Com-
ponent

Johann K. Obermaier: Recovery and Transaction Management in Write-
optimized Database Systems

Sergej Gorlatch: Deriving Efficient Parallel Programs by Systemating
Coarsing Specification Parallelism

Reiner Huttl, Michael Schneider: Parallel Adaptive Numerical Simula-
tion

Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Parallel
Hierarchical Sea-of-Gates Router

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Multiple
Shooting for Optimal Control Problems Under NX/2

Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jorn Lange,
Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimization of
Parallel Computations

Andreas Listl: Using Subpages for Cache Coherency Control in Parallel
Database Systems

Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying a New Search Space Partitioning Method to
Parallel Test Generation for Sequential Circuits

Reihe A

342/10/94 A
342/11/94 A

342/12/94 A

342/13/94 A

342/14/94 A

342/15/94 A

342/16/94 A
342/17/94 A

342/18/94 A
342/19/94 A
342/20/94 A
342/01/95 A
342/02/95 A
342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A
342/09/95 A

342/10/95 A

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stglen: An Attempt to Embed a Restricted Version
of SDL as a Target Language in Focus

Christoph Pflaum: A Multi-Level-Algorithm for the Finite-Element-
Solution of General Second Order Elliptic Differential Equations on
Adaptive Sparse Grids

Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schatz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

Maximilian Fuchs: Technologieabhingigkeit von Spezifikationen digi-
taler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings And
Multilevel Iterative Methods For Anisotropic Problems

Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stglen: A Refinement Relation Supporting the Transition from
Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel
Algorithm-Implementation and Parallelization

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse Grids
Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verifying
the development of a Communication Protocol in FOCUS - A Case
Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids
Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of Par-
allel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-
necker Product of Identical Servers to a Reduced Product Space

Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:
Auto-Correlation of Lag-k For Customers Departing From Semi-Markov
Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Ap-
plications to Multi-dimensional Schrédinger Problems

Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Microsys-
tem Technology

Alexander Pfaffinger: Parallel Communication on Workstation Networks
with Complex Topologies

Ketil Stglen: Assumption/Commitment Rules for Data-flow Networks -
with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software Co-
Design

Reihe A

342/11/95 A
342/12/95 A

342/13/95 A

342/14/95 A

342/15/95 A
342/16/95 A

342/17/95 A
342/18/95 A

342/19/95 A

342/20/95 A
342/21/95 A
342/22/95 A

342/23/95 A
342/24/95 A

342/01/96 A

342/02/96 A

342/03/96 A

342/04/96 A
342/05/96 A

342/06/96 A

342/07/96 A
342/08/96 A

Thomas Schnekenburger: The ALDY Load Distribution System

Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
McMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via Integer
Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-to-
Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute
the Concurrency Relation of Free-Choice Signal Transition Graphs
Bernhard Schatz, Katharina Spies: Formale Syntax zur logischen Kern-
sprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations

Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismiller:
Workshop on PVM, MPI, Tools and Applications

Thomas Schnekenburger: Integration of Load Distribution into ParMod-
C

Ketil Stglen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Andreas Listl, Giannis Bozas: Performance Gains Using Subpages for
Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr Jancar, Javier Esparza: Deciding Finiteness of Petri Nets up to
Bisimulation

M. Jung, U. Riide: Implicit Extrapolation Methods for Variable Coeffi-
cient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Multigrid
Methods for the Solution of the Navier-Stokes Equations in Complicated
Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive Multilevel-
Preconditioners based on Bilinear Interpolation, Matrix Dependent Geo-
metric Coarsening and Algebraic-Multigrid Coarsening for Second Order
Elliptic PDEs

Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embed-
dings of Complete Binary Trees into Hypercubes

Thomas Huckle: Efficient Computation of Sparse Approximate Inverses
Thomas Ludwig, Roland Wismiiller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

Ekkart Kindler: A Compositional Partial Order Semantics for Petri Net
Components

Richard Mayr: Some Results on Basic Parallel Processes

Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht

Reihe A

342/09/96 A
342/10/96 A

342/11/96 A

342/12/96 A

342/13/96 A

P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer,
H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme
Stefan Lamberts, Thomas Ludwig, Christian Roder, Arndt Bode: PFS-
Lib — A File System for Parallel Programming Environments

Manfred Broy, Gheorghe Stefanescu: The Algebra of Stream Processing
Functions

Javier Esparza: Reachability in Live and Safe Free-Choice Petri Nets is
NP-complete

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Many-to-
Many Data-flow Networks

SFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B

342/1/91 B
342/2/91 B

342/3/91 B

342/4/91 B
342/5/91 B

342/6/91 B
342/7/91 B
342/1/92 B
342/2/92 B

342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice Systems
Franz Abstreiter, Michael Friedrich, Hans-Jirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Programme
Barbara Paechl: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -
Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop uber
Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Methods
Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared
Memory Scheme: Formal Specification and Analysis

Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-
Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support
Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,
Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-
eraturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum En-
twurf eines Prototypen fiir MIDAS

