
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Solving Higher-Order Equations:
From Logic to Programming

Christian Prehofer

������
TUM-I9508
März 1995

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-03-1995-I9508-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c�1995 MATHEMATISCHES INSTITUT UND
INSTITUT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

Solving Higher�Order Equations�

From Logic to Programming

Christian Prehofer

ii

Fakult�at f�ur Informatik

der Technischen Universit�at M�unchen

Solving Higher�Order Equations�

From Logic to Programming

Christian Prehofer

Vollst�andiger Abdruck der von der Fakult�at f�ur Informatik der Technischen Universit�at

M�unchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften �Dr� rer� nat��

genehmigten Dissertation�

Vorsitzender� Univ��Prof� Dr� Wilfried Brauer

Pr�ufer der Dissertation�

�� Univ��Prof� Tobias Nipkow� Ph�D�

�� Univ��Prof� Dr� Harald Ganzinger

Die Dissertation wurde am �	� November �

� bei der Technischen Universit�at M�unchen
eingereicht und durch die Fakult�at f�ur Informatik am �� Februar �

	 angenommen�

iv

Abstract

Higher�order constructs provide the necessary level of abstraction for concise and
natural formulations in many areas of computer science� We present constructive methods
for higher�order equational reasoning with applications ranging from theorem proving
to novel programming concepts� A major problem of higher�order programming is the
undecidability of higher�order unication� In the rst part� we develop several classes
with decidable second�order unication� As the main result� we show that the unication
of a linear higher�order pattern s with an arbitrary second�order term that shares no
variables with s is decidable and nitely solvable� This is the unication needed for
second�order functional�logic programming�

The second main contribution is a framework for solving higher�order equational prob�
lems by narrowing� In the rst�order case� narrowing is the underlying computation rule
for the integration of logic programming and functional programming� We argue that
there are some principal problems with lifting the standard notion of rst�order nar�
rowing to the higher�order case� In contrast� the alternative approach� lazy narrowing�
solves goals in a top�down manner and can be adapted to the higher�order case� Sev�
eral renements that utilize the deterministic evaluation of functional programs� such as
normalization� are developed for this approach� We further introduce a restricted class
of equational goals that su�ces for programming applications� This class� called Simple
Systems� enjoys decidable unication in the second�order case� using the results of the
rst part� It facilitates several other optimizations� e�g� recognizing solved system is sim�
ple� Integrating these renements leads to a new narrowing strategy where intermediate
goals can safely be delayed and are only solved when needed�

This work forms a new basis for truly higher�order functional�logic programming
that is oriented more towards higher�order functional programs than to horn clauses as
in logic programming� We argue that many techniques of rst�order �functional��logic
programming can be modeled more directly in our higher�order functional approach�

vi

Acknowledgments

I wish to take the opportunity to sincerely thank Tobias Nipkow for his continuous
support� His criticism has always been a source of motivation and inspiration�

I am grateful to many friends and colleagues for comments and discussions on the
subject� They include Olaf M�uller� Michael Kohlhase� Joachim Niehren� Jaco van de Pol�
Heinrich Hu�mann� Oscar Slotosch� Cornel Klein� Konrad Slind� Max Moser� Andreas
Werner� Mario Rodr��guez�Artalejo� Michael Hanus� Gilles Dowek� Vincent van Oostrom�
and G�erard Huet� Furthermore� I wish to thank Robert Furtner for his e�orts on imple�
menting parts of this thesis and for valuable feedback�

I am indebted to Manfred Broy and Tobias Nipkow for providing the fruitful environ�
ment that made this thesis possible� This includes many others of the Munich research
group as well�

The contributions of several others are less direct� Alan Frisch made me enjoy the art
of �scientic� writing and Nachum Dershowitz introduced me to term rewriting�

Finally� I want to thank my relatives and friends� particularly Andrea� for enduring
me on this adventure�

viii

To Andrea

The Emperor counsels simplicity�

First principles�

Of each particular thing� ask�

What is it in itself�

in its own constitution�

What is its causal nature�

Dr� Hannibal Lecter� in The Silence of the Lambs�
Thomas Harris

ix

x

Contents

� Main Goals and Results �

� Introduction and Overview �

��� Term Rewriting �
��� Narrowing �

����� Narrowing and Logic Programming � � � � � � � � � � � � � � � � � 	
��� Higher�Order Term Rewriting �
��� Higher�Order Unication �

����� Decidable Higher�Order Unication Problems � � � � � � � � � � � �
��	 Narrowing� The Higher�Order Case ��
��� Conditional Narrowing ��

� Preliminaries ��

��� Abstract Reductions and Termination Orderings � � � � � � � � � � � � � � �	
��� Higher�Order Types and Terms ��
��� Positions in ��Terms �

��� Substitutions ��
��	 Unication and Unication Theory ��
��� Higher�Order Patterns ��

� Higher�Order Equational Reasoning ��

��� Higher�Order Unication by Transformations � � � � � � � � � � � � � � � � ��
��� Unication of Higher�Order Patterns ��
��� Higher�Order Term Rewriting ��

����� Equational Logic ��
����� Con�uence ��
����� Termination ��

� Decidability of Higher�Order Uni�cation ��
	�� Elimination Problems �	

	���� Repeated Bound Variables �

	�� Unication of a Second�Order with a Linear Term � � � � � � � � � � � � � �

	���� Unifying Linear Patterns with Second�Order Terms � � � � � � � � �

	���� Extensions ��

	�� Relaxing the Linearity Restrictions ��
	���� Extending Patterns by Linear Second�Order Terms � � � � � � � � ��
	���� Repeated Second�Order Variables � � � � � � � � � � � � � � � � � � ��

xi

	�� Applications and Open Problems � 	�
	���� Open Problems � 	�

� Higher�Order Narrowing ��
��� Scope and Completeness of Narrowing � � � � � � � � � � � � � � � � � � � 	�

����� Oriented Goals � 	�
��� A General Notion of Higher�Order Narrowing � � � � � � � � � � � � � � � 	�
��� Narrowing on Patterns with Pattern Rules � � � � � � � � � � � � � � � � � 	

��� Narrowing Beyond Patterns ��
��	 Lazy Narrowing ��

��	�� Narrowing Rules for Constructors � � � � � � � � � � � � � � � � � � ��
��	�� The Second�Order Case ��

��� Lazy Narrowing with Normalized Substitutions � � � � � � � � � � � � � � ��
����� Restricting Lazy Narrowing at Variable Positions � � � � � � � � � �

����� Deterministic Eager Variable Elimination � � � � � � � � � � � � � � ��
����� Avoiding Reducible Substitutions by Constraints � � � � � � � � � ��
����� Lazy Narrowing with Simplication � � � � � � � � � � � � � � � � � ��

��� Lazy Narrowing for Left�Linear HRS �	
����� An Invariant for Goal Systems� Simple Systems � � � � � � � � � � �	
����� A Strategy for Needed Narrowing � � � � � � � � � � � � � � � � � � ��

��� Lazy Narrowing with Conditional Equations � � � � � � � � � � � � � � � � ��
����� Unrestricted Conditional Equations � � � � � � � � � � � � � � � � � �	
����� Normal Conditional Rules ��

��
 Narrowing on Patterns with Constraints � � � � � � � � � � � � � � � � � � �

� Applications of Higher�Order Narrowing 	�
��� Symbolic Computation� Di�erentiation � � � � � � � � � � � � � � � � � � �
�
��� Program Transformation �
	
��� Higher�Order Functional�Logic Programming � � � � � � � � � � � � � � � �
�

����� �Innite� �Data��Structures and Eager Evaluation � � � � � � � � �
�
����� Functional Di�erence Lists �
�
����� A Simple Encryption Problem �

����� Eight�Queens Generalized ���

��� Higher�Order Abstract Syntax� Type Inference � � � � � � � � � � � � � � � ���

 Concluding Remarks ���
��� Related Work ��	
��� Open Problems and Further Work ���

Bibliography ��

Index ��	

xii

List of Figures

��� Declarative Programming Paradigms �

��� Decidability of Higher�Order Unication � � � � � � � � � � � � � � � � � � �
��� Results on Second�Order Unication �

��� A Framework for Higher�Order Narrowing � � � � � � � � � � � � � � � � � ��

��� �x�� x��F �a� b� as Binary Tree �

��� �x�� x��F �a� b� as n�nary Tree �

��� System PT for Higher�Order Unication � � � � � � � � � � � � � � � � � � ��
��� Search Tree with System PT ��
��� System PU for Pattern Unication �

��� Equational Theory of an GHRS R ��

	�� System EL for Eliminating Bound Variables � � � � � � � � � � � � � � � � ��

��� Dependencies of Lazy Narrowing Renements � � � � � � � � � � � � � � � 		
��� System LN for Lazy Narrowing ��
��� The Two Cases of the Lazy Narrowing Rule of System LN � � � � � � � � �	
��� Deterministic Constructor Rules ��
��	 Second�Order Lazy Narrowing Rules for System SLN � � � � � � � � � � � ��
��� System LNC for Lazy Narrowing with Constraints � � � � � � � � � � � � � ��
��� System CLN for Conditional Lazy Narrowing � � � � � � � � � � � � � � � �	
��� System NC for Narrowing with Constraints � � � � � � � � � � � � � � � � �
�

��� Rules Rd for Symbolic Di�erentiation �
�
��� Rules for the Eight�Queens Problem ���

xiii

xiv

Chapter �

Main Goals and Results

Higher�order constructs provide the necessary level of abstraction for concise and natu�
ral formulations in many areas of computer science� Examples are functional program�
ming �MTH
�� HJW
�� Pau
�� Ste
�� and specication �Bro��� M�ol���� program trans�
formation and synthesis �HL��� Hag
�b�� machine learning �Har
�� DW���� and theorem
proving systems� e�g� �AINP
�� Pau
�� CAB���� DFH�
��� The goal of this thesis is
to develop tractable renements for higher�order equational reasoning that are suitable
for programming� The major application we aim for is declarative programming� in
particular the integration of logic and functional programming on a higher�order basis�
Figure ��� gives an overview of existing programming paradigms� Narrowing provides a
nice generalization of both logic and functional programming� This approach has been
examined extensively for the rst�order case and has led to several implementations �for
a survey see �Han
�b���

X
X
X
X
X
X
X
X
XX

X
X
X
X
X
X
X
X
XX

�
�

�
�
�
�

�
�
��

�
�

�
�
�
�

�
�
��

Logic Programming Functional Programming

Narrowing

Higher�Order LP Higher�Order FP

Higher�Order Narrowing

Figure ���� Declarative Programming Paradigms

Whereas higher�order programming is standard in functional programming� logic pro�
gramming is in large parts still tied to the rst�order world� Only a few languages� most
notably ��Prolog� are fully higher�order� The language ��Prolog pioneered in the use of
higher�order unication for logic programming and has shown its practical utility despite
its undecidability�

This gap has been recognized and many higher�order extensions of functional�logic
languages �BG��� CKW�
� GMHGRA
�� Loc
�� She
�� have been developed� To our
knowledge� however� all of these are limited to rst�order unication and are not com�

�

plete in a higher�order sense� Several works �Smo��� Loc
�� SJ
�� on functional�logic
programming explicitly state that second�order unication cannot be used due to its un�
decidability� We prove this to be wrong for the context of functional�logic programming�

This work develops the foundations of truly higher�order functional�logic program�
ming� The main steps towards this goal are as follows�

� Decidable second�order unication problems that can be applied to functional�logic
programming�

� A framework for higher�order narrowing with rst completeness results�

� Several renements of narrowing� e�g� deterministic simplication� conditional nar�
rowing�

� A class of equational goals that su�ces for higher�order functional�logic program�
ming and which enjoys several optimizations�

This work forms a new basis for truly higher�order functional�logic programming that is
more oriented towards higher�order functional programs than to rst�order horn clauses�
This programming paradigm not only supports applicative higher�order programming�
but in addition new functional objects can be computed by unication with logic pro�
gramming techniques� Its practical use is shown by several examples� These include
high�level programming� automating mathematics� and program transformation� A sim�
ilar language is described nicely in �Llo
�� by many examples�

Compared to higher�order logic programming� where higher�order ��terms only serve
as data structures� our functional setting supports higher�order programming as in func�
tional languages directly� It furthermore enjoys two sources of optimizations�

� Left�linearity of rewrite rules can be exploited and for instance leads to decidable
unication in the second�order case and to a new strategy for needed narrowing�
where intermediate goals are only solved when needed�

� Convergent systems allow the restriction to normalized solutions� facilitating deter�
ministic operations�

More detailed overviews of the results can be found at the beginning of each chapter�
The structure of the work is as follows� The next chapter gives an informal outline of
this work� Chapter � presents simply typed ��calculus and other basic preliminaries�
An introduction to higher�order unication and term rewriting follows in Chapter ��
Chapter 	 develops decidable classes of second�order unication� Higher�order narrowing
is the subject of Chapter � and can be read� with a few exceptions� independently of
Chapter 	� This is followed by examples for higher�order narrowing in Chapter � and
concluding remarks in Chapter ��

Chapter �

Introduction and Overview

In the following� we informally introduce the main topics and outline the main results
of this work� We proceed from rst�order term rewriting and narrowing to higher�order
unication and higher�order narrowing�

��� Term Rewriting

Term rewriting is a model of computation� Rewriting is based on the idea of �replacing
equals by equals�� Following this idea� equations between terms are oriented into rewrite
rules� For instance� the equations � � Z � Z and X � succ�Y � � succ�X � Y � form a
specication of the function �� assuming the term constructors � and succ� Let us orient
the equations into the following two rules

R �

�
� � Z � Z

X � succ�Y � � succ�X � Y �

�

With orientation� we gain an operational model� reduction� We can reduce a term with
the rules of R� e�g��

a � succ�� � b� �� a � succ�b� �� succ�a � b�

where a and b are some constants� These two reduction steps reduce a � succ�� �
b� to its normal form succ�a � b� wrt� R� Notice that this is an abstract model of
computation� it is not directly used as a programming language since reduction is in
general not deterministic� Programming languages usually restrict rewrite systems to be
con�uent� which implies that normal forms are unique� e�g� succ�a � b� above� Then it
su�ces to perform only a particular reduction strategy�

Term rewriting as an abstract model is� for instance� useful for symbolic reasoning with
equations and for the analysis of programming languages� In particular� term rewriting
is an abstract model of rst�order functional programming languages� Current languages
such as LISP variants �Ste
��� Haskell �HJW
�� or SML �MTH
�� are higher�order and
originate from the ��calculus� In such languages� reduction to normal form is called
evaluation�

The simplicity of the concept of term rewriting has attracted much research� con�
cerning properties of rewrite systems such as termination or con�uence� For surveys we
refer to �DJ
�� Klo
��� Apart from programming� well developed applications are theorem

�

proving� both automatic systems �Hsi�	� and interactive systems �Gor��� Pau
��� program
synthesis via completion �Bac
�� and algebraic specications �GTW�
� EM�	� FH
���

��� Narrowing

Starting from an equational specication� it is often not only desirable to evaluate terms�
but also to solve equations� For instance� with the rules of R� a simple goal is to ask for
what values of X the equation

succ�X � a� ��
R succ�a�

holds� Narrowing is a general mechanism for solving such goals in a systematic way� The
idea is to nd values for X by unication� Whereas term rewriting searches for matches
of a rule� narrowing uses uni�cation to nd an instance of a term such that a rewrite step
applies�

For instance� unifying the left�hand side of the rst rule of R� ��Z � with X �a yields
a solution by the substitution

� � fX �� ��Z �� ag

Then we have the narrowing step

succ�X � a����Z�Z
� succ�a� �����

The gist of narrowing is that it need not be applied to variable subterms� For narrowing
the restriction to R�normalized solutions� which map variables to terms in R�normal
form� implies that this is not needed�

Compared to paramodulation �RW�
� Bra�	�� an early precursor for equational rea�
soning� narrowing �Sla��� assumes rewrite rules instead of undirected equations� Research
on rst�order narrowing was initiated by the papers of Fay �Fay�
� and Hullot �Hul����
Hullot rst showed correctness and completeness of narrowing� which reads roughly as�

Assume a rewrite system R� two terms s and t � and an R�normalized substi�
tution �� If s �� t has solution �� i�e� �s

�
��R t � then there exists a sequence

of narrowing steps s
�
�

R
� t � such that � and t � are more general than � and t �

This result only deals with matching� but unication is easy to encode �see Section �����
Hence narrowing serves as a complete method for unication modulo a theory given by a
convergent term rewriting system� as narrowing is complete wrt� normalized substitutions
and since for every substitution there exists an equivalent normalized one�

Narrowing forms the underlying computation rule for programming languages �Red�	�
DO
��� For instance� logic programming can be viewed as narrowing �BGM��� and the
work on integrating logic and functional programming is usually based on narrowing�
Many of the early proposals for functional�logic programming can be found in �DL����
When performing narrowing as a programming language� reduction is viewed as evalua�
tion�

As the search space of naive narrowing is very large� there exists an abundance
of renements that remove redundant narrowing derivations �see �Han
�b� MH
�� for

overviews�� For convergent systems� there is a strategy that is optimal in the sense that
no solution is computed twice �BKW
��� For a restricted class of term rewriting systems�
which su�ces for simple programming languages� there exists a simple strategy �AEH
��
that computes reductions of minimal length�

Apart from the notion of narrowing explained above� there exists another notion
of narrowing� called lazy narrowing� To avoid confusion� we call the rst notion plain
narrowing� Plain narrowing searches for an instance such that some subterm can be
rewritten� In contrast� lazy narrowing integrates the rules of unication into narrowing�
The idea is to simplify terms by unication until only rewrite steps at the outermost
position have to be considered in a �lazy� fashion�

For instance� to model the �plain� narrowing step in ����� by lazy narrowing� we start
with a goal

succ�X � a��� succ�a�

and look for a solution � such that succ��X � a� rewrites to succ�a�� We rst apply a
decomposition step on succ� yielding the subgoal

X � a �� a

Then a lazy narrowing step applies at the function symbol � with the rule � � Z � Z �
The unication of the subterms of the rewrite rule with the goal is delayed by posting
two new goals for the unication of X � a with � � Z �

X �� �� a �� Z �Z �� a

Lazy narrowing employs such steps only at the root position of a term� In general� the
newly added subgoals must again be solved modulo R� In this example� it su�ces to take
the direct syntactic solution� i�e� fX �� ��Z �� ag�

Most papers on narrowing and functional�logic languages employ variations of these
two notions of narrowing� Plain narrowing is mostly used for terminating rewrite systems
with equational semantics �Han
��� Alternatively� narrowing is also used with denota�
tional semantics �Red�	�� which are based on a strict equality� two terms are equal if
they evaluate to the same constructor or data term� For this semantics� there exist com�
pleteness results for narrowing with non�terminating rules� see for instance �MNRA
��
GMHGRA
���

����� Narrowing and Logic Programming

The relationship between logic programming �CM��� Llo��� and narrowing is well exam�
ined� Most approaches to functional�logic programming are based on narrowing and aim
at extending logic programming by functions �Han
�b�� In such languages� narrowing re�
places resolution as the basic mechanism of inference� The idea is simple� view predicates
as functions and horn clauses as rules with conditions� That is� a clause

P �� Q��Q�� � � � �Qn

is written equivalently as

P � true � Q� � true�Q� � true� � � � �Qn � true�

It has been shown that narrowing� with conditional or unconditional equations� can sim�
ulate logic programming and vice versa �BGM��� Hu�
��� There exist however more
advanced renements for narrowing that utilize the determinism of functional programs
to a large extent� For instance� functional�logic programming with normalization has
shown to be more e�cient than pure logic programming� see e�g� �CF
�� Han
��� These
renements use the deterministic evaluation possible for convergent rewrite rules or func�
tional programs�

In pure logic programming� functions are often encoded in predicates� The functional
version is often more concise� as functions can be nested in contrast to predicates� For
instance� consider the clause

�bP �s�s�X ���YZ � ���bP �s�X ��Y ���bP �X �Z �� plusP �Y �Z �YZ ��

where the predicate plusP �Y �Z �YZ � holds if YZ � Y � Z � This becomes

�b�s�s�X �� � �b�s�X �� � �b�X �

in functional�logic programming� Notice that logic programming needs additional local
variables�

��� Higher�Order Term Rewriting

Higher�order term rewriting is the natural extension of rst�order rewriting to reasoning
with higher�order equations� Starting with the work of Klop �Klo���� there exist several
notions of higher�order term rewriting �Nip
�a� Oos
�� vR
��� This interest in higher�
order rewriting follows the progress in its applications� for instance functional languages
and theorem provers� where higher�order concepts are of growing interest� In this work�
we follow the approach in �Nip
�a�� we consider ��terms in ��normal form and view the
reductions of ��calculus as implicit operations� e�g� ��x �f �x ��a �� f �a� by ��reduction�
Furthermore� we compute modulo ��conversion� i�e� renaming of bound variables� For
instance �x �f �x � �� �y�f �y��

For example� the expressiveness of higher�order term rewriting easily deals with scop�
ing� here pushing quantiers inside�

�x �P �Q�x �� P � �x �Q�x �

In this example the quantier � is a constant of type �term � bool� � bool � where
���x �P� is written as �x �P for brevity� Notice that the variable conventions of ��calculus
allow for a concise statement of the rst rule� the variable P in �x �P � Q�x � represents
a term not containing the bound variable x �

As another example for the utility of higher�order programming� consider symbolic
di�erentiation� The function di� �F �X �� as dened below� computes the di�erential of a
function F at a point X �

di� ��y�F �X � � �

di� ��y�y�X � � �

di� ��y�sin�F �y���X � � cos�F �X �� � di� ��y�F �y��X �

With these rules� we can for instance compute�

di� ��y�sin�sin�y���X � ��
cos�sin�X �� � di� ��y�sin�y��X � ��
cos�sin�X �� � cos�X � � di� ��y�y�X � ��
cos�sin�X �� � cos�X � � �

In contrast� rst�order term rewriting only permits a limited� rst�order version of di� �
as e�g� in �Bac
�� SS���� For instance� the rst rule cannot be expressed directly� Fur�
thermore� nested functions� e�g� di� ��x �sin�F ��x ���� where F � is a function� are hard to
describe in the rst�order case �SS���� In Section � we develop this example further�

Apart from such high�level computations� an important application of higher�order
rewriting is to model the basic mechanisms of current� higher�order functional program�
ming languages such as SML or Haskell�

In recent years many results for rst�order term rewriting have been lifted to the
higher�order case� Among the results obtained for higher�order rewriting are a critical pair
lemma for higher�order term rewriting systems �HRS� �Nip
�a�� con�uence of orthogonal
HRS �Nip
�b� vR
�� Oos
��� and termination criteria �Pol
���

��� Higher�Order Uni�cation

For the step from rst�order to higher�order narrowing� we examine another important
ingredient� higher�order unication� Higher�order unication is a powerful method for
solving equations between higher�order ��terms modulo the conversions of ��calculus�
For instance� bound variables must be treated correctly� the unication problem

�x �sin�F �x �� �� �x �sin�cos�x ��

has solution fF �� �y�cos�y�g� whereas

�x �F �� �x �sin�cos�x ��

is unsolvable�
Higher�order unication is currently used in theorem provers like Isabelle �Pau
��� TPS

�AINP
��� Nuprl� �CAB���� and for higher�order logic programming in ��Prolog �NM����
Other applications of higher�order unication include program synthesis �Hag
�b� and
machine learning �Har
�� DW��� Hag
�a��

The rst complete set of rules for higher�order unication was presented by Jensen
and Pietrzykowski �Pie��� JP���� The undecidability of higher�order unication was rst
shown by Huet �Hue��� and Lucchesi �Luc���� It took several years until the undecid�
ability was shown for the second�order case by Goldfarb �Gol���� Farmer �Far
�� rened
this result by showing that only one symbol of arity two is needed and by giving a bound
on the number of variables needed to express an undecidable problem by second�order
unication�

Figure ��� presents an overview of known decidability results for higher�order unica�
tion� The column labeled Monadic refers to the unication of terms with unary function

�Nuprl uses only second�order pattern matching�

Order Unication Problem
Unication Patterns Monadic Matching

� decidable
� undecidable decidable decidable

Goldfarb ���
��� Farmer ��� Huet ���

Farmer �
�
� undecidable undecidable decidable

Huet ���
��� Narendran �
� G� Dowek �
�

Lucchesi ���

�
��� decidable

���
D� Miller �
�

Figure ���� Decidability of Higher�Order Unication

symbols only� Monadic second�order unication is decidable �Far���� This problem can
in fact be related to unication modulo associativity� which was shown to be decidable
by Makanin �Mak���� Again� the third�order monadic case is undecidable �Nar�
��

Huet �Hue�	� already conjectured that higher�order matching� i�e� unication with
a term containing no free variables� is decidable� but the problem is still open� Some
progress has been made by Dowek �Dow
��� who showed the decidability of third�order
matching� Furthermore� fourth�order matching is claimed to be decidable by Vincent
Padovani �Pad
��� Wolfram �Wol
�� presented a terminating algorithm for higher�order
matching� but was not yet able to show its completeness�

Dale Miller� as indicated in the column labeled Patterns� discovered a class of ��
terms� called higher�order patterns� with decidable and even unitary unication� i�e� if
some unier exists then there exists a most general unier� A term is a higher�order
pattern if each free variable has distinct bound variables as arguments� Patterns behave
like rst�order terms in many respects� e�g� unication is not only unitary but also of
linear complexity �Qia
���

Full higher�order unication is highly intractable� there do not exist maximally general
uniers� In other words� there are innite chains of uniers� one more general than the
other� This is called nullary unication� As noted by Huet �Hue�	�� this was rst observed
by Gould �Gou���� The idea of pre�unication by Huet �Hue�	� was a major step towards
practically usable systems� pre�unication delays a particular class of equations that is
known to be solvable and permits the enumeration of a complete set of uniers without
any redundancy� This is important for any practical application� Pre�unication is still
innitary� i�e� there may be an innite set of uniers for two terms�

����� Decidable Higher�Order Uni�cation Problems

Since higher�order unication is undecidable in general� we are interested in classes where
higher�order unication is decidable� An overview of the results can be found in Fig�
ure ���� Notice that the results only hold for all conditions in the path to the node�

The main restriction we impose is linearity� i�e� we require that some variables may
not occur repeatedly� We show that the unication of a linear higher�order pattern s with
an arbitrary second�order term that shares no variables with s is decidable and nitary�

s
�
�
t�
s
an
d
t
se
co
n
d
�o
rd
er
�
u
n
d
ec
id
ab
le

s
li
n
ea
r�
s�
t
va
ri
ab
le
d
is
jo
in
t�

u
n
d
ec
id
ab
le
�	
��
��
�

O
n
ly
gr
ou
n
d
ar
gu
m
en
ts
to

fr
ee
va
ri
ab
le
s
in
s�
d
ec
id
ab
le

an
d

n
it
ar
y

p
re
�u
n
i
ca
ti
on
�	
��
��
�

s
h
ig
h
er
�o
rd
er
p
at
te
rn
�

n
it
ar
y
u
n
i
ca
ti
on
�	
��
��
�

S
ec
on
d
�o
rd
er
m
at
ch
in
g

�s
gr
ou
n
d
��

n
it
ar
y

s�
t
p
at
te
rn
s�
b
u
t�
X
�t
n
�

al
lo
w
ed
if
X
li
n
ea
r�
d
ec
id
ab
le

an
d

n
it
ar
y
p
re
�u
n
i
ca
ti
on

�	
��
��
�

s
an
d
t
h
ig
h
er
�o
rd
er
p
at
te
rn
s�

u
n
it
ar
y
u
n
i
ca
ti
on

s�
t
p
at
te
rn
s�
b
u
t
re
p
ea
te
d

va
ri
ab
le
s
w
it
h
gr
ou
n
d

ar
gu
m
en
ts
in
s�
e�
g�

�
x
�P
�x
�
	
P
�x
�
��
�
�
�
x
�t
�

in

n
it
ar
y
�	
��
��
�

t

rs
t�
or
d
er
�
gr
ou
n
d

ar
gu
m
en
ts
co
n
ta
in
b
ou
n
d

va
ri
ab
le
s�
d
ec
id
ab
le
�	
��
��
�

Figure ���� Results on Second�Order Unication

In particular� we do not have to resort to pre�unication� as equations with variables as
outermost symbols on both sides ��ex��ex pairs� can be nitely solved in this case� A
few extensions of this unication problem are still decidable� only one of them is included
in Figure ���� For instance� unifying two second�order terms� where one term is linear� is
undecidable if the terms contain bound variables but decidable if they do not�

The main application of this result is the unication of linear left�hand sides of rewrite
rules with second�order terms� as employed in higher�order narrowing� For instance� a
standard example for functional programs� the function

map�F � �X jY �� � �F �X �jmap�F �Y ��

has a linear left�hand side� Furthermore� it has the non�pattern F �X � on the right�hand
side� Hence rewriting with this rule may yield non�pattern terms� Thus higher�order
unication is needed for the unication with a left�hand side of a rewrite rule� So far� most
functional logic languages even with higher�order terms only use rst�order unication�
e�g� �GMHGRA
�� Loc
���

Furthermore� we present an extension of higher�order patterns with decidable uni�
cation and another result that is tailored for the unication of induction schemes with
rst�order terms� It is shown that the unication of restricted second�order terms with
rst�order terms is decidable� where the restriction is such that typical inductions schemes
can be expressed� An example is the formula �x �P�x �	 P�x ��� in the inductive axiom

P�����x �P�x �	 P�x � ��
 �x �P�x �

With these results only few classes remain where decidability of second�order unication
is unknown�

��� Narrowing� The Higher�Order Case

The second main contribution of this work is to lift several ideas of rst�order narrowing
to the higher�order case� We introduce a rst framework for higher�order narrowing
modulo an higher�order equational theory and give rst completeness results�

In rst�order narrowing� values for logic or free variables are computed via unication�
The variables range over objects of the domains of interest� In a higher�order setting�
unication can compute values even for functional objects� For instance� a solution for
the free variable F in the goal

�x �di� ��x �sin�F �x ��� x ��� �x �cos�x �

can be computed by narrowing� Examples from this and other areas can be found in
Section ��

An overview of the di�erent approaches to higher�order narrowing can be found in
Figure ���� For plain narrowing� which attempts to lift rewrite steps somewhere inside a
term� we show that there are some principal problems in the full higher�order case� In
contrast� lazy narrowing can be lifted to the higher�order case�

We develop several optimizations and renement for lazy narrowing� Particularly
important is the restriction to R�normalized solutions in order to limit narrowing steps�

H
ig
h
er
�O
rd
er
N
ar
ro
w
in
g
��
�

P
la
in
N
ar
ro
w
in
g
��
��

��
��
�

G
en
er
al
N
ar
ro
w
in
g

��
��
�

N
ar
ro
w
in
g
on

P
at
te
rn
s
��
��
�

L
az
y
N
ar
ro
w
in
g
��
�	
�

C
on
d
it
io
n
al
L
az
y

N
ar
ro
w
in
g
��
��
�

N
or
m
al
C
on
d
it
io
n
al

N
ar
ro
w
in
g
��
��
��
�

U
n
co
n
d
it
io
n
al

N
ar
ro
w
in
g
�F
ig
�
��
��

N
ar
ro
w
in
g
on

P
at
te
rn
s
w
it
h

C
on
st
ra
in
ts
��
�

�

Figure ���� A Framework for Higher�Order Narrowing

This also permits deterministic simplication on goals� For instance� the above goal can
be simplied by rewriting to obtain the new goal

�x �cos�F �x �� � di� ��x �F �x �� x � �� �x �cos�x ��

Another optimization is deterministic variable elimination� which may be incomplete in
the general case� Variable elimination for an equation X �� t simply means binding X
to the term t � In our case� we only consider directed goals� e�g�

X �� t and t �� X �

where on the rst goal variable elimination is safe and no other rules must be considered�
Another important source of optimization is using left�linear rewrite rules� i�e� where

free variables do not occur repeatedly on the left side of a rule� This is a common
restriction for programming applications� e�g� in functional��logic� languages� We show
that in such a setting a particular class of goals� called Simple Systems� su�ces and has
several nice properties� For instance� a variable cannot occur on both sides of a goal� e�g�
X �� f �X � is impossible and thus the occurs check is immaterial� Furthermore� solved
forms are easy to detect� For instance� a Simple System of the form

t� �
� X�� � � � � tn �

� Xn �

is guaranteed to have a solution� It follows from the invariant of Simple Systems that all
X�� � � � �Xn are distinct� Another important property is that unication of second�order
Simple Systems is decidable� Thus� as in the rst�order case� divergence only results from
the main computation paradigm� narrowing�

Integrating Simple Systems with normalized solutions yields a strategy for variable
elimination� with normalized solutions� only one case is deterministic� but in Simple
Systems the remaining case is undesirable and such goals can safely be delayed� This
leads to a new strategy� called Needed Lazy Narrowing� which computes values only if
needed and also avoids copying� It thus resembles call�by�need or lazy evaluation with
sharing of identical subterms�

The chapter on narrowing concludes with an alternative approach to higher�order
narrowing in Section ��
� which combines plain narrowing and lazy narrowing� The basic
idea is to put the truly higher�order terms into constraints where lazy narrowing is used
and work on the main goal similar to the rst�order case�

��	 Conditional Narrowing and Higher�Order Pro�

gramming

A promising application of higher�order narrowing is truly higher�order functional�logic
programming� Our approach to higher�order programming via narrowing is more ori�
ented towards functional languages than most other approaches to functional�logic lan�
guages� Recall that the core of modern functional languages such as SML �MTH
�� and
Haskell �HJW
�� can be seen as higher�order rewrite rules� Our contribution is to develop
a new basis for functional logic programming that works with higher�order conditional
equations� We consider normal conditional rules of the form

l � r � l� � r�� � � � � ln � rn�

where ln � rn denote conditions for the application of the rule and rn are ground terms in
R�normal form� Although some rst�order approaches are less restrictive� we argue that
such extensions are not needed in a higher�order setting� Furthermore� this restriction
has a signicant advantage� for proving conditions of rules� as well as for queries� we
consider oriented goals of the form s �� t with solutions �s

�
�� t � Thus� this restriction

permits for a simpler operational model and is powerful enough for encoding functional
and logic programs� the core of modern functional languages can be seen as higher�order
�unconditional� rewrite rules� Furthermore encoding logic programs is possible� as shown
in Section ������ since the right�hand sides in the conditions is simply the constant true�

The restriction to ground right�hand sides is too strong for rst�order functional�logic
languages� as variables on the right in conditions serve as local variables� Consider for
instance the function unzip� cutting a list of pairs into a pair of lists� In a functional
language unzip can be written as

unzip��pair�X �Y �jR�� � let pair�xs� ys� � unzip�R�
in pair��X jxs�� �Y jys��

unzip���� � ��

where pair�a� b� denotes a pair� The let�construct for pairs� written in inx notation
as common in functional languages� can be dened by higher�order rewrite rules �see
Section ����� In rst�order functional�logic programming this function may be written as

unzip��pair�X �Y �jR�� � pair��X jXs�� �Y jYs��� unzip�R�� pair�Xs�Ys�
unzip���� � ��

The rst of the above conditional rewrite rules has extra variables on the right� which
are used to model the let�construct�

Notice that we permit new variables in the left sides of the conditions� which are used
as �existential� variables� to be computed by unication as in logic programming� Con�
sider for instance the following example modeling family relations� where a new variable
Z is used in the denition of grand mother � For brevity� we write p for a rule p � true
or a goal p �� true�

mother�jane�mary�
mother�susan�mary�
mother�mary� judy�
wife�john� jane�

grand mother�X �Y � � mother�X �Z ��mother�Z �Y �

In the higher�order case� the concept of family relations can be generalized� similar
to �Llo
�� Nad����

family rel�wife�
family rel�mother�
family rel�comp�R��R��� � family rel�R��� family rel�R��
comp�R��R���X �Y � � R��X �Z ��R��Z �Y �

In the last rules� comp is intended to compose two relations� Thus a query

family rel�R��R�jane� judy�

should be answered by R �� comp�mother �mother�� Notice how partial application of
comp is used in third rule�

We argue that many programming concepts are not only simpler expressed by higher�
order functional programming� but also the technical treatment can be simpler� Handling
extra variables for narrowing is both di�cult� error�prone and gave rise to many works� for
an overview see �MH
��� Furthermore� there are several works �BG�
� LS
�� ALS
�b� on
con�uence and termination of logic programs that correspond to such function constructs
�sometimes called well�moded programs�� For the termination of logic programs� such
local variables are one of the main problems �SD
��� Also� functional programming
provides more directionality than logic programs� which is another major problem for
proving termination �SD
���

Chapter �

Preliminaries

Basic denitions and results for higher�order equational reasoning are introduced in this
chapter� The rst sections contain general background material on reductions and order�
ings� followed by a brief introduction to ��calculus� For a comprehensive treatment we
refer to �HS��� Bar����

��� Abstract Reductions and Termination Orderings

An abstract reduction is a relation on some set A� The following properties of reductions
will be used mostly for term rewriting� which is a reduction on terms�

De�nition ����� For some abstract reduction��� let��� denote its transitive closure�
�
�� its re�exive transitive closure� and �� its inverse� Furthermore� dene �� �
�� � ��� We write ��n for some reduction of length n� i�e� s� ��n sn stands for a
sequence s� �� s� �� � � � �� sn �

A relation is an equivalence relation if it is re�exive� transitive and symmetric� A
partial ordering is a re�exive� transitive and anti�symmetric relation� A strict partial
ordering is a transitive and irre�exive relation�

A partial ordering is a total ordering if a b or b a holds for all a and b� A
partial or total ordering is compatible with another partial ordering � if � � �

De�nition ����� An abstract reduction is called terminating if no innite reduction
exists� An element a is called in normal form if no reduction from a exists�

Two terms s and t are joinable by a reduction ��R� written as s�Rt � if there exists
u with s

�
��R u and t

�
��R u� A reduction is called locally conuent� if any two

reductions from a term t are joinable� i�e� if t �� u and t �� v then u�v � It is called
conuent� if

�
�� is locally con�uent� i�e� if t

�
�� u and t

�
�� v then u�v �

De�nition ����� The lexicographic combination of two reductions��� and ��� on
sets A and B � written as R � ���������lex � is a reduction on A�B � with �a� b� R �a �� b��
if

� a ��� a � or

�	

� a � a � and b ��� b��

The important property of the lexicographic combination is the following�

Lemma ����� The lexicographic combination of terminating reductions is terminating�

The lexicographic combination of n abstract reductions Rn ���n � � � � ���� is dened
recursively as Rn

lex � �����R
n��
lex �lex �

A multiset M over a set A is a mapping from A to f�� �� �� � � �g� A multiset M can
be viewed as a set where repeated elements are allowed� i�e� M maps an element a � A
to its number of occurrences� A multiset M is nite if M �x � � � holds only for nitely
many x � A�

Removing an element from a multiset reduces the number of occurrences by one� if it
occurs at all� Formally� removing an element a from a multiset M gives a new mapping
M � � M � a with M ��x � � M �x � if x �� a and

M ��a� �

�
M �a�� � if M �a� � �
� if M �a� � �

Removing a multisetM from M �� written as M ��M � is dened as the result of removing
each element of M from M �� Adding an element to a multiset� written as a � M � and
the union M �M � of two multisets are dened correspondingly�

An important method for termination proofs is to extend an ordering� on a set A to
multisets of A� A multiset N is smaller than M � written as N �multi M � if it can be
obtained by removing one element from M plus adding nitely many smaller elements�
Formally we have�

N �multi M � �x � A�M � x � N � N ��

where N � is a nite multiset with n � x � �n � N ��
The following result allows to extend termination orderings to multisets�

Theorem ����� ��DM�	�� The multiset extension of a terminating ordering is termi�
nating�

Besides �multi��sets� we often used lists� which are denoted by square brackets� i�e�
appending a list R to an element t is written as �t jR�� The application of a function f to
a list� written as f �tn�� is dened as �f �tn���

��� Higher�Order Types and Terms

This section introduces our term language� simply typed ��terms� The set of types T
for the simply typed ��terms is generated by a set T� of base types �e�g� int� bool�
and the function type constructor �� Notice that � is right associative� i�e�
� � � � � � � � �� � ��� We assume a set of variables V� � and a set of constants
C� for all types 	 � T � where V� � V� � � C� � C� � � fg� The set of all variables is
V �

S
��T V� � which is disjoint from the set of all constants� C �

S
��T C� � The

following naming conventions are used in the sequel�

� F �G�H �P �X �Y free variables�

� a� b� c� f � g �function� constants�

� x � y� z bound variables�

� �� �� 	 type variables�

Further� we often use s and t for terms and u� v �w for constants or bound variables� The
following grammar denes the syntax for untyped ��terms

t � F j x j c j �x �t j �t� t���

where �t� t�� denotes the application of two terms� The term �x �t denotes an abstrac�
tion over x and thus creates a new functional object� An occurrence of a variable x
in a term t is bound� if it occurs below a binder for x � i�e� the occurrence of x is in a
subterm �x �t �� Otherwise it is free� Free and bound variables of a term t will be denoted
as FV�t� and BV�t�� respectively�

Notice that there can be many such binders� e�g� �x ��x �x � but only the innermost one
is associated with x � To avoid such cases� we will adopt assumptions �see below� on the
naming of bound variables for simplicity�

A list of syntactic objects s�� � � � � sn where n � � is abbreviated by sn � We will
use n�fold abstraction and application� written as �xn �s � �x� � � � �xn �s and a�sn� �
��� � � �a s�� � � �� sn�� respectively� For instance

�xm �f �sn� � �x� � � � �xm ���� � � �f s�� � � �� sn�

A type judgment stating that t is of type 	 is written as t � 	 � The following inference
rules inductively dene the set of simply typed ��terms�

x � V�

x � 	
c � C�

c � 	

s � 	 � 	 � t � 	
�s t� � 	 �

x � 	 s � 	 �

��x �s� � 	 � 	 �

The order of a type
 � �� � � � �� �n � �� � � T� is dened as

Ord�
� �

���
��
� if n � �� i�e�
 � � � T�
� � k otherwise� where

k � max �Ord����� � � � �Ord��n��

We say a symbol is of order n if it has a type of order n� A term of order n is restricted
to

� function constants of order n � � and

� variables of order n�

For instance� if a term F �tn� is second�order� then all subterms ti must be of base type�
We say a term t is weakly second�order if it is second�order� but with the exception
that bound variables of arbitrary type may occur as arguments to free variables� For
instance� F ��z �x �z �� a� is weakly second�order� but not second�order�

Let fx �� ygt denote the result of replacing every free occurrence of x in t by y� The
conversions in ��calculus are dened as�

� ��conversion� �x �t �� �y��fx �� ygt�

� ��conversion� ��x �s�t �� fx �� tgs

� ��conversion� if x �� FV�t�� then �x ��t x � �� t

The rst of the above� ��conversion� serves for renaming bound variables� ��conversion
replaces the formal parameter of a function �x �s by the argument t � A ��redex is a
term of the form ��x �s�t where ��reduction applies� and similarly for the other reduc�
tions� For � f�� �� �g we write s �� t � called �reduction� if t is obtained from s by
�conversion on some subterm of s� Let ���� be dened as �� � ��� and similarly for
other combinations� The re�exive� symmetric and transitive closure of some !�reduction
induces an equivalence relation on terms� written as s �� t � where ! � f�� �� �g� Appli�
cation of the conversion rules in the other direction is called expansion� Reduction in
the simply typed ��calculus is con�uent and terminating w�r�t� ��reduction �and w�r�t�
��reduction�� see e�g� �Bar����

The ��normal form ���normal form� of a term t is denoted by t�� �t���� Let t be
in ��normal form� Then t is of the form �xn �v�um�� where v is called the head of t � and
written as Head�t�� The ��expanded form of a term t � �xn �v�um� is dened by

t�� � �xn�k �v�um��� xn����� � � � � xn�k���

where t � 	n�k � 	 and xn��� � � � � xn�k �� FV�um�� We call t���� the long ���normal
form of a term t � also written as tl�

�
� A term t is in long ���normal form if t � tl�

�
� It

is well known �HS��� that s ���� t i� sl�
�
�� tl

�

�
�

The size jt j of a term t in long ���normal form is dened as the number of symbols
occurring in t � not counting binders �x �

j�x �t j � jt j�
js t j � jsj� jt j�
jv j � �� v � V � C

A variable is isolated if it occurs only once �in a term or in a system of equations�� A
term is linear if no free variable occurs repeatedly� A term �xk �v�tn � is called exible
if v is a free variable and rigid otherwise�

Assumptions� We will in general assume that terms are in long ���normal form�
For brevity� we write variables in ��normal form� e�g� X instead of �xn �X �xn�� We assume
that the transformation into long ���normal form is an implicit operation�

We work in the following completely modulo ��conversion� that is ��equivalent terms
are identied� A representation for ��terms that achieves this on a syntactical basis
is possible with de Bruijn indices �dB���� bound variables are represented as natural
numbers� indicating the corresponding binder� The main result is that two ��equivalent
terms have the same de Bruijn representation�

We follow the variable convention that free and bound variables are kept disjoint
�see also �Bar����� We cannot enforce this convention completely� For instance� in the
congruence rule used in Section ������ s � t 	 �x �s � �x �t � x occurs both free and
bound� More seriously� this distinction permits so�called loose bound variables� i�e�
�bound� variables without a binder� Such variables are typically created when a subterm
of a term is considered or manipulated� For instance� f �x � is a subterm of �x �g�f �x ��

�x�

�x�

� �

� �

F a

b

Figure ���� �x�� x��F �a� b� as Binary
Tree

�x�

�x�

F

a b

Figure ���� �x�� x��F �a� b� as n�nary
Tree

with a loose bound variable� In such cases� these variables can be viewed as bound
variables where the binder is �implicit� in the context� In general� loose bound variables
may create inconsistencies� Although sometimes convenient� we will avoid loose bound
variables whenever possible�

For simplicity� we assume that bound variables with di�erent binders have di�erent
names� As a consequence of our conventions� it su�ces to write s � t instead of s ������ t �
as we assume long ���normal form and work modulo ��conversion� These conventions
for instance permit the following denition�

We say a bound variable y in a term �xn �t in long ���normal form is outside bound
if y � xi for some i � The set of all outside bound variables of a term �xn �t is written as
OBV��xn �t� � BV��xn �t� � fxng�

��� Positions in ��Terms

We describe positions in ��terms by sequences over natural numbers� as we have adopted
n�ary application� Such a sequence describes the path to a subterm of a term� Positions
in ��terms are often written as sequences over � and �� It is easy to translate one
representation into the other� as in the following example for the term �x�� x��F �a� b� in
Figures ��� and ���� Notice that our representation of terms as trees is a generalization
of usual rst�order terms and positions�

Let � denote the empty sequence� let i �p denote the sequence p appended to an
element i � and let p � p� concatenate two sequences� A sequence p is a pre�x of p�� if
�q�p � q � p�� and similarly p is a post�x if �q�q � p � p��

De�nition ����� The subterm of s at position p� written as sjp� is dened as

� sj
�
� s

� v�tm �j
i	p

� ti jp if i m

� �xm �t j�	p � ��x�� � � � � xm �t�jp

� undened otherwise

The following notion of subterm extends the denition of subterms to account for a
binding environment� A term s � �xn �s� is a subterm modulo binders of t � �xn �t��
written as s �sub t � if s� is a �true� subterm of t��

A term t with the subterm at position p replaced by s is written as t �s�p� Two
positions p and q are independent if none is a prex of the other� For a term s of the
form �xk �v�tn�� the position of v is called the root position� A �sub��term t jp is called
ground if no free variables of t occur in t jp�

If p is a position in s then let BV�s� p� be the set of all ��abstracted variables on the
path to p in s� Such a path is called rigid if it contains no free variables�

��� Substitutions

Substitutions are nite mappings from variables to terms� denoted by fXn �� tng� and
extend homomorphically from variables to terms� In general� substitutions map only the
free variables of a term� If s � �t for some substitution �� then s is called an instance
of t �

Dene Dom��� � fX j �X �� X g� Im��� �
S
X�Dom��� �X and Rng��� � FV�Im�����

The free variables of a substitution � are dened as FV��� � Dom��� � Rng����
For a list of syntactical objects Cn we write FV�Cn� instead of FV�C�� � � � � �FV�Cn��
Two substitutions are equal on a set of variables W � written as � �W ��� if �X � ��X
for all X � W � The restriction of a substitution to a set of variables W is dened
by �jWX � �X if X � W and �jWX � X otherwise� The composition �� of two
substitutions is dened as �����s� � ����s���

De�nition ����� A substitution � is more general than �� over a set of variables W �
written as �� W �� if �� �W �� for some substitution ��

For brevity� we will often leave the set of variables W implicit and write �� � or � � ���
A substitution � is idempotent i� � � ��� We will in general assume that substitutions
are idempotent� This is justied by the following two basic lemmata �SG�
��

Lemma ����� A substitution � is idempotent if Rng��� � Dom��� � fg�

In the higher�order order�case� this condition for idempotence is only su�cient but not
necessary� as noted in �SG�
��

Lemma ����� For any substitution � and set of variables W with Dom��� � W� there
exists an idempotent substitution �� such that Dom��� � Dom����� �� � and � W ���

As we syntactically distinguish between bound and free variables� we can speak of
well�formed substitutions� a substitution is well�formed� if it does not contain loose
bound variables� i�e� bound variables without binder� With a few exceptions� we will
in general assume well�formed substitutions� Thus� for instance� ��xk �t � �xk ��t by
convention�

Properties of terms extend to substitutions in the component�wise way� i�e� to the
terms in the image� For instance� a substitution � is ground �in long ���normal form� if
all terms in the image of � are ground �in long ���normal form��

��� Uni�cation and Uni�cation Theory

Unication of two terms s and t aims at nding a substitution � such that �s � �t � where
� is called a uni�er of s and t � Unication problems are written as s �� t � There exist
several surveys on the subject �BS
�� JK
���

An equational theory is an equivalence relation on terms that is stable under sub�
stitutions� i�e� s �E t implies �s �E �t for any substitution �� Usually� equational
theories are generated by a set of equations� as discussed for the higher�order case in Sec�
tion ������ The conversions of ��calculus� i�e� the ����rules� are equations with meta�level
conditions� These can be considered immaterial when working modulo ��conversion�

A substitution 	 is more general than �� modulo E over a set of variables W �
written as � E �W 	 � if ���� �E �W �	 � Accordingly� � �E �W 	 if �X �E 	X for all
X �W � For simplicity� we often leave the parameter W implicit�

Unication modulo an equational theory �E � or E �uni�cation� aims at nding a
substitution with �s �E �t � Then � is called an E �unier of s and t � As there can be
many solutions to a unication problem s �� t � it is desirable to nd minimal sets of
solutions� as dened next�

De�nition ����� A set of substitutions S is a minimal� complete set of uni�ers
�MCSU� of a unication problem s �� t for some equational theory E � i�

� Each element of S is an E �unier of s �� t �

� For every E �unier of s �� t there exists a more general E �unier in S �

� The elements of S are incomparable�

It can be shown that such a set of incomparable common instances is uniquely dened
except for variants of its elements �FH���� There exist several classes of unication
problems� depending on the existence of a MCSU� An E �unication problem is called

unitary if a MCSU is either empty or a singleton�

�nitary if a nite MCSU exists�

in�nitary if a possibly innite MCSU exists�

nullary if no MCSU may exist�

This classication extends to an equational theory E � if for all E �unication problems
the property �e�g� unitary� holds�

Another distinction of unication problems is sometimes considered in the rst�order
case �BS
��� are only constant symbols of a xed signature allowed in the terms to be
unied or arbitrary constants In the rst�order case� the above classication may depend
on this distinction� This distinction is immaterial in a higher�order context� as we must
deal with local �constants�� i�e� bound variables�

��	 Higher�Order Patterns

The following subclass of ��terms was introduced originally by Dale Miller �Mil
�a� and
is often called higher�order patterns in the literature�

De�nition ����� A simply typed ��term s in ��normal form is a relaxed higher�order
pattern� if all free variables in s only have bound variables as arguments� i�e� if X �tn�
is a subterm of s� then all ti�� are bound variables�

Examples of relaxed higher�order patterns are �x � y�F �x � x � y� and �x �f �G��z �x �z ����
where the latter is at least third�order� Non�patterns are �x � y�F �a� y�� �x �G�H �x ���

In most of the existing literature �Mil
�b� Nip
�a�� patterns are required to have
distinct bound variables as arguments to a free variable� This restriction is necessary for
unitary unication� but for some of the results on decidability of higher�order unication
in Chapter 	 this is not relevant�

De�nition ����� A �higher�order� pattern is a relaxed pattern where the arguments
to free variables are distinct bound variables�

For instance� �x � y�F �x � x � y� is not a higher�order pattern� but �x � y�G�x � �z �y�z �� is�
Unication of patterns is decidable and a most general unier exists if they are uni�
able �Mil
�a� Nip
�a�� as shown in Section ���� Furthermore� a most general unier can
be computed in linear time �Qia
��� This shows that unication with patterns behaves
similar to the rst�order case�

Several important properties of patterns with respect to term rewriting are examined
later and are based on the important fact that ��reduction on patterns only renames
bound variables� For this reason ��reduction on patterns is also called ���reduction
in �Mil
�a��

Chapter �

Higher�Order Equational Reasoning

This chapter introduces higher�order unication and term rewriting� It assumes some
knowledge of rst�order unication� Section ��� reviews a set of transformation rules
for full higher�order �pre��unication� This is followed by an important special case�
higher�order patterns� where unication proceeds almost as in the rst�order case�

��� Higher�Order Uni�cation by Transformations

We present in the following a version of the transformation system PT for higher�order
unication of Snyder and Gallier �SG�
�� More precisely� we adapt the primed transfor�
mations for pre�unication of Section 	 in �SG�
��

Consider solving an equation �xk �F �tn� �� �xk �v�t �m � where v is not a free variable�
Such equations are called ex�rigid� Clearly� for any solution � to F the term �F �tn�
must have �after ��reduction� the symbol v as its head� There are two possibilities�

� In the rst case� v already occurs in �the solution to� some ti � For instance� consider
the equation F �a� �� a� where fF �� �x �xg is a solution based on a projection�
In general� a projection binding for F is of the from fF �� �xn �xi�� � ��g� As some
argument� here a� is carried to the head of the term� such a binding is called
projection� This name was introduced in �JP����

� The second case is that the head of the solution to F is just the desired symbol v �
For instance� in the last example� an alternative solution is fF �� �x �ag� This is
called imitation� Notice that imitation is not possible if v is a bound variable�

To solve a �ex�rigid pair� the strategy is to guess an appropriate imitation or projection
binding only for one rigid symbol� here a� and thus approximate the solution to F �
Unication proceeds by iterating this process which focuses only on the outermost symbol�
Roughly speaking� the rest of the solution for F is left open by introducing new variables�
as shown formally in the next denition of these bindings�

De�nition ����� Assume an equation �xk �F �tn� �� �xk �v�t �m �� where all terms are in
long ���normal form� An imitation binding for F is of the form

F �� �xn �f �Hm�xn��

��

Deletion

ft �� tg � S 	 S

Decomposition

f�xk �v�tn � �� �xk �v�t �n�g � S 	 f�xk �tn �� �xk �t �ng � S

Elimination

fF �� tg � S 	� �S if F �� FV�t� and
where � � fF �� tg

Imitation

f�xk �F �tn� �� �xk �f �t �m�g � S 	� f�xk �Hm��tn� �� �xk ��t �mg � �S

where � � fF �� �xn �f �Hm�xn ��g
is an appropriate imitation binding

Projection

f�xk �F �tn� �� �xk �v�t �m�g � S 	� f�xk ��ti�Hj �tn�� �� �xk �v��t �m �g � �S

where � � fF �� �xn �xi �Hj �xn ��g�
is an appropriate projection binding

Figure ���� System PT for Higher�Order Unication

where Hm are new variables of appropriate type� A projection binding for F is of the
form

F �� �xn �xi�Hp�xn��

where Hp are new variables with Hp � 	p and xi � 	p � 	 � A partial binding is an
imitation or a projection binding�

Notice that in the above denition� the bindings are not written in long ���normal form�
The long ���normal form of an imitation or projection binding can be written as

F �� �xn �v��zjp �Hp�xn � zjp���

A full exhibition of the the types involved can be found in �SG�
��
The transformation rules PT for higher�order unication in Figure ��� consist of the

basic rules for unication� such as Deletion� Elimination and Decomposition plus the two
rules explained above� Imitation and Projection� The rules work on sets of pairs of terms
to be unied� written as fu �� v � � � �g� We abbreviate a sequence of transformations

G� 	

�
PT G� 	

�
PT � � �	

n��

PT Gn�� 	

n
PT Gn

by
�
	

PT � where � � �n � � � ���

Notice that the rules in Figure ��� only perform so�called pre�unication� Pre�
unication di�ers from unication by the handling of so�called ex�ex pairs� These
are equations of the form �xk �P�� � �� �� �xk �P ��� � ��� Huet �Hue��� showed that such
pairs of order three may not have a MCSU� there may exist an innite chain of uniers�
one more general than the other� without any most general one� The important idea to
remedy this situation is that �ex��ex pairs are guaranteed to have at least one unier�
e�g� fP �� �xm �a�P � �� �xn �ag� The idea of pre�unication is to handle �ex��ex pairs as
constraints and not to attempt to solve them explicitly�

A substitution � is a pre�uni�er of s and t if the equation �s �� �t can be simplied
by Deletion� Decomposition and Elimination to a set of Flex�Flex pairs� In other words�
�s �� �t only di�er at subterms that have variable heads� The notions of MCSU and
unication classes in Section ��	 extend straightforwardly to pre�unication�

In this work� we will often use the restriction to second�order terms� The only place
where the restriction to second�order terms simplies the system is the last rule� projec�
tion� where xi must be of base type� Hence the binding to F in this case is of the simpler
form F � �xn �xi � which will be important for our results� As we will often encounter this
case� we give an explicit simplied rule�

Second�Order Projection

f�xk �F �tn� �� �xk �v�t �m �g � S 	� f�xk ��ti �� �xk �v��t �m�g � �S
where � � fF �� �xn �xig

The following soundness lemma is easy to show�

Theorem ����� System PT is a sound transformation system for higher�order pre�
uni�cation�

When applying the rules of system PT to a set of equations� there are two sources of
non�determinism�

�� Which rule to apply

�� to which equation�

It was shown in the early work by Huet �Hue��� that completeness does not depend
on how the equations are selected� This is implicit in the proof in �SG�
�� and is also
explained at the end of this section� Furthermore� the only branching occurs when both
Imitation and Projection apply to some equation� In other words� application of the rst
three rules is deterministic �SG�
��

Another optimization is stripping o� a binder �x if x does not occur� For instance�
assume the equation �x � y�P�x � �� �x � y�f �a�� for which the Elimination rule does not
apply� Yet clearly� the binder �y is super�uous here and can be removed� Then the
elimination rule applies directly�

Example ����� Consider the unication problem at the root of the search tree in Figure
���� which is obtained by the transformations PT in Figure ���� Notice that in this
example all projection bindings are of the form �x �x � The failure cases are caused by
a clash of distinct symbols and are abbreviated� The partial bindings of the successful
path yield the only solution fF �� �x �g�x � x ��G� �� G�G� �� Gg�

�
x
�F
�f
�x
�
G
��
�

�
�
x
�g
�f
�x
�
G
�
��
f
�x
�
G
�
��

�
F
��

�
x
�g
�H
�
�x
��
H
�
�x
��
f
�
x
�g
�H
�
�f
�x
�
G
��
�
H
�
�f
�x
�
G
��
�
�

�
�
x
�g
��
�
��
g

�

f
�
x
�H
i
�f
�x
�
G
��
�

�
�
x
�f
�x
�
G
i
��
i
�
�
�
�g

� �
H
�

��

�
x
�x
�H
�
��

�
x
�x

f
�
x
�f
�x
�
G
�
�

�
�
x
�f
�x
�
G
i
��
i
�
��
�g

� �

f
G

�
�
G
i
�
i
�
��
�g

� �
H
i
��

�
x
�f
�H

� i
�x
��
H

�
�

i

�x
��
�
�
��
i
�
�
o
r
i
�
�

fa
il
u
re

�
F
��

�
x
�x

f
�
x
�f
��
�
��
�

�
�
x
�g
��
�
��
�

�
g

fa
il
u
re

Figure ���� Search Tree with System PT

The following general result on higher�order unication will be important for results in
the further sections and can e�g� be found in �Sny
���

Lemma ����� If � is a maximally general pre�uni�er of s �� t � then Dom��� � FV�s� t��

It should be mentioned that the Elimination rule is not needed for completeness� any
equation of the form P �� �xk �t where Elimination applies can be solved by repeated
imitation and projection� until only �ex��ex pairs remain� The only di�erence is that
more Flex�Flex pairs may remain� as the Elimination rule also applies to such pairs� We
sometimes use the restriction that Elimination is not applied to Flex�Flex pairs� which is
su�cient for decidability results� The same is done in the algorithm presented by Snyder
et al� �SG�
��

This leads to another interesting observation� in contrast to Elimination� Imitation
and Projection only compute substitutions that map terms to higher�order patterns�
Composing pattern substitutions again yields pattern substitutions�

Fact ����� For higher�order pre�uni�cation it is su�cient to consider pattern substitu�
tions�

Intuitively� this can be explained as for pre�unication terms only have to agree at non�
variable positions�

Completeness of Higher�Order Uni�cation

We sketch in the following the completeness result for PT along the lines of �SG�
��
where the full treatment can be found� We say that a substitution � approximates a
substitution � for a variable F if there exists a substitution �� with

� Dom���� � Dom��� � fFg � Rng���

� �F � ���F

� � �W ��� where W � Dom��� � fFg�

The following results are adapted from �SG�
�� The next lemma shows that partial
bindings approximate solutions�

Lemma ����� For any �ex�rigid equation �xk �F �tn� �
� �xk �v�t �m� with solution � there

exists a partial binding � for F such that � approximates ��

Theorem ����� �Completeness of PT� If s �� t has solution �� i�e� �s � �t � then
fs �� tg

�
	

PT F such that � is more general than � and F is a set of �ex��ex goals�

Proof The proof proceeds by induction on the following lexicographic termination or�
dering on �En � ��� where for En is a system of equations with solution ��

� A� compare the multiset of sizes of the bindings in �� if equal

� B� compare the multiset of sizes of the equations En �

Notice that a transformation not only changes Gn � but also the associated solution has
to be updated� That is� in case of a binding F �� t � the variable F is removed from ��
and� if it is a partial binding� solutions for the new variables in t are added�

If E is in solved form� nothing remains to show� Otherwise� select some non �ex��ex
equation from En � It is trivial to see that at least one transformation must apply� For
each case we show that the ordering is reduced and that the solution is approximated� If
the equation is a trivial pair s �� s� ordering B is reduced� In case of the Decomposition
rule B is reduced�

When eliminating an equation F �� t � the binding fF �� tg clearly approximates �
as �F � �t � Since the new solution contains fewer bindings� A is reduced�

For the Imitation and Projection rule consider an equation �xk �F �tn� �� t � In this
case� Lemma ����� shows that there exists a partial binding � that approximates � with
��� i�e� � � ���� Furthermore� all new bindings in �� for the new variables in �F are smaller
than the binding for F in �� thus reducing A� �

It is easy to see from the recursive structure of the last proof that the completeness does
not depend on the selection of goals� Each subgoal is solvable independently� or it is a
�ex��ex equation� In contrast to the rst�order case� the selection is more limited� as
�ex��ex goals are delayed� Notice that �ex��ex goals can become non �ex��ex pairs by
instantiation�

��� Uni�cation of Higher�Order Patterns

Unication of higher�order patterns is a special case of higher�order unication that pro�
ceeds similar to rst�order unication� The main advantage is that most general uniers
exist for patterns� Compared to higher�order unication� there is no choice between Pro�
jection and Imitation� Only the �ex��ex cases are more involved than the rst�order case�
Using e�cient data structures� Qian �Qia
�� showed that a linear�time implementation
of pattern unication is possible�

The following set of rules for unication of higher�order patterns is slightly adapted
from �Nip
�a�� The exposition there includes a rule that strips o� binders� i�e�

�x �s �� �x �t 	 s �� t

This assumes that bound variables are distinguished syntactically and is in fact closer
to an implementation� as working with full binders is rather tedious� Notice that the ��
extended form is often not practical� in particular for variables� free or bound� of higher
type� Then ��expansion has to be performed during unication�

The transformations in Figure ��� work on lists� as the order of application is im�
portant for termination �Nip
�a�� The problem is that the algorithm introduces new
variables on the way and repeating this eagerly may lead to non�termination� For in�
stance� consider fc�X � � Y �Y �� X g 	PU fc�X � �� c�Y��� c�Y�� �� X g� Here the
occurs check applies only after a decomposition and an elimination whereas repeated
imitation diverges�

A di�erent method for solving equations of the form �xk �P�yn� �� t is presented in a
more general context in Section 	��� This method does not introduce temporary variables
and is in fact closer to an implementation �e�g� �Nip
�a���

Deletion

�t �� t j S � 	 S
Decomposition

��xk �f �tn� �� �xk �f �t �n � j S � 	 ��xk �tn �� �xk �t �n j S �

Elimination

�F �� t j S � 	� �S if F �� FV�t� and
where � � fF �� tg

Imitation�Projection

��xk �F �yn� �� �xk �v�t �m � j S � 	� ��xk �Hm�yn� �� �xk ��t �m j �S �
where � � fF �� �yn �v�Hm�yn��g�
v is a constant or v � fyng� and
F �� FV��xk �v�t �m��

Flex�Flex Same

��xk �F �yn� �� �xk �F �y �n� j S � 	� �S where � � fF �� �xn �F ��zp�g
and fzpg � fyi j yi � y �ig

Flex�Flex Di�

��xk �F �yn� �� �xk �F ��y �m� j S � 	� �S where
� � fF �� �yn �H �zp��F � �� �y �m �H �zp�g
and fzpg � fyng � fy �mg

Figure ���� System PU for Pattern Unication

The algorithm coincides with standard rst�order unication algorithms� e�g� �JK
���
for rst�order terms� Notice that in the Flex�Flex rules any permutation of the bound
variables zp is su�cient for computing a most general unier�

Theorem ����� ��Mil	�a� Nip	�a�� System PU computes a most general uni�er for
two higher�order patterns if a uni�er exists�

Although this algorithm introduces new variables� in contrast to its rst�order companion�
it has the following important property�

Lemma ����� If � is a most general uni�er of two pattern s and t� then jFV��s�j
jFV�s� t�j�

Proof by induction on the length of PU reductions� �

This lemma and the following property give some insight on the variables introduced by
PU and will be important for some termination proofs in Chapter 	�

A substitution � is size increasing� if jX �yn�j � j�X �yn�j for a pattern X �yn� in long
���normal form� In the rst�order case� a most general unier is either empty or decreases
the number of variables� For pattern unication� we also have the Flex�Flex Same case
with substitutions of the form fH �� �xn �H ��ym�g� where fymg � fxng� Notice that such
substitutions do not increase the size� In Section 	�� we will show the following result�
which is di�cult to obtain with the rules of System PU� if � is a most general unier of
two patterns s and t � then either jFV��s�j � jFV�s� t�j� or � is not size�increasing�

Patterns have other important properties� A ��term can be �attened to a pattern
plus constraints as follows� For instance�

�x �h��y�f �H �y�G�a����G�X ��

can be �attened to
�x �h��y�f �X��x � y���X��

with constraints
X� � �x � y�H �y�G�a���X� � G�X ��

Formally� attening a term t at position p yields t �X �yn��p � X � �yn �t jp with yn �
BV�t � p� for some new variable X of appropriate type� Intuitively� the pattern part
represents the rigid part of a term�

Proposition ����� Assume p and q can be �attened to patterns p� and q � with the con�
straints C � If p� and q � do not unify then p and q do not unify either�

��� Higher�Order Term Rewriting

We will in general follow the notation of rst�order term rewriting� see e�g� �DJ
��� Our
denitions for higher�order rewrite systems in this section are inspired from �MN
��� We
will often� but not in general require that the left�hand side is a higher�order pattern� as
done in �Nip
�a� Nip
�b�� An important restriction is to use rules of base type only� as
it simplies the denition of the rewrite relation� it is close to the rst�order case� For
alternatives see �Pol
�� Wol
�� and for an overview we refer to �Oos
���

De�nition ����� A rewrite rule is a pair l � r such that l is not ��equivalent to a free
variable� l and r are long ���normal forms of the same base type� and FV�l� � FV�r��
A General Higher�Order Rewrite System �GHRS� is a set of rewrite rules�

De�nition ����� Assuming a rule �l � r� � R and a position p in a term s in long
���normal form� a rewrite step from s to t is dened as

s ��l�r
p�� t � sj

p
� �l � t � s��r �p�

We often omit some of the parameters l � r � p and � of a rewrite step ��l�r
p�� and for a

rewrite step with some rule from a GHRS R we write s ��R t �
Recall that we work with terms in long ���normal form only� and consider this nor�

malization as implicit� e�g� l� � l�l�
�
� Notice that the subterm sj

p
may contain free

variables which used to be bound in s� For instance ��x �f �g�x ���j�	� � g�x �� The follow�
ing denition will be used to get a formal handle on these variables�

De�nition ����� An xk �lifter of a term t away from W is a substitution � � fF ��
��F ��xk � j F � FV�t�g where � is a renaming such that Dom��� � FV�t��Rng����W �
fg and �F � 	� � � � � � 	k � 	 if x� � 	�� � � � � xk � 	k and F � 	 �

For example� fG �� G ��x �g is an x �lifter of g�G� away from any set of variables W not
containing G �� For simplicity� we often assume that W contains all variables used so far
and leaveW implicit� A term t is xk �lifted if an xk �lifter has been applied to t � Similarly�
a rewrite rule l � r is xk �lifted� if l and r are xk �lifted�

Now we can give an alternative denition for rewriting �see also �Fel
���� We have
s ��l�r

p�� t if �xk �sjp � xk ��l and t � s��r �p� where fxkg � BV�s� p� and l � r is xk �lifted
away from V � FV�s��

For instance� consider the rewrite step �x �f �x � ��
f �Y ��g�Y �
fY ��xg �x �g�x �� With the latter

notion of rewriting� we rst apply the lifter � � fY �� Y ��x �g to f �Y � � g�Y �� Then
�x �f �x � � ��x �f �Y ��x �� with � � fY � �� �x �xg� For rewriting� lifting seems unnecessary�
since only matching l with sj

p
is performed� However for narrowing� as developed later�

unication is needed instead of matching and hence lifting is essential�
In contrast to the rst�order notion of term rewriting� �� is not stable under substi�

tution� reducibility of s does not imply reducibility of �s� Its transitive re�exive closure
is however stable�

Lemma ����� Assume an GHRS R� If s
�
�� R t � then �s

�
��R �t �

The proof of this seemingly simple lemma is rather involved and can be found in �MN
���
a similar result is shown in �LS
�� for conditional rules�

A GHRS where all rules have patterns on the left�hand side is called HRS� This
corresponds to the original denition in �Nip
�a�� We call a rule l � r pattern rule�
if both l and r are patterns� Furthermore� an HRS with pattern rules only is called a
pattern HRS� A rule l � r is left�linear� if l is linear� An HRS is called left�linear� if
it consists of left�linear rules�

For programming languages� the set of constants is often divided into constructors
and dened symbols� A symbol f is called a de�ned symbol� if a rule f �� � �� �� t exists�
It is assumed that constructors are injective� i�e� c�t� � c�t �� i� t � t �� and that di�erent
constructors build di�erent terms� i�e� c�t� �� c��t �� if c �� c�� Constructor symbols are
denoted by c and d � A term is a constructor term if no dened symbols occur�

We often identify an HRS R with its associated rewrite relation� For instance� we say
an HRS R is terminating� if ��R is terminating� A term is in R�normal form if no
rule from R applies and a substitution � is R�normalized if �X is in R�normal form for
all X � Dom���� For a term t we denote the R�normal form by t�R� if uniquely dened�
and similarly for substitutions�

A rewrite step s ��l�r
p t is innermost wrt� some GHRS R� if s is not R�reducible

at a position below p� A sequence of reductions s
�
�� R t is innermost� if each step in the

sequence is innermost� An outermost rewrite step is dened correspondingly as a step
where no rewrite step applies above� In programming applications� innermost reduction
corresponds to eager evaluation and outermost to lazy evaluation� By abuse of notation�
we write s ��l�r

��� t for a rewrite step that occurs below the root position of s�
Since ��reduction on patterns only renames bound variables� we obtain the following

result on reducibility of substitutions� It generalizes the rst�order case and is crucial for
narrowing� as developed in Chapter ��

Fact ����� Assume an HRS R and a substitution �� Then �F �xn� is R�reducible� i� �F
is R�reducible�

This result will be often used for higher�order patterns� where free variables occur only
in the form as in the result above�

����� Equational Logic

A rewrite system R induces an equivalence on terms� This equational theory �R is
dened by the inference rules in Figure ���� It is shown in �Wol
�� that the equivalence
relation �R coincides with model theoretic semantics for higher�order equational logic�

Rule
l �R r

l � r � R

Re�exivity
t �R t

Symmetry
s �R t
t �R s

Transitivity
s �R t t �R u

s �R u

Abstraction
s �R t

�x �s �R �x �t

Application
s �R s � t �R t �

�s t� �R �s � t ��

Conversion
s ���� t

s �R t

Figure ���� Equational Theory of an GHRS R

Notice that in the higher�order case the application rule implies the usual congruence
rule of the form

t� �R t ��� � � � � tn �R t �n
f �tn� �R f �t �n�

Also� in the higher�order case� the standard substitution rule

s �R t
�s �R �t

can be inferred from the above by repeated abstractions and applications� For instance�
assume � � fx �� ug� then

s �R t

�x �s �R �x �t u �R u

��x �s�u �R ��x �t�u

For higher�order equational theories� the following equivalence of the equational theory
and term rewriting has rst been shown for HRS in �Nip
�a� and has been extended to
GHRS in �MN
���

Theorem ����� For any GHRS R the following are equivalent�

s �R t � sl�
�

�
�R tl�

�

The proof in �Wol
��� which gives a similar result without restrictions on the left�hand
sides only holds for terms in ��normal form� as observed by Nipkow �MN
��� A similar
result for conditional equations can be found in �LS
���

����� Con�uence

Some of the important con�uence criteria for rst�order rewriting �see e�g� �Klo
��
Hue���� have been lifted to the higher�order case� As in the rst�order case� most con�
�uence criteria are based on an analysis of overlaps�

A rule l � r of some HRS overlaps with a pattern t � if �t ��l�r
p s for some

substitution � at a non�variable position p in t � Since l and t are patterns� we assume
that � is the most general unier of t jp and l �modulo lifting�� Two rules l� � r� and
l� � r� have an overlap� if l� � r� overlaps with l� or vice versa�

An HRS is called orthogonal� if it is left�linear and there are no overlaps� For
orthogonal HRS� con�uence is shown in �MN
�� Nip
�b�� For an overview with results in
a general setting see �Oos
�� �also in �OR
���� Orthogonal HRS cover an important class
of rewrite rules� �higher�order� functional programs are left�linear and either allow no
overlaps� or only weak overlaps �Oos
��� for which con�uence holds as shown in �Oos
���

If there exist overlaps� they give rise to so�called critical pairs� A pair �u� v� is called
a critical pair of l� � r� and l� � r� if the rules overlap at position p with substitution
� and �li ��

lj�rj
p u and v � �ri � where i � f�� �g and j � �� i �

The well�known �rst�order� critical pair lemma �KB��� has been lifted to HRS�

Theorem ����� ��MN	�� Nip	�a�� An HRS R is locally con�uent if all critical pairs
�u� v� are joinable� i�e� u�Rv�

This yields the important result that con�uence of terminating HRS is decidable� as local
con�uence implies con�uence for terminating HRS�

For rst�order rewriting� there is a di�erence between con�uence and ground con�u�
ence �H�ol�
�� An HRS is ground conuent if it is con�uent on ground terms of a xed
signature� For higher�order term rewriting ground con�uence and con�uence coincide�
as ground terms may contain local �constants� in the form of bound variables� Then�
as in the rst�order case without the restriction to a certain signature �see �H�ol�
� for a
detailed discussion�� both are equivalent�

����� Termination

Termination of rewriting is undecidable� but there exist many results for terminating
classes of rewrite systems or semi�decision procedures �see e�g� �DJ
���� An ordering � is
called a termination ordering of some HRS R if ��R � � and � terminates� Usually�
to show termination for an HRS R � ln � rn � one has to nd an ordering � with ln � rn

that extends to ��R� For the rst�order case� there exist large classes of orderings that
are known to extend to ��R�

In the higher�order case� such orderings are more di�cult� as � must be preserved
by higher�order substitutions� The approach in �Pol
�� is based on strictly monotonic
interpretations of terms in monotonic domains� That is� �higher�order� symbols are in�
terpreted by monotonic functions� An example can be found in Section ���� It is shown
that an HRS terminates if the interpretation of the right hand�side is smaller than the
left�hand side for each rule�

A di�erent approach that extends lexicographic orderings on rst�order terms �DJ
��
to higher�order terms is shown in �LS
�� ALS
�a��

A con�uent and terminating HRS R is called convergent� It follows from Theo�
rem ����� for convergent R that s �R t can be decided by comparing s�R and t�R� For
a terminating GHRS R� we dene ��R

sub as

��R
sub � ��R � �sub �

For the rst�order case� termination of this reduction was shown in �JK���� The proof
in the latter can be generalized to the higher�order case as follows� We rst need the
following trivial lemmata�

Lemma ����
 If s ��R t for a GHRS R and s is a subterm of s �� i�e� s �j
p
� s� then

s � ��R s ��t �p�

Lemma ����	 Assume an GHRS R� If

s ��
sub t ��

R u

then there exists t � �sub t such that

s ��R t � ��
sub u

Theorem ������ The reduction ��R
sub � ��R � �sub is terminating for a GHRS R if

��R is terminating�

Proof by contradiction� Assume an innite sequence of ��R
sub reductions� If the reduc�

tion does not contain some �sub�step or only �sub�steps� we clearly have a contradiction�
Otherwise� assume the rst �sub�step occurs after a sequence of n ��R�steps� Then
by Lemma ����
� we can construct a sequence of length n � �� Repeating this yields a
contradiction� �

Chapter �

Decidability of Higher�Order

Uni�cation

In many works concerning higher�order unication �Wol
�� BS
�� Nad��� Pau
��� it is
observed that non�termination of higher�order �pre��unication occurs very rarely in prac�
tice� As the known decidability results �see Section ���� do not cover many practical cases�
we examine decidability of higher�order unication more closely� mostly considering the
second�order case� For an overview� we refer again to Figure ����

We show in Section 	���� that unication of a linear higher�order pattern with an
arbitrary second�order term is decidable and nitary� if the two terms share no variables�
In particular� we do not have to resort to pre�unication� as equations with variables
as outermost symbols on both sides ��ex��ex� pairs can be nitely solved in this case�
Further extensions are discussed in Section 	����� For instance� unifying two second�order
terms� where one term is linear� is shown to be undecidable if the terms contain bound
variables and decidable otherwise�

Then we develop an extension of higher�order patterns with decidable unication in
Section 	��� where second�order linear variables are permitted� The case with repeated
variables is discussed in Section 	����� The main result here is that unication of �induc�
tion schemes�� e�g� �x �P�x �	 P�x � ��� with rst�order terms is decidable�

��� Elimination Problems

In this section we consider a particular class of unication problems� called elimination
problems� of the form

�xn �P�ym� �
� �xn �t �

where P �� FV�t�� In the rst�order case such equations are trivially solvable� here
such an equation may not have a solution due to bound variables� For instance� the
unication problem �x � y�P�x � �� �x � y�f �y� has no solution� Among the applications of
elimination problems are certain �ex��ex pairs� This will allow later to use unication
instead of pre�unication in some cases�

We call this class elimination problems� as they generalize rst�order elimination�
Secondly� the strategy to solve such goals is to eliminate the bound variables fxng�fymg
in t by appropriate substitutions� For instance� the equation

�x � y�P�x � �� �x � y�f �x �X �y��

�	

has the most general solution fX �� �z �X ��P �� �x � y�f �x �X ��g� This example actually
falls into the class of patterns and is thus solvable by System PU� The main di�erence is
that System PU introduces many temporary variables for partial bindings for P � Intu�
itively� all we need for solving �xn �P�ym� �� �xn �t � where t is a pattern� is the following�

� Let W � fxng � fymg�

� If some x �W occurs on a rigid path in t then fail� otherwise�

� for each occurrence of free a variable X �zn� in t � bind X to �zn �X ��fzng � W ��
where X � is a new variable of appropriate type�

Hereby the last expression assumes an arbitrary conversion of the set of arguments to X �

to a list� The reason why we explain this special case into such detail is that this strategy
is actually used in implementations of PU� see e�g� �Nip
�a��

In addition� this strategy shows that for solving elimination problems� no �real� new
variables have to be introduced� only the variables in t are mapped to new variables with
fewer arguments� As in addition P is bound to some term� the total number of variables
decreases� which will be important for some results in Section 	���

The main focus of this section is on elimination problems where t is an arbitrary
second�order term� For this case� there can be many di�erent solutions to an elimination
problem� as the next example shows�

Example ����� Consider the pair

�x � y�F �x � �� �x � y�F ��F ���x ��F ���y���

There are two ways to eliminate y on the rhs� i�e� �� � fF � �� �z�� z��F �
��z��g and

�� � fF �� �� �z��F ��
� g� where F �

� and F ��
� are new variables�

We rst need some notation to formalize these ideas� For a variable F of type �n � ��

we dene the i�th parameter eliminating substitution 	F �i as

	F �i � fF �� �xn �F
��x�� � � � � xi��� xi��� � � � � xn�g�

where F � is a new variable of appropriate type�
The transformation rules 	EL in Figure 	�� transform triples of the form ��� l �W ��

where � is the computed substitution� l is the list of remaining terms� and W is the set
of bound variables to be eliminated� We say system EL succeeds if it reduces a triple to
��� ���W �� For the �ex��ex pair in Example 	���� system EL works as follows� starting
with the triple

�fg� ��x � y�F ��F ���x ��F ���y���� fyg��

Then EL can either eliminate the second argument of F � or it can proceed until the triple
�fg� ��x � y�F ���y��� fyg� is reached and then eliminate y� In these two cases� EL succeeds
with �� and ��� respectively� as in Example 	����� All other cases fail�

Observe that system EL is not optimal� as it can produce the same solution twice� For
instance� consider the pair �x �F �� �x �F ��F ��x ��� There are two di�erent transformation
sequences that yield the unier fF � �� �s�F ��� � � �g� More precisely� this happens only if a
bound variable occurs below nested occurrences of a variable at subtrees with the same
index�

We rst show the correctness of EL�

Eliminate

��� ��xk �P�tn�jR��W � 	EL �	P�i�� 	P�i ��xk �P�tn�jR��W �
if �x �W � BV��xk �ti�

Proceed

��� ��xk �v�tn �jR��W � 	EL ��� ��xk �tnjR��W �
unless v is a bound variable in W

Figure 	��� System EL for Eliminating Bound Variables

Lemma ����� �Correctness of EL� Let �xk �P�ym� �� �xk �t be a pair where P does
not occur in t� Assume further W � fxkg � fymg� If �fg� �t ��W �

�
	EL ��� ���W � then

� � fP �� ��ym �tg is a uni�er of �xk �P�ym� �� �xk �t �

Proof We show that fP �� ��ym �tg is a well�formed substitution� i�e� all bound variables
in �t are locally bound or are in ym � As any successful sequence of EL reductions must
traverse the whole term �xk �t to succeed� only bound variables in fymg can remain� oc�
currences of fxkg�fymg are either eliminated by some substitution 	P�i in rule Eliminate�
or the algorithm fails as the rule Proceed does not permit these bound variables�

�

The next lemma states that if � eliminates all occurrences of variables in W from tn �
then there is a sequence of EL reductions that approximates ��

Lemma ����� If 	 �tn � � �tn�� BV��tn� �W � �� � � �	 for some substitution �� and
tn are weakly second�order terms� then there exist a reduction �	� �tn��W �

�
	EL ���� ���W �

and a substitution �� such that � � �����

Proof by induction on the sum of the sizes of the terms in �tn �� Clearly� each 	EL

reduction reduces this sum� The base case� where n � �� is trivial� We show that for
each such problem some EL step applies and that the induction hypothesis can be applied�
Depending on the form of t� and the conditions of the rules of EL� we apply di�erent
rules� Assume t� is of the form �xk �P�um� and �P � �ym �t � By our variable conventions�
we can assume that W �BV��P� � �� As �xk �P�um� is a weakly second�order term� some
bound variable from W appears in ��xk �P�um� if and only if it appears in some ��xk �ui
where yi � BV��ym �t� � BV��P�� if some uk is a bound variable� then only renaming
takes place� otherwise� uk must be rst�order and hence yk must occur at a leaf in t �
Then let

i � Minfj j �x � BV���xk �uj � �W g�

The above set describes the indices of bound variables that may not occur in �P � �ym �t
by assumption on �� e�g� yi �� BV��ym �t�� If the above set is empty and no j exists� we
apply the second rule and can then safely apply the induction hypothesis�

In case the minimum i exists� we have BV���xk �ui� �W � BV��xk �ui� �W � Hence
the Eliminate rule applies with 	P�i � fP �� �xm �P��x�� � � � � xi��� xi��� � � � � xm�g� Then we
can apply the induction hypothesis to �	P�i	� 	P�i �tn ��W �� dene �� such that ��X � �X

if X �� P and ��P� � �y�� � � � � yi��� yi��� � � � � ym �t � Notice that �� is well�formed� as
yi �� BV��ym �t�� Clearly� the premises for the induction hypothesis are fullled� as
� � ��	P �i	 follows from 	P � P � Then the induction hypothesis assures that both EL
succeeds with a substitution �� and that a substitution ��� exists such that � � ������

The remaining cases of t� are trivial as the Proceed rule does not compute substitu�
tions� �

Now we can show that EL captures all uniers� We use EL to solve elimination problems
of the form �xk �P�ym� �� t � where t is not ��equivalent to a free variable� In the latter
case the solution considered in the next lemma introduces more new variables than the
trivial solution t �� �xk �P�ym��

Lemma ����� �Completeness of EL� Assume � is a uni�er of a pair of the form
�xk �P�ym� �� �xk �t � where �xk �t is not ��equivalent to a free variable and �xk �P�ym�
is a pattern� Assume further �xk �t is weakly second�order and does not contain P� Let
W � fxkg � fymg� Then there exist a substitution ��� � �� � fP �� ���ym �tg and a
reduction �fg� ��xk �t ��W �

�
	EL ���� ���W � such that ��� is more general than ��

Proof It is clear that any unier must eliminate all bound variables from W on the
right�hand side� Then the proof follows easily from Lemma 	����� �

It can be shown that EL computes at most a quadratic number of di�erent substitutions�
Let n be the number of occurrences of variables to be eliminated and let m be the
maximal number of nested free variables� Then there can be at most m distinct ways to
eliminate some particular variable� As m and n are both linear in the size� the maximal
number of solutions� i�e� mn� is quadratic�

Observe that EL is not complete for the third�order case� Here� if a free variable has
two arguments� one can be a function� If in some solution this function is applied to the
other argument� then this function could eliminate� in the above sense� the other argu�
ment� For instance� consider the third�order pair �x � y�F �x � �� �x � y�F ���z �F ���z �� y��
Here EL would not uncover the solution

fF � �� �y� z �F �
��y�z ���F

�� �� �x �a�F �� �y� z �F �
��a�g�

With System EL we can show the following result on pattern unication much easier
than with System PU� as EL introduces fewer variables�

Lemma ����� Assume � is a most general uni�er of two patterns s and t� then either
jFV��s�j � jFV�s� t�j� or � is not size�increasing�

Proof Assume a reduction �s �� t �
�
	 �

PU Gn� If no Elimination� Imitation or Projection
is applied� then the substitution is not size increasing� this is trivial for Deletion and
Decomposition and simple for the Flex�Flex rules� Otherwise� we apply System PU� but
use EL instead for all equations of the form �xn �F �ym� �� �xn �t � For this case� we show
that a solution to such an equation reduces the number of variables� It is evident that the
number of free variables remains unchanged under the parameter eliminating substitution
� computed by EL� As F is bound to some term �xn ��t � the number of variables reduces�

�

����� Repeated Bound Variables

In the last section� we did not allow repeated bound variables on the left�hand side� In
the next lemma we extend this result to relaxed patterns� which causes some technical
overhead� Repeated variables may cause an additional number of distinct uniers in
each case� as there can be di�erent permutations if a repeated variable occurs in the
common instance� Consider for example the pair �x �F �x � x � �� �x �c�x �� There are the
two solutions fF �� �y� z �c�y�g and fF �� �y� z �c�z �g�

As evident from this example� there can be an exponential number of incomparable
uniers in the general case� Consider for instance �x �F �x � x � �� �x �v � where x occurs in
v exactly n times� Then there are �n di�erent solutions� Although this may seem very
impractical� we conjecture that large numbers of uniers are rare�

In the following result we do not formalize these possible permutations explicitly� For
simplicity� we only specify the properties of the correct permutations� As the number of
permutations is clearly nite� this is su�cient� but does not yield an e�ective algorithm
for computing these�

Lemma ����� A uni�cation problem �xk �P�ym� �� t where �xk �P�ym� is a relaxed pat�
tern and t is weakly second�order and does not contain P� is �nitely solvable�

Proof Consider a pair �xk �P�ym� �� �xk �t and assume some bound variables occur
several times in P�ym�� Assume EL succeeds with ��� ��� fxk � ymg�� Let p�i � j � be the
position of the j �th occurrence of xi in �t � For this solution of EL� all solutions for P are
of the form fP �� �zm �t �g� where Head�t �jp�i�j �� � zi and yi � xi for all positions p�i � j �
of some xi in �t and Head�t �jq � � Head��t jq� otherwise� Here the last equations allow
for many permutations� as some xj may occur repeatedly in ym� All these permutations
are clearly independent from the remaining parts of the computed unier� as P does not
occur elsewhere� and can easily be computed� �

It would be interesting to develop deterministic and e�cient implementations of EL
that compute the set of all uniers� For instance� if a variable from W occurs on a path
where no free variable occurs� then this branch can safely fail� Furthermore� an e�ective
version should also detect when it produces the same solution twice�

��� Uni�cation of a Second�Order with a Linear Term

As second�order unication is undecidable� we are interested in identifying decidable
subclasses� The restriction discussed here is that one term of the unication problem is
linear� i�e� has no repeated variables� We present in the following several results on the
decidability of such unication problems� which range from nitary unication over ni�
tary pre�unication to pure decidability� A major application of the results is narrowing
with left�linear rules� as discussed in Section ���� In Section ����� we will extend the
results in this section to sets of equational goals�

����� Unifying Linear Patterns with Second�Order Terms

In this section we show that unication of second�order ��terms with linear patterns is
decidable and nitary� Let us rst use system PT to solve the pre�unication problem�

We use in the following weakly second�order terms� since this is needed in the next
Chapter��

Lemma ����� System PT terminates for a uni�cation problem with two variable�disjoint
terms s �� t if s is a linear pattern and t is weakly second�order� Furthermore� PT
terminates with a set of �ex��ex pairs of the form �xk �P�yi� �� �xk �P ��ui� where all yi
are bound variables and P is isolated�

Proof We show that system PT terminates for this unication problem� We start with
the goal s �� t and apply the transformations modulo commutativity of �� in Figure ����
By this we achieve that after any sequence of transformations� all free variables on the
left�hand sides �lhs� are isolated in the system of equations� as all newly introduced
variables on the lhs are linear also� The latter can easily be seen by examining the cases
for Imitation and Projection� the other rules are trivial� Another important invariant is
that the left�hand sides remain patterns� which is easy to verify�

Since the rst three transformations preserve the set of solutions� as shown in �SG�
��
we assume that Decomposition is applied after applying Projection to a lhs� We do not
apply Elimination to �ex��ex pairs� which could increase the size of some rhs if a bound
variable occurs repeatedly on the lhs� e�g� �x �c�x � x � �� G�

We use the following lexicographic termination ordering on the multiset of equations�

A� Compare the number of constant symbols on all lhs�s� if equal

B� compare the number of occurrences of bound variables on all lhs�s that are not below
a free variable� if equal

C� compare the multiset of the sizes of the right�hand sides �rhs��

Now we show that the transformations reduce the above ordering�

Deletion trivial

Decomposition A or B is reduced�

Elimination Although this transformation eliminates one equation� it is not trivial that
it also reduces the above ordering� Consider the possible equations Elimination is
applied to�

� F �� �xk �t � as the free variable F is isolated� A and B remain constant and
C is reduced�

� �xk �a�� � �� �� F � the elimination of an equation with a constant a reduces
A�

� �xk �xi�� � �� �� F � here B is reduced �and possibly A��

Imitation We have two cases�

�This extends the earlier results in �Pre��a��

� �xk �F �yn� �� �xk �f �tm�� the imitation binding for F is of the form F ��
�xn �f �Hm�xn��� Now� we replace the above equation by a set of equations of
the form �xj �Hi�yn� �� �xj �ti � where i � �� � � � �m� Notice that the number
of constants on the lhs �A� does not increase� as all ym are bound variables�
Also� B remains unchanged� As F is isolated and hence does not occur on any
right�hand side� C decreases�

� �xk �f �tn� �� �xk �F �um�� we obtain an imitation binding as above� Then the
number of constant symbols on the lhs�s decreases� since F may not occur on
the lhs�s�

Projection We again have two cases�

� �xk �F �yn� �� �xk �yi�tm�� as yn are bound variables� this rule applies only if the
head of the rhs is a bound variable as well� say yi � Then the case is similar to
the Imitation case above� as after Projection� the Decomposition rule applies�

� �xk �v�tn� �� �xk �F �um�� as we have weakly second�order variables on the rhs�
we again have two cases� If v is a bound variable� Decomposition applies after
Projection and we proceed as in the Imitation case� In the remaining cases�
projection bindings are of the form F �� �xm �xi � where xi is rst�order� Hence
the lhs�s �i�e� A and B� are unchanged� whereas C decreases� as we assume
terms in long ���normal form�

�

So far� we have shown that pre�unication is decidable� To solve the remaining �ex��ex
pairs� notice that all of these are elimination problems of the form

�xk �P�ym� �� �xk �P
��un��

where P is isolated and fymg are bound variables�

Theorem ����� Assume t is a weakly second�order ��term and s is a linear pattern such
that s shares no variables with t� Then the uni�cation problem s �� t is decidable and
�nitary�

Proof From Lemma 	���� we know that PT terminates with a set of �ex��ex pairs�
where the lhs is a pattern� Then by Lemma 	���� we can use EL to compute a complete
and nite set of uniers for some �ex��ex pair� as EL terminates and is nitely branching�
This unier is applied to the remaining equations� Repeat this for all �ex��ex pairs� This
procedure terminates and works correctly as all lhs�s are patterns and only have isolated
variables� Notice that a �ex��ex pair remains �ex��ex when applying a unier computed
by EL� �

We have shown in Section 	�� that EL may compute an exponential number of so�
lutions when repeated variables are permitted� Clearly� the most concise representation
of all uniers is still a �ex��ex pair� Which representation is best clearly depends on
the application� For instance� �ex��ex pairs may not be satisfactory for programming
languages where explicit solutions are desired� For automated theorem proving� �ex��ex
pairs are a more compact representation and may reduce the search space�

It should also be noted that the unication problem in Lemma 	���� allows for some
nice optimizations for implementors� For instance� no occurs check is needed� the proof
of Lemma 	���� uses the invariant that all variables on the left�hand sides are isolated�
Hence no variable can occur on a left�hand side and at the same time on some right�hand
side�

����� Extensions

In the following sections� we will examine extensions of the above decidability result�
First� notice that the linearity restriction is essential� otherwise full second�order uni�
cation can easily be embedded� But even with one linear term� this embedding still
works�

Example ����� Consider the unication problem

�x �F �f �x �G�� �� �x �g�f �x � t��� f �x � t����

where t� and t� are arbitrary second�order terms� By applying the transformations PT
it is easy to see �compare to Example ������ that in all solutions of the above problem
F �� �x �g�x � x � and t� �� t� must be solved� which is clearly undecidable�

Notice that this example requires a function symbol of arity two whereas second�order
unication with monadic function symbols is decidable�

Motivated by this example� we consider the following two extensions� First� we assume
that arguments of free variables are second�order ground terms� Secondly� we consider
the case where an argument of a free variable contains no bound variables� These two
cases can be combined in a straightforward way� as shown towards the end of this section�
Thus arguments of free variables may either be ground second�order terms or terms with
no bound variables� The generalization where only one term is linear follows easily from
Example 	�����

Corollary ����� It is undecidable to determine if two second�order terms unify� even if
one is linear�

Pre�unication of two linear second�order terms without bound variables is however de�
cidable and nitary� as shown by Dowek �Dow
��� This result is generalized in Section 	��
to higher�order patterns with linear second�order variables�

Ground Second�Order Arguments to Free Variables

We now loosen the restriction that one term must be a linear pattern� As long as all
arguments of free variables are either bound variables or ground second�order terms� we
can still solve the pre�unication problem� In particular� for the second�order case� this
can be rephrased as disallowing nested free variables� However� we only solve the pre�
unication problem� as the resulting �ex��ex pairs are more intricate than in the last
section�

Similar to the above� we present a termination ordering for a particular strategy of
the PT transformations� We will see that in essence only one new case results from
these ground second�order terms� This case can be handled separately by second�order

matching� which is decidable and nitary� �It is also an instance of Theorem 	������ That
is� whenever such a matching problem occurs� this is solved immediately �considering all
its solutions�� Hence we rst need a lemma about matching�

Lemma ����� Solving a second�order matching problem with system PT yields only so�
lutions that are ground substitutions�

Proof by induction on the length of the transformation sequence� The base case� length
zero� is trivial� The induction step has the following cases�

Deletion�Decomposition trivial

Elimination Consider the equation to which Elimination is applied�

�xk �t �
� F

The claim is trivial as �xk �t is ground�

Imitation

�xk �a�tn� �
� �xk �F �um�

The imitation binding for F is of the form F �� �ym �a�Hn�ym�� Now� we replace
the above equation by a set of equations of the form

�xk �ti �
� �xk �Hi�um�

Clearly� for any matcher �� Hi � Dom���� and by induction hypothesis �Hi is
ground� Hence in the solution to �xk �a�tn� �� �xk �F �um�� F is mapped to a ground
term�

Projection As we have second�order variables� we only have projection bindings of the
form F �� �ym �yi � which are trivially ground�

�

This result does not hold for the higher�order case� as noted by Dowek �Dow
��� e�g�
fF �� �x �x �Y �g is a solution to F ��x �a� �� a� but no complete set of ground matchers
exists� Now we can show the desired theorem�

Theorem ����� Assume s� t are ��terms such that t is second�order� s is linear and s
shares no variables with t� Furthermore� all arguments of free variables in s are either

� bound variables of arbitrary type or

� second�order ground terms of base type�

Then the pre�uni�cation problem s �� t is decidable and �nitary�

Proof We give a termination ordering for system PT with the same additional assump�
tions as in the proof of Lemma 	����� In addition� we consider solving a second�order
matching problem an atomic operation� with possibly many solutions� In particular� after
a projection on a lhs� this step eliminates one equation and applies a �ground� substitu�
tion to the rhs� It is easy to see that the two premises� only isolated variables and no
nested free variables on the lhs�s� are invariant under the transformations�

We use the following �lexicographic� termination ordering on the multiset of equations�

A� Compare the number of occurrences of constant symbols and of bound variables that
are not below a free variable on a lhs� if equal

B� compare the number of free variables in all rhs�s� if equal

C� compare the multiset of the sizes of the rhs�s�

Now we show that the transformations reduce the above ordering�

Deletion trivial

Decomposition A is reduced�

Elimination Although one equation is eliminated� it is not trivial that it also reduces
the above ordering� Consider the equations this rule is applied to�

� F �� �xk �t � as the free variable F is isolated� A and B remain constant and
C is reduced�

� �xk �v�� � �� �� F � the elimination of an equation with a constant or bound
variable v reduces A� as F does not occur on any rhs�

Imitation We have two cases� where a is a constant�

� �xk �F �um� �� �xk �a�tn�� the imitation binding for F is of the form F ��
�ym �a�Hn�ym��� Now we replace the above equation by a set of equations of
the form �xj �Hi�um� �� �xj �ti � Notice that the number of constants and bound
variables not below a free variable on the lhs�s �A� does not increase� As F
is an isolated variable and does not occur on any right�hand side� B remains
unchanged and C decreases�

� �xk �a�tn� �� �xk �F �um�� we obtain an imitation binding as above� and the
number of constant symbols on the lhs�s �i�e� A� decreases� since F may not
occur on the lhs�

Projection We again have two cases�

� �xk �F �tm� �� �xk �v�uk �� since F is an isolated variable� we obtain a single
matching problem �xk �ti �� �xk �v�uk � or� if the i �th argument is a bound
variable� the proof works as the case above �similar to the proof of Theorem
	������ In the former case� any solution to this is a ground substitution by
Lemma 	���	� Hence either B is reduced or� if the substitution is empty� B
remains unchanged and C decreases�

� �xk �v�tn � �� �xk �F �um�� as we have second�order variables on the rhs� we only
have projection bindings of the form F �� �ym �yi � Then the lhs�s �i�e� A� are
unchanged and both B and C decrease�

�

It might seem tempting to apply the same technique to arguments that are third�order
ground terms� as third�order matching is known to be decidable� However� there can
be an innite number of matchers and without a concise representation for these the
extension of the above method seems di�cult�

No Bound Variables in an Argument of a Free Variable

We show that the remaining case� where an argument of a free variable contains no
�outside��bound variables� can be reduced to a simpler case� This method checks unia�
bility� but does not give a complete set of uniers�

Theorem ����� Assume s �� u�H �t�� � � � � ti � � � � � tn��p and t are variable disjoint ��terms
such that s is linear� Assume further OBV��ym �ti� � �� where ym � BV�s� p�� Then the
uni�cation problem s �� t has a solution� i� �x��u�H �t�� � � � � x�� � � ��� �� �x��t � where x�
does not occur elsewhere� is solvable�

Proof Consider the unication problem

u�H �t�� � � � � ti � � � � � tn��p �� t

where H occurs only once in u�H �t�� � � � � ti � � � ���p and ti does not contain bound variables�
Assume fX�� � � � �Xmg � FV�ti �� Let a solution to this problem be of the form fH ��
�xn �t�g�fXo �� uog�S � As H does not occur elsewhere� we can construct a substitution
� � fH �� �xn �fxi �� t �igt�g � S � where t �i � fXo �� uogti � which is a solution to

�x��u�H �t�� � � � � x�� � � ���p �� �x��t

Notice that � is well�formed� as �ym �ti does not contain �outside� bound variables� The
other direction is simple� since x� does not occur elsewhere� i�e� not in an instance of
�x��t � �

Notice that the above procedure only helps deciding unication problems but does not
imply that pre�unication or even unication is nitary�

Putting It All Together

Now we can combine the previous results� Recall that the remaining case is undecidable
in general�

Theorem ����
 Assume s� t are ��terms such that t is second�order� s is linear and s
shares no variables with t� Furthermore� if sjp � F �tn�� then all tn are either

� bound variables of arbitrary type or

� second�order ground terms of base type or

� second�order terms of base type without bound variables form BV�s� p��

Then the uni�cation problem s �� t is decidable�

Proof First apply Theorem 	���� to the unication problem until s has no nested free
variables� This argument can be applied repeatedly� as the lhs is linear and hence the
substitutions of multiple applications do not overlap� Then Theorem 	���� can be applied
to decide this problem� �

A special case often considered �e�g� �Gol���� is terms with second�order variables� but
no bound variables� Then we get the following stronger result as an instance of Theo�
rem 	�����

Proposition ����	 Assume s� t are second�order ��terms such that s is linear and shares
no variables with t� Furthermore� s contains no bound variables� Then the uni�cation
problem s �� t is decidable�

��� Relaxing the Linearity Restrictions

In this section we discuss unication problems with shared and repeated variables which
were disallowed in the last section� The rst result is an extension of higher�order pat�
terns� The only known extension of higher�order patterns with unitary unication is due
to Dale Miller �Mil
�a�� Miller permits arguments to free variables that are patterns� but
must have a bound variable as the outermost symbol� For instance� �x � y�P�x � y�f �x ��� is
permitted� The decidability result in the next section below allows second�order variables
with patterns as arguments� as long as these variables occur only once�

The results in Section 	���� show that unitary unication is easily lost when going
beyond higher�order patterns� A further class with decidable unication is considered
that does not subsume higher�order patterns but is interesting for some applications� For
instance� unication of rst�order terms with a term �x �P�x �	 P�x ��� is shown to be
decidable�

����� Extending Patterns by Linear Second�Order Terms

We consider in the following an extension of higher�order patterns where subterms of the
form X �tn� are permitted for some patterns tn as long as X is second�order and does not
occur elsewhere� This generalizes a result by Dowek �Dow
�� which covers second�order
terms with linear second�order variables� but without bound variables� Hence it does not
subsume higher�order patterns�

We rst need the following notation� A linear second�order system of equations
is of the form

�xk �Xn�tnm � �� �xk �tn �

where all Xn are distinct and do not occur elsewhere and furthermore all �xk �tnm and
�xk �tn are higher�order patterns� By abuse of notation� we write tnm � avoiding nested
bars�

For the next result recall from Section ��� that the elimination rule in System PT is
not needed for completeness�

Theorem ����� Uni�cation of linear second�order systems is decidable�

Proof We show that System PT for higher�order pre�unication terminates for linear
second�order systems if the elimination rule is not used� We use the following lexico�
graphic termination ordering for a system S � f�xk �Xn�tnm � �

� tng�

A� jFV�tn� � FV��xk �tnm �j

B� the multiset of sizes of tn

Let us show that the transformations of PT reduce this ordering� After a projection on
the left �it may not occur on the right�� an equation between two patterns is created�
We consider solving this as an atomic operation �possibly reducing A�� We maintain the
invariant that the system remains a linear second�order system� which is easy to show�
Hence we only have to consider the imitation and projection cases�

Imitation� in this case� the number of isolated variables on the left increases� but A
remains constant and B is reduced after decomposition�

Projection reduces one equation to an equation between two patterns� Applying a
solution of this equation �if it exists� to the remaining goals yields two cases as in
Lemma 	���	� either A is reduced� or� if A remains the same� the substitution must
not increase the size and thus B is reduced as one equation is removed�

�

Now we can show the desired result� where we represent the non�pattern terms in the
unication problem by a substitution� This in fact yields a more general result� as the
permitted non�pattern subterms may occur repeatedly� For instance� f �X �a��X �a�� �� p
falls into this class� but f �X �a��X �b�� �� p does not� where p is a pattern�

Theorem ����� Assume a substitution � � fXn �� �xk �X �
n�tnm �g� where tnm are pat�

terns� and two patterns s and t� If all X �
n are distinct� second�order and further do not

occur elsewhere� then the uni�cation problem �s �� �t � is decidable�

Proof It is su�cient to solve the pattern unication problem s �� t rst� yielding a
pattern substitution � in a successful case� Then

�xk �X �
n��tnm � �

� �xk ��Xn

is a second�order linear system and is decidable by Theorem 	����� �

A typical application of Theorem 	���� are contexts� which are often used to describe
positions in terms� These are sometimes viewed as �terms with holes� and these holes are
written as boxes� For instance� f ��� a� and C ��� can be viewed as contexts� It is clearly
much more precise to express contexts by second�order terms� In particular� if a term
has several di�erent �holes�� For instance� we would write ���f ��� a� and ���C ���
instead of the above and would let ��reduction perform the substitution for concrete
values for �holes�� Thus contexts can be modeled by linear second�order variables� With
the above result� we have a method to determine if a rst�order term t unies with a
�linear� context lled with some term� For instance� in order to nd overlaps of two rules
li � ri � i � �� � in an abstract fashion� the equations ����C ����li �� l��i � i � �� �
are to be solved� Notice that the last unication problems permit trivial solutions� e�g�
fC �� li��g� which are not of interest here�

As another example� we can model term rewriting with contexts� Assume a rule
l � r � Checking if s is reducible by this rule is done by matching ����C ����l with s�
Similarly� for narrowing� as we see in the next chapter� unication of ����C ����l with s
is needed�

����� Repeated Second�Order Variables

We show in this section another decidability result for second�order unication that is
tailored for a particular application� As we aim at relaxing the linearity conditions
in results of the last section� we need several technical restrictions� Notice that this
extension easily leads to innitary unication problems� For instance� if ground terms
are permitted as arguments to free variables� the following example shows that there exist
innitely many uniers� the problem

F �f �a�� �� f �F �a��

has the solutions fF �� �x �f n�a�g� n � � where f ��X � � X and f n���X � � f �f n�X ���
Apart from the above example� equations of the form F �t� �� t �� where F occurs in

t �� are unsolvable in most cases� We conjecture that the solvable cases are based on some
symmetries� For instance� consider the equation

F �f �a� a�� �� f �F �a��F �a���

The solutions are of the form

fF �� �x �xg� fF �� �x �f �x � x �g� fF �� �x �f �f �x � x �� f �x � x ��g� � � �

We conjecture that all solutions to equations F �t� �� s with F � FV�s� are of such a
form and can possibly be described by nite automata or grammars �Tho
���

Some interesting examples fall into this class� Consider unication with a typical
induction scheme�

P�����x �P�x �	 P�x � ��
 �x �P�x �

Typically in such formulas� some arguments to free variables are not bound variables� but
ground �constructor� terms� here P�x ���� Recall that the quantier � can be viewed as
a second�order constant and that �x �P�x � is nicer syntax for ���x �P�x ���

Unication of a term with a repeated free variable with some higher�order pattern
permits innitely many solutions� consider for instance

�x �f �P�x ��	 P�f �x �� �� �y�X �y�� X �y�

which is similar to the above unication problem F �f �a�� �� f �F �a���
The main result of this section is that unication of such terms with �quasi� rst�order

terms is decidable� A term �xk �t is quasi �rst�order if t is rst�order� For instance�
�x �F �x �� f ��x �x � are not quasi rst�order� but �x �f �x �P� is quasi rst�order�� A simple
property of quasi rst�order terms we will use is the following� if t is quasi rst�order� p
is a pattern� and �p � t then � is quasi rst�order on FV�p��

A pattern with ground arguments is a pattern with the exception that arguments
to free variables are ground terms which contain at least one outside bound variable but
no local binders� An example is �x �P�x � �� x �� but �x �P�f ��y�y�� is not�

Lemma ����� Assume �xk �t is a quasi �rst�order term� �xk �P�tn� is a second�order
pattern with ground arguments� Then the uni�cation problem �xk �P�tn� �� �xk �t is
decidable and� furthermore� if � is a maximally general solution then �P is quasi �rst�
order�

Proof Decidability follows from Theorem 	���� as �xk �P�tn� �� �xk �t is a linear system
and P �� FV��xk �t� since t is rst�order� We apply Imitation and Projection of System
PT� except on elimination problems� This terminates by Theorem 	���� for second�order
linear systems� In case of a Projection� a matching problem of the form �xk �ti �� �xk �t ��
where t � is quasi rst�order� is created� This only has quasi rst�order solutions� since ti
has no local binders�

Imitationmay create elimination problems of the form �xk �P ��tn� �� �xk �X � which can
be solved by System EL� This yields the solution fP � �� �xk �X g� as all tn contain bound

�This is more restrictive than the de�nition of quasi��rst�order in �LS��� ALS��a��

variables� As P � cannot occur elsewhere in a linear system� the remaining unication
problems do not change and the system remains linear� Thus decidability of the original
unication follows and maximally general uniers do exist� Furthermore� any solution
for some X on the right is quasi rst�order� Hence for any solution � computed� �xk ��t is
quasi rst�order� This entails that �P must be quasi rst�order as well� as �P�tn � � �t �
if �xk ��P is not quasi rst�order� then �xk ��P�tn� cannot be quasi rst�order� as all tn
are ground and of base type� �

Lemma ����� Assume �xk �p is a higher�order pattern where no abstractions occur in p�
and �xk �t is a quasi �rst�order term� Then maximally general solutions of the uni�cation
problem �xk �p �� �xk �t are quasi �rst�order�

Proof We rst construct a solution � to the problem �xk �p �� �xk �t � Then we show
that � cannot map some free variable in �xk �t to a term containing bound variables�

We apply the rules of system PU except on elimination problems� Since p has no
locally bound variables and t is quasi rst�order� we can assure the invariant that there
are no bound variables except xk � Elimination problems are either of the form �xk �t� ��

�xk �X or of the form �xk �P�ym� �� �xk �t�� and are solved by System EL� If an elimination
problem is of the rst form� it is clear that any solution for X must be rst�order� as all
bound variables in t� must be eliminated and since there are no locally bound variables on
some lhs� For the second form of elimination problems� if solvable� the obvious solution
P �� �ym �t� is quasi rst�order� Thus any solution � computed is quasi rst�order�

This entails that ��xk �p � ��xk �t is quasi rst�order and hence � must be quasi
rst�order for the free variables in p as well� �

Now we are ready for the main result of this section�

Theorem ����� Assume �xk �p is a higher�order pattern where no abstractions occur in
p� �xk �P�tnm � are second�order patterns with ground arguments� �xk �Pn�yno� are patterns�
and �xk �t is quasi �rst�order� Then the uni�cation problem

�xk �p �� �xk �t � �xk �P�tnm � �� �xk �Pn�yno�

where P �� FV��xk �p� �xk �t� is decidable�

Proof The structure of the proof is as follows� We solve the equation �xk �p �� �xk �t
as in Theorem 	����� yielding a quasi rst�order substitution �� Then we show that the
remaining equations can be solved under this substitution� Wlog� we assume P �� FV����

After solving �xk �p �� �xk �t � there remain the following cases for the equations

�xk �P�tnm � �� �xk ��Pn�yno� �	���

� All equations in �	��� are �ex��ex and thus have a solution� Otherwise

� some Pi � Dom���� We solve the i �th equation �xk �P�tim � �� �xk ��Pi�yim � as in
Lemma 	����� as �xk ��Pi�yim � is quasi rst�order� This yields a quasi rst�order
substitution �� for P � Applying this to the remaining equations yields a set of
equations with higher�order patterns only� Thus solving the remaining goals is
decidable�

�

The last result applies directly to rst�order theorem proving with additional induction
schemes written as second�order formulas� For instance� consider a data structure for
binary trees with the destructors left tree� right tree� Then a premise of an induction
scheme for binary trees may read as

�x �P�left tree�x �� � P�right tree�x ��	 P�x �

Encoding a unication problem of a term �x �t with the above scheme into in the form
required for the last result yields�

�x �P��x � � P��x �	 P	�x � �� �x �t

�x �P�left tree�x �� �� �x �P��x �

�x �P�right tree�x �� �� �x �P��x �

�x �P�x � �� �x �P	�x �

Although we have found another decidable class of unication problems� the result also
shows that it is increasingly complicated to describe these classes�

��� Applications and Open Problems

As mentioned in the introduction� higher�order unication is currently used in several
theorem provers� programming languages� and logical frameworks� With the above results
we can now develop simplied and somewhat restricted versions of the above applications
that enjoy decidable unication� It should be mentioned that several systems such as Elf
�Pfe
�� and Isabelle	 have already resorted to higher�order patterns� where unication
behaves much like the rst�order case�

The main restriction we use to achieve decidability is linearity� There is an interesting
variety of applications where linearity is a common and sometimes also useful restriction�
The main application and also the original motivation for this work is higher�order nar�
rowing� which will be developed in the next chapter�

Recall for instance the rule

map�F � cons�X �Y ��� cons�F �X ��map�F �Y ��

which has a linear pattern as the left�hand side� Interestingly� when coding functions such
as map into predicates� as for instance done in higher�order logic programming �NM����
the head of the literal� e�g�

mapP�F � cons�X �Y �� cons�F �X ��L�� �� mapP�F �Y �L��

is not linear� However� when this rule is used only on goals of the form mapP�t � t ��Z ��
where Z is a fresh variable�
 then the unication problem is decidable as it is equivalent
to a unication with a linear term� Thus our results also explain to some extent why
unication in higher�order logic programming rarely diverges�

Another application area is type inference� which is mostly based on unication�
whereby decidable static type inference for programming languages is desired� In many

�Isabelle still uses full higher�order pre�uni�cation� if the terms are not patterns�
�Such variables are also called 	output�variables
 in �Red����

advanced type systems such as Girard�s system F �GLT�
� variables may range over
functions from types to types� i�e� second�order type variables� In particular� Pfenning
�Pfe��� relates type inference in the n�th�order polymorphic ��calculus with n�th�order
unication� As another example� for SML �MTH
�� some restrictions avoid second�order
unication problems in the module system� Thus progress in higher�order unication may
help nding classes where type inference is decidable� However� non�unitary unication
often means no principal �i�e� most general� type�

Other applications are described in the following�

Theorem Proving

Higher�order theorem provers often work with some form of a sequent calculus� where
most rules have linear premises and conclusions e�g�

"
 A "
 B
"
 A � B

Furthermore� non�linear unication problems occur mostly with rewriting� e�g� with rules
such as P � P �� P � For rewriting� however� only matching is required�

Another interesting result for theorem proving was discussed in Section 	��� unica�
tion of rst�order terms with induction schemes of the form �x �P�x �	 P�x � ���

Associative Uni�cation

Unication modulo the law of associativity was an open problem for a long time� until
Makanin �Mak��� showed its decidability�

It is known that associative unication can be embedded into higher�order unication�
see e�g� �Pau
��� With Theorem 	����� we can show the decidability of a class of problems
that extends associative matching �which is rather trivial�� The idea for the encoding is
that function application is associative� for instance

�x ���y�f �g�y���h�y� � �x �f �g�h�x ����

Thus associative lists are coded by functions� e�g� the list �a� b� is coded by the term
�x �cons�a� cons�b� x ��� It may seem that this representation for lists is clumsy� but it has
the advantage that appending a list to another can be done by a single ��reduction� This
representation has been discussed in �Hug��� and corresponds to the idea of di�erence
lists in logic programming� as discussed in Section ����

For instance� the matching problem

�x �F �G�cons�c� x ��� �� �x �cons�a� cons�b� cons�c� x ���

has the three solutions

fF �� �y�y�G �� �y�cons�a� cons�b� y��g�
fF �� �y�cons�a� y��G �� �y�cons�b� y�g�
fF �� �y�cons�a� cons�b� y���G �� �y�yg�

As the left�hand side of the last matching problem is a second�order term� we can use
Theorem 	���� to decide associative unication problems where one side only has linear
variables with ground arguments� e�g� the problem

�x �F �G�cons�c� x ��� �� �x �cons�Y �X �x ��

is decidable� In this example� �x �F �G�cons�c� x ��� represents all lists ending in c and
�x �cons�Y �X �x �� stands for a non�empty list�

����� Open Problems

We brie�y mention some open problems for future examination� Is the unication of a
pattern with a linear second�order term decidable This might be equivalent to unication
of two linear second�order terms� Another question is whether second�order �ex��ex pairs
can be solved nitely� This may be possible by extending EL� The counterexample in
�Hue��� only gives a third�order pair with nullary unication�

The above unication problems are at least NP�hard� as they subsume second�order
matching� which is NP�complete �Bax���� Are they also NP�complete

Is there any way to extend the results to the third�order case Not an obvious
one� since this would subsume third�order matching which may have innitely many
incomparable solutions� Another question is whether the particular strategy in Theorem
	���� is really necessary for termination�

An interesting idea would be to combine the nice properties of higher�order patterns
with the above decidability results� Assume we want to unify an arbitrary pattern with a
second�order term� Then there are two overlapping decidable subclasses of this problem�
i�e� pattern unication and Theorem 	����� Apart from selecting the appropriate algo�
rithm depending on the occasion� there is a more interesting way� The main problem for
combining these is the linearity restriction in the above results� The idea is to linearize
one of the terms to be unied� More precisely� if we unify an arbitrary pattern p with a
second�order term t � we can rst make p linear and add some equality constraints� Then
we solve the unication problem and apply the solutions to the equality constraints�

For instance� if p � �y�f �X �y��X �� we replace the unication problem p �� t by

�y�f �X �y��Y � �� t �X �� Y �

Now if the rst problem is solvable by � and if t is a pattern as well� the resulting problem
�X �� �Y is a pattern unication problem� With this construction� we can integrate
both results� In fact� we can even decide further problems� although it seems di�cult to
describe this class� For instance� the unication problem

�x �g�f �x �G��� f �x �G��� �
� �x �F �f �x �G���

is similar to Example ����� but does not fall into any decidable class� We transform this
into

�x �g�f �x �G��� f �x �G��� �
� �x �F �f �x �G���G� �� G��

Solving rst the linear version is equivalent to Example ����� and yields the solution
fF �� �x �g�x � x ��G� �� G�G� �� Gg� It remains to solve the trivial equation G �� G�
Interestingly� repeating this linearization procedure may yield an algorithm for general
second�order unication�

Chapter �

Higher�Order Narrowing

This chapter discusses several approaches for solving higher�order equations by narrowing�
Inspired by the di�erent notions of rst�order narrowing� we develop a framework for
higher�order narrowing� For an overview� we refer again to Figure ���� The results in
Section 	�� on the decidability of unication of two second�order ��terms� where one term
is linear� are one of the main motivations for this work� the unication problem needed
for second�order narrowing is decidable if the left�hand sides of the rewrite rules are linear
higher�order patterns�

The structure of this chapter is as follows� We rst discuss some general aspects of
narrowing in Section ���� The rst approach we consider is the general notion of �plain�
narrowing� for which many renements exist� e�g� basic narrowing �Hul���� The idea of
this approach is to nd an instance of a term such that a rewrite step somewhere in
the term becomes possible� For this� Section ��� presents an abstract view of higher�
order narrowing� where a problem with locally bound variables in the solutions becomes
apparent� We show in Section ��� that the rst�order notion of plain narrowing can
be lifted to higher�order patterns and argue that it is problematic when going beyond
higher�order patterns� In the general approach in Section ��� most real problems are
hidden in the unication� We discuss some of these in Section ����

As the approach to lift plain narrowing is not satisfactory� we consider an alternative
approach to rst�order narrowing in the higher�order setting� lazy narrowing� The idea
here is to integrate narrowing into unication and to permit only narrowing at root
positions� This is discussed in Section ��	� where we show that many of the problems
encountered in the rst approach can be avoided�

The restriction to normalized substitutions is standard for rst�order plain narrowing�
For lazy narrowing we consider both normalized and reducible solutions� As in the
rst�order case� normalized solutions usually require a terminating HRS� but allow to
restrict the most unconstrained case of narrowing� narrowing at variable positions� This
renement is examined in Section ������ Following this line� including normalization into
narrowing� as shown in Section ������ is desirable� as normalization is a deterministic
operation� The restriction allows for a further optimization� deterministic eager variable
elimination� as examined in Section ������ In general� it is an open question if eager
variable elimination is a complete strategy� In our setting� we can di�erentiate two cases
of variable elimination� where elimination is deterministic in one case�

Equational programming is a special case of general equation solving� e�g� the restric�
tion to left�linear rules is common� We show that for this class of problems a certain

	�

class of equational goals su�ces� These are called Simple Systems �Section ������ and
enjoy several nice properties� For instance� with the results on second�order unication
of Section 	����� we show that the syntactic solvability of second�order Simple Systems
remains decidable� as it is in the rst�order case� Furthermore� solved forms are much
easier to detect than in the general case�

Combining the results for normalized substitutions with the properties of Simple
Systems in Section ����� leads to an e�ective narrowing strategy� Needed Lazy Narrowing�
The basis for this strategy is a classication of the variables occurring in Simple Systems
in Section ������ This allows to recognize and to delay intermediate goals� which are only
solved when needed�

As some of these renements for lazy narrowing build upon others� we show these
dependencies in Figure ���� Notice that all renements can be combined in a straightfor�
ward way�

Conditional rules are a common extension of term rewriting� useful in many ap�
plications� We consider the general case of arbitrary conditions for lazy narrowing in
Section ���� In Section ����� we argue that a restricted class of rules where no extra
variables are allowed on the right sides of conditions� called normal conditional rules�
are su�ciently expressive for higher�order functional�logic programming� We show that
the renements developed for unconditional lazy narrowing can be extended to normal
conditional narrowing�

Another approach of higher�order narrowing is discussed in the last section of this
chapter� The main problems of plain narrowing in the higher�order case come from
the fact that narrowing at variable positions is needed� Section ��
 shows that we can
factor out this complicated case by �attening the terms to patterns plus adding some
constraints� Then narrowing on the pattern part proceeds almost as in the rst�order
case and it remains to solve the constraints� which can be done by lazy narrowing� In that
way we have a modular structure� and higher�order lazy narrowing is used only where
needed�

	�� Scope and Completeness of Narrowing

In the following� we explain the assumptions of this approach to narrowing and discuss
their implications�

In our approach� we only show completeness of narrowing wrt� solutions� sometimes
only normalized substitutions� That is� for a goal s �� t � we consider solutions � with
�s

�
�� t � We view this as the most general and basic concept of narrowing� as most of

the common notions of completeness are easy to derive� For instance� for a convergent
HRS R� this yields a complete algorithm for matching modulo the equational theory
of R �for unication see below�� In convergent theories� for any solution there exists
an equivalent normalized one� thus our results su�ce for complete R�unication or R�
matching� For some results we explicitly require a convergent HRS and also give results
tailored towards convergent HRS�

An alternative notion of completeness has been developed for programming language
applications� Taking denotational semantics as the basis� two terms are equal� roughly
speaking� if they can be evaluated to the same constructor term� This is called strict or
continuous equality� For this notion of completeness wrt� denotational semantics �Red�	��

L
az
y
N
ar
ro
w
in
g

S
im
p
le
S
y
st
em
s�

le
ft
�l
in
ea
r
H
R
S
��
��
��
�

D
ec
id
ab
il
it
y
in

S
ec
on
d
�o
rd
er
C
as
e

��
��
��
�

S
ol
ve
d
F
or
m
s
��
��
��
��

V
ar
ia
b
le
s
of
In
te
re
st

��
��
��
�

N
ee
d
ed
L
az
y

N
ar
ro
w
in
g
��
��
��
�

R
es
tr
ic
ti
n
g
N
ar
ro
w
in
g

at
V
ar
ia
b
le
s
fo
r

N
or
m
al
iz
ed
S
ol
u
ti
on
s

��
��
��
�

D
et
er
m
in
is
ti
c

V
ar
ia
b
le
E
li
m
in
at
io
n

��
��
��
�

N
or
m
al
iz
at
io
n
��
��
��
�

C
on
st
ru
ct
or
�b
as
ed

H
R
S
��
�	
��
�

Figure ���� Dependencies of Lazy Narrowing Renements

it su�ces to consider only constructor based solutions� which are clearly normalized� This
approach has led to implementations of functional�logic programming� e�g� �MNRA
���
It has also been extended to non�con�uent HRS� which are used for non�deterministic
programming� as developed in �Hu�
���

Strict equality permits non�terminating rewrite rules� which has been claimed as an
advantage of this approach� In contrast� we argue in Section ����� that non�terminating
rules� as used in lazy functional languages� are not needed in logic programming�

Strict equality can be encoded with left�linear rules in our setting� We simply dene
a function s equal that forces the evaluation to a constructor term� For instance� for
natural numbers the rules

s equal�s�X �� s�Y �� � s equal�X �Y �

s equal��� �� � true

su�ce� assuming the constructors s and �� This encoding works in a straightforward
manner for rst�order data types� It is however unclear how to extend strict equality to
the higher�order case�

For the higher�order case� an alternative approach for non�convergent HRS is to embed
the calculi we develop into higher�order logic programming �Nad���� for with model�
theoretic semantics exist �Wol
���

In the rst�order case� our notion of plain narrowing �with some additional control
strategy� is also called lazy narrowing �see e�g� �Han
�a� LLFRA
���� Furthermore�
lazy narrowing as dened here is called lazy unication in the rst�order case �Han
�c�
MRM�
�� Our naming conventions are based on some earlier works �Sny
�� H�ol��� H�ol�
��

	���� Oriented Goals

We consider in this work only oriented �or directed� goals s �� t with solutions � such
that �s

�
�� t � Systems of such goals are used directly for lazy narrowing� For plain

narrowing� it su�ces to consider narrowing derivations starting from one term� here s�

In other works� solutions with reduction in both directions� i�e� �s��t � are considered�
Directed goals simplify the technical treatment in many respects and are essential for
some renements� For instance� we show in Section ����� that strong invariants for sets
of directed goals are possible for functional�logic programming and permit deterministic
variable elimination� Directed goals are also more appropriate for programming language
applications� as they are operationally more perspicuous� The expressiveness lost by this
assumption can easily be recovered by the following technique� add an equality predicate
� and the rule X � X � true to a rewrite system R� Then the R�unication problem
of two terms s and t can be stated as s � t �� true and solved by narrowing� This
yields a semi�decision procedure for unication modulo a convergent R� as narrowing is
complete wrt� normalized substitutions� It is important to observe that this added rule
X � X � true does not destroy convergence� Notice that this rule is not left�linear� which
is essential for some renements regarding programming� In essence� this shows that for
left�linear rules� there is a di�erence between matching and unication� For instance�
there are cases where matching is decidable but unication is not �DMS
�� Pre
�c��

	�� A General Notion of Higher�Order Narrowing

The idea of rst�order plain narrowing is� roughly speaking� to nd an instance of a term
such that some subterm can be rewritten� Repeating this yields a complete method for
matching modulo a theory given by a convergent rewrite system R�

Since ��calculus can express a notion of subterm� we can model narrowing in a very
abstract way� Already in this very general setting we will identify a problem with locally
bound variables in solutions� To handle bound variables correctly within ��calculus� it
will be necessary to guess these variables beforehand� which is clearly unsatisfactory�

We simulate a context where reduction takes place by an appropriate higher�order
variable C � i�e� instead of s ��l�r t we can write s � �C �l� �� �C �r� � t for
an appropriate substitution �� For instance� to rewrite c�f �X �� with f �X � � g�X ��
it su�ces to take C �� �x �c�x �� This yields the following generalization of rst�order
narrowing� where most of the real problems are hidden in the unication�

De�nition ����� A ��term s narrows to t with a rule l � r and with a substitution
�� written as s �l�r

� t � if

� 	 is a yk �lifter of l �

� � is a unier of s �� C ��yk �	 l�� where C is a new variable of appropriate type� and

� t � �C ��yk �	r��

A few comments are in order�

� The yk �lifter employed is completely arbitrary� any k � � is possible� This causes
innite branching�

� Even for restricted left�hand sides the relation may not be decidable�

� The equation s �� C �l� may be a �ex��ex pair� such pairs are usually not solved�
as only higher�order pre�unication is used in applications� Furthermore� for such
equations� minimal complete set of uniers may not exist�

� Instead of explicitly replacing a subterm at position p� we use ��reduction for this
purpose� It is possible to make the subterm explicit where the replacement takes
place� but this considerably complicates the completeness proof�

� Note that l may occur repeatedly or not at all in �C �l�� i�e� �s � �t is possible�

Lemma ����� �One Step Lifting� Let R be a GHRS and let l � r � R� Suppose we
have two terms s and t with �s � t for a substitution � and a set of variables V such
that FV�s� � Dom��� � V � If t ��l�r

p t �� then there exist a term s � and substitutions �
and � such that

� s �l�r
� s ��

� �s � � t ��

� �� �V ��

� FV�s �� � Dom��� � V �Dom��� � Rng����

Proof Assume yk � BV�t � p� and t ��l�r
��p t �� where l � r � R is a yk �lifted rule� away

from V � Let �� � � � fC �� �x �t �x �yk ��pg � 	 � Then �� is a unier of s �� C ��yk �l�� Let
� be a more general unier � such that �� �V �� for some �� Assume wlog� Dom��� �
FV��s�� As �� �V �� we have � �V ��� Then� by denition� s �l�r

� s � and �s � � t �

follows from
�s � � ��C ��yk �r� � ��C ��yk �r� � t ���yk ��

�r�yk �p � t ��

Using FV�r� � FV�l� we obtain

FV�s �� � FV��C ��yk �r�� � FV��C ��yk �l�� � FV��s� � V �Dom��� �Rng����

Hence we have
FV�s �� � Dom��� � V �Dom��� �Rng���

as Dom��� � FV��s�� �

With Lemma ������ completeness of narrowing can be shown easily� as for instance in the
next section� Notice that the above proof uses some unier that is more general than
the substitutions of the reduction considered� although it would be su�cient to use the
solution � as the unier of s �� C ��yk �	 l�� It would be desirable to use a maximally
general unier instead� but these may not exist for higher�order unication�

For the proof of the above lemma it is important that the rewrite rule l � r has
been lifted over the right number of bound variables� Let us see by an example that the
number of variables over which a rule has to be lifted cannot be determined beforehand�
The problem occurs when a solution � for a variable X contains a local �y and a rewrite
step in a subterm below where y occurs has to be lifted� When narrowing the replaced
subterm is made explicit in �C �l� �� �C �r�� but y is not visible yet� With the lifting
of l � r it is possible to rename bound variables in r later� A somewhat similar problem
with higher�order matching was reported in �Pau��� and �PE����

Example ����� Assume R � fh�P � a� � g�P � a�g and consider the matching problem
H �a� �� u��y�g�y� a�� with the solution fH �� �x �u��y�h�y� x ��g� When narrowing
without lifting� we obtain H �a��R H ���g�P �� a��� which matches u��y�g�y� a��� but does
not subsume the above solution� as g�P �� a� cannot be instantiated to g�y� a��

The solution is obtained here by lifting the rule over one parameter� First� the solution
to the unication problem H �a� �� C ��y�h�P�y�� a��� which is needed for the narrowing
step� is

fH �� �x �H ���y�h�P�y�� x ���C �� �x �H ���y�x �y��g�

Then we have H �a��R H ���y�g�P�y�� a�� and the matching problem can be solved with
the substitution fH � �� �x �u�x ��P �� �x �xg� In the general case� the solution to H may
contain an arbitrary number of locally bound variables� such as y here� but the need to
lift over these variables is not visible when looking at H �a�� To obtain completeness for
this denition of narrowing� we thus have to guess locally bound variables� at least in our
framework�

Alternatively� it would be possible to ignore the binding rules of ��calculus while
computing a solution and then to check if no bound variable is captured once a solution
is found� This has the disadvantage that failures are detected very late� Thus this
approach seems unsatisfactory� both from a practical and from a logical point of view�

The above notion of narrowing is not of great computational interest� For instance�
there is little hope to nd cases where even the application of narrowing is decidable�
We show in the following section that the rst�order notion of narrowing can be lifted to
higher�order patterns� Then we discuss the problems of extending this approach to the
higher�order case�

	�� Narrowing on Patterns with Pattern Rules

In this section we show that the rst�order notion of �plain� narrowing can be adapted
to a restricted set of ��terms� higher�order patterns� Then� as in the rst�order case�
narrowing at variable positions implies that the used substitution is reducible� thus this
step is redundant�

Assumption� We assume in this section that all terms� including the rewrite rules�
are patterns�

Although pattern rules are not su�cient for expressing higher�order functional pro�
grams �see e�g� Section ����� there are examples from other areas� where bound variables
are involved� For instance� scoping rules for quantiers �as in �Nip
�a��� e�g�

P � �x �Q � �x ��P �Q��

can be expressed by patterns�

De�nition ����� A pattern narrowing step from a pattern s to t with a pattern rule
l � r at a non�variable position q with substitution � is dened as s �

p

l�r
q�� t � where

� 	 is a yk �lifter of l � where yk � BV�s� q� and

� � is a most general unier of �yk �sjq and �yk �	 l � and

� t � ��s�	r �q��

This notion of narrowing coincides with the standard denition of rst�order narrowing
on rst�order terms� Here� in contrast to the notion of narrowing in Section ���� we only
have to lift the rule l � r into the context at position q� The problem in Section ���
with locally bound variables occurs only when narrowing at variable positions� which is
not needed here� When working with rst�order equations� as done by Qian �Qia
�� and
by Snyder �Sny
��� this lifting is not strictly needed� as the bound variables in sj

q
can be

treated as new constants and#or ignored� This enables Qian to lift completeness of rst�
order narrowing strategies to patterns for rst�order equations� We conjecture that most
rst�order narrowing strategies can also be lifted to our setting� yet not as in �Qia
���

For a sequence

s��
p

R
��
s��

p

R
��
� � ��

p

R
�n
sn

we write s�
�
�
p

R
� sn� where � � �n � � � ��� We rst lift one rewrite step in a solution to one

narrowing step� The lemma and its proof resemble closely their rst�order counterparts�
as e�g� in �MH
��� This result has been developed independently by the author in �Pre
�b�
and in �ALS
�a� LS
�� for conditional rules �see Section ��� for more details��

Lemma ����� �One Step Lifting� Let R be a pattern HRS and let l � r � R� Sup�
pose we have two patterns s and t with t � �s for an R�normalized substitution �� and
a set of variables V such that FV�s� � Dom��� � V � If t ��l�r

� t �� then there exist a
term s � and substitutions �� � such that

� s �
p

l�r
� s �

� �s � � t �

� �� �V �

� � is R�normalized

� FV�s �� � Dom��� � V �Dom��� � Rng���

Proof Assume �s ��i�r
p�� t � and l � � r � is a rule lifted over yk from l � r away from

V � As l is of base type� �sj
p
cannot be an abstraction� We have ��s�j

p
�
l �� Since � is

R�normalized� p is a non�variable position in s and �sj
p
� ��sj

p
��

Let � be a most general unier of �yk �sjp and �yk �l � such that there exists � with
�� �V �� Assume that � is minimal� i�e� Dom��� � V �Dom��� �Rng��� holds� Since
� is a pattern substitution� � is R�normalized� as � is�

Then� by denition� s �
p

l�r
��p s � � �s�r ��p� To see that this step lifts the rewrite step

on �s� it remains to show

�s � � ��s�r ��p � ��s�r ��p� � t ��

The second equation follows from �� �V �� Then from FV�r� � FV�l� and from
FV��sjp� � FV��l�

FV�s �� � FV��s� �r� � FV��s� �l� � FV��s� � V �Dom��� �Rng���

follows� Hence we have FV�s �� � Dom��� � V � Dom��� � Rng��� as � is minimal�
which concludes the proof� �

The following lemma holds for patterns as for rst�order terms �MH
���

Lemma ����� Let �� �� �� be pattern substitutions and V �V � be sets of variables such
that �V � �Dom���� � Rng��� � V � If � �V �� then �� �V � ����

Completeness of narrowing follows as in the rst�order case�

Theorem ����� �Completeness of Pattern Narrowing� Let R be a pattern HRS�
Suppose we have terms s and t � �s for a substitution � and a set of variables V such
that FV�s��Dom��� � V � If t

�
��R t �� then there exist a term s � and substitutions �� �

such that

� s
�
�
p

R
� s �

� �s � � t �

� �� �V �

� FV�s �� � Dom��� � V �Dom��� � Rng���

Proof by induction on the length of the reduction from t to t �� Assume t ��l�r
� t�� By

Lemma ����� there exist a term s� and substitutions ��� �� such that

� s �
p

l�r
��

s �

� ��s � � t�

� ���� �V �

� �� is R�normalized

� FV�s �� � Dom���� � V �Dom���� �Rng����

Let V� � V �Dom���� �Rng����� Then the induction hypothesis yields

� s�
�
�
p

R
��
s �

� �s �� � t �

� ��� �V�
��

� � is R�normalized

� FV�s �� � Dom��� � V� �Dom���� �Rng����

Let � � ����� Then �� �V � follows as ��� �V�
�� and ����� �V ���� yields ����� � ��

with Lemma ����� and hence �� � �� �

	�� Narrowing Beyond Patterns

We discuss in the following the problems when extending the rst�order notion of plain
narrowing for patterns to full ��terms� both in the rules as in the goals� For this purpose�
we use in this section the relation � in a more informal way to exemplify the problems
involved� In Example ����� we have identied a problem with locally bound variables�
This and several other problems stem from the fact that narrowing at variable positions is
required� since the rewrite step we lift might have been at a redex created by ��reduction�
We discuss this with the following example�

Example ����� Assuming the rewrite system

R� � ff �f �X ��� g�X �g�

narrowing at a variable position is required to nd the solution fH �� �x �f �x �g to the
problem �x �H �f �x ���� �x �g�x ��

�x �H �f �x ���R�

H ��x 	f �x� �x �g�x �

Now the problem is how to dene narrowing at variable positions� For instance� consider
the solution � � fH �� �x �h�f �x �� x �g to the equational problem

�x �H �f �x ���� �x �h�g�x �� f �x ���

wrt� the R��reduction

�x �h�f �f �x ��� f �x �� ��R� �x �h�g�x �� f �x ���

The naive approach� to instantiate H as little as possible� as in

�x �H �f �x ���R�

H ��x 	H ��f �x�� �x �H
��g�x ���

fails� The problem is that the subterm f �x � is duplicated by � and the reduction does
not occur inside f �x �� An idea is to create a �local context� at this variable� Hence� we
instantiate H rst with fH �� �x �H ���H ��x �� x �g� Then� after ��reduction� the subterm
H ��f �x �� can be unied by fH � �� �x �f �x �g with the left�hand side f �f �x �� and can be
rewritten� Thus we have

�x �H �f �x ���R�

H ��x 	H ��f �x��x� �x � y�H
��g�x �� x �

and the solution� here fH � �� �x � y�h�x � y�g� is then obtained by unication�
Intuitively� we approximate the desired solution �H in the rst argument of H ��� A

further problem occurs when narrowing on an argument of a free variable� For instance�
assume the narrowing step

H �f �X ���R�

X ��f �Y � H �g�Y ���

Then some solution to H may copy the argument of H � thus this narrowing step cor�
responds to several rewrite steps� As a consequence� the solution fX �� f �Y ��H ��
�x �h�x � x �g with the reduction

H �f �f �Y ����� h�g�Y �� f �f �Y ��

to the above matching problem will not be found with the narrowing step above� The
redex is copied in the solution� but for narrowing� only one copy is visible�

Due to all these problems� we do not develop the notion of plain narrowing further
and instead focus on the alternative� lazy narrowing� in the next section� In addition�
we develop another approach that extends pattern narrowing by additional higher�order
constraints in Section ��
�

	�� Lazy Narrowing

A more goal�directed method to solve equational problems in a top�down manner is lazy
narrowing� The main idea is to integrate narrowing into unication� That is� when
R�matching s with t � we start with a goal s �� t that may be simplied to smaller
goals� Then narrowing steps are performed at the root only� where the unication of the
left�hand side of the rule with s again has to be done modulo R�

For instance� to solve a goal h�t�� t�� �� v�X �Y �� we either simplify the goal to the
goals t� �� X and t� �� Y if h � v � or apply a narrowing step at the root in a lazy
fashion� That is� assuming a rule h�a�Z �� g�b�� we transform the above goal to

ft� �
� a� t� �

� Z � g�b� �� v�X �Y �g�

In contrast to plain narrowing� not the rst rewrite step in a solution �h�t�� t�� ��

�v�X �Y � is modeled� but the rst outermost one� Assume this is the rewrite step to t �

in
�h�t�� t��

�
�� �h�a�Z � ��l�r

� t �
�
�� �t �

Now the purpose of the goals t� �� a� t� �� Z is easy to see� the rewrite steps in
�h�t�� t��

�
�� �h�a�Z � are modeled by these two goals�

In the last example� Z does not occur on the right�hand side of the rule h�a�Z � �
g�b�� Speaking in programming terminology� it is not necessary to �evaluate� the term t��
here to Z � This corresponds to lazy evaluation� as t� can be reducible� The reason for this
is that lazy narrowing� in its simple form� is also complete for reducible solutions� which
makes it possible to model lazy evaluation� Notice that the solution for the intermediate
variable Z may not be normalized� In our context� so�called innite data�structures in
lazy languages correspond to reducible terms whose normalization diverges� In contrast�
the theory of plain narrowing often considers normalized substitutions with innermost
reductions� which corresponds to eager evaluation in a programming language�

It should be noted that the notion of laziness in Lazy Narrowing not only serves for
lazy evaluation as in lazy or non�strict languages� but also to lazy instantiation of free
variables� Intuitively� this means that instantiations are only performed when needed�
This distinction will become clear later� e�g� in Section ����

Let s
�
� t stand for one of s �� t and t �� s� For a sequence 	�� � � � 	�n of LN

steps� we write
�
	 �� where � � �n � � � ���

The full set of rules for lazy higher�order narrowing� called System LN� is shown in
Figure ���� System LN essentially consists of the rules for higher�order unication �SG�
�
plus the Lazy Narrowing rule� Observe that the rst ve rules in Figure ��� apply
symmetrically as well� in contrast to the narrowing rule�

The subscripts �d� and d on goals only serve for a particular optimization and are
not needed for soundness or completeness� The idea is to use marked goals s ��

d t �
These are created only in the Lazy Narrowing rule� in order to avoid repeated application
of Lazy Narrowing on these goals� The remaining rules work on both marked goals and

unmarked goals� indicated by ��
�d�� For both

�
� and ��

�d� the rules are intended to

preserve the orientation for
�
� and marking for ��

�d�� Only the Decomposition rule and
the Imitation rule� which includes decomposition� transform marked goals to unmarked
goals� In other words� on marked goals Lazy Narrowing may only be applied after some
decomposition took place�

For instance� reconsider from Example ����� the R��matching problem

�x �H �f �x ���� �x �h�g�x �� f �x ���

where LN yields

f�x �H��f �x ���
� �x �g�x �� �x �H��f �x ���

� �x �f �x �g

by the imitation fH �� �y�h�H��y��H��y��g� Then the second goal can be solved by
Projection� and the rst by Lazy Narrowing to

f�x �H��f �x ���
�
d �x �f �f �X �x ���� �x �g�X �x �� �� �x �g�x �g�

Notice that the rst goal is marked� thus Lazy Narrowing does not re�apply� This is
an important restriction� since otherwise innite reductions occur� as in this case� very
often� The two goals can be solved by several higher�order unication steps� which yield
the solution

fH� �� �y�f �y��X �� �x �xg�

Deletion

ft ��
�d� tg � S 	 S

Decomposition

f�xk �f �tn���
�d� �xk �f �t

�
n�g � S 	 f�xk �tn �� �xk �t �ng � S

Elimination

fF
�
��d� �xk �tg � S 	� �S if F �� FV��xk �t� and

where � � fF �� �xk �tg

Imitation

f�xk �F �tn�
�
��d� �xk �f �t �m�g � S 	� f�xk �Hm��tn�

�
� �xk ��t �mg � �S

where � � fF �� �xn �f �Hm�xn ��g
and Hm are new variables

Projection

f�xk �F �tn�
�
��d� �xk �v�t �m�g � S 	� f�xk ��ti�Hj �tn��

�
��d� �xk �v��t �m �g � �S

where � � fF �� �xn �xi �Hj �xn ��g�
ti � 	j � 	� and Hj are new variables

Lazy Narrowing

f�xk �s �� �xk �tg � S 	 f�xk �s ��
d �xk �l � �xk �r �� �xk �tg � S

where l � r is an xk �lifted rule

Figure ���� System LN for Lazy Narrowing

At rst glance� the Lazy Narrowing rule of System LN looks rather simple� The
hidden restrictions by the marking of goals can be made more explicit by splitting Lazy

Lazy Narrowing with Decomposition

f�xk �f �tn��� �xk �tg � S 	 f�xk �tn �� �xk �lng � f�xk �r �� �xk �tg � S
where f �ln �� r is an xk �lifted rule

Lazy Narrowing at Variable

f�xk �H �tn��� �xk �tg � S 	 f�xk �H �tn���
d �xk �lg � f�xk �r �

� �xk �tg � S
where l � r is an xk �lifted rule

Figure ���� The Two Cases of the Lazy Narrowing Rule of System LN

Narrowing into two rules� depending on the head of the left�hand side� This is shown in
Figure ���� The rst rule is easily inferred from LN as in this case the Lazy Narrowing rule
yields a marked goal �xk �f �� � ����

d �xk �f �� � ��� where only decomposition applies� Observe
that the two rules do not permit narrowing steps on goals of the form �xk �xi �� � ���� �xk �t �
As the two rules are more intuitive and clearly equivalent to the Lazy Narrowing rule of
System LN� we often use the two rules above instead whenever convenient�

The completeness proof of system LN is built upon the completeness proof of higher�
order unication in a modular way� the termination ordering is a lexicographic extension
of the one in Theorem ������

Theorem ����� �Completeness of LN� If s �� t has solution �� i�e� �s
�
��R �t for

some GHRS R� then fs �� tg
�
	

LN F such that � is more general modulo the newly
added variables than � and F is a set of �ex��ex goals�

Proof The proof proceeds by induction on the following lexicographic termination or�
dering on �Gn� ��� where for Gn � sn ��

�d� tn is a system of goals with solution �� i�e�

�sn
�
�� �tn � Notice that a transformation not only changes Gn� but also the associated

solution has to be updated as in Theorem ������ The ordering assumes an arbitrary� but

xed reduction �sn
�
�� �tn �

� A� compare the multiset of sizes of the number of R�reductions in each goal �Gi � if
equal

� B� compare the multiset of sizes of the bindings in �� if equal

� C� compare the multiset of sizes of the goals Gn�

We maintain the following invariant for marked goals� if s ��
d t � then Head��s� �

Head��t� is not a free variable and furthermore� no rewrite step at root position occurs
in �s

�
��R �t � Then the Lazy Narrowing rule does not need to be applied to marked goals

as shown below� Notice that Decomposition and Imitation on marked goals decompose
the outermost symbol and yield unmarked goals� Thus these rules preserve the invariant�

First consider the case that all goals are �ex��ex pairs� Then the goals are considered
solved� If not� we show that for any non �ex��ex goal some rule applies that reduces the
ordering�

Select some non �ex��ex goal s ��
�d� t from Gn� In the base case for criteria A� that

is �s � �t � some higher�order unication rule applies� as in Theorem ������ It is clear
that this does not increase A and also approximates ��

Otherwise� there must be a rewrite step in �s
�
�� �t � In the rst case� assume there

is no rewrite step at the root position in �s
�
�� �t � Hence all terms in this sequence

have the same root symbol� Then one of the unication rules must apply� similar to the
last case�

Now assume there are rewrite steps in �s
�
�� �t at root position� Then we consider

the rst of these� which we assume to be �s
�
�� �xk �s� ��l�r

� �xk �t�� Hence s� � t�
must be an instance of l � r � and there exists � such that �l � �r � s� � t�� Assume
l is of the form f �lm�� Lazy Narrowing yields the new goals s ��

d �xk �l and �xk �r �� t �
We can extend � for the newly added variables� dene �� � � � �� This is well dened�
as we assume that l � r is renamed by an appropriate lifter� Thus �� is a solution of
s ��

d �xk �l and �xk �r �� t � that coincides with � on FV�s� t�� The two new goals have
solutions with a smaller number of steps� thus reducing the termination ordering� Since
we consider the rst rewrite step a root position� the new marked goal s ��

d �xk �l fullls
the invariant� as Head��s� � Head��l� and no rewrite step can occur at root position� �

Compared to the approach in Section ���� many problems are now taken care of by
higher�order unication� For instance� locally bound variables in a solution are com�
puted in an outside�in manner before the inner Lazy Narrowing step needs to lift over
these� Furthermore� �ex��ex pairs can express a possibly innite number of solutions�
This is already very useful for higher�order unication� but even more for higher�order
equational unication� It must however be noted that the Imitation and Projection rules
copy subterms several times� which implicitly solves many of the problem encountered in
Section ����

With plain narrowing� narrowing at variable positions is needed� The corresponding
goals in lazy narrowing can often be delayed as �ex��ex pairs� For instance� consider
the goal �x �c�F �f �x ��� �� �x �c�G�x �� wrt� R�� where lazy narrowing stops after one
decomposition step� whereas plain narrowing may blindly narrow at F �� � ���

As discussed for System PT in Section ���� there are two sources of non�determinism
for such systems of transformations� which rules to apply and how to select the equa�
tions� As in Theorem ������ completeness does not depend on the goal selection� as each
subgoal is independently solvable� Compared to pure higher�order unication� there is an
important di�erence as the Elimination and Decomposition rules are not deterministic
any more�

It is interesting to compare LN with recent work on rst�order lazy unication in
�Han
�c�� Restricting our system to the rst�order case almost yields Hanus�s system
�with the di�erence that we consider oriented goals�� For instance� the transformations
in �Han
�c� yield so�called quasi�solved systems� which correspond to systems of �rst�
order� �ex��ex pairs� Notice that the Imitation rule coincides for the rst�order case with
�partial instantiations� in �Han
�c� and with the �root imitation� rule in �Sny
���

	���� Narrowing Rules for Constructors

In practice� GHRS often have a number of symbols� called constructors� that only serve
as data structures� For constructor symbols� we can extract a few simple rules for Lazy

Narrowing� Their main advantage is that their application is deterministic� The rules in
Figure ��� cover the cases where the root symbol of the left side of a goal is a constructor�
Notice that the rules� except for the rst� are only possible with oriented goals� where

Deterministic Constructor Decomposition

f�xk �c�tn���
�d� �xk �c�t

�
n�g � S 	 f�xk �tn �� �xk �t �ng � S

if c is a constructor symbol

Deterministic Constructor Imitation

f�xk �c�tn���
�d� �xk �F �ym�g � S 	� f�xk �tn �� �xk �Hn�ym�g � �S

where � � fF �� �ym �f �Hn�ym��g
and Hn are new variables

Constructor Clash

f�xk �c�tn���
�d� �xk �v�t

�
m�g � S 	 fail

if c �� v � where c is a constructor symbol
and v is not a free variable

Figure ���� Deterministic Constructor Rules

evaluation proceeds only from left to right� The correctness of the rules in Figure ���
follows immediately from the denition of a constructor� if �xk �c��tn�

�
�� t � then t will

have the constructor c as the root symbol�

	���� The Second�Order Case

We examine in this section how the lazy narrowing rules can be rened in the second�
order case� The goal is to show that for this case the Lazy Narrowing at Variable rule can
be handled more directly by two new rules� The aim is operationally more perspicuous
transformation rules� Furthermore� second�order terms su�ce in most applications�

For the second�order case� we can rene the Lazy Narrowing rule into three separate
rules� as shown in Figure ��	� The rule Lazy Narrowing at Variable corresponds to two
new rules� One of these includes Imitation� the other Projection� For instance� consider
the goal

G��� �� �

modulo the rule f ��� � �� Then the new rule Lazy Narrowing with Imitation directly
simplies this to

��� �� ��� ��

The aim of such specialized� but still complete rules is to avoid divergence and to detect
failures early�

De�nition ����� System SLN for second�order lazy narrowing consists of the rules in
Figure ��	 plus the rules of second�order unication�

As in Section ��	 with System LN� we use marked goals to avoid Lazy Narrowing
rules before Decomposition has been applied� Notice that only the last rule introduces
marked goals�

Lazy Narrowing with Decomposition

f�xk �f �tn��� �xk �tg � S 	 f�xk �tn �� �xk �ln � �xk �r �� �xk �tg � S
where f �ln�� r is an xk �lifted rule

SO�Lazy Narrowing with Imitation

f�xk �H �tn��� �xk �tg � S 	� f�xk �Hm��tn��� �xk �lm � �xk �r �� �xk ��tg � �S
where f �lm�� r is an xk �lifted rule and

� � fH �� �xn �f �Hm�xn ��g

SO�Lazy Narrowing with Projection

f�xk �H �tn��� �xk �tg � S 	� f�xk ��ti ��
d �xk �l � �xk �r �

� �xk ��tg � �S
where l � r is an xk �lifted rule and
� � fH �� �xn �xig

Figure ��	� Second�Order Lazy Narrowing Rules for System SLN

Completeness of the above rules is easy to see� we only show the di�erences to the
proof of Theorem ��	��� Assume a derivation �s

�
��R �t �

The case we have to consider is when some reduction takes place at the head of some
term in this sequence� Then we lift the rst of these reductions� which must be of the
form

�s � �xk �f �sn�
�
��R �xk �f �s �n� ��

R �xk ��
�r

�
��R �t �

for some rule f �lo� � r � The only cases that are di�erent from the completeness proof
on LN are the last two rules� i�e� if s is of the form �xk �H �tn�� As Head��s� � f � it must
either be an imitation binding� as covered by the narrowing rule with imitation� where
the consequent decomposition is already performed� Otherwise� the narrowing rule with
projection applies as in the original Lazy Narrowing rule�

	�	 Lazy Narrowing with Normalized Substitutions

We examine in this section renements for lazy narrowing that restrict the solutions con�
sidered to normalized substitutions� As in the rst�order case� this yields many important
optimizations� For convergent HRS R this is not a restriction� as for any substitution
there is an equivalent R�normalized one�

Some of the optimizations generalize well�known ideas of the rst�order case� e�g�
normalization in Section ������ The results on eager variable elimination in Section �����
are however new and hold only as we work with directed goals�

	�	�� Restricting Lazy Narrowing at Variable Positions

We show in this section that narrowing at variables X �xn� is not needed for R�normalized
substitutions with some HRS R� For patterns reducibility of a term �X �xn� implies that
� is not R�normalized by Theorem ����	� hence violating the assumption� We conjecture
that in practice� as in higher�order logic programming �MP
�a�� most terms are patterns
and hence narrowing at variables is not needed very often�

This results generalizes the rst�order case� as for rst�order terms narrowing at vari�
able position is not needed� This is the main idea of narrowing with R�normalized
solutions� It is an important optimization� as narrowing at variable positions is highly
unrestricted and thus may create large search spaces�

For this result the restriction to an HRS with pattern left�hand sides and innermost
reductions is necessary� For any solution there exists an innermost reduction� if R is
convergent�

De�nition ����� System LNN is dened as a restriction of system LN where Lazy
Narrowing at Variable is not applied to goals of the form �xn �X �ym��� t �

Completeness follows as for Theorem ��	���

Theorem ����� If s �� t has solution �� �s
�
�� R �t is an innermost reduction� and �

is R�normalized for some HRS R� then fs �� tg
�
	

LNN F such that � is more general�
modulo the newly added variables� than � and F is a set of �ex��ex goals�

Proof The proof proceeds as in Theorem ��	��� in addition we have to show the invariant
that the solutions for all �new� variables are normalized substitutions�

Assume a goal with normalized solution �� In case of a Projection or Imitation�
the partial binding computed maps a variable X to a higher�order pattern of the form
�xn �v�Hm�xn��� The new solution constructed �as in the proof of Theorem ������ maps
the newly introduced variables Hm�xn� to subterms of �X � which are in R�normal form�
Hence all �Hm must be in R�normal form� For the Elimination rule� no new variables are
introduced� thus the solution remains R�normalized�

The critical case is when new variables are introduced in the narrowing rule� The
narrowing rule is not used if there are rewrite steps in �s

�
�� �t at root position� We

consider the rst of these� which we assume to be �s
�
�� �xk �s� ��l�r

� �xk �t�� Hence
s� � t� must be an instance of l � r � say with substitution �� i�e� �l � s�� As l is a
pattern� all terms in Im��� are subterms of s� �modulo renaming� see Theorem ����	��
As the above reduction is innermost� all true subterms of s� must be in R�normal form
�note that s� is not a variable�� Hence � must be R�normalized as well� Since we assume
that l � r is renamed with new variables� �� � � � � is well dened� Then after applying
the Lazy Narrowing rule� �� is a solution of the resulting goal system and is furthermore
R�normalized�

Finally� with the invariant that �� is R�normalized� it is clear from the completeness
proof of LN that LNN is complete as there can be no rewrite step in the solution � of a
goal �xn �X �ym��� t as �X is in R�normal form� �

A few comments are in order�

� A simple consequence of the last result is that System LNN is complete for matching
modulo convergent HRS� Unication can be encoded as shown in Section ������

� Observe that the restriction to HRS in the last result is essential� If the left�hand
sides are non�patterns� then solutions to new variables may be reducible in case of
a lazy narrowing step� Assume for instance a is reducible for some GHRS� If an
instance �f �G��x �a�� of a left�hand side f �G��x �a�� is R�normalized� then � need
not be R�normalized� consider e�g� � �� �x �x �a��

� This result implies the following optimization� if a goal �xn �X �ym� �� t is un�
solvable by pure unication� then we can immediately fail this search path� Since
this is an elimination problem as considered in Section 	��� this is decidable in the
second�order case�

The results in this section imply that Lazy Narrowing is not applied to goals of the form
�xn �X �ym��� t and their descendants� since such goals are transformed only to goals of
this form� A special case of such goals is considered in the next section�

	�	�� Deterministic Eager Variable Elimination

Eager variable elimination is a particular strategy of general E �unication systems� The
idea is to apply the Elimination rule as a deterministic operation whenever possible� That
is� when elimination applies to a goal� all other rule applications are not considered�

It is an open problem of general �rst�order� E �unication strategies if eager vari�
able elimination is still complete �Sny
��� Interestingly� in �Han
�c� the elimination is
purposely avoided in a programming language context as it may copy terms whose eval�
uation can be expensive�

In our case� with oriented goals� we obtain more precise results by di�erentiating
the orientation of the goal to be eliminated� As we consider oriented equations� we can
distinguish two cases of variable elimination� In one case elimination is deterministic�
i�e� no other rules have to be considered� In other words� eager variable elimination is
complete in this case�

Theorem ����� System LNN with eager variable elimination on goals X �� t with
X �� FV�t� is complete for convergent HRS R

Proof We show that the elimination of X reduces the termination ordering in the proof
of Theorem ��	��� as � is R�normalized� there can be no rewrite step in �X �� �t � Thus
�X � �t follows� Hence for all other goals s �� s �� �s �� �s � remains unchanged for
an elimination step at X �� t � Binding X to t reduces measure B since the number of
bindings decreases� �

In the general case� variable elimination may copy reducible terms with the result that
the reductions have to be performed several times� Notice that this case of variable
elimination does not a�ect the reductions in the solution considered� as only terms in
normal form are copied� �t must be in normal form�

There are a few important cases when elimination on goals of the form t �� X is
deterministic�

Theorem ����� System LNN with eager variable elimination on goals t �� X � where t
is either

� ground and in R�normal form or

� a pattern without de�ned symbols�

is complete for convergent HRS R

Proof In both cases it is clear that �t is in R�normal form for an R�normalized solution
�� Then elimination of X reduces the termination ordering in the proof of Theorem ��	��
as in Theorem ������ �

As LNN is complete for normalized solutions� the last result yields a renement for System
LNN� Notice that this renement only holds with directed goals� In an undirected setting�
reductions in both directions are possible� For instance� with the HRS f �X � � a the
equation P �� f �P� can be solved with fP � ag�

	�	�� Avoiding Reducible Substitutions by Constraints

Although system LNN restricts narrowing at variable positions� system LNN can still
compute reducible substitutions� For instance� assume the rule f �a� � b and the goal
H �a� �� b� Then Narrowing at Variable followed by one imitation step with fH ��
�x �f �H��x ��g creates the two goals

H��a��
� a� b �� b�

Performing Imitation on the rst goal with fH� �� �x �ag yields the solution fH ��
�x �f �a�g� which is clearly not normalized�

We can restrict the search for normalized substitutions further by adding constraints
as shown in Figure ���� The idea of these constraints is to detect reducible substitutions�
In the following� we show the restrictions needed for adding such constraints in a safe
way�

In the Narrowing at Variable rule� we can avoid a trivial solution fH �� �xn �lg to
the goal �xn �H �tn� �

� �xn �l � which leads to a reducible solution� Observe that in the
rst�order case this trivial solution is always possible� unlike in the higher�order case�

Similarly� we can add a constraint in the Imitation rule� if some variable X is partially
instantiated by a term f �Xn�� Then for all computed substitutions � the term �f �Xn�
must not be reducible� We denote these constraints by Irr�tn�� with the intended meaning
that tn are not R�reducible�

The important invariant to preserve is that the terms in the constraints are patterns�
In essence� the constraints only hold approximations for some variable of the solution to
be computed� If the terms are non�patterns� reducibility of a term t in a constraint Irr�t�
does not imply that the solution considered� i�e� �t � is reducible� For patterns� however�
Lemma ����	 shows that �t is reducible� if t is�

De�nition ����� We dene System LNC by replacing the appropriate rules of System
LN with the rules in Figure ����

Recall that the Elimination rule is not necessary for completeness of both PT and LN�
Thus it is possible to restrict the Elimination rule to patterns in LNC without losing
completeness� System LNC can be viewed as a renement of System LNN with some
additional constraints� If some constraint is added� it is clear that the termmust not be R�
reducible� Furthermore� with the restriction of the elimination rule to patterns it follows�

Elimination

fF
�
� tg � S 	� fIrr��F �g � �S

if F �� FV�t� and t is a pattern
where � � fF �� tg

Imitation with Constraints

f�xk �F �tn�
�
� �xk �f �t �m�g � S 	� f�xk �Hm��tn�

�
� �xk ��t �m�g�

fIrr��F �g � �S

where � � fF �� �xn �f �Hm �xn��g
and Hm are new variables

Lazy Narrowing with Constraints

f�xk �s �� �xk �tg � S 	 f�xk �s ��
d �xk �lg � f�xk �r �

� �xk �tg�
fIrr�FV�l��g � S
where l � r is an xk �lifted rule

Constraint�Failure

fIrr�tn�g � S 	 fail if some ti is R�reducible

Figure ���� System LNC for Lazy Narrowing with Constraints

as for Theorem ����	� that all computed substitutions are patterns� Thus completeness
of LNC for normalized solutions follows easily� We will see later that this restriction for
the Elimination rule is fullled for a special strategy we examine in Section ������

It may seem that checking the reducibility constraints is costly� but with normalized
substitutions many redundant narrowing attempts can be avoided early� This has been
shown in the context of LSE narrowing �BKW
��� where also many reducibility conditions
have to be checked�

Notice that System LNC may introduce redundant constraints that lead to redundant
checks� e�g� if Irr�t� is added and t is a subterm of an existing constraint� All in all� the
idea of this section is to show when it is possible to add irreducibility constraints� In
applications it may be interesting to add constraints only selectively� as reducibility checks
can be costly�

	�	�� Lazy Narrowing with Simpli�cation

Simplication by normalization of goals is one of the earliest �Fay�
� and one of the
most important optimizations� Its motivation is to prefer deterministic reduction over
search within narrowing� Notice that normalization coincides with deterministic evalua�
tion in functional languages� For rst�order systems� functional�logic programming with
normalization has shown to be a more e�cient control regime than pure logic program�
ming �Fri�	� Han
���

The main problem of normalization is that completeness of narrowing may be lost�
For rst�order �plain� narrowing� there exist several works dealing with completeness of
normalization in combination with other strategies �for an overview see �Han
�b��� Recall
from Section ��	�� that deterministic operations are possible as soon as the left�hand side
of a goal has been simplied to a term with a constructor at its root� For instance� with
the rule f ���� �� we can simplify a goal f ����� g�Y � by

ff ����� g�Y �� � � �g 	 f� �� g�Y �� � � �g

and deterministically detect a failure�
In the following� we show completeness of simplication for lazy narrowing under some

restrictions on the HRS employed� The result is similar to the corresponding result for the
rst�order case �Han
�c�� The technical treatment here is more involved in many respects
due to the higher�order case� Using oriented goals� however� simplies the completeness
proof�

For oriented goals� normalization is only complete for goals s �� t � where �t is in
R�normal form for a solution �� For instance� it su�ces if t is a ground term in R�normal
form� This is in general no restriction as discussed in Section ����� and corresponds to
the intuitive understanding of directed goals�

De�nition ����� A simpli�cation step on a goal s �� t is a rewrite step on s� written
as fs �� tg 	NLN fs � �� tg if s ��R s �� Normalizing Lazy Narrowing �NLN�� is
dened as the rules of LN plus arbitrary simplication on goals�

Observe that simplication is not desirable and hence not permitted at marked goals�
Furthermore� simplifying the right�hand sides is not desirable� It may produce solutions

repeatedly� For the Constructor Clash rule �see Section ��	��� a constructor at the left
su�ces� normalizing the right�hand side may even evade this search space pruning�

We rst need an auxiliary construct for the termination ordering in the completeness
result� The decomposition function D on goals is dened as

D�s �� t� � s �� t

D��xk �f �sn��
�
d �xk �f �tn�� � �xk �sn �� �xk �tn

and is undened otherwise� The function D extends component�wise to sets of goals�
The idea of D is to view marked goals as goals with delayed decomposition� Thus D
maps goals to their intended interpretation�

Theorem ����� �Completeness of NLN� Assume a con�uent HRS R that terminates
with order �R� If s �� t has solution �� i�e� �s

�
��R �t where �t and � are R�normalized�

then fs �� tg
�
	

NLN F such that � is more general modulo the newly added variables
than � and F is a set of �ex��ex goals�

Proof Let �R
sub � �R � �sub� AssumeGn � sn ��

�d� tn is a system of goals with solution

�� i�e� �sn
�
��R �tn � Let s �m �

� t �m � D�Gn�� The proof proceeds by induction on the
following lexicographic termination order on �Gn� ���

� A� �R
sub extended to the multiset of f�s �mg�

� B� multiset of sizes of the bindings in ��

� C� multiset of sizes of the goals �Gn�

� D� �R extended to the multiset of fsng�

By Theorem ������� item A is terminating� For the proof we need the invariant that all t �m
are R�normalized terms� As in Theorem ��	��� the following invariant holds for marked
goals� if s ��

d t � then Head��s� � Head��t� is not a free variable and furthermore� no
rewrite step at root position occurs in �s

�
�� R �t �

In the following we show that normalization reduces this ordering and� furthermore�
that for a non �ex��ex goal some rule applies that reduces the ordering� In addition� we
show in each of these cases that the above invariants are preserved� First� we select some
non �ex��ex goal s �� t from Gn � If none exists� the case is trivial�

We rst consider the case where a simplication step is applied to an unmarked goal�
i�e� s �� t is transformed to s � � t � We obtain �s

�
�� �s � from Lemma ������ As �t is in

R�normal form� con�uence of R yields �s
�
�� �s �

�
�� �t � Thus � is a solution of s � � t �

For termination� we have two cases�

� If �s � �s �� measures A through C remain unchanged� whereas D decreases�

� If �s �� �s � measure A decreases�

Clearly� the invariants are preserved�
If no simplication is applied� we distinguish two cases� if �s � �t � then we proceed

as in pure unication� Similar to Theorem ������ one of the rules of higher�order uni�
cation applies� In case of the Deletion rule� measure A decreases� For Decomposition on
marked goals� A and B remain unchanged� whereas C decreases� On unmarked goals�

Decomposition reduces A� Imitation on marked goals does not change A� but reduces B�
on unmarked goals� it reduces A� Projection only decreases B�

As in Theorem ������ normalization of the associated solution is preserved� Further�
more� the terms �t �m do not change under Decomposition and Imitation on marked goals�
On unmarked goals� Decomposition and Imitation yield new right�hand sides� These are
subterms of �t and are thus R�normalized�

In the remaining case� there must be a rewrite step in �s
�
�� �t � In the rst case�

assume there is no rewrite step at the root position in �s
�
�� �t � Hence all terms in this

sequence have the same root symbol� Then� similar to the last case� one of the unication
rules must apply�

Now consider the case with rewrite steps in �s
�
�� �t at root position� Clearly�

s �� t cannot be marked� Assume the rst of these to be �s
�
�� �yk �s� ��l�r

� �yk �t��
with the rule l � r � Notice that s� � t� must be an instance of l � r � Then we apply
Lazy Narrowing� yielding the subgoals�

s ��
d �yk �l � �yk �r �

� t

As there exists � such that s� � �l and t� � �r � we can extend � to the newly added
variables� dene �� � ���� Let sm �� lm � D���s ��

d �yk ��
�l�� Clearly� si �R

sub �
�s holds�

and ���xk �r �R
sub �

�s follows from ��s
�
�� ���yk �r � Thus �� is a solution of sm �� lm and

�yk �r �� t � that coincides with � on FV�Gn�� It remains to show that �� is in R�normal
form� Similar to Theorem ������ we assume that the reduction is innermost and thus �lm
are in R�normal form� As l is a pattern� this yields that �� is R�normalized� �

The termination ordering in this proof is rather complex� For instance� the last item in
the ordering is needed in the following example� assume a goal �x �c�F �x � t�� �� �x �c�x �
with solution � � fF �� �x � y�xg� Here� normalization of t does not change the term
��x �c�F �x � t�� and thus does not contribute to the solution�

It should be mentioned that the results for deterministic eager variable elimination in
Section ����� can easily be extended to this slightly di�erent completeness proof� measure
A is reduced as one goal is removed and the remaining �sn do not change�

	�
 Lazy Narrowing for Left�Linear HRS

This section examines renements possible for left�linear rewrite rules� This is an impor�
tant class of rewrite rules� as left�linearity is common in functional��logic� programming
languages� The main contribution is a restricted class of goals that su�ces for lazy nar�
rowing with left�linear HRS� This class facilitates several optimizations not possible for
general HRS�

	�
�� An Invariant for Goal Systems� Simple Systems

In this section we introduce a particular class of goal systems� Simple Systems� with
several interesting properties� For instance� the occurs check is not needed and it is easy
to check if the system is solved� We show that this class is closed under the rules of LN
for left�linear R� Furthermore� in the second�order case� the syntactic solvability �wrt�
the conversions of ��calculus� is decidable for systems of this class�

The invariant of Simple Systems allows for further optimizations� e�g� a closer analysis
of the variables involved and eager variable elimination �Section �������

The properties are not specic to the higher�order case and apply to st�order systems
as well� This holds particularly for results on solvability checks in the next section� which
can be expensive in an actual implementation�

To introduce Simple Systems� we rst dene an ordering on goals�

De�nition ����� We write s �� s � � t �� t �� if FV�s �� � FV�t� �� fg�

This ordering links goals by the variables occurring� e�g� t �� f �X � � X �� s� If
Gi � Gj we say there is a connection between these two goals� If two goals have no
connection� then they are called parallel�

The following properties are essential for Simple Systems�

De�nition ����� A system of goals Gn � sn �� tn is called cycle free if the transitive
closure of� is a strict partial ordering on Gn and right isolated if every variable occurs
at most once on the right�hand sides of Gn �

Now we are ready to dene Simple Systems�

De�nition ����� A system of goals Gn � sn �� tn is a Simple System� if

� all right�hand sides tn are patterns�

� Gn is cycle free� and

� Gn is right isolated�

For instance� to solve a matching problem s �� t we may wlog� assume that t is ground�
thus the system is simple�

No corresponding renement for the rst�order case is known to our knowledge� For
rst�order lazy narrowing in �DMS
��� right isolation is used� But the invariant there
is not completely formalized and serves only a very special purpose� Simple Systems
generalize this informal invariant in �DMS
�� in several respects� Another fragment of
Simple Systems� i�e� the ordering on goals� is used in �CF
�� to locate simplication steps
after instantiation of variables�

The following properties of variables in Simple Systems follow easily from the deni�
tion�

Lemma ����� Assume a Simple System Gn and a goal Gi � �s �� t�� Then

� FV�s� � FV�t� � fg�

� If X � FV�s� and Gi is minimal wrt� ��� then X occurs on no right�hand side�

� If X � FV�t� and Gi is maximal wrt� ��� then X occurs nowhere else�

Solving a single goal l �� r of a Simple System by pure unication is decidable in the
second�order case by Theorem 	����� since r is a linear pattern and l and r share no
variables� We extend this to goal systems in Section ������ Notice that in a Simple
System� no occurs check is needed� e�g� P �� c�P� cannot occur� This extends to the
full system of goals since no cycles are allowed� For instance� a �hidden� occurs check�
as in fP �� c�Q��Q �� Pg� is impossible�

�In the proof of Theorem ��� the case with left�linear rules�

Simple Systems and Lazy Narrowing

The next theorem shows that Simple Systems are closed under the rules of LN for a left�
linear HRS� For the Decomposition rule and the two narrowing rules� the proof follows
easily from the form of the goals in Simple Systems and from the restriction on the rules�
The imitation and projection bindings introduce new variables� but do not create cycles�
The Elimination rule requires a case distinction� For instance� when eliminating a goal
of the form t �� P � the variable P does not occur in any other goal on the right�hand
side� Notice that the restriction to patterns on the right�hand side ts nicely with the
results in Section ��	��� if the left side of a goal has a constructor outside� a deterministic
operation applies�

The restriction to left�linear rules is rather standard in functional�logic programming�
Similarly� the core of common functional languages such as SML or Haskell consists of left�
linear rewrite rules� With directed goals� left�linearity draws a line between matching� as
done here� and unication� for equational unication� a non�linear rule X � X � true
must be added� For programming applications full unication is usually not needed�
Furthermore� we will see that left�linear rules permit several optimizations�

Theorem ����� Assume a left�linear HRS R� If Gn is a Simple System� then applying
LN with R preserves this property�

Proof We have the following cases if a goal Gi is transformed�

� Deletion� trivial�

� Decomposition� assume a goal Gi � f �tn� �
� f �t �n� is decomposed to G �

n �
tn �� t �n � Then there can be no connection between some goals in G �

n� Each of
these new goals has at most the connections of Gi and no others� Hence the system
remains simple�

� Elimination� we have two cases� depending on the form of Gi �

� Assume Gi � X �� t and let fX �
mg � FV�t�� There can be at most one

goal Gj with X on the right�hand side� When substituting X in Gj � only new
connections to Gj are created that are already in��� Substituting t for X on
some left�hand side does not introduce new connections as the variables X �

m

may not occur on the right�hand side of some other goal� As t is a pattern
the right sides remain patterns and thus the system remains simple�

� If Gi � t �� X � then X may occur only on the left�hand side of some goals�
Assume some Gj � C ��X � � u with Gi � Gj � We show that no new
connections are added� For all Gk with �Gk � �Gj � where � � fX �� tg� we
have Gk �� Gi � Gj as X may not occur in Gk on the right� Hence ��

remains unchanged� as this argument holds for all such goals Gj �

� Imitation� an imitation binding of the form fX �� �xk �f �Xn�xk ��g clearly does not
change the��ordering and furthermore the right�hand sides remain linear patterns�
The remainder of this case follows as in the Decomposition case�

� Projection� as in the Imitation case� with the only di�erence that Projection may
eliminate variables� thus removing connections�

� Lazy Narrowing� for replacing a goal Gi � s �� t by the goals s �� �xk �l and
�xk �r �� t we assume that the variables in �xk �l are new� Thus the right�hand
sides remain patterns with right isolated variables� Then Gj � s �� �xk �l � i�
Gj � Gi and symmetrically for �xk �r �� t � Thus no new connections are added
and the system is simple�

�

For an implementation it is desirable that the goals are kept in an order compatible
with �� Assume in an implementation goals are kept in a list L which is in an order
compatible with some ordering �� A transformation T on L preserves the ordering
�� if applying T yields a list in an order compatible to �� The following property is easy
to see�

Theorem ����� System LN applied to a list of goals preserves the ��ordering for left�
linear HRS�

Proof by an analysis similar to the last proof� �

Solving Simple Systems

In the following� we show that solving second�order Simple Systems by unication is
decidable� Furthermore� a particular solved form� which is equivalent to dag�solved form�
is easy to detect in Simple Systems�

The following result implies that divergence in Simple Systems only stems from the
lazy narrowing rules� as in the rst�order case� This is important for practical applica�
tions� For instance� it is possible to determine if a Simple System has a syntactic solution
before attempting a narrowing step�

For the next result we have to consider weakly second�order terms for the following
reason� if a goal contains a second�order bound variable� lifting may yield a weakly
second�order term�

Theorem ����� Solving a weakly second�order Simple System Gn by uni�cation is de�
cidable and yields only a �nite number of solutions�

Proof We iteratively solve maximal �wrt� ��� goals with LN� That is� if s �� t is
a maximal goal� then t is a linear pattern and the free variables in t may not occur
elsewhere� Then solving this goal with PT �LN without the narrowing rules� terminates
by Theorem 	���� with a set of �ex��ex pairs� all of which are of the form

�xk �H �tn��
� �xk �G�yj ��

where G does not occur elsewhere� Such pairs can be nitely solved by Theorem 	�����
It remains to be seen that this solution preserves the property that the remaining system
is simple� all solutions for F � FV��xk �H �tn�� are of the form fF �� �xk �F ��zj �g� where
fzjg � fxkg and F � is a new variable of appropriate type� Hence� when applying this
solution to the remaining equations� the system remains simple� as G does not occur
elsewhere� �

Simple Systems have the advantage that it is easy to see if a system is in solved form� as
we show next� In practice this means that checking whether the system is solved is less
expensive� Furthermore� the occurs check is unnecessary as already pointed out�

De�nition ����
 A Simple System S is simpli�ed if

S � fX�
�
� t�� � � � �Xn

�
� tng

and all Xn are distinct�

Theorem ����	 Simpli�ed systems are solvable�

Proof by induction on the number of goals� The base case is trivial� For the induction

step� assume a maximal goal from a simplied system Gn � say Gn � Xn
�
� tn � Let

� � fX �� tng� We show that �Gn�� is simplied� There are two cases when applying
the Elimination rule to Gn � depending on the form of Gn�

� If Gn � tn �� Xn then �G �
n�� � G �

n�� as X is isolated and does not occur in G �
n���

� In the other case� assume Gn � Xn �� tn � Then �G �
n�� � Xn��

�
� �tn�� as all Xn

are distinct� Thus the system �G �
n�� is simplied�

Notice that the Elimination rule applies as Xn �� FV�tn�� �

A simple corollary is the following�

Corollary ������ A Simple System of the form ftn �� Xng is solvable�

It is interesting to compare simplied systems to another well�known solved form� dag�
solved form� This form is often used in the rst�order case �JK
��� but applies to our
case as well�

De�nition ������ A system of equations Xn �� tn is in dag�solved form if for all
i � j � Xi �� Xj and Xi �� FV�tj ��

A system of equations in dag�solved form can be described as

X� �� C��X�� � � � �Xn�
���

Xi �� Ci�Xi � � � � �Xn�
���

Xn �� Cn

where all Xn are distinct and FV�Cn� � fXng � fg�
Although simplied systems look very much like systems in dag�solved form� the ��

ordering does not correspond to the ordering needed for dag�solved form� Let us show
this by an example� the simplied system

Y �� f �X �
� X �� f �Z �
� g�X �Y ��� H

is equivalent to the system �with un�oriented equations�

H �� g�X �Y ��Y �� f �X ��X �� f �Z �

This is the only ordering of the above goals to yield a system in dag�solved form� For
this reason the following proof is tricky�

Theorem ������ A system is simpli�ed if and only if it is in dag�solved form �modulo
orientation	�

Proof Clearly� orienting a system Xn �� tn in dag�solved form to tn �� Xn yields a
simplied system�

The other direction follows by induction on the number of goals� The base case is
trivial� For the induction step� assume a maximal goal from a simplied system Gn� say

Gn � Xn
�
� tn � Then by induction hypothesis Gn�� can be reordered �and reoriented�

to dag�solved form� yielding G �
n�� � X �

n�� �� t �n��� Then we again have two cases when
applying Elimination to Gn � depending of the form of Gn �

� If Gn � tn �� Xn then Xn does not occur in G �
n�� as in Theorem ����
� Thus

Xn �� tn �G �
n�� is in dag�solved form�

� In the other case� Gn � Xn �� tn � Then G �
n���Xn �� tn is in dag�solved form� as

all variables in FV�tn� are isolated and cannot occur in G �
n���

�

	�
�� A Strategy for Needed Narrowing

In this section we develop a new narrowing strategy for Simple Systems� assuming R�
normalized solutions� which we call needed lazy narrowing� In essence� we show that
certain goals can safely be delayed� which means that computations are only performed
when needed�

For this purpose� we rst classify the variables occurring in Simple Systems in the
next section� Then we show in Section ����� that the results on eager variable elimination
from Section ����� can be extended in case of Simple Systems� This will reveal that in
Simple Systems� one case of variable elimination is not desirable� the other deterministic
and always possible�

Variables of Interest

In the following� we classify variables in Simple Systems into variables of interest and
intermediate variables� We consider initial goals of the form s �� t � and assume that
only the values for the free variables in s are of interest� neither the variables in t nor
intermediate variables computed by LN� For instance� assume the rule f �a�X �� g�b�X �
and the goal f �Y � a��� g�b� a�� which is transformed to

Y �� a� a �� X � g�b�X � �� g�b� a�

by Lazy Narrowing� Clearly� only the value of Y is of interest for solving the initial goal�
but not the value of X �

This view is su�cient for solving matching problems� where the right side is ground�
A simple example is encoding logic programs with predicates and to start with queries of
the form p�� � ���� true� Alternatively� one may consider goals with free variables in the
right�hand side that are considered as place holders for some value to be computed� For
instance� if a function evaluates to pairs� we may only be interested in one component�
Thus� for instance� the oriented query s �� pair���X � may su�ce�

The main result in this section is that Simple Systems allow us to identify variables of
interest very easily� Furthermore� we will see how this distinction nicely integrates with
our approach to eager variable elimination�

The interesting invariant we will show is that variables of interest only occur on the
left� but never on the right�hand side of a goal� We rst need to dene the notion of
variables of interest� Consider an execution of LN� We start with a goal s �� t where
initially the variables of interest are in s� This has to be updated for each LN step� If
X is a variable of interest� and an LN step computes �� then the free variables in �X are
new variables of interest� With this idea in mind we dene the following�

De�nition ������ Assume a sequence of transformations fs �� tg
�
	

LN fsn �
� tng� A

variable X is called a variable of interest if X � FV��s� and intermediate otherwise�

Now we can show the following result�

Theorem ������ Assume a left�linear HRS R� a Simple System Gn � fsn �� tng and a
set of variables V with V �FV�tn� � fg� If Gn 	

LN fs
�
m �

� t �mg� then ��V �Im�����
Rng���� � FV�t �m � � fg�

Proof For all rules of LN� except the Elimination rule� the claim is trivial� For the
Elimination� consider rst a goal of the form t �� X � In this case X �� V and X may
not occur on any other right�hand side� Hence variables from V in t are only copied to
some other left�hand side�

After the elimination of a goal X �� t with X � V � the right isolated free variables
in t are in Rng���� but do not occur in FV�t �m �� If X �� V � nothing remains to show as
FV�t� � V � fg� �

Then the desired result follows easily�

Corollary ������ �Variables of Interest� Assume a left�linear HRS R and assume
solving a Simple System s �� t with system LN� Then variables of interest only occur on
the left� but never on the right�hand side of a goal�

Notice that variables from the right may be shifted by the Elimination rule to some
left�hand side�

The Two Cases of Variable Elimination

As we consider oriented equations� we can distinguish two cases of variable elimination
and we will handle variable elimination appropriately in each case� In the rst case�

X �� t �

the variable X can be a variable of interest� Thus the elimination of X is desirable
for computational reasons and is deterministic for normalized solutions� as shown in
Section ������ Notice that elimination is always possible on such goals in Simple Systems�
as X �� FV�t�� In the context of Simple Systems we can rene the result for eager
variable elimination in Section ����� by an additional failure case� Assume a goal X �� t
of a Simple System with an R�normalized solution �� We have two cases�

� If t is in R�normal form� then elimination is deterministic by Theorem ������

� If t is R�reducible� then the goal is unsolvable� As t is a pattern and the solu�
tion for X � i�e� �X � is R�normalized� �X � �t must hold� This is impossible� as
Theorem ����	 entails that �t is reducible�

This observation shows the intuitive reason why Elimination is deterministic� in this case
Elimination does not copy terms to be evaluated� t must be in normal form� In the other
case of variable elimination� i�e�

t �� X �

elimination may not be deterministic and is not desirable� as we argue below�

Needed Lazy Narrowing

The results on intermediate variables and eager variable elimination in mind� we develop
a new narrowing strategy� The idea is to delay goals of the form t �� X � This simple
strategy has some interesting properties� which we will examine in the following�

We rst view this idea in the context of a programming language� Let us for instance
model the evaluation �or normalization� f �t�� t���R � t by Lazy Narrowing� assuming the
rule f �X �Y �� g�X �X ��

ff �t�� t���
� tg 	LN ft� �

� X � t� �
� Y � g�X �X ��� tg

Now with the optimizations considered so far� variable elimination and normalization� we
can model the following evaluation strategies�

Eager evaluation is obtained by performing normalization on the goals t� and t�� fol�
lowed by eager variable elimination on t��R �

� X and t��R �
� Y � The disadvan�

tage is that eager evaluation may perform unnecessary evaluation steps�

Lazy evaluation is obtained by immediate eager variable elimination on t� �� X and
on t� �� Y � It has the disadvantage that terms are copied� e�g� t� here as X occurs
twice in g�X �X �� Thus expensive evaluation may have to be done repeatedly�

Needed �lazy� evaluation is an evaluation strategy that can be obtained by delaying
the goals t� �� X and t� �� Y � thus avoiding copying� Then t� and t� are only
evaluated when X or Y are needed for further computation�

Needed lazy evaluation models equationally lazy evaluation with sharing copies of iden�
tical subterms �BvEG����� i�e� the delayed equations may be viewed as shared subterms�
It should be noted that the strategy may not be optimal as dened in �HL
��� neither
concerning the number of R�reductions nor ��reductions� The notion of need considered
here is similar to the notion of call�by�need in �Wad����

Let us now come back from evaluation to the context of narrowing� Consider for
instance the Lazy Narrowing step with the above rule

ff �t�� t���
� g�a�Z �g 	LN ft� �

� X � t� �
� Y � g�X �X ��� g�a�Z �g

In contrast to evaluation as in functional languages� solving the goals t� �� X � t� �� Y
may have many solutions� Whereas in functional languages� eager evaluation can be more
e�cient� this is unclear for solving equations or functional�logic programming� Thus we
propose the following approach�

De�nition ������ Needed Lazy Narrowing is dened as Lazy Narrowing where goals
of the form t �� X are delayed� if no deterministic operation� i�e� Constructor Imitation
�Section ��	��� or Elimination �Theorem ������� applies�

For instance� in the above example� decomposition on g�X �X � �� g�a�Z � yields the
goals X �� a�X �� Z � Then deterministic elimination on X �� a instantiates X � thus
the goal t� �� a has to be solved� i�e� a valued for t� is needed� In contrast� t� �� Y is
delayed�

This new notion of narrowing for Simple Systems and left�linear HRS is supported by
the following arguments� Needed Lazy Narrowing

is complete� or safe� in the sense that when only goals of the form tn �� Xn remain�
they are solvable by Theorem ������� Since the strategy is to delay such goals� this
result is essential�

delays intermediate variables only� As shown in the last section� we can identify the
variables to be delayed� a variable X in a goal t �� X cannot be a variable of
interest�

avoids copying� as shown above� variable elimination on intermediate variables possibly
copies unevaluated terms and duplicates work� Thus intermediate goals of the form
t �� X are only considered if X is instantiated� i�e� if a value is needed�

Sharing� as modeled equationally in the Needed Lazy Narrowing strategy� is often consid�
ered on an implementational level� In contrast� we have a more abstract view of sharing�
which may lead to the same implementation� since each variable occurs only once on the
right� it is sensible to view the delayed goals as a context of delayed terms� In an imple�
mentation� an intermediate variable can be associated with a pointer to the corresponding
delayed goal� If the variable occurs repeatedly� this corresponds to sharing�

The notion of safe delaying stated above can be illustrated by an example� In practice�
not only completeness but also �early� detection of failure is important� For instance�
assume two goals

a �� X � b �� X �

where a and b are in normal form� Then with delaying both goals� the apparent un�
solvability will never be detected� This will not occur with the above strategy in Simple
Systems� as these are right isolated� Hence a variable X in a delayed goal t �� X may
occur on some left�hand side� but not on two right sides�

Next we examine a problem that occurs in the higher�order case when Needed Lazy
Narrowing is employed� Two kinds of equations are delayed�

� �A� �ex��ex goals of the form �xk �X �tn��� �xk �Y �ym�

� �B� goals of the form t �� X

A system of such goals can be unsolvable in general� Consider for instance

�x �Y �x � �� �x �F �

�x �f �x � �� Y

which is unsolvable� Thus the delayed goals have to be solved by narrowing� We conjec�
ture that such cases are rare� Furthermore� in many cases such goals are solvable�

Proposition ������ Assume a second�order Simple System consisting of a set of �ex�
�ex goals Gm and a set of goals tn �� Xn � Such a system is solvable if the following
condition holds for all i and j � ti �� Xi � Gj implies that Xi is �rst�order�

Proof The strategy of the proof is to eliminate goals from tn �� Xn until only �ex��ex
goals remain� We show that each such Elimination transforms the goals into another set
of goals of the above form� It clearly terminates� as the number of goals reduces�

For an elimination of ti �� Xi � the variable Xi cannot occur on some other right�hand
side� We consider two cases� If there is no Gj with ti �� Xi � Gj � then Xi does not
occur in some �ex��ex goal and thus Gm does not change�

Otherwise� if
ti �

� Xi � Gj � �xk �X �yo��
� �xk �Y �zm��

then there are again two cases� if Xi �� X � then Gj remains �ex��ex� and the case
is trivial� In the remaining case� we have Xi � X and n � � as X and ti are rst�
order by assumption� Binding X to ti yields �xk �ti �� �xk �Y �zm�� As t is rst�order�
Theorem 	���� for System EL applies� yielding the solution fY �� �zm �tg� For simplicity�
we only apply � � fY �� �zm �Y

�g for a new variable Y �� which yields an equation where
Elimination applies� Thus �Gj is not �ex��ex� but of the form of the tn �� Xn goals�
Furthermore� the other �ex��ex goals remain �ex��ex when applying �� As this holds for
all Gj � we obtain a smaller set of goals where the induction hypothesis applies� �

	�� Lazy Narrowing with Conditional Equations

Adding conditions to equations is very common for rewrite systems� Although� at least
in the rst�order case� this may not increase the expressive power �BT���� conditions are
often convenient� For instance� consider the rules

�b�X � � �b�X � �� � �b�X � �� � X � �
�b�X � � � � X �

In the following section� we develop a general notion of conditional narrowing with un�
restricted conditions� Much research has been dedicated to narrowing with conditional
equations� This has led to an abundance of di�erent classes of conditional term rewrite
systems and many di�erent results� There exist various restrictions on the variables oc�
curring in the conditions� for instance in �MH
�� a hierarchy of four classes of conditional
rules can be found� Combining these with the known strategies for �plain� narrowing led
to an abundance of results in the rst�order case� see for instance �MH
���

One of the problems with conditional rewriting is that termination of the associated
rewrite relation does not imply the termination of conditional rewriting� rewriting the
conditions proceeds recursively and may diverge without any actual reduction performed
on the main goal� Thus most termination criteria for rst�order conditional term rewrit�
ing need additional restrictions that assure that the reductions in the conditions are
decreasing some termination ordering� For termination criteria that include conditional
higher�order rewrite systems see for instance �LS
��� Another problem� addressed below�
is that solving the conditions may require reducible substitutions� which renders many
rst�order strategies with plain narrowing incomplete�

We will discuss in Section ����� that in our functional approach many of these problems
can be avoided due to the higher�order setting�

	���� Unrestricted Conditional Equations

In the following we introduce an unrestricted notion of conditional rules� For instance�
the conditions may have variables not occurring in the rule itself� These are called extra
variables� We will see in Section ��� that conditions with extra variables are useful for
some examples�

De�nition ��
�� A higher�order conditional rule is of the form l � r � ln � rn�
where l is a higher�order pattern of base type and not ��equivalent to a free variable� A
conditional HRS is a set of such rules and is abbreviated by CHRS�

In the literature� there exist di�erent notions of conditional rewriting� They di�er in the
way the equations are to be solved� Either requiring ln �� rn� which is called normal
equality �DO
�� or ln � rn � called join equality� In the latter the logical equality induced
by R is considered� The former is more tailored for programming languages� where
evaluation is of interest� and usually the right�hand sides of the conditions are assumed
to be ground R�normal forms� which we consider in the following section�

De�nition ��
�� Assuming a rule �l � r � ln � rn� � R and a position p in a term s
in long ���normal form� a conditional rewrite step from s to t is dened recursively
as

s ��l�r�ln�rn
p�� t � s ��l�r

p�� t � �ln
�
�� R �rn

Lifting rewrite rules over a set of variables extends to conditional rules by applying the
lifter as well to the conditions�

Lazy Narrowing with Conditions

f�xk �s �� �xk �tg � S 	 f�xk �s ��
d �xk �l � �xk �l

�
n �

� �xk �r �n�
�xk �r �

� �xk �tg � S
where l � r � l �n � r �n
is an xk �lifted rule

Figure ���� System CLN for Conditional Lazy Narrowing

De�nition ��
�� We dene Conditional Lazy Narrowing �CLN� as the unication
rules of system LN plus the Lazy Narrowing with Conditions rule in Figure ����

Dene the length of a conditional reduction as

len�s� ��
l�r�ln�rn
� s�

�
�� sn� � � � len�s�

�
�� sn� � $i���			�n len��li

�
�� �ri�

if n � � and len�s�� � � if n � ��
This notion of the length of a reduction re�ects the problem with termination of con�

ditional rewriting� since the rewrite steps for the conditions are included� As mentioned
above� a conditional rewrite relation may itself terminate� but there may be reductions
with innite length�

Theorem ��
�� �Completeness of CLN� Assume a CHRS R� If s �� t has solution
�� i�e� �s

�
��R �t � then fs �� tg

�
	

CLN F such that � is more general modulo the newly
added variables than � and F is a set of �ex��ex goals�

Proof We only add a few changes and generalizations to the proof of System LN� We
assume the setup and invariants of Theorem ��	���

We use induction on the following termination ordering for a system of goals Gn �
sn � tn with solution ��

� A� The sum of the lengths of the conditional R�reductions in all goals �Gn �

� B� Multiset of the sizes of the bindings in ��

� C� Multiset of the sizes of the goals Gn�

Only the lazy narrowing step di�ers from System LN� consider the rst rewrite step at
root position� which is assumed to be �s

�
�� �xk �s� ��l�r�l �o�r �o

� �xk �t�� Hence s� � t�
must be an instance of l � r � l �o � r �o such that the conditions are solvable� Therefore�
there exists a substitution � with �l � s� and �r � t� such that �l �o �� �r �o� Let m be
the number of �conditional� reductions in �l �o �� �r �o� Thus the size of this conditional
rewrite step is m��� Hence applying Lazy Narrowing with Constraints reduces A� as one
conditional reduction of size m � � is replaced by new goals with conditional reductions
of a total size m� As in Theorem ��	��� � � � is a solution to the newly added goals� �

It may seem tempting to examine conditional narrowing with normalized substitutions
as in Section ������ but it is di�cult to show that the solutions for the extra variables
in the conditions are normalized� In the rst�order case� this is a known problem as
mentioned in the beginning of this section �see for instance �Han
�b��� We therefore
discuss conditional narrowing for a restricted class of rules in the following section� where
the optimizations for unconditional rules of Section ��	 can be adapted�

	���� Normal Conditional Rules

In this section� we discuss narrowing for a restricted class of conditional rewrite rules�
which we argue to be su�cient for programming purposes� We examine how these restric�
tions can be utilized for the optimizations developed for unconditional lazy narrowing�
The restrictions will allow to use Simple Systems with conditional rules� Our restrictions
and invariants are stronger than the ones currently used in some rst�order functional�
logic languages� This is possible as some operational constructs� which we disallow� are
often simpler expressed directly in a higher�order framework �see also Section �����

De�nition ��
�� A normal conditional HRS �NCHRS� R is a set of conditional
rewrite rules of the form l � r � ln � rn� where l � r is a rewrite rule and rn are
ground R�normal forms�

Note that there is no di�erence between normal equality and joinability in our case as
the right�hand sides of the rules are in ground R�normal form� Thus oriented goals su�ce

for proving the conditions as �ln
�

��R�rn is equivalent with �ln ��R rn�
The denition of NCHRS may seem too restrictive� as no variables are allowed in

the right sides of the conditions� As already discussed in Section ���� this is not needed

for higher�order programming languages� We permit extra variables on the left sides of
conditions� as these are needed to embed logic programs �for an example see Section �����
Extra variables on the right are often used to model local variables� which can be done
here by �where� or �let� constructs of functional programming languages� These can
easily be described by higher�order rules� such as

let X in T � T �X ��

For instance� when writing a quick�sort program� the main rule will be of the form

qs�O��S �� merge�qs�O��S��� qs�O��S���� split�O��S �� �S��S���

where the Si represent lists and �S��S�� is a pair of lists� This is already not a rst�order
rule� as the ordering used for sorting is given as a parameter� here written as O�� In our
framework� we can write this as in a functional language�

qs�O��S �� let pair�s�� s�� � split�O��S �
in �s�� s��merge�qs�O�� s��� qs�O�� s��

assuming a let rule for pairs� as shown in Section ����
We believe that ��reduction is more appropriate than the instantiation of extra vari�

ables in the conditions� For instance� with depth�rst search� as e�g� in Prolog� instanti�
ations are recorded for possible backtracking� In contrast� ��reduction is a deterministic
operation�

First we show that Simple Systems are invariant under the rules of CLN for a left�
linear NCHRS R�

Theorem ��
�� Assume a left�linear NCHRS R� If G is a Simple System then applying
CLN with R preserves this property�

Proof Building upon Theorem ����	� we only consider the case of Conditional Lazy
Narrowing� In this case� the right�hand sides of the conditions are ground terms and the
new variables in the left sides of the conditions occur only on the left� Thus the system
remains simple� �

Similarly we get the following result as in Section ������

Theorem ��
�� System CLN with a left�linear NCHRS applied to goals in a list pre�
serves the ��ordering�

Normalized Solutions and Variable Elimination

As we disallow variables on the right in conditions� it is easy to extend the results for
narrowing with normalized solutions in Section ����� to normal conditional rules� For
extra variables in the conditions it is often necessary to consider reducible solutions�
making this important optimization impossible� In the following� we adapt the results of
Sections ����� through ��� to conditional narrowing�

De�nition ��
�
 System CLNN is dened as the restriction of System CLN where
Conditional Lazy Narrowing is not applied to goals of the form �xn �X �ym��� t �

Theorem ��
�	 Assume a convergent NCHRS R� If s �� t has solution �� i�e� �s
�
��R

�t � and � is R�normalized� then fs �� tg
�
	

CLNN F such that � is more general modulo
the newly added variables than � and F is a set of �ex��ex goals�

Proof As in Theorem ������ we have to show the invariant that �intermediate� solutions
are R�normalized� The problem here are new variables in the conditions of the rewrite
rules� Thus� we rst construct a new reduction �s

�
��R �t � which di�ers only in the

rewrite proofs of the conditions�
In a conditional rewrite step in �s

�
��R �t it is possible that the substitution is not

R�normalized for some new variables in the reduction in a condition� Consider e�g� �s
�
��

s� ��
l�r�ln�rn

 s� with �ln

�
�� rn � As in Theorem ������ we can assume that �jFV�l� is

R�normalized since the reduction is innermost� Let V � FV�ln ��FV�l�� As �jV may not

be R�normalized� we construct a new and equivalent reduction s� ��
l�r�ln�rn

� s�� where

�� � ��R� Furthermore� we can assume that the reduction ��ln
�
�� rn is innermost since

R is con�uent and all rn are in ground R�normal form� This can be repeated recursively
for all conditional reductions in �s

�
��R �t �

The remainder of the proof proceeds as in Theorem ������ In addition� R�normalization
of the intermediate solutions is shown as in Theorem ������ This assumes the newly con�
structed reduction for the Conditional Narrowing Rule� �

As no variables in the right�hand sides of the conditions are allowed� it is easy to see that
the results for variables of interest� variable elimination of Section ������ and narrowing
strategies of Section ����� hold in this context� Only simplication is more involved� as
shown next�

Normalization for Normal Conditional Narrowing

We show how the results for lazy narrowing with simplication in Section ����� can
be adapted to normal conditional narrowing� The basis for this is the restriction to
normalized solutions� as elaborated above�

A termination ordering �R is a decreasing termination ordering for an NCHRS
R� if �l �i �

R �l for any � and for all li � flng and l � r � ln � rn � R�
Decreasing termination orders as dened here originate from the �rst�order� de�

nition in �DOS��� and imply termination of conditional rewriting �similar to �DOS�����
This is easy to show since for any rewrite step� the left�hand sides of the conditions are
smaller in the ordering� Thus it su�ces to consider a multiset of reductions� Then a
conditional rewrite step performs one reduction and adds only smaller elements� i�e� the
conditions� to the multiset�

De�nition ��
��� System NCLN is dened as System CLNN plus arbitrary simpli�
cation steps�

Theorem ��
��� Assume a con�uent NCHRS R with a decreasing termination ordering
�R� If s �� t has solution �� i�e� �s

�
��R �t where �t is in R�normal form� then

fs �� tg
�
	

NCLN F such that � is more general modulo the newly added variables than
� and F is a set of �ex��ex goals�

Proof To adapt the completeness result for NLN in Theorem ������ it su�ces to consider
a Conditional Lazy Narrowing step� all other cases are as in Theorem ������ Let Gn �

sn ��
�d� tn be a system of goals with solution �� Consider

fGig � f�xk �s �� �xk �tg 	CLN

fG �
mg � f�xk �s ��

d �xk �l � �xk �lo � �xk �ro� �xk �r �� �xk �tg

Let s �m �
� t �m � D��G �

m�� In this case� there are only two di�erences to the completeness
result for NLN in Theorem ������

� First� it is to assure that all t �m are R�normalized terms� This holds for the newly
added conditions �xk �lo �� �xk �ro� as �xk �ro are ground terms in R�normal form�

� The above Narrowing step reduces measure A of Theorem ������ as �lo �R �s�

�

Notice that there is a good reason for not simplifying the right�hand side of goals in
Simple Systems� Rewriting with rules where free variables occur repeatedly on the right
can destroy an invariant of Simple Systems� right isolation� For simplication on the left�
in contrast� it is trivial that the invariant is preserved�

	�� Narrowing on Patterns with Constraints

We have seen in Section ��� that the well�developed rst�order notion of plain narrowing
is problematic when going beyond higher�order patterns� Although lazy narrowing solves
most of these problems� it would be nice to integrate some of the ideas of the former
approach�

An approach that allows to use plain narrowing in the higher�order case is presented
in this section� The idea is to factor out the complicated case� narrowing at variable
positions� into constraints and work with the simpler pattern part as shown in Section ����
The idea is similar to �Pfe
��� where non�pattern unication problems are delayed in a
higher�order logic programming language� In contrast to the latter� we also have to solve
the constraints modulo R�

The rules NC in Figure ��� work on a pair �t �C �� where t is a goal� in which non�
pattern subterms can be shifted to the goals C with rule Flatten� These can be solved
with lazy narrowing as in NC or any comparable method� Then on t � narrowing at or
below variable positions is not needed� The assumption is that in many applications�
most �sub��terms are patterns� such that the pattern part performs the large part of the
computation�

For instance� to solve a goal f �F �f �a��� �� g�a� wrt� R� as in Example ������ we
�atten the left�hand side to �f �F ���� g�a�� fF �f �a���� F �g�� Then the �attened term
can be handled with rst�order techniques� possibly yielding fF � �� f �a�g� Solving the
remaining constraint F �f �a�� �� f �a� is simple� and it may not even be desirable to
compute all its solutions�

The rule Pattern Narrow applies only at subterms that have been �attened to patterns�
Hence the unication needed in rule Narrow is pattern unication� The main advantage
of this version of narrowing is that we achieve a system� where we can work similar to
the rst�order case on the pattern part�

Solve

�t �� t ��C � 	� �t � �� t �� �C � if �t � t �

Flatten

�t �� t ��C � 	 �t �X ��xk ��p �� t �� f�xk �X �tn��� X �g � C �
if p is a rigid path in t such that t jp � X �tn�
is not a pattern� where xk � BV�t � p�

Pattern Narrow

�t �� t ��C � 	� �s �� t �� �C � if p is a rigid path in t �
t jp is a pattern� and
t �R

p�� s

Constraint Solving

�t �� t ��C � 	� ��t �� �t ��C �� if C 	�
LN C �

Figure ���� System NC for Narrowing with Constraints

To prove completeness we rst need a more technical lemma� The problem is that
the two methods integrated here are based on very di�erent proof strategies� The next
lemma shows more precisely which rewrite steps are handled by lazy narrowing in the
constraints and which are modeled directly� When working with NC we will call the goal
t in a tuple �t �C � the pattern part� although it may not be a pattern goal�

Lemma ��	�� Assume a convergent HRS R� two terms s and t where t is a ground R�
normal form� an R�normalized substitution �� and a set of constraints Gn � fun �� u �ng
such that

� �s
�
�� R t �

� �un
�
�� R �u �n

Then �s �� t � fGng�
�
	

NC �s � �� t � fG �
mg� such that there exists �� with

� �s � � t �

� � �FV�s� �
���

� �s
�
�� R ��s ��

� �� is R�normalized and

� �� is a solution of G �
m �

Proof by induction on ��R on �s� which is terminating� We maintain the last four
claims as invariants� Assume �s ��l�r

p t�
�
��R t is an innermost reduction with some

appropriately lifted rule l � r � R� We have the following two cases depending on p�
Since � is normalized� p cannot occur below a pattern subterm X �ym� in s�

If p is not a position on a rigid path in s� the reduction is modeled in the constraints�
let q be a minimal prex of p such that sjq is of the form X �tn�� Let xk � BV�t � q�� Since �
is R�normalized� �xk �X �tn� cannot be a pattern� Apply �atten to obtain a new constraint
G� � �xk �X �tn� �� �xk �X ��yn� for a new variable X �� Let further s � � s�X ��yn��q and
�� � � � fX � �� �xk ���sjq��Rg� As R is convergent� we obtain ��s �

�
�� t via an innermost

reduction� Since �s
�
��R ��s �� the induction hypothesis applies with �s ��G��Gn� and ���

In case p is on a rigid path in s� we apply Flatten at all �maximal� non�pattern
subterms sm of sjp� This yields s � and some new constraints G �

m � tm �� Xm and a new
associated solution ��� As described in the last case� to obtain ��� � has to be extended at
each Flattening step� Since the reduction is innermost� all �sm are in R�normal form and
hence the new solutions added for Xm are R�normalized� Thus we have �sj

p
� ��s �jp�

Then the rule Pattern Narrow applies and the proof proceeds similar to Theorem ������
as s�jp is a pattern and ��s�jp is an instance of l � there exists a most general unier � of
s�jp and l and there exits �� such that �� � ���� Then the Pattern Narrow step yields

�s � �� t � f�G �
m� �Gng�� where s � � �s��r �p� It follows as in Theorem ����� that �� is R�

normalized� Clearly� �� is a solution for all constraints �G �
m� �Gn� As �s

�
��R ��s�

�
��R

��s �� it remains to apply the induction hypothesis with �� and �s � �� t � f�G �
m� �Gng��

�

Now the completeness of NC follows easily� We only have to lift rewrite steps that occur
in the primary goal� the others are handled by lazy narrowing in the constraints�

Theorem ��	�� �Completeness of NC� Assume a convergent HRS R� If s �� t has
the solution �s

�
�� R t where � is R�normalized and t is a ground R�normal form� then

�s �� t � fg�
�
	

NC �t �� t �C � such that �s � t and � is more general modulo the newly
added variables than � and the goals in C are �ex��ex�

Proof First� apply Lemma ��
�� to �s �� t � fg�� yielding a pair �s � �� t � fGng� that
is solvable by some substitution �� with � ��� Thus the Solve rule applies with some
substitution � ��� It remains to solve the constraints f�Gng� by System LN� �

It is interesting to examine how rewrite steps in a solution �s ��R s�
�
��R t are modeled

in the pattern part in above completeness result� There are two possibilities for a rewrite
step �s ��R s� at a position p�

� If there exists a prex q of p such that sjq is a non�pattern term� then this non�
pattern subterm is �attened into the constraints and replaced by a new variable�
say X � The solution associated to this �intermediate� variable X is the R�normal
form of sj

q
� thus the �attening step shifts the normalization of a full subterm into

the constraints�

� Otherwise� the subterm is �attened to a pattern� Then a single narrowing step is
lifted and this step takes place at the same position and with the same rule as the
narrowing step� As in the rst�order case� we have a one�to�one correspondence of
the rewrite step in �s and the narrowing step in s�

With the last observation in mind� we conjecture that narrowing strategies for rst�order
rewrite systems can be lifted to the pattern part in a modular way� There are two
reasons for this� First� most rst�order strategies only lift particular derivations� e�g�
innermost reductions �basic narrowing �Hul���� or leftmost innermost reductions �LSE
narrowing �BKW
���� A reduction is leftmost� if for each step no rewrite step at a position
left to it applies� Secondly� for leftmost innermost solutions �s

�
��R t � it seems that the

above completeness result can be extended to show that the reductions in the pattern
part form a leftmost innermost subsequence of the �s

�
��R t reduction�

Chapter �

Applications of Higher�Order

Narrowing

This section presents examples for higher�order rewriting and narrowing� As most of
these applications are oriented towards programming� left�linear rewrite rules and thus
Simple Systems su�ce� Only the examples on program transformation in Section ��� and
type inference in Section ��� go beyond programming and more expressiveness is needed�
For other examples on the utility of higher�order constructs� we refer to �Nad��� PM
��
for natural language parsing� �Nip
�a� for formalizing logics and ��calculi� and for Process
Algebras to �Pol
���

�� Symbolic Computation� Dierentiation

In this section we present an example for modeling symbolic di�erentiation� Symbolic
di�erentiation is a standard example in many text books on Prolog �SS���� In contrast to
rst�order programming� we can easily formalize the chain rule for di�erentiating nested
functions� e�g� �x �sin�cos�x ��� This requires a notion of bound variables and is hence
excluded in the rst�order versions�

The naive approach to specify di�erentiation with an equation di� ��x �F � � �x �� fails�
as the equation is not of base type� With rules of higher type� our notion of rewriting
does not capture the corresponding equational theory �Nip
�a�� The idea is to dene a
function di� such that di� ��x �v �X � computes the value of the di�erential of �x �v at
X � When abstracting over this X � we can express the di�erential of a function again as
a function� Although the former version seems slightly more elegant� it would require a
more complex notion of rewriting� not to mention narrowing�

Figure ��� shows the rules of Rd for symbolic di�erentiation with left�linear� second�
order equations of base type� Observe that we do not formalize the chain rule explicitly�
as this would require nested free variables� Our goal is to have patterns as left�hand
sides� i�e� the left�hand side of the chain rule would be of the form �x �di� �F �G�x ����
Notice that the right�hand sides of the rules of Rd in Figure ��� are non�patterns� hence
rewriting a pattern term may yield a non�pattern�

We rst show termination of the rules by the method developed in �Pol
��� As
in �Pol
��� we use natural numbers with the usual ordering as the domain for the in�

�

di� ��y�F �X � � �
di� ��y�y�X � � �
di� ��y�sin�F �y���X � � cos�F �X �� � di� ��y�F �y��X �
di� ��y�cos�F �y���X � � �� � sin�F �X �� � di� ��y�F �y��X �
di� ��y�F �y� �G�y��X � � di� ��y�F �y��X � � di� ��y�G�y��X �
di� ��y�F �y� �G�y��X � � di� ��y�F �y��X � �G�X ��

di� ��y�G�y��X � � F �X �
di� ��y�ln�F �y���X � � di� ��y�F �y��X ��F �X �
X � � � X
� � X � X
X � � � �
� � X � �
� � X � X
X � � � X
� � X � �

Figure ���� Rules Rd for Symbolic Di�erentiation

terpretation� Then the following interpretations� are strictly monotonic on the positive
natural numbers�

��di� �� � �f � x ��f �x ��� � X � �

����� � ����� � �

����� � ����� � �x � y�x � y � �

��sin�� � ��cos�� � �x �x � �

����� � �x � y�x � y

��ln�� � �x �x � �

����� � �x �x

Notice that the symbols� e�g� �� on the left refer to the dened symbols of Rd � whereas
the identical ones on the right denote the usual operations on numbers�

Next we show that Rd is con�uent via critical pair analysis� It is easy to see that
the rst rule overlaps with all remaining rules for di� and the remaining rules only have
trivial critical pairs� All of these are joinable� consider for instance

� �� di� ��x �F �G�X � �� di� ��x �F � �G � di� ��x �G� � F
�
�� �

Thus Rd is a convergent� left�linear HRS and we can apply Simple Systems with normal�
ization� As an example� we attempt to solve the query

�x �di� ��y�ln�F �y��� x ��� �x �cos�x ��sin�x ��

The solution fF �� �x �sin�x �g can be found with the pattern narrowing sequence

�x �di� ��y�ln�F �y��� x � ��
�x �di� ��y�F �y�� x ��F �x � �

�x �cos�F ��x �� � di� ��y�F ��y�� x ��sin�F ��x ��
�
�

�x �cos�x ��sin�x ��

�Developed jointly with Jaco van de Pol�

as all term occurring are patterns�
Lazy narrowing provides a more goal directed search in this example� as unication

can be used earlier for simplication�

f�x �di� ��y�ln�F �y��� x ��� �x �cos�x ��sin�x �g
�
	

f�x �di� ��y�F �y�� x ��F �x ��� �x �cos�x ��sin�x �g
�
	

f�x �di� ��y�F �y�� x ��� �x �cos�x ��
�x �F �x ��� �x �sin�x �g

Now the solution is obtained by rst solving the second goal by deterministic variable
elimination and then by simplifying the rst goal�

Although this example only uses higher�order pattern� it is easy to imagine non�
pattern goals� e�g� di� ��y�sin�F �cos�y����X ��� cos�X ��sin�X �� When solving such a
goal with system NC� we rst �atten the pair

�di� ��y�ln�F �cos�y����X ��� cos�X ��sin�X �� fg�

to

�di� ��y�ln�F ��y����X ��� cos�X ��sin�X �� f�y�F �cos�y���� �y�F ��y�g��

Then a simple strategy is to perform narrowing on the pattern term and after each step
check if the constraints are solvable� Only if they are not solvable� lazy narrowing should
be applied�

�� Program Transformation

The utility of higher�order unication for program transformations has been shown nicely
by Huet and Lang �HL��� and has been developed further in �PE��� HM���� This example
for unfold#fold program transformation is taken from �FH���� We assume the following
standard rules for lists

map�F � �X jR�� � �F �X �jmap�F �R��
foldl�G� �X jR�� � G�X � foldl�G�R��

Now assume writing a function g�F �L� by

g�F �L� � foldl��x � y�plus�x � y��map�F �L��

that rst maps F onto a list and then adds the elements via the function plus� This
simple implementation for g is ine�cient� since the list must be traversed twice� The
goal is now to nd an equivalent function denition that is more e�cient� We can specify
this with higher�order terms in a syntactic fashion by one simple equation�

�f � x � l �g�f � �x jl �� � �f � x � l �B�f �x �� g�f � l��

The variable B represents the body of the function to be computed and the rst argument
of B allows to use f �x � in the body� The scheme on the right only allows recursing on l
for g�

To solve this equation� we add a rule X � X � true as described in Section ������
and then apply narrowing� which yields the solution � � fB �� �fx � rec�plus�fx � rec�g
where

g�f � �x jl �� � �B�f �x �� g�f � l�� � plus�f �x �� g�f � l���

This shows the more e�cient denition of g� In this example� simplication can reduce
the search space for narrowing drastically� it su�ces to simplify the goal to

�f � x � l �plus�f �x �� foldl�plus�map�f � l��� � �f � x � l �B�f �x �� foldl�plus�map�f � l����

where narrowing with the newly added rule X � X � true yields the two goals

�f � x � l �plus�f �x �� foldl�plus�map�f � l��� �� �f � x � l �X �f � x � l��

�f � x � l �B�f �x �� foldl�plus�map�f � l��� �� �f � x � l �X �f � x � l��

These can be solved by pure higher�order unication� It should be noted that our notion
of oriented goals requires an additional rule for equality� A clever implementation will
hide such details from the user�

�� Higher�Order Functional�Logic Programming

Our approach to functional�logic programming is oriented towards functional languages�
This is in contrast to most rst�order approaches that often aim at extending Prolog
by functions� Our goal is to extend a functional core language by logical variables as
in Prolog� The core of functional languages such as SML �MTH
�� or Haskell �HJW
��
essentially is higher�order term rewriting� no matter if the language employs lazy or eager
evaluation� Relational programming as in logic programming can be embedded as shown
in Section ����

We show by several examples that left�linear� normal conditional HRS su�ce for
programming and allow computing in Simple Systems� As we do not allow extra variables
on the right�hand side of the conditions� local variables as in functional programming are
created via let�constructs� as for instance shown in Section ���� For example� we show
how the let�construct for pairs from Section ��� can be formulated by higher�order rewrite
rules� This common notation for let can be dened by

let pair�xs� ys� � X in F �xs� ys� �def let X in �xs� ys�F �xs� ys�

Notice that in the tuned notation on the left� pair�xs� ys� serves as a binder for xs and
ys� The higher�order rewrite rule for this construct is

let pair�Xs�Ys� in �xs� ys�F �xs� ys�� F �Xs�Ys��

The idea behind this modeling is that in let t in �xs� ys�t �� the term t is evaluated to a
pair of the form pair�Y �Z � and then the rewrite rule applies�

Several of the following examples assume an equality predicate � on natural numbers�
There are two ways to formalize such a predicate� either simply by a rule X � X � true�
which goes beyond Simple Systems� or by encoding strict equality on numbers� as shown
in Section ������ For instance� the rules

s�X � � s�Y � � X � Y

� � � � true

su�ce for the constructors s and � for natural numbers�
As we will see� strict equality su�ces for most applications� The disadvantage of strict

equality is that for instance �x �x � x is not provable� It is however possible to add a
rule X � X � true for simplication only� as suggested in �Han
�c��

Recall that we sometimes write p for a rule p � true or a goal p �� true� Further�
more� we use in the examples some common abbreviations� e�g� � � s��� etc�

���� In�nite� �Data��Structures and Eager Evaluation

Innite data structures are one of the nice features of lazy functional programming�
e�g� �Tur��� HJW
��� For this reason� some functional�logic languages� e�g� �MNRA
���
support non�terminating rules� We show in the following that such innite structures can
be modeled within functional�logic programming while retaining eager evaluation�

Consider the example of an innite list of ones� dened by�

ones � ��jones�

This rule� together with lazy evaluation� can be used with rules such as�

�rst��X jR�� � X

rest��X jR�� � R

sum n���L� � ��

sum n�s�n�� �X jR�� � X � sum n�n�R�

Lazy evaluation yields for instance

sum n��� ones� �� �

This model of lazy computation has the disadvantage that non�terminating rules� here
ones � ��jones�� have to be used carefully to avoid divergence�

We can model such innite structures with terminating rules in our setting� We simple
reverse the rule generating innite objects�

ones���jR�� � ��jones�R��

The technique for working with this denition is to imagine� given an object of appropriate
size� how to compute the solution� Thus� terminating rules su�ce and eager reduction is
possible�

Using the above denition� we can state the query

sum n��� ones�Y ���� ��

which has the desired solution

fY �� ��� �� �� �jY ��� � � �g�

Thus the term ones�Y � represents an �innite� list�
Lazy Needed Narrowing is particularly useful in this example� as it solves goals only

when needed� In the above example� intermediate goals of the form ones�Y � � X are

simply delayed� Only if X is instantiated� the goal is simplied and possibly delayed
again�

The above example only models functional programming� which aims at evaluating
expressions to unique values� Compared to functional programming� this approach also
models search as in logic programming� For instance� lists where each element is a one
or a two are easy to model� This is not possible with the rst functional approach� as it
would require non�con�uent rules�

A simple example for this scheme is computing ancestors�

father�mary� � john
mother�john� � amy
father�john� � art

prim rel�father�
prim rel�mother�

anchestor rel�R� � prim rel�R�
anchestor rel�comp�R��R��� � anchestor rel�R��

� prim rel�R��
comp�R��R���X � � R��R��X ��

The function comp composes two functions� It is equally possible to write the rule for
anchestor rel as anchestor rel�R��R��� � � � �� which has the disadvantage of not being
a pattern� With these rules� the query

anchestor rel�R��R�mary��� amy

has the solution
fR �� comp�father �mother�g�

This technique for modeling innite functional structures will reappear in some of the
following examples�

���� Functional Di�erence Lists

Di�erence lists are a standard technique �SS��� for implementing lists in logic program�
ming such that appending two lists can be done in linear time� A di�erence list is a pair�
where the rst element is the actual list of interest and the second element is the tail
of the rst list� typically a free variable� For instance� to represent the list �a� b� c� as a
di�erence list� we use the pair ��a� b� c j R��R� for some variable R�

Concatenating two di�erence lists is done in functional�logic programming by the
function

append��X �Y �� �Y �R�� � �X �R�

and in plain logic programming by the corresponding predicate� A principal problem
with this representation is that a concrete variable is used to represent the end of the list�
Thus when copying a di�erence list� a �predicate� is needed to introduce a new variable
at the end of the copied list� as e�g� shown in �Red
��� The drawback is that this takes
linear time�

The functional equivalent is to abstract over this variable representing the rest of
the list� Thus we use functions from lists to lists as �functional di�erence lists�� i�e�
�x ��a� b� c j x � instead of �a� b� c j X �� This idea was introduced by Hughes �Hug��� and
compared to the logic approach by Burton �Bur�
� and Reddy �Red
��� We believe that
this representation is much clearer than using free variables� which must be �new� for
each copy� For instance� appending two functions is straightforward by ��reduction�

append��L�R� � �x �L�R�x ��

A nice result on this approach in higher�order logic programming was shown in �BR
���
a naive reverse function on lists can be linear�

To formulate these ideas in our framework with rules of base type� we model a func�
tional list as �ist��x ��X jR�x ��� with an additional constructor �ist � Then the higher�
order rewrite rule for append reads as

append f ��ist�L���ist�R��� �ist��x �L�R�x ���

���� A Simple Encryption Problem

This example deals with a simple method for authorization� Assume the following method
for the authorization of a client and some server� Both parties share an encryption
function f � To authorize� a client sends some name a and its encryption f �a� to the
server� This value f �a� can be viewed as a �password��

For several authorization steps� the channel between the client and the server trans�
mits a list of names and a list of the corresponding passwords� Since the channel is
unsafe� the client and the server use the following method to change the password of a
name after each use� For simplicity� we assume names are natural numbers� If the client
uses the name n and its password f �n�� both parties compute a new encryption function
f � from f by� f ��n� � f �n��� and f ��n��� � f �n�� That is� two passwords are swapped�

In the following program� the function encode�F � �X j Rest �� computes a list of pass�
words from a list of names of the communications on the channel� It maps the encryption
function F to the rst element of a stream� and updates the encryption function for the
rest of the list�

comp�F �G��X � � G�F �X ��

swap�X �Y �Z � � if Z � X then Y else if Z � Y then X else Z

encode�F � �X j Rest �� � �F �X � j encode�comp�swap�X �X � ���F ��Rest��
encode�F � ��� � ��

if true then X else Y � X
if false then X else Y � Y

For instance� if the initial encoding is the identity function� we obtain�

encode��x �x � ��� �� ��� � ��� �� ��

Now we consider the following situation� Some spy on the channel does not know the
initial encryption function� but the method for the update� Now if the spy observes some

communication� his goal is to infer passwords� For instance� assume the spy observes the
names ��� �� �� and the corresponding passwords �a� a� b�� Then if � is sent as the fourth
name� we can compute the fourth password with the goal

�f �encode�f � ��� �� �� ����� �f �F �f �

with solution
� � fF �� �f ��f ���� f ���� f ���� f ����g�

Clearly f ��� � a and f ��� � b and the spy can infer the fourth password�
The encryption in this example is rather simple� It is clearly possible to model more

complicated authorization strategies with this approach�

���� Eight�Queens Generalized

In the following example we model techniques of object�oriented programming by higher�
order functions� As this is done in a functional�logic setting� this is a sketch for integrating
object�oriented programming and logic programming�

For modeling functional object�oriented programming �see e�g� �Red��� Wan����� ob�
jects are represented by records� which we adopt here in a very simple fashion� In a more
advanced representation� as pursued in �Gro
��� an object is a function that essentially
consists of a case�statement dispatching the incoming messages�

In a functional setting of object�oriented programming� objects have no internal�
mutable state� Furthermore� we do not address other important issues of object�oriented
programming� such as inheritance�

We extend the classical eight�queens problem in the following� straightforward way�
not only queens but arbitrary �chess� pieces are considered� We view chess pieces as
objects consisting of a position and a function that determines if the piece attacks an�
other position� These represent the �instance variables� and the �methods� of an object�
to speak in object�oriented terminology� For a �message call� we simply select the ap�
propriate function from the object and apply it� Alternative versions that are closer to
object�oriented programming would require a more tuned syntax� which we avoid for
simplicity�

Positions on a chess board are represented as pairs� e�g� pair��� 	� represents column
�� row 	� We assume a function next to compute the next position on the chess board
and an extended let�construct� Furthermore� a general �attacking function� for each kind
of piece is assumed to take two positions and determines if the piece placed on the rst
position attacks the second�

Pieces are created by the constructor piece� i�e� o � piece�F �Pos�� where Pos is a
position and F is a function� such that F �pos�� determines if the piece attacks some
position pos�� We assume the following destructors� get pos� returning the position� and
get attack fun which returns the attacking function of a piece� For instance� get pos�o� �
Pos�

The main function in the program in Figure ��� is position�Lf �Lp�Pos�� taking a list
of attacking functions Lf for pieces to be placed� a list Lp of already placed pieces and
a position Pos� The list Lf characterizes the pieces to be placed� as shown below� The
function no attacksL�F �Lo�� determines if the piece F attacks some piece in the list Lo�
Notice that partial application serves in the expression piece�F �Npos��Npos� to turn a

get pos�piece�F �Pos�� � Pos
get attack fun�piece�F �Pos�� � F

no attacksL�O � ��� � true
no attacksL�O � �O�jR�� � if �get attack fun�F ���get pos�O��� then

false else no attacksL�O �R�

position����L� pair�X �Y �� � L
position��F jR��L�Pos� � let Npos � next�Pos�

Nobj � piece�F �Pos��Pos�
in if no attacksL�Nobj �L� then
position�R� �Nobj jL��Npos�
else position��F jR��L�Npos�

Figure ���� Rules for the Eight�Queens Problem

general attacking function into the attack function for a new piece with xed position�
In order to apply the above rules� we write for instance the functions queen attacks

and knight attacks as below� Both functions take two positions and check the appropriate
attacking�

queen attacks�pair�X �Y �� pair�Sx �Sy�� � X � Sx � Y � Sy �

jX � Sx j � jY � Syj

knight attacks�pair�X �Y �� pair�Sx �Sy�� � �jX � Sx j � � � jY � Syj � �� �

�jX � Sx j � � � jY � Syj � ��

In order to position one knight and two queens on some board� the query

position��queen attacks� queen attacks� knight attacks�� ��� pair��� ���

su�ces� assuming that pair��� �� is the initial position�
Furthermore� the power of higher�order unication permits other queries� given a set

of positions on the chess board� which pieces can be placed on these positions such that
they do not attack each other�

The general idea of this example is that higher�order functions are used to repre�
sent �heterogeneous� information� e�g� arbitrary chess pieces� For the pure eight queens
problem� it is easy to devise special data�structures �e�g� �Bra
���� in contrast to our gen�
eralized version� Furthermore� the object�oriented version is also easier to extend� e�g� by
other �chess� pieces�

�� Higher�Order Abstract Syntax� Type Inference

In this section� we consider the problem of polymorphic type reconstruction as it occurs in
functional languages� see for instance �CDDK��� NP

�� For simplicity� we only consider
the core constructs of such a language� i�e� typed ��calculus� The syntax of the language
includes atoms const�x �� application app�t � t ��� and abstraction abs��x �t��

The set of polymorphic types is generated by some base types� type variables� and
the function type constructor ��� written in inx notation as � �� 	 � We chose the
symbol �� instead of the common �� in order to avoid confusion with term rewriting�
For instance� a term succ�	�� where succ is a function on integers� is represented as

app�const�succ�� const�	���

As usual for type inference systems� we store the type of atoms in a context E � For
instance� compared to the typing rules of simply typed ��calculus in Section ���� the
judgment x � 	 in the rule

x � 	 s � 	 �

��x �t� � �	 �� 	 ��

is represented in a context�
In violation of our conventions� we write free variables over types by Greek letters

� and 	 as usual for type inference systems� The standard rules for type inference can
easily be expressed as conditional equations�

update�E �T �X �Y � � if Y � X then T else E �Y �

type of �E � const�X �� � E �X �
type of �E � app�T �T ��� � type�	 �

� type of �E �T �� type�� �� 	 ��
type of �E �T ��� type���

type of �E � abs��x �T �x ��� � type�� �� 	 �
� �v �type of �update�E � type���� v��T �const�v��

� �v �type�	 �

The function update�E �T �X � creates a new context where X has the type T � Notice
that the last two rules have the extra free variables � and 	 that do not occur on the
left�hand side�

In the last rule for typing an abstraction� typically for higher�order abstract syntax� a
local constant v serves to explore the type of �x �T �x �� The local binder for v corresponds
to a ��quantier� i�e� a goal �v �t �� �v �s is equivalent to �v �s �� t �

For example� a term f ��x �plus�x � y��� where f and y are polymorphic atoms� is rep�
resented as

t � app�const�f �� abs��x �app�app�const�plus�� x �� const�y�����

Type inference for t is done by the following query

type of �E � t��� type����

where E �f � � � �� �� E �y� � �� and E �plus� � int �� int �� int � This goal has the
solution

f� �� int �� int � � �� int �� int � � �� int � � � �g�

In the above rules� the extra variables are purposely introduced to compute �local�
types� For instance� the variable � in the abstraction rule only serves for computing the
type of the subterm T � Thus rewriting requires computing solutions to for these variables
in the conditions� This can be done by narrowing�

Furthermore� this example requires full unication� although it is not immediate� in
the conditions of the third rule� the variable � occurs on both right�hand sides� Simple
systems cannot express this problem� as they do not need full unication �e�g� no occurs
check�� Hence this example requires the general completeness result in Section ���� Thus
if a term has a type� then Conditional Lazy Narrowing will compute it�

Unfortunately� current methods for proving convergence �see Section ���� do not su�ce
for this example� Con�uence is a delicate matter if extra variables exist in the conditions�
Con�uence in this example would entail a desirable property of type inference� unique�
most general types exist in this case�

It is interesting to compare this formulation with the similar specication in ��
Prolog �PE��� MP
�b�� In ��Prolog� a predicate type rel replaces type of and denes
denes a relation between a term and a type� Thus it is not possible to speak directly
about most general types�

Chapter 	

Concluding Remarks

This work was led by the idea that higher�order equations can be used in practical
systems for equational reasoning and functional�logic programming� Towards this goal
we rst examined decidable classes of higher�order unication� We have shown that for
many practical purposes� higher�order unication is not only a powerful tool� but also
terminates for several classes of terms� The main restriction needed is linearity� which is
common for programming� It also explains to some degree that higher�order unication
in logic programming �NM��� and higher�order theorem proving �Pau
�� AINP
�� rarely
diverges�

Secondly� we have developed a rst framework for solving higher�order equations by
narrowing� We have seen that some approaches such as plain narrowing are not suitable
for the higher�order case� For lazy narrowing� in contrast� we were able to develop
many important renements� such as normalization and eager variable elimination for
normalized solutions� Of similar practical importance are the extensions to conditional
equations�

The work on left�linear rewrite systems for programming applications led to Simple
Systems� which is an important class of goals for equational programming� This class en�
joys many useful properties� for instance solved forms are easy to detect� Furthermore� in
the second�order case� unication remains decidable for Simple Systems� Simple Systems
are a large class of goals where the occurs check is not needed� Interestingly� in most
implementations of Prolog� the occurs check is missing for computational reasons� This
suggests to dene languages where the occurs check is redundant� More importantly� it
indicates that the problems solvable with Prolog implementations correspond to such a
class of problems� The main result for Simple Systems is the strategy of Needed Lazy
Narrowing� where intermediate goals can be identied and can safely be delayed� which
leads to a needed computation strategy�

Altogether� we believe that the results for normalized solutions and Simple Systems
are a major step towards high�level programming languages� where e�ciency and a simple
operational model are signicant� This leads to a novel approach to functional�logic
programming that is oriented towards higher�order functional languages� Whereas most
other approaches aim at extending logic programming by functions� the main idea here
is to extend a higher�order functional language by logic or free variables as in Prolog�
This approach facilitates several operational optimizations that are not possible in other
approaches oriented towards extending logic programming�

Another observation is that oriented goals turned out to be a particularly useful

���

restriction on equational goals� Oriented goals do not limit the expressiveness� i�e� full
unication can be encoded� and simplify the technical treatment� Furthermore� we have
seen that for left�linear HRS� there is a di�erence between matching� as performed by
oriented goals� and full unication� In the former� Simple Systems su�ce for narrowing
and the decidability of second�order unication is maintained�

This work also contributes to equational reasoning in higher�order theorem provers�
For this� we have provided complete calculi for higher�order narrowing for unrestricted
equations� Although for most of the optimizations we considered� some restrictions were
needed� they apply to general theorem proving as well� As another application� Section 	
can be the basis for further investigation into the decidability of second�order R�matching
problems� For instance� Curien �Cur
�� presents rst results on second�order E �matching
for rst�order E �

��� Related Work

Recently� there have been several works on higher�order narrowing� but none covering
the full higher�order case� Qian �Qia
�� lifted the completeness of rst�order narrowing
strategies to higher�order patterns for rst�order rules� Higher�order patterns are an
important subclass of ��terms� which include bound variables� but behave almost as
rst�order terms in most respects� However� patterns are often too restrictive� as obvious
from the examples in Sections ��	 and � �see also �Pre
�b� MP
�a��� In particular� they
do not su�ce for modeling higher�order functional programs� Examples are the function
map in Section ����� and the denition of the let�construct by a higher�order rewrite rule

let X in T � T �X �

where the right�hand side is no pattern� Thus rewriting or narrowing with this rule
may introduce non�pattern terms� For a discussion on this issue in a logic�programming
context see �MP
���

The approach to higher�order narrowing in �LS
�� ALS
�a� aims at narrowing with
higher�order functional programs and does not limit rules to higher�order patterns� Rules
with pattern left�hand sides are used for narrowing on quasi�rst�order terms� �These
are slightly more general than quasi rst�order terms dened here�� This guarantees
that the resulting term is still quasi�rst�order� Although this seems to be an interesting
compromise� it has strong restrictions� higher�order variables in the left�hand sides of
rules may occur only directly below the outermost symbol� For instance� the function
map�F � cons�X �Y �� � � � �� fullls this requirement only if X and Y are rst�order�
Roughly speaking� when narrowing with such a rule� narrowing and rewriting coincide
for these higher�order variables as they occur only at depth one on the left�hand side��

Higher�order logic programming �NM��� has two major extensions of rst�order logic
programming� rst� higher�order terms are used and� secondly� hereditary Harrop formu�
las� which generalize horn clauses� The latter� roughly speaking� allow for �local� rules
in the contexts� In contrast to the rst� this nice extension cannot be modeled directly
by �conditional� narrowing�

�This result is a bit more subtle� since the rewrite rules are lifted for narrowing� Lifting turns a
�rst�order term into a higher�order term� This problem is however not addressed in �LS��� ALS��a��

Compared to higher�order logic programming� the functional approach with Sim�
ple Systems lies between ��Prolog �NM���� where full higher�order terms are used� and
Elf �Pfe
���� where non�patterns are just delayed as constraints� The main advantage of
this functional approach is that a decidable class of second�order unication instead of
pattern unication can be used� The problem is that higher�order patterns cover large
classes of terms occurring in practice� but are not su�cient in general� Thus strategies
have been developed in �MP
�� to handle such cases e�ectively�

Another di�erence to �higher�order� logic programming is that predicates and terms
are not separated� Higher�order ��terms are used for data structures and do not per�
mit higher�order programming as in functional languages� For instance� the function
map in Section ����� cannot be written directly by higher�order logic programming� Na�
dathur �Nad��� reports similar problems with variables over predicates for modeling map
in higher�order logic programming� In this respect� our approach is more general and
allows for an arbitrary integration of data and functions� Notice that in most Prolog
implementations a quasi second�order predicate �apply� exists� that applies a variable
function symbol to some arguments� Use of this built�in predicate obviously destroys
completeness in the usual sense�

The many higher�order extensions of functional�logic and logic languages �BG���
CKW�
� GMHGRA
�� Loc
�� She
�� are� to our knowledge� limited to rst�order uni�
cation and are not complete in a higher�order sense� For instance� the work in �Loc
��
uses higher�order variables� but only �rst�order� narrowing on rst�order terms plus
��reduction as the operational model� Since higher�order rules such as map are used�
higher�order terms can be created which cannot be handled by this approach� The work
in �GMHGRA
�� on SFL� an extension of the language BABEL �MNRA
��� similarly
permits higher�order variables� Completeness of narrowing with rst�order unication is
claimed w�r�t� particular denotational and operational semantics for partial objects�

��� Open Problems and Further Work

Simple Systems can also be employed to improve existing rst�order languages� For this
purpose� it is desirable to extend Simple System to conditional narrowing with extra vari�
ables on the right side of the conditions� This is easily possible with linearity restrictions
on the right sides of the conditions� For a conditional rule

l � r � ln � rn

it is required that
X �� l � ln �� rn

is a Simple System for some new variable X � This holds if no variable occurs more than
once in r�� � � � � rn and l �and in addition all rn are patterns�� This is not overly strict� as
exemplied in Section ���� since variables on the right side of conditions are usually used
for local variables�

Developing e�cient implementations for higher�order programming is another essen�
tial step� Projects in this direction are an abstract machine for higher�order logic pro�
gramming �NJW
�� and a compiler for higher�order logic programming �BR
���

�It should be noted that Elf has a much more expressive type system�

More expressive type systems� such as polymorphism and type classes in current
functional languages �NP

�� have not been considered here� An extension to polymor�
phism faces the problem that higher�order unication with polymorphism is innitely
branching �Nip
�b�� In practice� such cases are rare as experience with the Isabelle sys�
tem �Pau
�� shows�

An interesting application is to model calculi for distributed systems� e�g� the ��
calculus �MPW
�a� MPW
�b�� by higher�order rewriting� thus obtaining an executable
version� The major obstacle for this approach is that most of the rules in this calculus
apply modulo associativity �A� and commutativity �C�� Rewriting modulo AC has been
extensively studied in the rst�order case� for the higher�order case there exist rst results
on AC�unication �QW
�� MW
���

Bibliography

�AEH
�� S� Antoy� R� Echahed� and M� Hanus� A needed narrowing strategy� In
Proc�
�st ACM Symposium on Principles of Programming Languages�
pages ���%��
� Portland� �

��

�AINP
�� Peter B� Andrews� Sunil Issar� Dan Nesmith� and Frank Pfenning� The
TPS theorem proving system� In M�E� Stickel� editor� Proc� ��th Int�
Conf� Automated Deduction� pages ���%���� LNCS ��
� �

��

�ALS
�a� J� Avenhaus and C� A� Lor��a�S�aenz� Higher�order conditional rewrit�
ing and narrowing� In Jean�Pierre Jouannaud� editor� �st International
Conference on Constraints in Computational Logics� Lecture Notes in
Computer Science� vol� ��	� M�unchen� Germany� �%
 September �

��
Springer�Verlag�

�ALS
�b� J� Avenhaus and C� A� Lor��a�S�aenz� On conditional rewrite systems with
extra variables and deterministic logic programs� In LPAR ��� Lecture
Notes in Computer Science� vol� ���� Kiev� Ukraine� July �

�� Springer�
Verlag�

�Bac
�� Leo Bachmair� Canonical Equational Proofs� Progress in Theoretical
Computer Science� Birkh�auser� �

��

�Bar��� Hendrik Pieter Barendregt� The Lambda Calculus� its Syntax and Seman�
tics� North Holland� �nd edition� �
���

�Bax��� L� D� Baxter� The complexity of Uni�cation� PhD thesis� University of
Waterloo� Waterloo� Canada� �
���

�BG��� P� G� Bosco and E� Giovannetti� IDEAL� An ideal deductive applicative
language� In Gary Lindstrom and Robert M� Keller� editors� Symposium
On Logic Programming� pages �
%
�� IEEE� �
���

�BG�
� Hubert Bertling and Harald Ganzinger� Completion�time optimization
of rewrite�time goal solving� In N� Dershowitz� editor� Proceedings of
the Third International Conference on Rewriting Techniques and Appli�
cations� pages �	%	�� Springer LNCS �		� �
�
�

�BGM��� P� G� Bosco� E� Giovanetti� and C� Moiso� Narrowing vs� SLD�resolution�
Theoretical Computer Science� 	
��%��� �
���

���

�BKW
�� A� Bockmayr� S� Krischer� and A� Werner� An optimal narrowing strat�
egy for general canonical systems� In M� Rusinowitch and J� L� Remy�
editors� Conditional Term Rewriting Systems� Proc� of the Third Inter�
nati onal Workshop �CTRS��
	� pages ���%�
�� Springer�Verlag� Berlin�
Heidelberg� �

��

�BR
�� Pascal Brisset and Olivier Ridoux� Na��ve reverse can be linear� In Koichi
Furukawa� editor� Proceedings of the Eighth International Conference on
Logic Programming� pages �	�%���� Paris� France� �

�� The MIT Press�

�BR
�� P� Brisset and O� Ridoux� The architecture of an implementation of
lambda�prolog� Prolog#mali� In Proc� Workshop on LambdaProlog�
Philadelphia� �

�� PA� USA�

�Bra�	� D� Brand� Proving theorems with the modication method� SIAM Jour�
nal of Computing� �����%���� �
�	�

�Bra
�� I� Bratko� Prolog Programming for Arti�cial Intelligence� Addison�Wesley�
Wokingham� �nd edition� �

��

�Bro��� M� Broy� Equational specication of partial higher order algebras� The�
oretical Computer Science� 	���%�	� �
��� Also in� Springer NATO ASI
Series� Series F� Computer and System Sciences� Vol� ��� �
���

�BS
�� F� Baader and J� Siekmann� Unication theory� In D�M� Gabbay� C�J�
Hogger� and J�A� Robinson� editors� Handbook of Logic in Arti�cial In�
telligence and Logic Programming� Oxford University Press� �

��

�BT��� J� A� Bergstra and J� V� Tucker� Algebraic specications of computable
and semicomputable data types� Theoretical Computer Science� 	�����%
���� �
���

�Bur�
� F� W� Burton� A note on higher�order functions versus logical variables�
Information Processing Letters� ���
�%
	� �
�
�

�BvEG���� H� P� Barendregt� M� C� J� D� van Eekelen� J� R� W� Glauert� J� R� Kenn�
away� M� J� Plasmeijer� and M� R� Sleep� Term graph rewriting� In J� W�
de Bakker� A� J� Nijman� and P� C� Treleaven� editors� PARLE� Paral�
lel Architectures and Languages Europe �Volume
� Parallel Languages	�
pages ���%�	�� Springer�Verlag� Berlin� DE� �
��� Lecture Notes in Com�
puter Science �	
�

�CAB���� Robert Constable� S� Allen� H� Bromly� W� Cleaveland� J� Cremer�
R� Harper� D� Howe� T� Knoblock� N� Mendler� P� Panangaden� J� Sasaki�
and S� Smith� Implementing Mathematics With the Nuprl Proof Develop�
ment System� Prentice�Hall� New Jersey� �
���

�CDDK��� Dominique Cl�ement� Jo�elle Despeyroux� Thierry Despeyroux� and Gilles
Kahn� A simple applicative language� Mini�ML� In Proc� ACM Conf�
Lisp and Functional Programming� pages ��%��� �
���

�CF
�� P� H� Cheong and L� Fribourg� E�cient integration of simplication into
prolog� In J� Maluszy�nski and M� Wirsing� editors� Proceedings of the
�rd Int� Symposium on Programming Language Implementation and Logic
Programming� PLILP��� Passau� Germany� number 	�� in Lecture Notes
in Computer Science� pages �	
%���� Springer Verlag� August �

��

�CKW�
� W� Chen� M� Kifer� and D� S� Warren� HiLog� A First�Order Semantics
for Higher�Order Logic Programming Constructs� In Ewing L� Lusk and
Ross A� Overbeek� editors� Proceedings of the North American Conference
on Logic Programming� pages ��
�%����� Cleveland� Ohio� USA� �
�
�

�CM��� William F� Clocksin and Christopher S� Mellish� Programming in Prolog�
Springer�Verlag� �nd edition� �
���

�Cur
�� R�egis Curien� Second�order E�matching as a tool for automated theorem
proving� In EPIA ��� Springer LNCS ��	� �

��

�dB��� N� G� de Bruijn� Lambda calculus notation with nameless dummies� a
tool for automatic formula manipulation� with application to the Church�
Rosser theorem� Indagationes Mathematicae� ������%�
�� �
���

�DFH�
�� G� Dowek� A� Felty� H� Herbelin� G� Huet� C� Murthy� C� Parent�
C� Paulin�Mohring� and B� Werner� The Coq proof assistant user�s guide
version 	��� Technical Report �	�� INRIA� May �

��

�DJ
�� N� Dershowitz and J��P� Jouannaud� Rewrite systems� In Jan Van
Leeuwen� editor� Handbook of Theoretical Computer Science� Volume B�
Formal Models and Semantics� pages ���%���� Elsevier� �

��

�DL��� Doug DeGroot and Gary Lindstrom� Logic Programming Functions� re�
lations� and Equations� Prentice�Hall� �
���

�DM�
� N� Dershowitz and Z� Manna� Proving termination with multiset order�
ings� Communications of the ACM� ��������	%���� �
�
�

�DMS
�� N� Dershowitz� S� Mitra� and G� Sivakumar� Decidable matching for
convergent systems �preliminary version�� In Deepak Kapur� editor� ��th
International Conference on Automated Deduction� LNAI ���� pages 	�
%
���� Saratoga Springs� New York� USA� June �	%��� �

�� Springer�
Verlag�

�DO
�� N� Dershowitz and M� Okada� A rationale for conditional equational
programming� Theoretical Computer Science� �	�������%���� �

��

�DOS��� N� Dershowitz� M� Okada� and G� Sivakumar� Canonical conditional
rewrite systems� In Proc� of the �th International Conference on Au�
tomated Deduction� Springer LNCS ���� �
���

�Dow
�� Gilles Dowek� Third order matching is decidable� In Proceedings� Seventh
Annual IEEE Symposium on Logic in Computer Science� pages �%���
Santa Cruz� California� ��%�	 June �

�� IEEE Computer Society Press�

�Dow
�� Gilles Dowek� Personal communication� �

��

�DW��� Michael R� Donat and Lincoln A� Wallen� Learning and applying gener�
alised solutions using higher order resolution� In E� Lusk and R� Overbeek�
editors� �th International Conference On Automated Deduction� pages ��%
��� Springer�Verlag� �
���

�EM�	� H� Ehrig and B� Mahr� Fundamentals of Algebraic Speci�cation ��
Springer�Verlag� �
�	�

�Far��� W� M� Farmer� A unication algorithm for second�order monadic terms�
Annals of Pure and Applied Logic� �
����%���� �
���

�Far
�� W� M� Farmer� Simple second�order languages for which unication is
undecideable� Theoretical Computer Science� ����	%��� �

��

�Fay�
� M� Fay� First order unication in equational theories� In Proc� �th Conf�
on Automated Deduction� pages ���%���� Academic Press� �
�
�

�Fel
�� Amy Felty� A logic�programming approach to implementing higher�order
term rewriting� In L��H� Eriksson� L� Halln�as� and P� Schroeder�Heister�
editors� Extensions of Logic Programming� Proc�
nd Int� Worksho p�
pages ��	%�	�� LNCS 	
�� �

��

�FH��� F� Fages and G�erard Huet� Complete sets of uniers and matchers in
equational theories� Theoretical Computer Science� �����
%���� �
���

�FH��� Anthony J� Field and Peter G� Harrison� Functional Programming�
Addison�Wesley� Wokingham� �
���

�FH
�� Ulrich Fraus and Heinrich Hu�mann� A narrowing�based theorem prover�
In Rewriting Techniques an Applications� pages ��	%���� LNCS ���� April
�

��

�Fri�	� L� Fribourg� SLOG� A logic programming language interpreter based on
clausal superposition and rewriting� In Symposium on Logic Programming
�IEE�	�� pages ���%����

�GLT�
� J��Y� Girard� Y� Lafont� and P� Taylor� Proofs and Types� Cambridge
Tracts in Theoretical Computer Science �� Cambridge University Press�
�
�
�

�GMHGRA
�� J�C� Gonz�alez�Moreno� M�T� Hortal�a�Gonz�alez� and M� Rodr��guez�
Artalejo� On the completeness of narrowing as the operational seman�
tics of functional logic programming� In E� B�orger� G� J�ager� H� Kleine
B�uning� S� Martini� and M�M� Richter� editors� Computer Science Logic�
Selected papers from CSL�
� LNCS� pages ���%���� San Miniato� Italy�
September �

�� Springer�Verlag�

�Gol��� W� D� Goldfarb� The undecidability of the second�order unication prob�
lem� Theoretical Computer Science� �����	%���� �
���

�Gor��� Michael J� C� Gordon� HOL� A proof generating system for higher�order
logic� In G� Birtwistle et al�� editor� VLSI Speci�cation� Veri�cation and
Synthesis� Kluwer Academic Press� �
���

�Gou��� W� E� Gould� A matching procedure for ��order logic� Scientic Report ��
Air Force Cambridge Research Laboratories� �
���

�Gro
�� R� Grosu� A Formal Foundation for Concurrent Object Oriented Pro�
gramming� PhD thesis� Institut f�ur Informatik� TU M�unchen� Arcisstr�
��� D%���
� M�unchen� Germany� November �

��

�GTW�
� J� A� Goguen� J� W� Thatcher� and E� G� Wagner� An initial algebra
approach to the specication� correctness and implementation of abstract
data types� In R� T� Yeh� editor� Current trends in programming method�
ology� volume �� Data structuring� pages ��%��
� Prentice�Hall� �
�
�

�Hag
�a� Masami Hagiya� From programming�by�example to proving�by�example�
In International Conference on Theoretical Aspects of Computer Software�
pages ���%��
� �

��

�Hag
�b� Masami Hagiya� Synthesis of rewrite programs by higher�order and se�
mantic unication� New Generation Computing� �� �

��

�Han
�� M� Hanus� E�cient implementation of narrowing and rewriting� In
Proc� Int� Workshop on Processing Declarative Knowledge� pages ���%
��	� Springer LNAI 	��� �

��

�Han
�� M� Hanus� Improving control of logic programs by using functional logic
languages� In Proc� of the �th International Symposium on Programming
Language Implementation and Logic Programming� pages �%��� Springer
LNCS ���� �

��

�Han
�a� M� Hanus� Combining lazy narrowing and simplication� In Proc� �th
International Symposium on Programming Language Implementation and
Logic Programming� pages ���%���� Springer LNCS ���� �

��

�Han
�b� M� Hanus� The integration of functions into logic programming� From
theory to practice� Journal of Logic Programming� �
&���	��%���� �

��

�Han
�c� M� Hanus� Lazy unication with simplication� In Proc� �th European
Symposium on Programming� pages ���%���� Springer LNCS ���� �

��

�Har
�� Masateru Harao� Analogical reasoning based on higher�order unication�
In S� Arikawa� S� Goto� S� Ohsuga� and T � Yokomori� editors� Algorithmic
Learning Theory� pages �	�%���� Springer�Verlag� �

��

�HJW
�� Paul Hudak� Simon Peyton Jones� and Philip Wadler� Report on the
programming language Haskell� A non�strict� purely functional language�
ACM SIGPLAN Notices� ���	�� May �

�� Version ����

�HL��� G�erard Huet and Bernard Lang� Proving and applying program transfor�
mations expressed with second�order patterns� Acta Informatica� �����%
		� �
���

�HL
�� G�erard Huet and Jean�Jacques L�evy� Computations in orthogonal rewrit�
ing systems� I� In J��L� Lassez and G� Plotkin� editors� Computational
Logic� Essays in Honor of Alan Robinson� pages �
	%���� MIT Press�
Cambridge� MA� �

��

�HM��� John Hannan and Dale Miller� Uses of higher�order unication for im�
plementing program transformers� In Fifth International Logic Program�
ming Conference� pages
��%
	
� Seattle� Washington� August �
��� MIT
Press�

�H�ol��� Ste�en H�olldobler� From paramodulation to narrowing� In Robert A�
Kowalski and Kenneth A� Bowen� editors� Proceedings of the Fifth Inter�
national Conference and Symposium on Logic Programming� pages ���%
���� Seatle� �
��� ALP� IEEE� The MIT Press�

�H�ol�
� Ste�en H�olldobler� Foundations of Equational Logic Programming� LNCS
�	�� �
�
�

�HS��� J�R� Hindley and Jonathan P� Seldin� Introduction to Combinators and
��Calculus� Cambridge University Press� �
���

�Hsi�	� J� Hsiang� Refutational theorem proving using term�rewriting systems�
Arti�cial Intelligence� �	��		%���� �
�	�

�Hue��� G�erard Huet� The undecidability of unication in third order logic� In�
formation and Control� ����	�%���� �
���

�Hue�	� G�erard Huet� A unication algorithm for typed ��calculus� Theoretical
Computer Science� ����%	�� �
�	�

�Hue��� G�erard Huet� R�esolution d�equations dans les languages dordre ��
������
PhD thesis� University Paris��� �
���

�Hue��� G�erard Huet� Con�uent reductions� Abstract properties and applications
to term rewriting systems� Journal of the ACM� ����
�%���� �
���

�Hug��� R� J� M� Hughes� A novel representation of lists and its application to the
function �reverse�� Information Processing Letters� pages ���%���� �
���

�Hul��� Jean�Marie Hullot� Canonical forms and unication� In W� Bibel and
R� Kowalski� editors� Proceedings of �th Conference on Automated De�
duction� pages ���%���� Springer�Verlag� LNCS ��� �
���

�Hu�
�� H� Hu�mann� Nondeterminism in Algebraic Speci�cations and Algebraic
Programs� Birkh�auser� �

��

�IEE�	� IEEE Computer Society� Technical Committee on Computer Languages�
Symposium on Logic Programming� The Computer Society Press� July
�
�	�

�JK��� Jean�Pierre Jouannaud and Claude Kirchner� Completion of a set of rules
modulo a set of equations� SIAM Journal of Computing� �	������		%��
��
�
���

�JK
�� Jean�Pierre Jouannaud and Claude Kirchner� Solving equations in ab�
stract algebras� A rule�based survey of unication� In Jean�Louis Lassez
and Gordon Plotkin� editors� Computational Logic� Essays in Honor of
Alan Robinson� pages �	�%���� MIT Press� �

��

�JP��� D� Jensen and T� Pietrzykowski� Mechanizing ��order type theory
through unication� Theoretical Computer Science� �� �
���

�KB��� Donald E� Knuth and P�B� Bendix� Simple word problems in universal
algebra� In J� Leech� editor� Computational Problems in Abstract Algebra�
pages ���%�
�� Pergamon Press� �
���

�Klo��� Jan WillemKlop� Combinatory Reduction Systems� Mathematical Centre
Tracts ���� Mathematisch Centrum� Amsterdam� �
���

�Klo
�� Jan WillemKlop� Term rewriting systems� In Samson Abramsky� Dov M�
Gabbay� and T�S�E� Maibaum� editors� Handbook of Logic in Computer
Science� volume �� pages �%���� Oxford University Press� �

��

�LLFRA
�� Rita Loogen� Francisco L�opez�Fraguas� and Mario Rodr��guez�Artalejo� A
demand driven strategy for lazy narrowing� In PLILP� LNCS� Tallin�
Estonia� �

�� Springer�Verlag�

�Llo��� John Wylie Lloyd� Foundations of Logic Programming� Springer�Verlag�
�nd edition� �
���

�Llo
�� John Wylie Lloyd� Combining functional and logic programming lan�
guages� In ILPS ����� �

�� To appear�

�Loc
�� Hendrik C�R Lock� The Implementation of Functional Logic Languages�
Oldenbourg Verlag� �

��

�LS
�� C� A� Lor��a�S�aenz� A Theoretical Framework for Reasoning about Program
Construction Based on Extensions of Rewrite Systems� PhD thesis� Univ�
Kaiserslautern� December �

��

�Luc��� C� L� Lucchesi� The undecidability of the unication problem for third
order languages� Technical Report CSRR ��	
� University of Waterloo�
Waterloo� Canada� �
���

�Mak��� G� S� Makanin� The problem of solvability of equations in a free semi�
group� Math� USSR Sbornik� �����
%�
�� �
���

�MH
�� A� Middeldorp and E� Hamoen� Completeness results for basic narrowing�
J� of Applicable Algebra in Engineering� Communication and Computing�
	����%�	�� �

�� Short version appeared at ALP �
��

�Mil
�a� Dale Miller� A logic programming language with lambda�abstraction�
function variables� and simple unication� J� Logic and Computation�
���
�%	��� �

��

�Mil
�b� Dale Miller� Unication of simply typed lambda�terms as logic program�
ming� In P�K� Furukawa� editor� Proc� ���� Joint Int� Conf� Logic Pro�
gramming� pages �	�%���� MIT Press� �

��

�MN
�� Richard Mayr and Tobias Nipkow� Higher�order rewrite systems and their
con�uence� Technical report� Institut f�ur Informatik� TU M�unchen� �

��

�MNRA
�� Juan Jose Moreno�Navarro and Mario Rodriguez�Artalejo� Logic pro�
gramming with functions and predicates� The language BABEL� The
Journal of Logic Programming� ����� �� � and ����
�%���� �

��

�M�ol��� B� M�oller� Algebraic specications with higher�order operators� In IFIP
TC
 Working Conference on Program Speci�cation and Transformation�
Bad T�olz� pages ���%�
�� North�Holland� �
���

�MP
�a� Spiro Michaylov and Frank Pfenning� An empirical study of the runtime
behavior of higher�order logic programs� In Dale Miller� editor� Pro�
ceedings of the Workshop on the Lambda Prolog Programming Language�
Philadelphia� Pennsylvania� July �

�� University of Pennsylvania�

�MP
�b� Spiro Michaylov and Frank Pfenning� Natural semantics and some of
its meta�theory in Elf� In L��H� Eriksson� L� Halln�as� and P� Schroeder�
Heister� editors� Extensions of Logic Programming� Proc�
nd Int� Work�
shop� pages �

%���� LNCS 	
�� �

��

�MP
�� Spiro Michaylov and Frank Pfenning� Higher�order logic programming as
constraint logic programming� In Position Papers for the First Workshop
on Principles and Practice of Constraint Programming� pages ���%��
�
Newport� Rhode Island� April �

�� Brown University�

�MPW
�a� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes� part
I� Information and Computation� ��������%��� �

��

�MPW
�b� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes� part
II� Information and Computation� ���������%��� �

��

�MRM�
� A� Martelli� G� F� Rossi� and C� Moiso� Lazy unication algorithms for
canonical rewrite systems� In H� A��t�Kaci and M� Nivat� editors� Resolu�
tion of Equations in Algebraic Structures� Vol�
� Rewriting Techniques�
Academic Press� �
�
�

�MTH
�� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML�
MIT Press� �

��

�MW
�� Olaf M�uller and Franz Weber� Theory and praxis of minimal modu�
lar higher�order E�unication� In Automated Deduction � CADE��
�
Springer LNAI ���� �

��

�Nad��� Gopalan Nadathur� A Higher�Order Logic as the Basis for Logic Pro�
gramming� PhD thesis� University of Pennsylvania� Philadelphia� �
���

�Nar�
� P� Narendran� Some remarks on second order unication� Technical re�
port� Institute of Programming and Logics� Dep� of Computer Science�
State Univ� of New York at Albany� �
�
�

�Nip
�a� Tobias Nipkow� Higher�order critical pairs� In Proceedings� Sixth Annual
IEEE Symposium on Logic in Computer Science� pages ���%��
� Amster�
dam� The Netherlands� �	%�� July �

�� IEEE Computer Society Press�

�Nip
�b� Tobias Nipkow� Higher�order unication� polymorphism� and subsorts� In
S� Kaplan and M� Okada� editors� Proc�
nd Int� Workshop Conditional
and Typed Rewriting Systems� volume 	�� of Lect� Notes in Comp� Sci�
Springer�Verlag� �

��

�Nip
�a� Tobias Nipkow� Functional unication of higher�order patterns� In Pro�
ceedings� Eighth Annual IEEE Symposium on Logic in Computer Science�
pages ��%��� Montreal� Canada� �
%�� June �

�� IEEE Computer Soci�
ety Press�

�Nip
�b� Tobias Nipkow� Orthogonal higher�order rewrite systems are con�uent�
In M�A� Bezem and Jan Friso Groote� editors� Proc� Int� Conf� Typed
Lambda Calculi and Applications� pages ���%���� LNCS ���� �

��

�NJW
�� Gopalan Nadathur� Bharat Jayaraman� and Debra Sue Wilson� Imple�
mentation considerations for higher�order features in logic programming�
Technical Report CS��

����� Duke University� �

��

�NM��� Gopalan Nadathur and Dale Miller� An overview of ��Prolog� In
Robert A� Kowalski and Kenneth A� Bowen� editors� Proc� �th Int� Logic
Programming Conference� pages ���%���� MIT Press� �
���

�NP

� Tobias Nipkow and Christian Prehofer� Type reconstruction for type
classes� J� Functional Programming� �

 To appear� Short version
appeared in POPL �
��

�Oos
�� Vincent van Oostrom� Con�uence for Abstract and Higher�Order Rewrit�
ing� PhD thesis� Vrije Universiteit� �

�� Amsterdam�

�OR
�� Vincent van Oostrom and Femke van Raamsdonk� Weak orthogonality
implies con�uence� the higher�order case� In A� Nerode� editor� Logical
Foundations of Computer Science� volume ��� of Lect� Notes in Comp�
Sci�� pages ��
%�
�� Springer�Verlag� �

��

�Pad
�� Vincent Padovani� Personal communication� �

��

�Pau��� Lawrence C� Paulson� Natural deduction proof as higher�order resolution�
Journal of Logic Programming� �����%�	�� �
���

�Pau
�� Lawrence C� Paulson� Isabelle� The next ��� theorem provers� In
P� Odifreddi� editor� Logic and Computer Science� pages ���%��	� Aca�
demic Press� �

��

�Pau
�� Lawrence C� Paulson� ML for the Working Programmer� Cambridge
University Press� �

��

�Pau
�� Lawrence C� Paulson� Isabelle� A Generic Theorem Prover� volume ���
of Lect� Notes in Comp� Sci� Springer�Verlag� �

��

�PE��� Frank Pfenning and Conal Elliott� Higher�order abstract syntax� In Proc�
SIGPLAN �� Symp� Programming Language Design and Implementa�
tion� pages �

%���� ACM Press� �
���

�Pfe��� Frank Pfenning� Partial polymorphic type inference and higher�order
unication� In ACM Conference on Lisp and Functional Programming�
pages �	�%���� Snowbird� Utah� July �
��� ACM�Press�

�Pfe
�� Frank Pfenning� Logic programming in the LF logical framework� In
G�erard Huet and Gordon D� Plotkin� editors� Logical Frameworks� Cam�
bridge University Press� �

��

�Pie��� T� Pietrzykowski� A complete mechanization of second�order type theory�
J� of ACM� ������%���� �
���

�PM
�� Remo Pareschi and Dale Miller� Extending denite clause grammars with
scoping constructs� In David H� D� Warren and Peter Szeredi� editors�
���� International Conference in Logic Programming� pages ���%��
�
MIT Press� June �

��

�Pol
�� Jaco van de Pol� Termination proofs for higher�order rewrite systems� In
J� Heering� K� Meinke� B� M�oller� and T� Nipkow� editors� Higher�Order
Algebra� Logic and Term Rewriting� volume ��� of Lect� Notes in Comp�
Sci�� pages ��	%��	� Springer�Verlag� �

��

�Pre
�a� Christian Prehofer� Decidable higher�order unication problems� In Au�
tomated Deduction � CADE��
� LNAI ���� Springer�Verlag� �

��

�Pre
�b� Christian Prehofer� Higher�order narrowing� In Proceedings� Ninth An�
nual IEEE Symposium on Logic in Computer Science� pages 	��%	���
IEEE Computer Society Press� �

��

�Pre
�c� Christian Prehofer� On modularity in term rewriting and narrowing�
In Jean�Pierre Jouannaud� editor� �st International Conference on Con�
straints in Computational Logics� Lecture Notes in Computer Science�
vol� ��	� M�unchen� Germany� �%
 September �

�� Springer�Verlag�

�Qia
�� Zhenyu Qian� Linear unication of higher�order patterns� In M��C� Gaudel
and J��P� Jouannaud� editors� Proceedings of the Colloquium on Trees
in Algebra and Programming� pages �
�%��	� Orsay� France� April �

��
Springer�Verlag LNCS ����

�Qia
�� Zhenyu Qian� Higher�order equational logic programming� In Proc�
�st
ACM Symposium on Principles of Programming Languages� Portland�
�

��

�QW
�� Zhenyu Qian and Kang Wang� Modular AC unication of higher�order
patterns� In Jean�Pierre Jouannaud� editor� �st International Conference
on Constraints in Computational Logics� Lecture Notes in Computer Sci�
ence� vol� ��	� M�unchen� Germany� �%
 September �

�� Springer�Verlag�

�Red�	� U� S� Reddy� Narrowing as the operational semantics of functional lan�
guages� In Symposium on Logic Programming �IEE�	�� pages ���%�	��

�Red��� U� S� Reddy� On the relationship between logic and functional languages�
In D� DeGroot and G� Lindstrom� editors� Logic Programming� Functions�
Relations� and Equations� pages �%��� Prentice�Hall� Englewood Cli�s�
NJ� �
���

�Red��� U� S� Reddy� Objects as closures� Abstract semantics of object�oriented
languages� In Proc� ACM Symp� Lisp and Functional Programming Lan�
guages� pages ��
%�
�� July �
���

�Red
�� U� S� Reddy� Higher�order aspects of logic programming� In ICLP���
MIT Press� Cambridge� MA� �

�� To appear�

�RW�
� G� A� Robinson and L� T� Wos� Paramodulation and theorem proving
in rst order theories� In B� Meltzer and D� Michie� editors� Machine
Intelligence �� pages ���%�	�� American Elsevier� �
�
�

�SD
�� D� De Schreyeand and S� Decorte� Termination of logic programs� The
never�ending story� Journal of Logic Programming� �
��

%���� �

��

�SG�
� Wayne Snyder and Jean Gallier� Higher�order unication revisited� Com�
plete sets of transformations� J� Symbolic Computation� �����%���� �
�
�

�She
�� Yeh�Heng Sheng� HIFUNLOG� Logic programming with higher�order re�
lational functions� In David H� D� Warren and Peter Szeredi� editors�
Proceedings of the Seventh International Conference on Logic Program�
ming� pages 	�
%	�	� Jerusalem� �

�� The MIT Press�

�SJ
�� F� S� K� Silbermann and B� Jayaraman� A domain�theoretic approach to
functional and logic programming� Journal of Functional Programming�
��������%���� �

��

�Sla��� J� R� Slagle� Automated theorem�proving for theories with simpliers�
commutativity� and associativity� Journal of the ACM� �
���

�Smo��� Gert Smolka� Fresh� A higher�order language based on unication� In
Doug DeGroot and Gary Lindstrom� editors� Logic Programming Func�
tions�relations�and Equations� pages ��
%	�	� Prentice�Hall� �
���

�Sny
�� Wayne Snyder� Higher order E�unication� In M� E� Stickel� editor�
��th International Conference on Automated Deduction� pages 	��%	���
Berlin� Heidelberg� �

�� Springer LNAI ��
�

�Sny
�� Wayne Snyder� A Proof Theory for General Uni�cation� Birk�auser�
Boston� �

��

�SS��� Leon Sterling and Ehud Shapiro� The Art of Prolog� Advanced Program�
ming Techniques� MIT Press� �
���

�Ste
�� G� L� Steele� Common LISP� The Language �Second Edition	� Digital
Press� Burlington� MA� �

��

�Tho
�� W� Thomas� Automata on innite objects� In Jan Van Leeuwen� editor�
Handbook of Theoretical Computer Science Volume B� Formal Models and
Semantics� pages ���%�
�� Elsevier� �

��

�Tur��� D� Turner� An overview of miranda� Sigplan Notices� ��������	�%����
�
���

�vR
�� Femke van Raamsdonk� Con�uence and superdevelopments� In Rewriting
Techniques an Applications� pages ���%���� LNCS �
�� June �

��

�Wad��� Christopher Peter Wadsworth� Semantics and Pragmatics of the Lambda
Calculus� Phd thesis� University of Oxford� Oxford� September �
���

�Wan��� Mitchell Wand� Complete type inference for simple objects� In Proceed�
ings� Symposium on Logic in Computer Science� pages ��%��� Ithaca� New
York� ��%�	 June �
��� The Computer Society of the IEEE�

�Wol
�� D� A� Wolfram� The Clausal Theory of Types� Cambridge Tracts in
Theoretical Computer Science ��� Cambridge University Press� �

��

�Wol
�� D� A� Wolfram� A semantics for �Prolog� Theoretical Computer Science�
������� �

��

Index

���������lex � �	
�sub� ��
��� ��
�E � ��
�W � ��
�E �W � ��
Dom� ��
E �unication� ��
R�normal form� ��
R�normalized� ��
�t j R�� ��
BV� ��� ��
FV� ��� ��
Im� ��
Irr� ��
OBV� �

Rng� ��
�
	� ��� ��
��conversion� ��
��conversion� ��
��normal form� ��
��redex� ��
���normal form

long� ��
�R� �	� ��
�
p
� 	

�� 	�
�� �

��conversion� ��
��expanded form� ��
��expansion� ��
��normal form� ��
��� 	�
��

�d�� ��

��
d � ��

�
�� ��
��Prolog� �� �� ��	
��calculus

conversions� ��

��term� see term
tl�

�
� ��

E �W � ��
W � ��
j t j� ��
jW � ��
jp� �

xk �lifter� ��
��� ��
��R

sub� ��
������ ��
� �type constructor�� ��
	F �i � ��
t �s�p� ��

abstract syntax
higher�order� ���

abstraction� ��
Application� ��
application� ��

BABEL� ���
backtracking� ��

CHRS� �	
CLN� �	
CLNN� ��
Conditional Lazy Narrowing� �	
con�uence� �	

ground� ��
local� �	

congruence� ��
Constraint Solving�
�
Constraint�Failure� ��
constructor� ��
Constructor Clash� ��
Constructor Decomposition� ��
Constructor Imitation� ��
Constructor Rules� ��
convergent� ��
Conversion� ��

���

critical pair� ��
cycle free� ��

D �function�� ��
dag�solved form� �

Decomposition� ��� �
� ��

Constructor� ��
Deletion� ��� �
� ��
di�erence list�
�
di�erentiation�
�

Eight�Queens Problem� ���
EL� ��
Elf� ��	
Eliminate� ��
Elimination� ��� �
� ��� ��
elimination problems� �	
encryption�

equality

join� �	
normal� �	
strict� 	�

equation
�ex��ex� �	
�ex�rigid� ��

equational theory� ��
equivalence relation� �	
evaluation

eager� ��
lazy� ��

expansion� ��

nitary� ��
rst�order

quasi� ��
Flatten�
�
�attening� ��� �

Flex�Flex Di�� �

Flex�Flex Same� �

function

monotonic� ��

GHRS� ��
goal� 	�

connection� ��
marked� ��
oriented� 	�
parallel� ��

selection� �	� ��
solution� 	�

goal selection� ��

Haskell� ��
�
Head� ��
HRS� ��

left�linear� ��
normal conditional� ��
orthogonal� ��
pattern� ��

idempotent� ��
Imitation� ��� ��

with Constraints� ��
imitation binding� ��
Imitation#Projection� �

instance� ��
Isabelle� �� 	�
isolated� ��

joinable� �	

Lazy Narrowing� ��
at Variable� �	
Conditional� �	
Normalizing� ��
second�order� ��
with Constraints� ��
with Decomposition� �	� ��
with Imitation� ��
with Projection� ��

let�construct� ��
denition�
�� ��	
for pairs�
�

lexicographic ordering� �	
lhs� ��
lifting� ��
linear� ��
linear second�order system� ��
LISP� �
list� ��
LN� ��� �	
LNC� ��
LNN� �

logic programming� 	

higher�order� ��	
long ���normal form� ��

matching� �
MCSU� ��
more general� ��
multiset� ��

extension� ��
smaller� ��

naming conventions� ��
narrowing

completeness� 	�
completeness wrt� solutions� 	�
lazy� 	�
plain� 	� 	�

narrowing step� 	�
pattern� 	

NC�
�
NCHRS� ��
NCLN� ��
NLN� ��
normal form� �	
Nuprl� �

object�oriented programming� ���
ordering

compatible� �	
lexicographic� ��
partial� �	
strict� �	

preserving� ��
terminating� �	
termination� ��
decreasing� ��

total� �	
overlap� ��

partial binding� ��
path� �

rigid� ��
pattern� �� ��

relaxed� ��
Pattern Narrow�
�
position� �

independent� ��
root� ��

postx� �

Proceed� ��
program transformation�
	
Projection� ��� ��

second�order� �	
projection binding� ��
Prolog� ���
��
�� ���
PT� ��
PU� �

reduction
conditional
length� �	

Re�exivity� ��
rewrite rule� ��

xk �lifted� ��
conditional� �	
extra variables� ��� �	
left�linear� ��
normal conditional� ��� ��
pattern� ��

rewrite step� ��
conditional� �	
innermost� ��
outermost� ��

rhs� ��
right isolated� ��
rigid� ��
root position� ��
rule� see rewrite rule

second�order� ��
weakly� ��

semantics
denotational� ��� 	�
equational� 	�

sequence� �

empty� �

prex� �

Simple System� ��
simplied� �

simplication� ��
SLN� ��
SML� ��
�
SO�Projection� ��
Solve�
�
substitution� ��

approximates� ��
composition� ��
equality� ��
free variables� ��
ground� ��

idempotent� ��
more general� ��
normal form� ��
parameter eliminating� ��
restriction� ��
size increasing� ��
well�formed� ��

subterm� �

modulo binders� ��

symbol
dened� ��

Symmetry� ��

term� ��
�exible� ��
ground� ��
order� ��
simply typed� ��
size� ��

termination� �	� ��� ��
theorem

proving� 	�
TPS� �
Transitivity� ��
type� ��

base� ��
constructor� ��
judgment� ��
order� ��

type inference� ���

unication
associative� 	�
equational� ��
nitary� ��
higher�order� ��
innitary� �� ��
lazy� 	�
nullary� �� ��
pattern� ��
pre�� �
theory� ��
unitary� �� ��

unier� ��
pre�� �	

variable� ��
bound� ��

convention� ��
free� ��� ��
intermediate� ��
logic� ��
loose bound� ��
of interest� ��
outside bound� �

