
An Attempt to Embed a Restricted Version of SDL

as a Target Language in Focus�

Eckhardt Holz� Ketil St�len

Abstract

This paper presents a �rst attempt to embed a restricted version of SDL as a
target language in Focus� Brief introductions to both Focus and SDL are given� and
it is shown how both methods can be assigned a denotational semantics based on
streams and stream processing functions� A set of Focus speci�cations� referred to
as F�SDL� is characterized whose elements structurally and semantically match SDL
speci�cations to such a degree that an automatic translation is almost straightfor�
ward� Finally it is outlined how Focus can be used to develop an SDL speci�cation
of a protocol�

� Introduction

Focus �BDD����� �BS��� is a methodology� in the tradition of �Kah���� �Kel��� for the
formal speci�cation and development of distributed systems	 A system is modeled by
a network of components working concurrently and communicating asynchronously via
unbounded FIFO channels	 A number of reasoning styles and techniques is supported	
Focus provides mathematical formalismswhich support the formulation of highly abstract�
not necessarily executable speci�cations with a clear semantics	 Moreover� Focus o
ers
powerful re�nement calculi which allow distributed systems to be developed in the same
style as for example VDM and Z allow for the development of sequential programs	 Finally�
Focus is modular in the meaning that design decisions can be checked at the point where
they are taken� that component speci�cations can be developed in isolation� and that
already completed developments can be reused in new program developments	

SDL �CCI��� has been developed by CCITT and was initially intended for the description
of telecommunication systems	 However� SDL is also well�suited for more general speci�
�cation tasks	 In SDL the behavior of a system is equal to the combined behavior of its
processes	 A process is basically a communicating� extended� �nite�state machine	 The
processes communicate asynchronously by sending signals via signal routes	 SDL provides
both a textual and a graphical speci�cation formalism	 SDL has received considerable
interest from industry and is supported by a large number of tools and environments	

In some sense Focus and SDL are orthogonal approaches	 Because of its very mathemat�
ical and abstract notation� Focus has its strength in the area of formal re�nement and

�This work is supported by the Sonderforschungsbereich ��� �Werkzeuge und Methoden f�ur die

Nutzung paralleler Rechnerarchitekturen��

veri�cation	 SDL� on the other hand� due to its graphical notation and many structur�
ing constructs� is very well�suited for the formulation of large and complicated �real�life�
speci�cations	 It is therefore tempting to try to combine these two approaches into one
methodology inheriting the strength of both	 This is our motivation�

SDL o
ers a large number of speci�cation and structuring constructs� and it is important
to realize that it is not our intention to transform Focus into a method� which allows
for the development of any SDL speci�cation	 In fact we are only interested in the
sublanguage of SDL� which in a natural way corresponds to Focus developments	 For
example� Focus is not well�suited for the description of dynamic networks � networks
where processes can be created and interfaces may change during execution	 Thus the
full generality of the SDL process creation mechanism is not very relevant in connection
with a Focus development	 This does not mean that we consider these additional features
of SDL to be of little value	 On the contrary� we rather see Focus as a tool or facility�
which can be used to formally develop and verify certain restricted� critical parts of an
SDL speci�cation	 Typical examples would be communication protocols� mutual exclusion
algorithms or some complicated sorting algorithm	

Section � describes the underlying formalism	 Then Focus and SDL are introduced in
Sections � and �� respectively	 It is shown how both Focus and a restricted version of
SDL can be assigned the same type of denotational semantics	 In Section � F�SDL is
syntactically characterized� and Section � outlines how an SDL speci�cation of a protocol
can be formally developed employing the proposed technique	 Finally� Section � gives a
brief summary and discusses possible extensions	

� Underlying Formalism

N denotes the set of positive natural numbers	 We assume the availability of the standard
logical operators	 As usual� � binds weaker than ����� which again bind weaker than
all other operators and function symbols	

A stream is a �nite or in�nite sequence of actions	 It models the history of a communi�
cation channel by representing the sequence of messages sent along the channel	 Given a
set of actions D� D� denotes the set of all �nite streams generated from D� D� denotes
the set of all in�nite streams generated from D� and D� denotes D� �D�	

Let d � D� r� s � D�� and j be a natural number� then�

� � denotes the empty stream�

� �r denotes the length of r� which is equal to � if r is in�nite� and is equal to the
number of elements in r otherwise�

� rjj denotes the pre�x of r of length j if j � �r� and r otherwise�

� d� s denotes the result of appending d to s�

� r� s denotes r if r is in�nite and the result of concatenating r with s� otherwise�

� r v s holds if r is a pre�x of s	

�

The stream operators de�ned above are overloaded to tuples of streams in a straightfor�
ward way	 � will also be used to denote tuples of empty streams when the size of the tuple
is clear from the context	 If d is an n�tuple of actions� and r� s are n�tuples of streams�
then �r denotes the length of the shortest stream in r� d� s denotes the result of applying
� pointwisely to the components of d and s� r� s and r v s are generalized in the same
pointwise way	

A chain c is an in�nite sequence of stream tuples c�� c�� � � � such that for all j � � cj v cj��	
tc denotes c�s least upper bound	 Since streams may be in�nite such least upper bounds
always exist	

A Boolean function P � �D��n 	 B is admissible i
 whenever it yields true for each
element of a chain� then it yields true for the least upper bound of the chain	 P is pre�x�
closed i
 whenever it yields true for a stream tuple� then it also yields true for any pre�x
of this stream tuple	 P is safe i
 it is admissible and pre�x�closed	 We write safe�P � i

P is safe	

A function � � �D��n 	 �D��m is called a ��n�m��ary� stream processing function i
 it
is pre�x monotonic and continuous�

for stream tuples i and i� in �D��n � i v i� � � �i� v � �i���

for all chains c generated from �D��n � � �tc� � tf� �cj�jj � Ng�

That a function is pre�x monotonic implies that if the input is increased then the output
may at most be increased	 Thus what has already been output can never be removed
later on	 Pre�x continuity� on the other hand� implies that the function�s behavior for
in�nite inputs is completely determined by its behavior for �nite inputs	

A stream processing function � � �D��n 	 �D��m is pulse�driven i
�

for all stream tuples i in �D��n � �i
��� �i � �� �i��

That a function is pulse�driven means that the length of the shortest output stream is
in�nite or greater than the shortest input stream	 This property is interesting in the
context of feedback constructs because it guarantees that the least �xpoint is always
in�nite for in�nite input streams	

The arrows 	� c	 and
cp	 are used to tag domains of ordinary functions� domains of

monotonic� continuous functions� and domains of monotonic� continuous� pulse�driven�
functions� respectively	

To model time�outs we need a special action
p
� called �tick�	 There are several ways to

interpret streams with ticks	 In this paper� all actions should be understood to represent
the same time interval� the least observable time unit	

p
occurs in a stream whenever no

ordinary message is sent within a time unit	 A stream or a stream tuple with occurrences
of
p
�s is said to be timed	 Similarly� a stream processing function is said to be timed

when it operates on domains of timed streams	 Observe that in the case of a timed�
pulse�driven� stream processing function the output during the �rst n � time intervals
is completely determined by the input during the �rst n time intervals	 For any stream
or stream tuple i� �i denotes the result of removing all occurrences of p in i	

�

In the more theoretical parts of this paper� to avoid unnecessary complications� we dis�
tinguish between only two sets of actions� namely the set D denoting the set of all actions
minus

p
� and Dp denoting D � fpg	 However� the proposed formalism can easily be

generalized to deal with more general sorting� and this is exploited in the examples	

We use two additional functions in our examples� a projection function c� and a function
 which eliminates repetitions	 More explicitly� if A is a set of n�tuples of actions� d� e are
n�tuples of actions� and r is an n�tuple of streams� then A c� and are stream processing
functions such that the following axioms hold�

A c�� � ��
d � A� A c�d� r � d�A c�r�
d
� A� A c�d� r � A c�r�

��� � ��
�hdi� � hdi�
d � e��d� e� r� � �d� r��
d
� e��d� e� r� � d��e� r��

Note that these axioms together with the monotonicity and continuity constraints deter�
mine the semantics also for stream tuples whose stream components are not of the same
length	 For example �a� b� �� � �	 When A � fdg we write d c�r instead of fdg c�r	

� Focus and Its Stream Semantics

Depending upon the logical concepts they employ� Focus speci�cations can be divided
into a number of subclasses	 For example� Focus distinguishes between trace speci�ca�
tions� equational speci�cations� functional speci�cations� assumption�commitment spec�
i�cations� state�oriented speci�cations� relational speci�cations� etc	 � each of these al�
ternatives having special problem areas or stages in a system development where they are
particularly suited	 The use of tables and diagrams is also supported	

In this paper� we employ only so�called relational speci�cations	 However� the proposed
approach can easily be combined with the other speci�cation techniques in Focus	 A
relational speci�cation of a component with n input channels and m output channels is
written in the form

S�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� � R�

where S is the speci�cation�s name� i�� � � � � in and o�� � � � � om are disjoint� repetition free
lists of identi�ers representing n respectivelym streams� R is a formula with the elements
of i�� � � � � in and o�� � � � � om as its only free variables	 Each stream models the communica�
tion history of a channel� and R characterizes the allowed relation between the histories of
the input and the output channels	 We therefore refer to R as the input�output relation	
For any speci�cation S� RS represents its input�output relation	

In Focus speci�cations are modeled by sets of timed� pulse�driven� stream processing
functions	 In real�time speci�cations the ticks occur also at the syntactic level	 In other
speci�cations they are abstracted away in the sense that they are not allowed to occur
explicitly in the speci�cations	 In this paper we consider only speci�cations of the latter
type	

�

The denotation of the speci�cation S is the set of all �n�m��ary� timed� pulse�driven�
stream processing functions which ful�ll R when time�signals are abstracted away and
only complete inputs are considered�

�� S ��
def
� f� � �D�p �n

cp	 �D�p �m j �r � �D�p �n � ��r� �� �r�� j� Rg�

where ��r� �� �r�� j� R holds i
 R evaluates to true when each input identi�er ij is inter�
preted as the j�th element of the n�tuple �r� and each output identi�er oj is interpreted
as the j�th element of the m�tuple �� �r�	
Due to the time abstraction� at the syntactic level the streams are untimed	 At the seman�
tic level the time�ticks allow complete input histories �in�nite inputs� to be distinguished
from partial input histories ��nite inputs�	 The additional expressiveness resulting from
this makes it possible to specify fair merge components	 Such components cannot be
modeled by sets of untimed stream processing functions �Kel���	 See �BS��� for a more
detailed discussion	

S� S�

� � � �

� �

�
�
�
�
�
�
�
�

B
B
B
B
B
B
B
B

i

x y

r

o s

Figure � Network Consisting of the Speci�cations S� and S�	

Networks of speci�cations are expressed in an equational style	 For example� the network
S pictured in Figure � consisting of the the two speci�cations S� and S�� is characterized
as below�

S�i � D�� r � D�
� o � D�� s � D�� � �o� y� � S��i� x�� �x� s� � S��y� r�

The channels represented by x and y are now hidden in the sense that they represent local
channels	 The comma separating the two equations can be read as an �and�	

More formally� �� S ��
def
� f�� � �� j �� � �� S� �� � �� � �� S� ��g� where for any pair of timed

stream tuples i and r� ��� � ����i� r�
def
� �o� s� i
 �o� s� is the least �xpoint solution with

respect to i and r	 This is logically expressed by the following formula�

�x� y � D�p � �o�� y�� x�� s� � D�p �

���i� x� � �o� y� � ���y� r� � �x� s� � ��
���i� x�� � �o�� y�� � ���y�� r� � �x�� s��� �o� y� x� s� v �o�� y�� x�� s��� ���

�

�� requires �o� y� x� s� to represent a �xpoint� ��� requires this �xpoint to be the least	

In fact any data�ow network can be expressed in this equational style	 We have already
seen an example of a �nite network	 In�nite networks are expressed using recursion	 For
a more detailed syntactic and semantic treatment� see �Ded���	

Focus o
ers a number of re�nement concepts with corresponding re�nement calculi	 The
most basic of these is behavioral re�nement� which at the semantic level corresponds
to set inclusion� a speci�cation S� re�nes a speci�cation S�� written S� � S�� i
 the
denotation of S� is equal to or contained in the denotation of S�	 More formally� S�� S�
i
 �� S� �� � �� S� ��	
The re�nement relation � is re�exive� transitive and a congruence with respect to the
composition operators	 Hence�� allows compositional system development� once a spec�
i�cation is decomposed into a network of subspeci�cations� each of these subspeci�cations
can be further re�ned in isolation	

Re�nement calculi for relational speci�cations can be found in �SDW���� �BS���	 In the
former the relational speci�cations are written in a so�called assumption�commitment
style	 See �Bro��� for an overview of re�nement concepts supported by Focus	

� SDL and Its Stream Semantics

An SDL speci�cation de�nes a system behavior in a stimulus�response fashion� assuming
that both stimuli and response are discrete and carry information	 The speci�cation
model is based on the concept of communicating� extended� �nite�state machines	 SDL
provides structuring concepts which facilitate the speci�cation of large and�or complex
systems	 Speci�cations can be expressed both in a textual and a graphical formalism	

An SDL system speci�cation is a container for a set of blocks	 It is separated from its
environment by a system boundary	 The blocks are connected to one another and to
the system environment by channels	 Each communication between blocks respectively
between blocks and the environment takes place using signals� which are conveyed by
the channels	 The transmission of signals can be delaying or non�delaying and uni� or
bidirectional	 A block can be a container for a set of blocks �block substructure� or it can
be a container for a set of processes	

Processes are interconnected by non�delaying signalroutes	 Signalroutes are also used
to connect processes to the block boundary	 A process de�nition de�nes a set of pro�
cesses	 Several instances of the same process set may exist concurrently and execute
asynchronously and in parallel with each other and with instances of other processes in
the system	 A process instance is a communicating� �nite�state machine extended to allow
for�

� a secondary state� represented by local variables� in addition to the ordinary control
state�

� explicit nondeterminism in terms of spontaneous input and nondeterministic deci�
sion�

� deferred consumption of input signals	

�

ini� � � �i�

�

�

� ��

� �o� o� om

b

� � �

FM

PR

Model �

i� in� � �i�

�

�

� �

�

�

�

�

o� o� om

tb

� � �

FM

PR

Model �

ini�i� � � �

�

� � �

�� ���

�

o� o� om

tb

� � �

FM

PR

NG

Model �

z

Figure �� Three Models of an SDL Process	

Each process has an internal� unbounded bu
er in which all incoming signals are inserted
in the order of their arrival and thereafter processed	 Simultaneously arriving signals are
arbitrarily ordered	 The set of valid state�transitions is described by a process graph or a
service decomposition	

SDL o
ers many other facilities and structuring concepts	 For example� the latest version�
SDL��� is object�oriented	 It is beyond the scope of this paper to give a more detailed
description	

There is a close relationship between a functional core of the SDL language and lazy
functional programming languages based on stream communication	 It is this functional
core that interests us in this paper	 Inspired by �Bro��� we sketch how this restricted
version of SDL can be given a denotational semantics in terms of streams and stream
processing functions	 Since Focus is based upon such a semantics this can be achieved by
specifying the di
erent SDL constructs in Focus	 We consider only the time independent
part of SDL	 This means that all channels are declared as non�delaying and that only
some restricted aspects of the SDL facilities for timers are modeled	 Moreover� with the
exception of SDL���s statements for explicit nondeterminism� all the constructs considered
by us are contained in what �BHS�� calls Basic�SDL	

The semantics of SDL systems and blocks can easily be expressed as �nite Focus networks
given that the behavior of SDL processes can be described in Focus	 This is explained
in more detail when we later characterize F�SDL	 In this section we concentrate on the
modeling of the SDL process construct	

As indicated by Model in Figure �� if we ignore facilities for process creation� the timer
constructs� explicit nondeterminism and that an SDL process can send signals to itself� a
Basic�SDL process� with n input signal routes and m output signal routes� can be modeled
as the sequential composition of two components� namely a fair merge component FM�
which merges the streams of signals received on the n input signal routes into a stream b
modeling the internal� unbounded bu
er of an SDL process� and a processing component
PR� which carries out the actual processing	

The component FM is characterized by the following relational Focus speci�cation�

�

FM�i� � D�� � � � � in � D�
� b � D�� � �o � f� � � � � ng� � �n

j��splitj�b� o� � ij�

Based on an oracle �its second argument� the auxiliary function splitj extracts �from its
�rst argument� the stream of signals received on the j�th input signal route � mathe�
matically expressed�

j � y � splitj�x� b� y� p� � x� splitj�b� p��

j
� y � splitj�x� b� y� p� � splitj�b� p��

FM is a typical example of a non�executable Focus speci�cation � non�executable in the
sense that the input�output relation is characterized without giving any algorithm for its
realization	 In some sense the fair merge component is speci�ed in terms of its inverse	
Clearly� if the process has only one input channel� the fair merge component is not needed	

When we later de�ne F�SDL� FM is assumed to be a speci�cation constant with exactly
the above characterized semantics	 Moreover� FM is overloaded to deal with any number
of input channels of any signal sorts�	

In an SDL process speci�cation the fair merge component FM is hidden in the sense that
it is only a part of the semantics of the process	 After all� since it is always the case that
all incoming input signals are passed on to the internal bu
er of the process� this does
not have to be stated explicitly at the syntactic level	 The visible part of an SDL process
speci�cation is basically a �possibly nondeterministic� functional program corresponding
to the component PR	

As explained in �Bro��� with respect to the internal� unbounded bu
er� the behavior of
a deterministic SDL processing component can be modeled by a function

g � Dq 	 D� c	 �D��m�

which for any q�tuple of secondary state variables l� returns a stream processing function
g�l�� which characterizes the behavior of the processing component PR	 This means that
in the deterministic case the behavior of the component PR can be characterized by a
relational Focus speci�cation of the following form�

PR�b � D�
� o� � D�� � � � � om � D�� �

�l�� � � � � lq � D � �g � Dq 	 D� c	 �D��m � g�l�� � � � � lq��b� � �o�� � � � � om� where Q

The variables l�� � � � � lq represents the secondary state of an SDL process	 The existentially
quanti�ed function variable g �actually g�l�� � � � � lq�� models the behavior of the processing
component	 The formula Q gives the actual de�nition of g	 Section � explains in more
detail how Q can be expressed	

�Such a speci�cation constant can for example be expressed using polymorphic� object	dependent

types�

�

Based on this� we may de�ne the semantics of a simple SDL process as �� SDL PROC ���
where

SDL PROC�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� �

�b� � FM�i�� � � � � in��
�o�� � � � � om� � PR�b�

As already mentioned� in this paper we are only interested in the time independent part
of SDL � time�independent in the sense that all channels are declared as nondelaying	
Nevertheless� SDL timers are needed to allow certain weakly time dependent components
to be expressed	 An example of such a component is the sender speci�ed in Section �	
To allow for the speci�cation of such components� we extend our restricted SDL language
with a set�timer command of the following form� set�now� timer�n��	 The �rst parameter
is �xed as now	

Since the �rst parameter is �xed as now� according to the SDL semantics the time�out
signals are placed in the unbounded� internal bu
er in the same order as they are sent	
Moreover� they are fairly interleaved with the signals received on the other input channels	
Clearly� since we are only interested in the time�independent part of SDL� we do not need
reset signals� nor the SDL constructs for checking whether a timer is active or idle	

As indicated by Model � in Figure �� under these restrictions we may model an SDL�
process with timers by adding an additional feedback channel t� which allows the process�
ing component PR to send its timer signals back to FM	 The latter merges the stream of
timer signals with the other streams of input signals in the same way as before	

Unfortunately� as someone familiar with SDL may have observed� a problem has been
brushed under the carpet	 In SDL a timer signal remains active until it is consumed by
the processing component PR	 When the processing component sends a timer signal for
which there is already an active copy in b� then the already active copy is deleted at the
very same moment as the new copy is placed in b	 Thus to make sure that we get the
intended e
ect when our Focus speci�cations are translated into SDL� this problem must
somehow be taken into consideration	 There are at least two straightforward solutions	

The �rst alternative is to handle it directly in the speci�cation of PR� namely by for each
timer timer�n�� to add an additional parameter mtimer�n� keeping track of the di
erence
between the number of times timer�n� has been output along t� and the number of times
timer�n� has been input from b	 Then� whenever a timer signal timer�n� is input from b�
if mtimer�n� � � this signal is ignored � otherwise it is processed in the usual SDL way	

Given that T is the set of all timers� then the second alternative is to impose an additional
proof�obligation which must be satis�ed by the function

g � Dq 	 �D � T ��
c	 �D��m � T �

characterizing the behavior of the processing component PR	 More explicitly� to require
that

�

g�l�� � � � � lq��b� � �o�� � � � � om� t�� �timer�n� c�t � �timer�n� c�b� ���

for all timer signals timer�n� � T 	 Note that g is monotonic and continuous	

Clearly� the �rst alternative allows us to model a larger class of SDL�speci�cations	 How�
ever� the additional expressiveness we then get is not particular interesting from a prag�
matic point of view	 Moreover� it is expensive in the sense that our Focus speci�cations
become more complicated	 For this reason we decide in favor of the second alternative	
Thus an SDL�process� which behaves in accordance with the additional proof obligation
���� can be modeled by the set of timed� pulse�driven� stream processing functions char�
acterized by �� SDL PROC ��� where

SDL PROC�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� �

�b� � FM�i�� � � � � in� t��
�o�� � � � � om� t� � PR�b�

This format can of course easily be generalized to also allow the process to send ordinary
signals to itself	 It is enough to de�ne t to be of type �D � T ��	

So�far we have considered deterministic processing components only	 However� in SDL��
nondeterminism can be expressed explicitly using the constructs for spontaneous input
and nondeterministic decision	 We now extend our semantic model to deal with these two
constructs	

Spontaneous input is in SDL speci�ed using an input symbol with the keyword none	 A
spontaneous input attached to a state means that the actual transition can be initiated at
any time nondeterministically	 This construct can for example be used to model unreliable
behavior	

To handle spontaneous input� we add an additional component NG to our model� as
indicated by Model � in Figure �	 The component NG is supposed to output nondeter�
ministically some stream of none�s� and is speci�ed by�

NG� � z � fnoneg�� � true

The fair merge component must now also take the input from NG into consideration when
it generates the stream modeling the internal unbounded bu
er b � the signals received
along z are of course treated as ordinary input signals	

As a consequence� the denotation of an SDL process with timers �given the stated restric�
tions� and spontaneous input is characterized by �� SDL PROC ��� where

�

SDL PROC�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� �

�z� � NG�
�b� � FM�z� i�� � � � � in� t��
�o�� � � � � om� t� � PR�b�

The other way of expressing nondeterminism explicitly in SDL � so�called nondeter�
ministic decision � is represented by the keyword any inside a decision symbol with no
values attached to its outlets	 This indicates that the alternative chosen by the process
cannot be forecast	 To build this into our model we introduce a prophecy�variable p in
the speci�cation of PR�

PR�b � �D � T �� � o� � D�� � � � � om � D�� t � T �� �

�p � N� � �l�� � � � � lq � D � �g � N� 	 Dq 	 �D � T ��
c	 �D��m � T � �

g�p��l�� � � � � lq��b� � �o�� � � � � om� t� where Q

The existentially quanti�ed p represents some in�nite stream of positive natural numbers
and can be thought of as a seed	 If the k�th nondeterministic decision executed by the
process has � outlets� then outlet �p�k� mod �� � is chosen where p�k� denotes the k�th
natural number in p	

� The Syntax of F�SDL

So�far we have concentrated on mapping the syntactic expressions of the two formalisms
into the very same semantics	 In this section we work in the opposite direction	 Based
on the proposed SDL semantics expressed in Focus� a language called F�SDL is de�ned	
This language characterizes a set of Focus speci�cations whose elements structurally and
semantically matches SDL speci�cations to such a degree that an automatic translation
into SDL is almost straightforward	

This section outlines the context independent syntax of F�SDL �we write �outlines� be�
cause the objective of this paper is to explain the central ideas � syntactic details will
�rst be �xed in connection with the implementation of the F�SDL�to�SDL translator�	
The presentation of the syntax is interleaved with a number of examples showing the
relationship to SDL	 There is of course a large number of additional context dependent
constraints	 Since many of those are either obvious or correspond straightforwardly to
similar constraints in SDL� only the most important are mentioned below	 No transla�
tion algorithm is given	 However� the examples indicate how the translation should be
conducted	

We use the following EBNF convention� ��� expr ��� � expr is optional� fexprg� � zero or
more repetitions of expr� fexpr��sepg� � zero or more repetitions of expr separated by
sep� fexprg� � one or more repetitions of expr� fexpr��sepg� � one or more repetitions
of expr separated by sep� expr�jjexpr� � choice� � � � grouping	

We start by explaining how SDL system speci�cations are expressed in F�SDL�

hsys speci ��� system hheadi ��� hdata defi ��� hsys bodyi where hsys defsi end

hheadi ��� hidi �f hch decli ���g� � f hch decli ���g� � �

hdata defi ��� SDL DATA DEF

hsys bodyi ��� f hequationi ���g�

hsys speci characterizes a �nite Focus network of blocks �i	e	 as a set of equations� whose
de�nitions are given in hsys defsi	 hdata defi is used to de�ne new datatypes� signals etc	
as in SDL	 Strictly speaking� the keywords system� where and end have no in�uence on
the stream semantics	 They have been included to simplify the implementation of the
translation algorithm and to increase the readability of the speci�cations	

hch decli ��� f hch idi ���g� � hsig seti �

hequationi ��� hleft sidei � hright sidei

hleft sidei ��� hch tuplei

hch tuplei ��� �f hch idi ���g� �

hright sidei ��� hidi hch tuplei

hsys defsi ��� f hblock speci ���g�

Additional Constraints� Any block identi�er occurring in hsys bodyi must also be de�ned
in hsys defsi	 A system speci�cation is required to satisfy a number of constraints with
respect to its channel identi�ers�

� the lists of input and output identi�ers are disjoint and without repetitions�
� the same identi�er occurs in maximum one hleft sidei and not more than once�
� the same identi�er occurs in maximum one hright sidei and not more than once�
� an input identi�er cannot occur in a hleft sidei�
� an output identi�er cannot occur in a hright sidei�
� an identi�er� which is no input identi�er and occurs in a hright sidei� must also occur
in a hleft sidei	

Example � System Speci�cation�
The SDL system diagram in Figure � corresponds to the following F�SDL speci�cation�

�

�

��

s�

s�

s�

s�

s�

s�

� �

�����
�����
�����
�����
���

s�

s�

s� s�
s�

s�

s�

s�� s�� s�� s�� s�� s�� s�

system
signal

c�c� c�

c� c�

SYS

BL� BL�

Figure �� SDL System Diagram

system SYS�c� � fs�� s�� s�g�� c� � fs�� s�g� � c� � fs�� s�� s	g�� c	 � fs�� s�g�� �

�c�� c�� � BL��c���
�c	� � BL��c�� c��

where

block BL� � � � end�

block BL� � � � end

end

The type of the internal channel c� can be deduced from the speci�cations of the blocks	

�

F�SDL block speci�cations are expressed in almost the same way as systems�

hblock speci ��� block hheadi ��� hdata defi ��� hblock bodyi where hblock defsi end

hblock bodyi ��� ��� f haliasi ���g� � ��� f hequationi ���g�

haliasi ��� hch idi � hch idi

hblock defsi ��� f hblock speci ���g� jj f hproc speci ���g�

hproc speci ��� hord proc speci jj hrec proc speci

hblock bodyi di
ers from hsys bodyi in that in addition to the equations characterizing a
�nite network there are also equations modeling the renaming of channels�signal�routes

�

s�
s�
s�

�

�����
�����
�����
�����
���

��

� �

s�

s�

s� s�
s�

s�

s�

s�� s�� s�� s�� s�� s�� s�

sr�

block
signal

sr� sr�

c�

s�

s�

s�

sr�

sr�
c�

c�

c�

BL

PROC� PROC�

Figure �� SDL Block Diagram

that can be necessary on the borderline between an SDL block and its surrounding system	

By ordinary processes hord proc speci we characterize the SDL processes which do not
create other processes	 A recursive process hrec proc speci� on the other hand� has pro�
cess creation and communication as its only responsibility	 The reason why we make
this distinction is that in F�SDL only some rather restricted aspects of the SDL process
creation facilities are modeled� namely those needed to express in�nite Focus networks	

Clearly� a block or a process identi�er occurring in hblock bodyi must also be de�ned in
hblock defsi	 Moreover� we have the same constraints on channel identi�ers as for F�SDL
system speci�cations� with the additional requirements that the aliasing is conducted in
accordance with standard SDL rules	

Example � Block Speci�cation�
The SDL block diagram of Figure � corresponds to the following F�SDL speci�cation�

�

block BL�c� � fs�� s�� s�g�� c� � fs�� s�g� � c� � fs�� s�� s	g�� c	 � fs�� s�g�� �

sr� � c��
sr� � c��
c� � sr��
c	 � sr	�
�sr�� sr�� � PROC��sr���
�sr	� � PROC��sr�� sr��

where

ord process PROC� � � � end�

ord process PROC� � � � end

end

�

We now characterize the syntactic structure of ordinary processes	

hord proc speci ��� ord process hheadi ��� hdata defi ��� hproc bodyi where hpr speci end

hproc bodyi ��� ��� hng eqi � ��� ��� hfm eqi � ��� hpr eqi

hng eqi ��� hch unit tuplei � NG

hch unit tuplei ��� � hch idi �

hfm eqi ��� hch unit tuplei � FM hch tuplei

hpr eqi ��� hch tuplei � PR ��� hch unit tuplei ���

hng eqi� hfm eqi and hpr eqi model respectively the NG�equation� the FM�equation and
the PR�equation� as explained on Page 	 NG and FM are speci�cation constants and
do not have to be explicitly de�ned in F�SDL	 hpr speci gives the F�SDL speci�cation of
the processing component PR	

The �nite network characterized by an ordinary process speci�cation is required to satisfy
the very same constraints with respect to stream identi�ers as system and block speci��
cations	 In addition the di
erent components are required to be connected as explained
on Page 	

Example � Ordinary Process Speci�cation�
An F�SDL process speci�cation is for example of the following form�

�

ord process PROC�sr� � fs�� s�g�� sr� � fs�g� � sr� � fs�� s	g�� sr	 � fs�� s�g�� �

�z� � NG�
�b� � FM�z� sr�� sr�� t��
�sr�� sr	� t� � PR�b�

where

PR � � � end

end

In an SDL process speci�cation� the structure characterized above is to a large extent
hidden in its semantics	 What we see in an SDL process diagram is basically the speci��
cation of the processing component PR	 Note that the types of z� b and t can be deduced
from the declarations in the PR speci�cation	

�

The processing component PR represents the visible part of an SDL process speci�cation	
Its syntactic structure minus the state transitions is �xed below�

hpr speci ��� hpr headi hpr bodyi where hproc graphi end

hpr headi ��� PR � ��� hch decli ��� � f hch decli ���g� � �

hpr bodyi ��� ��� hproph decli ��� f hloc st decli ���g� hfunc decli hfunc calli � hch tuplei

hproph decli ��� � hproph idi � N� �

hloc st decli ��� �f hloc st idi ���g� � hloc st typei �

hfunc decli ��� � hfunc idi � hfunc typei �

hfunc calli ��� hfunc idi ��� � hproph idi � ��� ��� hloc st tuplei ��� ��� � hch idi � ���

hloc st tuplei ��� �f hloc st idi ���g� �

Note the close correspondance between the structure of hpr bodyi and the corresponding
fragment of the speci�cation PR on Page 	 The process graph hproc graphi �the formula
Q on Page � is basically a functional program expressed in terms of pattern matching	

Example 	 Processing Component Speci�cation�
The SDL process diagram of Figure � corresponds to the F�SDL speci�cation of Example
�� where PR is speci�ed as below�

�

�
�

�
�

����
����
����
�����
����
����
�

� � �

dcl v� S��

dcl v� S��

process PROC

timer ti�� ti��

Figure �� Process Speci�cation in SDL

PR�b � fs�� s�� s�� ti�� ti�g� � sr� � fs�� s	g�� sr	 � fs�� s�g�� t � fti�� ti�g�� �

�p � N� � �v� � S� � �v� � S� �

�g � N� 	 S� � S� 	 fs�� s�� s�� ti�� ti�g� c	 fs�� s	g� � fs�� s�g� � fti�� ti�g� �
g�p��v�� v���b� � �sr�� sr	� t�

where

			

end

�

hproc graphi ��� ��� hvar declsi ��� hi trani ��� � f htrani ���g� ���

hvar declsi allows us to introduce universally quanti�ed variables needed for the pattern
matching	 hi trani is used to model the initialization transition � the transition from the
start symbol to the �rst control state	 htrani models any other state transitions of an SDL
process graph	 hitrani is just a special case of htrani� namely a transition which does not
consume input signals	 Hence� its syntactic de�nition follows straightforwardly from the
de�nition of htrani	 Examples of complete F�SDL process graphs can be found in Section
�	

�

c
cc
�
��

c
cc
�
��

�
�

�
�
�
�

�
�

�
�

�
�

�
�
�� �

�
��

�

�

s�� s�

state

s�� s�� s� s�

�st a� st b�

Figure �� Three State�Transition Fragments

htrani ��� ��� hfunc idi
� hfunc seti � ��� � hh trani jj hv trani �

hh trani ��� hsig idi
� hsig seti � hh lefti � hh righti

hh lefti ��� hfunc idi ��� � hproph idi � ��� ��� hloc st tuplei ��� ��� � hsignali � hch idi � ���

hh righti ��� hfunc calli

hv trani ��� hs trani jj ho trani

The optional part of htrani is used to model an SDL transition from an asterisk state �see
Example ��	 A hidden transition hh trani models the way an SDL process consumes input
signals for which there is no input� or save symbol �see Example ��	 A visible transition
hv trani models any other transition� namely a save transition hs trani or an ordinary
state transition ho trani 	

Example
 Asterisk State Transition�
The two F�SDL fragments

st var
� fg � st var�� � �� � � � � �

st var
� fst a� st bg � st var�� � �� � � � � �

correspond to the two �rst state�transition fragments of Figure �	 The �rst transition can
be performed in any state� the second can be performed in any state di
erent from st a
and st b	 st var is a function variable� and st a and st b are functions representing SDL
states st a and st b� respectively	 Thus in the F�SDL process graph� we basically de�ne
one function for each SDL state we want to model	

�

�

hs trani ��� hsig idi
� hsig seti � hsig seti c�hch idi � hch idi � hs lefti � hs righti

hs lefti ��� hfunc idi ��� � hproph idi � ��� ��� hloc st tuplei ��� � hch idi � � hsig idi � hch idi ��

hs righti ��� hfunc idi ��� � hproph idi � ��� ��� hloc st tuplei ��� �� hsig idi � hch idi �� hch idi �

ho trani ��� ��� hsig idi � hsig seti � ��� hlefti � hrighti

hlefti ��� hfunc idi ��� � hproph pati � ��� ��� hloc st tuplei ��� � hsig pati �

hsig pati ��� ��� hsignali � ��� hch idi

hproph pati ��� f hidi �g
� hproph idi

A save transition hs trani allows the order of the signals in the internal� unbounded bu
er
to be permuted	 See Example �	 Ordinary state�transitions ho trani model the �real�
state�transitions of an SDL process graph	 The optional part is used to model that input
symbols may contain lists of signals	

Example � Input Consumption�
Assume that the actual process has fs�� s�� � � � � s�g as its input signal set	 Then� the third
SDL fragment of Figure � corresponds to the following F�SDL fragment�

a � fs�� s�� s�g � state�a� in� � � � �

state�s	� in� � � � �

a
� fs�� s
g � fs�� s
g c�in � in� state�in� �a� in��� � state��a� in�� in��

a
� fs�� s�� s�� s	� s�� s
g � state�a� in� � state�in�

The �rst two �conditional equations� model the ordinary transitions� the third models the
save�transition� the fourth models a hidden transition� namely the implicit consumption
of any occurrence of s�	 In the save transition the antecedent makes sure that a represents
the �rst signal that is not to be saved	 The �task of the consequence� is then to move a to
the front of the internal bu
er and thereafter continue the processing	 The behavior for
the missing cases �like state���� follows implicitly from the monotonicity and continuity
constraint imposed on state	

�

�

hrighti ��� hif then elsei jj hlet ini jj houtputi jj hnext calli

hif then elsei ��� if htesti then hrighti f elseif htesti then hrightig� ��� else hrighti ��� �

htesti ��� SDL EXPR � SDL EXPR jj hidi mod hidi � hidi

hlet ini ��� let f hassignmenti ���g� in hrighti

hassignmenti ��� hloc st idi � SDL EXPR

houtputi ��� hsignali hselectori hrighti

hselectori ��� � houtput route numberi

hnext calli ��� hfunc idi ��� � hproph idi � ��� ��� �f SDL EXPR ���g� � ��� hch idi

The di
erent types of decisions are expressed by the hif then elsei construct	 There are
two alternative tests	 The left�hand side alternative models ordinary SDL decisions� the
right�hand side alternative models nondeterministic decisions �this means that its mod

operator is assumed to be syntactically di
erent from SDL�s mod operator	

Example � Decisions�
The SDL fragment pictured in Figure � corresponds to the following F�SDL expression�

if n � then
if b � true then � � �
elseif b � false then � � �
�

elseif n � � then
if k mod � � � then � � �
else � � �
�

else

if a � then � � �
elseif a � � then � � �
elseif a � � then � � �
elseif a � � then � � �
�

�

k is a variable representing the next element of the prophecy stream �the existentially
quanti�ed p in the speci�cation of PR on Page �	

�

In an obvious way� hlet ini is employed to model assignments to the secondary state�
variables	 The houtputi construct is used to output signals	 hselectori chooses the right

��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�

�

n

�

� � �

ab

else

false

any

true

Figure �� SDL Decisions Fragment

output signal�route	 The next control state is characterized by the hnext calli construct	
Due to hexpr tuplei it can also be used to model certain assignments to the secondary
state variables	 See the speci�cations PRS� and PRR� in Section �	

hrec proc speci ��� rec process hheadi hrec proc bodyi end

hrec proc bodyi ��� f hequationi ���g�

The recursive process is constrained to occur at least once at the right�hand side of
an equation in hrec proc bodyi	 All the other processes occurring in hrec proc bodyi
are required to have been speci�ed in the surrounding block	 Each recursive F�SDL
process corresponds to an SDL process which waits until it receives an input signal� then
generates a new process for each equation in its body� and thereafter is responsible for
the communication between these new processes and the rest of the network	 Thus we
basically simulates in�nite Focus networks in SDL	

� Development of a Protocol

The objective of this section is to outline how Focus can be used to develop an SDL
speci�cation of a protocol inspired from �Ste���	 In this paper we do not give any formal
proofs	 However� with respect to each �nontrivial� re�nement step� the proof obligations
are stated	

We refer to the overall protocol network as SP� and not surprisingly� from an external
point of view� it is required to behave as an identity component��

�SP is here assigned a subscript
 to allow the di�erent speci�cations of the overall network to be

distinguished� For example� below we give a more re�ned speci�cation of SP which we refer to as SP��

�

system SP��i � DT�
� o � DT�� �

o � i

end�

DT � fdt�d� j d � Dg is the set of data signals� where D is some nonempty set of data	 If
we ignore the keywords system and end� which as explained in Section � have no semantics�
this is an ordinary Focus speci�cation	 However� SP is no complete F�SDL speci�cation
because its internal structure has not yet been �xed in an F�SDL manner	

As usual in the case of protocols� the system to be developed consists of a sender� a receiver
and a communication medium	 Thus� it seems natural to decompose our abstract system
speci�cation into three blocks� a block called SND specifying the sender� a block called
REC specifying the receiver� and a block called MED specifying the medium	 As indicated
in Figure �� at the system level there are � channels altogether� two of these are external�
the other six are internal	 Thus we want an F�SDL system speci�cation of the following
form�

system SP��i � DT�
� o � DT�� �

�sd� sn� � SND��i�ma��
�ma�md�mn� � MED��sd� sn� ra��
�ra� o� � REC��md�mn�

where

block SND� � � � end�

block MED� � � � end�

block REC� � � � end

end

Although the three blocks are unspeci�ed� we already have enough information to generate
the corresponding SDL system diagram	

For each data signal dt�d� input on i� the sender SND generates a unique sequence�number
signal snr�n� and repeatedly sends these two signals along sd and sn� respectively� until
it receives the sequence�number signal snr�n� on ma	 Any sequence�number signal input
on ma is of course sent by REC to acknowledge that the corresponding data signal has
been received	 More formally� the sender can be speci�ed as below�

A similar convention is also used with respect to other speci�cations�

��

�

�

J
J
J
J
J
JJ�

�
�
�
�
��

�
�
�
�
�
�� ��� J

J
J
J
J
JJ�

�
�
�
�
�� ���

�
�
�
�
�
��

SND MED REC

i

sn ra

o

mnma mdsd

Figure �� Network for the Protocol	

block SND��i � DT��ma � SN�
� sd � DT�� sn � SN�� �

let

ma� � �ma�
�sd�� sn�� � �sd� sn�

in

�ma� � �i
�

�sd � �sn � �n � SN � �n c�sn� � � sd� v i�
if �ma� � �i then �sd� � �i else ��sd ����sd� � �ma� � �

end

SN � fsnr�n� j n � Ng denotes the set of sequence�number signals	 The let�construct
de�nes ma� and �sd�� sn�� to be equal to ma and �sd� sn� minus consecutive repetitions�
respectively	

The antecedent states the environment assumption� namely that the length of ma� is less
than or equal to the length of i	 This is a sensible assumption since the receiver should
only acknowledge the data signals it receives	

The �rst conjunct of the consequence requires sd and sn to be of the same length	
This means that SND never sends a data signal without also sending its corresponding
sequence�number � and the other way around	

The second conjunct of the consequence makes sure that each sequence�number has max�
imum one occurrence in sn�	 This means that any data signal in sd that is not equal to
its predecessor has a corresponding sequence�number that is di
erent from all its prede�
cessors	

The third conjunct of the consequence requires sd� to be a pre�x of i	 This means that
the sender only sends the data�signals input from i� and moreover that they are sent in
the order they are received	

The fourth conjunct of the consequence requires that if ma� is of the same length as i
then this also holds for sd�� otherwise sd is in�nite and the length of sd� is equal to the
length of ma� plus 	 This means that the sender does not send more data signals �when

��

repetitions are ignored� than it receives on i� and that when no acknowledgement for a
certain data signal is received� then this signal is sent repeatedly forever	

Note that the second conjunct of the else branch together with conjunct two and three of
the consequence make sure that each data signal input on i is assigned a unique sequence�
number	

The communication medium MED is lossy in the sense that both acknowledgements and
data signals �with the corresponding sequence�numbers� can be lost	 It is assumed that
a data signal is lost i
 the corresponding sequence number signal is lost	 Although the
medium is lossy� it is �friendly� in the sense that if the same signal pair is repeatedly
sent� then it will eventually get through� and similar for acknowledgements	 This can be
formalized as follows�

block MED��sd � DT�� sn� ra � SN�
� ma � SN��md � DT��mn � SN�� �

�p�� p� � f�� g� � � c�p� � � c�p� ���
�d � fg� � �ma� d� � f�n� � j n � SNg c��ra� p���
�d � fg� � �md�mn� d� � f�d� n� � j d � DT � n � SNg c��sd� sn� p��

end

Since the medium is not supposed to be translated into SDL� we do not have to worry
about that the signals received on ra and sn cannot be syntactically distinguished	

The two existentially quanti�ed� in�nite streams p� and p� model the nondeterminism	
When the n�th element of p� is a � then the n�th pair of signals input from sd and sn is
lost� otherwise it is transmitted properly	 Since p� has in�nitely many �s it follows that
an input pair eventually will get through if it is sent often enough	 p� models the lossiness
with respect to acknowledgements in a similar way	

The receiver REC is supposed to output any sequence�number signal it receives on mn
along ra� and any data�element minus repetitions along o�

block REC��md � DT��mn � SN�
� ra � SN�� o � DT�� �

let �md��mn�� � �md�mn� in ra � mnj�md � o � md�

end

The next step is to prove that this decomposition is correct � in other words� to verify
that

SP� � SP��

To do so it is according to �BS��� enough to formulate three invariants I�� I� and I�
with the elements of �i�ma�� �i� sd� sn� ra� and �i�md�mn� as their only free variables�
respectively� and then prove that the following six proof�obligations are ful�lled�

��

I��ma
� � � I��sd�

sn
�

ra
� � � I��md

�
mn
� �

I� �RMED�
� I� � RREC� � I�

I� �RSND�
� I� �RREC� � I�

I� �RSND�
� I� �RMED�

� I�

safe��ma � I�� � safe��sd� sn� ra � I�� � safe��md�mn � I��

I� �RREC� � I� � RMED�
� I� �RSND�

� RSP�

Remember that for any speci�cation S� RS denotes its input�output relation	 In the
�rst proof obligation the substitution operators have standard semantics ��ab � replaces all
occurrences of the variable a with b�	 In the �fth the lambda�notation is used to say that
it is enough to prove that I�� I� and I� are safe when i is kept constant	

The six proof�obligations follow straightforwardly if the three invariants are de�ned as
below�

I�
def
� ��ma� � i� I�

def
� ��sn� � i ���ra� � i� I�

def
� ��mn� � i�

At the system level our development is now complete	 What remains is to transform the
two block speci�cations that we want to implement� namely SND and REC into F�SDL
syntax	 The speci�cation of the medium is not re�ned any further	 The blocks SND and
REC have only one process each� and these processes are therefore constrained to behave
in exactly the same way as their respective blocks	

block SND��i � DT��ma � SN�
� sd � DT�� sn � SN�� �

�sd� sn� � SND PROC��i�ma�

where

ord process SND PROC��i � DT��ma � SN�
� sd � DT�� sn � SN�� � RSND�

end

end

block REC��md � DT��mn � SN�
� ra � SN�� o � DT�� �

�ra� o� � REC PROC��md�mn�

where

ord process REC PROC��md � DT��mn � SN�
� ra � SN�� o � DT�� � RREC� end

end

The veri�cation of this re�nement step� namely that

��

SND�� SND��

REC� � REC��

is trivial	 Each process speci�cation can then be decomposed into a FM and a PR com�
ponent� as explained above	 In the case of SND PROC an additional feedback channel is
introduced to allow for the use of timers	

ord process SND PROC��i � DT��ma � SN�
� sd � DT�� sn � SN�� �

�b� � FM�i�ma� t��
�sd� sn� t� � PRS��b�

where

PRS��b � �DT � SN � TI�� � sd � DT�� sn � SN�� t � TI�� �

let i � DT c�b�ma � SN c�b in
RSND PROC� ��t � �sn � �n � N � �ti�n� c�t � �snr�n� c�sn

end

end

ord process REC PROC��md � DT��mn � SN�
� ra � SN�� o � DT�� �

�b� � FM�md�mn��
�ra� o� � PRR��b�

where

PRR��b � �DT � SN�� � ra � SN�� o � DT�� �

let md � DT c�b�mn � SN c�b in RREC PROC�

end

end

TI � fti�n� jn � Ng denotes the set of timers	 Strictly speaking� the subscripts assigned
to the two PR components violates the F�SDL syntax	 They have only been introduced
to simplify the presentation	 Again� the correctness of these two decompositions� namely
that

��

SND PROC� � SND PROC��

REC PROC�� REC PROC�

follows easily	 The �nal step is to re�ne the input�output�relations of the two PR com�
ponents into F�SDL notation�

PRS��b � �DT � SN � TI�� � sd � DT�� sn � SN�� t � TI�� �

�l � N � �d � D � �start � N�D 	 �DT � SN � TI�� c	 DT� � SN� � TI� �
start�l� d��b� � �sd� sn� t�

where �l� n � N � �d� d� � D � �s � SN � TI � �in� in� � �DT � SN � TI�� �

start�l� d��in� � next�� d��in�

next�l� d��dt�d��� in� � let l � l � in dt�d���� snr�l��� ti�l��� rep�l� d���in�

s � fsnr�n�� ti�k� jn� k � Ng � next�l� d��s� in� � next�l� d��in�

rep�l� d��ti�n�� in� � if n � l then
dt�d��� snr�l��� ti�l��� rep�l� d��in� else rep�l� d��in� �

rep�l� d��snr�n�� in� � if n � l then next�l� d��in� else rep�l� d��in� �

s
� fdt�d� j d � Dg � fdt�d� j d � Dg c�in � in�
rep�l� d��in� �s� in��� � rep�l� d���s� in�� in��

end

��

PRR��b � �DT � SN�� � ra � SN�� o � DT�� �

�l � N � �d � D � �start � N�D 	 �DT � SN�� c	 SN� �DT� �
start�l� d��b� � �ra� o�

where �l� n � N � �d� d� � D � �s � DT � SN � �in� in� � �DT � SN�� �

start�l� d��in� � next dt�� d��in�

next dt�l� d��dt�d��� in� � next sn�l� d���in�

s
� fsnr�n� j n � Ng � fsnr�n� j n � Ng c�in � in�
next dt�l� d��in� �s� in��� � next dt�l� d���s� in�� in��

next sn�l� d��snr�n�� in� � snr�n��� if n � l then
next dt�l� d��in� else dt�d��� next dt�n� d��in�

s
� fdt�d� j d � Dg � fdt�d� j d � Dg c�in � in�
next sn�l� d��in� �s� in��� � next sn�l� d���s� in�� in��

end

To verify the correctness of these decompositions� namely that

PRS� � PRS�� PRR� � PRR� �

it must be shown that

RPRS�
� RPRS�

� RPRR�
� RPRR�

�

which follows by an inductive argumentation	

We now have a complete F�SDL speci�cation if the medium is ignored	 This speci�cation
can easily be translated into SDL	 SDL versions of the two process speci�cations are
pictured in Figure � and �� respectively	 Note the almost one�to�one relationship	 The
only �real� di
erence is that in both cases an additional local state variable n has been
introduced	 Moreover� as a simpli�cation d� has been replaced by d	

� Conclusions

It has been outlined how Focus and a restricted version of SDL can be assigned the same
kind of stream�based� denotational semantics	 Based on the proposed SDL semantics
expressed in Focus� a language called F�SDL has been de�ned	 It characterizes a set
of Focus speci�cations whose elements allow an automatic �one�to�one� translation into
SDL	 The proposed technique was demonstrated on hand of a protocol	

��

cc
��

cc
��

cc
��

�
�

�
�

�
�

�
�

cc
��

�
�

�
�

�
�

�
�

�
	

�

�
	

�

�
	

�

�
	

�

�
	

�
�
	

�

�
	

�

�
	

�

�

�

�����
�����
�����
������

�
�� �

��

� ��

�

cc
��

cc
��

cc
��

next

dcl d � D�

process SND

�

rep

rep

rep

rep

rep

l l

dcl l� n � N�

n

l �� l � �

next

dt�d�

ti�n�

n

l �� �

timer ti�N��

else else

dt�d� via sd

dt�d� via sd

set�now� ti�l��
set�now� ti�l��

snr�l� via sn
snr�l� via sn

snr�n�

Figure �� The Sender Process in SDL	

The merger of Focus and SDL into one methodology o
ers several advantages	 Focus with
its well�de�ned formal semantics and very abstract nature allows the use of formal proof
techniques for the validation� veri�cation and development of speci�cations	 In particu�
lar� employing Focus a certain class of SDL speci�cations can be developed in a top�down
fashion � in other words� in the same style the SDL speci�cation of the protocol was
developed in Section �	 The SDL speci�cation was re�ned from an abstract Focus spec�
i�cation stating that the overall network should behave as an identity component � a
requirement speci�cation whose correctness is obvious� Thus the protocol example shows
how one can proceed from a simple Focus speci�cation to a non�trivial SDL speci�cation	
More complicated protocols can of course be developed accordingly	 Another advantage
of using Focus is the �exibility with respect to environment assumptions and the treat�
ment of speci�cations that are not supposed to be implemented	 An example of the latter
is the medium MED of Section �	 Assumptions about a component�s environment can
be stated by splitting the speci�cation into an assumption and a commitment part	 For

��

cc
�� �

�� �
��

�

cc
��

cc
��

�
�

�
�

�
�

�
�

cc
��

�
	

�

�
�� �

��
�

�
	

�

�
	

�

�
	

�

�
	

�

�
	

�

�����
�����
������
�����

�

�

�

�

process REC

next dt

next dt

dcl d � D�

dt�d�

next dt

next sn

next sn

dcl l� n � N�

l �� �

� l �� n

l

n

�

else

snr�n�

snr�n� via ra

dt�d� via o

Figure �� The Receiver Process in REC	

example� in the speci�cation SND� on Page ��� the antecedent can be seen as an envi�
ronment assumption� and the consequence is a commitment which must be ful�lled by
the component whenever the environment behaves in accordance with the environment
assumption	

SDL is a speci�cation language	 This means that the readability and structure of SDL
speci�cations often is of crucial importants	 For this reason� F�SDL has been designed
in such a way that there is a straightforward mapping into SDL	 This means that the
user has full control of the syntactic structure of the SDL speci�cation he is developing	
In SDL there is a lot of syntactic sugar� which can be hard to model directly in Focus	
This can be dealt with by de�ning and implementing user�controlled transformation rules
which allow the user to transform the generated SDL speci�cation into its optimal form	

From the Focus user�s point of view� the embedding of SDL as a target language means
that the many tools and environments already designed for SDL can be used to trans�
form a developed speci�cation into the chosen target architecture	 For example� there
are SDL tools which allow an automatic translation into C�� �FHvLW���	 Moreover�
since a completely formal development is very resource demanding� the Focus user may
concentrate his e
orts on the critical parts of a system description and specify the less
essential aspects directly in SDL	

Although the considered sublanguage is su ciently expressive to deal with non�trivial
applications� many SDL facilities have been ignored	 However� it is relatively easy to

��

extend the proposed approach to handle a much richer part of SDL� including the complete
SDL timer constructs� procedures �not remote call�� and services	 On the other hand� the
treatment of the more OO�related facilities of SDL� including the full generality of the
constructs for process creation� is di cult if at all possible in the context of Focus	 This
is of course not very surprising since the formal treatment of object�oriented languages
is known to be very di cult	 In fact for the time being there is to our knowledge no
compositional and relative complete proof method for an object�oriented programming
language	

Some case�studies based on the proposed technique has been carried out	 In �FS��� a
Min�Max component has been developed� and �Phi��� designs an SDL speci�cation of a
production cell using the assumption�commitment calculus of �SDW���	

� Acknowledgements

We would like to thank M	 Broy� C	 Facchi and M	 Fuchs who have read earlier drafts of
this paper and provided valuable feedback	

References

�BDD���� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and R� Weber� The
design of distributed systems � an introduction to Focus� Technical Report SFB
	
������ A� Technische Universit�at M�unchen� ����

�BHS�� F� Belina� D� Hogrefe� and A� Sarma� SDL with Applications from Protocol Speci�
�cation� Prentice Hall� ���

�Bro�� M� Broy� Towards a formal foundation of the speci�cation and description language
SDL� Formal Aspects of Computing� 	������ ���

�Bro�	� M� Broy� �Inter�� Action re�nement� The easy way� In M� Broy� editor� Proc�
Program Design Calculi� pages ����� Springer� ��	�

�BS�
� M� Broy and K� St�len� Speci�cation and re�nement of �nite data�ow networks �
a relational approach� Technical Report SFB 	
�����
 A� Technische Universit�at
M�unchen� ��
�

�CCI�	� CCITT� editor� Functional Speci�cation and Description Language �SDL�� Recom�
mendation Z����� International Telecommunication Union� Geneva� ��	�

�Ded��� F� Dederichs� Transformation verteilter Systeme� Von applikativen zu prozeduralen
Darstellungen� PhD thesis� Technische Universi�at M�unchen� ���� Also available
as SFB�report 	
������ A� Technische Universi�at M�unchen�

�FHvLW�	� J� Fischer� E� Holz� M� van L�owis� and D� Witaszek� A run time library for the
simulation of SDL����speci�cations� In O� F�rgemand and A� Sarma� editors� Proc�
	
th SDL Forum� pages ����� North�Holland� ��	�

�FS�	� M� Fuchs and K� St�len� Development of a distributed min�max component� Tech�
nical Report SFB 	
�����	 A� Technische Universit�at M�unchen� ��	�

�

�Kah�
� G� Kahn� The semantics of a simple language for parallel programming� In J�L�
Rosenfeld� editor� Proc� Information Processing ��� pages
��
��� North�Holland�
��
�

�Kel��� R� M� Keller� Denotational models for parallel programs with indeterminate opera�
tors� In E� J� Neuhold� editor� Proc� Formal Description of Programming Concepts�
pages 		��	��� North�Holland� ����

�Phi�	� J� Philipps� Spezi�kation einer Fertigungszelle � eine Fallstudie in Focus� Master�s
thesis� Technische Universi�at M�unchen� ��	�

�SDW�	� K� St�len� F� Dederichs� and R� Weber� Assumption�commitment rules for net�
works of asynchronously communicating agents� Technical Report SFB 	
�����	
A� Technische Universit�at M�unchen� ��	�

�Ste��� V� Stenning� A data transfer protocol� Computer Networks� ������ ����

��

