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Abstract

We specify the black box behavior of data�ow components by characterizing the

relation between the input and the output histories� We distinguish between three
main classes of such speci�cations� namely time independent speci�cations� weakly
time dependent speci�cations and strongly time dependent speci�cations� Data�ow

components are semantically modeled by sets of timed stream processing functions�
Speci�cations describe such sets by logical formulas� We emphasize the treatment

of the well�known fair merge problem and the Brock�Ackermann anomaly� We
give re�nement rules which allow speci�cations to be decomposed into networks of

speci�cations�

� Introduction

Data�ow components can be speci�ed by formulas with a free variable ranging over do�
mains of continuous functions � so�called stream processing functions �Kel���� �BDD�	
��
Both time independent and time dependent components can be described this way� In the
latter case� the functions are timed in the sense that the input�output streams may have
occurrences of a special message representing a time signal� For such speci�cations elegant
re�nement calculi �Bro	
a�� �Bro	� can be formulated� which allow data�ow networks to
be developed in the same way as the methods suggested in �Jon	��� �Mor	�� allow for the
development of sequential programs�

The set of functions characterized by a component is called the component�s denota�
tion� Components modeled by timed stream processing functions can be classi�ed as time

independent� weakly time dependent or strongly time dependent� A component is time
independent if at most the timing of the output depends upon the timing of the input�
Weakly time dependent components are always nondeterministic� and their output �not
only the timing of the output� depends upon the timing of the input� However� due to the
nondeterminism this time dependency is hidden in the sense that for inputs� which are
identical apart from the timing� we get the same set of outputs� when the time signals are
abstracted away� A strongly time dependent component is a component that is neither
time independent nor weakly time dependent�
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In the case of weakly time dependent components explicit timing is not really needed in
order to specify the black box behavior� A famous example of such a component is an
agent which outputs a fair merge of the messages it receives on two input channels�

It is well�known that� because of the continuity constraint imposed on stream processing
functions� a fair merge component cannot be modeled by a set of �monotonic� untimed
stream processing functions �Kel���� On the other hand� to specify components of this
type in terms of timed stream processing functions is a bit like shooting sparrows with a
shotgun� since explicit timing is not needed in order to characterize their behavior�

In an attempt to abstract from unnecessary time�dependency� this paper advocates a
technique� where the black box behavior of data�ow networks is speci�ed by character�
izing the relation between the input and the output histories� We distinguish between
three main classes of such speci�cations� namely time independent speci�cations� weakly
time dependent speci�cations and strongly time dependent speci�cations � from now on
shortened to ti�speci�cations� wtd�speci�cations and std�speci�cations�

Although ti�� wtd� and std�speci�cations are mainly intended for the speci�cation of time
independent� weakly time dependent and strongly time dependent components� respec�
tively� a wtd�speci�cation may also be used to specify a time independent component� and
a std�speci�cation may also be used to specify a time independent or a weakly time depen�
dent component� In fact� as we will see later� in some sense a wtd�speci�cation is a special
case of an std�speci�cation� and a ti�speci�cation is a special case of a wtd�speci�cation
and an std�speci�cation�

Speci�cations are semantically modeled by sets of timed stream processing functions�
For each speci�cation class re�nement rules are given� which allow speci�cations to be
decomposed into networks of speci�cations� Rules� which allow a speci�cation of one class
to be translated into a speci�cation of another class� are also given�

Finally� it is explained how the well�known Brock�Ackermann anomaly �BA��� can be
overcome by distinguishing between simple and general speci�cations�

Section 
 describes the underlying formalism� Then we introduce ti�speci�cations� wtd�
speci�cations and std�speci�cations in Sections � � and �� respectively� In Section � the
three main types of speci�cations are divided into simple and general speci�cations� A
brief summary and discussion can be found in Section �� Finally� there is an appendix
containing some soundness and completeness proofs�

� Underlying Formalism

N denotes the set of natural numbers� and N� denotes Nnf�g� We assume the availability
of the standard logical operators� As usual� � binds weaker than ����� which again
bind weaker than all other operators and function symbols�

A stream is a �nite or in�nite sequence of messages� It models the history of a communi�
cation channel by representing the sequence of messages sent along the channel� Given a
set of messages D� D� denotes the set of all �nite streams generated from D� D� denotes
the set of all in�nite streams generated from D� and D� denotes D� �D��

Let d � D� r� s � D�� and j be a natural number� then�






� � denotes the empty stream�

� hd�� � � � � dni denotes a stream of length n� whose �rst message is d�� whose second
message is d�� etc� �

� ft�r� denotes the �rst element of r if r is not empty�

� �r denotes the length of r�

� dn� where n � N � f�g� denotes a stream of length n consisting of only d�s�

� rjj denotes the pre�x of r of length j if j � �r� and r otherwise�

� d� s denotes the result of appending d to s�

� r� s denotes r if r is in�nite and the result of concatenating r with s� otherwise�

� r v s holds if r is a pre�x of s�

Some of the stream operators de�ned above are overloaded to tuples of streams in a
straightforward way� � will also be used to denote tuples of empty streams when the size
of the tuple is clear from the context� If d is an n�tuple of messages� and r� s are n�tuples
of streams� then �r denotes the length of the shortest stream in r� d� s denotes the result
of applying � pointwisely to the components of d and s� r� s and r v s are generalized
in the same pointwise way�

If s� s� and r are stream tuples such that s � s�� r then s� o s � r� For any stream s� and
natural number n� �s�n denotes an n�tuple consisting of n copies of s�

A chain c is an in�nite sequence of stream tuples c�� c�� � � � such that for all j � �� cj v cj���
tc denotes c�s least upper bound� Since streams may be in�nite such least upper bounds
always exist�

A Boolean function P � �D��n 	 B is admissible i� whenever it yields true for each
element of a chain� then it yields true for the least upper bound of the chain� We write
adm�P � i� P is admissible�

A Boolean function P � �D��n 	 B is pre�x�closed i� whenever it yields true for a stream
tuple� then it also yields true for any pre�x of this stream tuple�

A Boolean function P � �D��n 	 B is safe i� it is admissible and pre�x�closed� We write
safe�P � i� P is safe�

For formulas we need a substitution operator� Given a variable a and term t� then P �at �
denotes the result of substituting t for every free occurrence of a in P � The operator is
generalized in an obvious way in the case that a and t are lists�

A function � � �D��n 	 �D��m is called a stream processing function i� it is pre�x
continuous�

for all chains c generated from �D��n � � �tc� � tf� �cj�jj � N�g�

That a function is pre�x continuous implies �rst of all that the function�s behavior for
in�nite inputs is completely determined by its behavior for �nite inputs� Secondly� pre�x
continuity implies pre�x monotonicity which basically means that if the input is increased





then the output may at most be increased� Thus what has already been output can never
be removed later on�

A stream processing function � � �D��n 	 �D��m is pulse�driven i��

for all stream tuples i in �D��n � �i 
��� �� �i� � �i�

That a function is pulse�driven means that the length of the shortest output stream is
in�nite or greater than the shortest input stream� This property is interesting in the
context of feedback constructs because it guarantees that the least �xpoint is always
in�nite for in�nite input streams� For a more detailed discussion� see �Bro	
c��

The arrows 	�
c	 and

cp	 are used to tag domains of ordinary functions� domains of
continuous functions� and domains of continuous� pulse�driven functions� respectively�

To model timeouts we need a special message
p
� called �tick�� There are several ways

to interpret streams with ticks� In this paper� all messages should be understood to
represent the same time interval � the least observable time unit�

p
occurs in a stream

whenever no ordinary message is sent within a time unit� A stream or a stream tuple
with occurrences of

p
�s are said to be timed� Similarly� a stream processing function is

said to be timed when it operates on domains of timed streams� Observe that in the case
of a timed� pulse�driven� stream processing function the output during the �rst n�� time
intervals is completely determined by the input during the �rst n time intervals�

For any stream or stream tuple i� �i denotes the result of removing all occurrences of p
in i� For example�

��a� b�
p
� a� s� � a� b� a� � s�

In the more theoretical parts of this paper� to avoid unnecessary complications� we dis�
tinguish between only two sets of messages� namely the set D denoting the set of all
messages minus

p
� and T denoting D�fpg� However� the proposed formalism can easily

be generalized to deal with general sorting� and this is exploited in the examples�

We use two additional functions in our examples� a �lter function c� and a function 
removing consecutive repetitions� More formally� if A is a set of n�tuples of messages�
d� e are n�tuples of messages� and r is an n�tuple of streams� then A c� and  are stream
processing functions such that the following axioms hold�

d � A� A c�d� r � d�A c�r�

d 
� A� A c�d� r � A c�r�

�hdi� � hdi�
d � e� �d� e� r� � �d� r��
d 
� e� �d� e� r� � d��e� r��

When A � fdg we write d c�r instead of fdg c�r�
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� Time Independent Speci�cations

A ti�speci�cation of a component with n input channels and m output channels is written
in the form

S �i �o� � R�

where S is the speci�cation�s name� i and o are disjoint� repetition free lists of identi�ers
representing n respectively m streams� R is a formula with the elements of i and o as its
only free variables� The formulaR characterizes the input�output relation and is therefore
referred to as such� The denotation of the speci�cation S is the set of all timed stream
processing functions� which ful�ll R when time signals are abstracted away�

�� S �i �o� ��
def
� f� � �T ��n

cp	 �T ��mj�r � �T ��n � R�i�r
o
���r��g�

Strictly speaking� the following denotation

�� S �i �o� ��
def
� f� � �D��n

c	 �D��mj�r � �D��n � R�ir
o
��r��g�

is equivalent in the sense that it allows the same set of implementations� Thus timed
functions are not really required in order to model ti�speci�cations� However� in this
paper we stick to the former alternative because it is then easier to relate the di�erent
classes of speci�cations�

For any speci�cation S� RS represents its input�output relation�

UR

� �

� �

y r

x s

Figure �� The Unreliable Receiver�

Example � Unreliable Receiver�
We specify a receiver UR that is unreliable in the sense that received data elements can
be lost� The receiver has two input channels and two output channels� as pictured in
Figure �� It is assumed to communicate with a sender SND as indicated in Figure �� on
Page ��� The sender is formally speci�ed in Example � The data elements to be received
are input from the channel y�

The channel r models interference� which may cause a data element to be lost� When the
n�th message input from r is a fail� it means that the n�th data element input from y is
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lost� on the other hand� if the n�th message input from r is an ok� it means that the n�th
data element input from y is properly received�

It is assumed that in�nitely many copies of ok are sent along r� As indicated in Figure
�� the agent SND has no access to r� This means that UR must forward the information
input on r to the sender� so that the sender knows whether a data element sent along
y was received or not� The output channel x is used for this purpose� Finally� any
properly received data element is required to be output along s� More formally� given
that K � fok� failg� UR is speci�ed by�

UR �y � D� � r � K� �x � K� � s � D�� �

�ok c�r ��
�

�x � �y � x v r ��s � �ok c��rj�y� � ��� s� v f�ok� d�jd � Dg c��r� y�

The antecedent states the environment assumption that in�nitely many copies of ok are
sent along r� The �rst conjunct of the consequence requires that x is of the same length
as y� the second that x is a pre�x of r� the third that s is of the same length as the stream
of properly received data elements� the fourth that the stream of data elements sent along
s is a pre�x of the stream of properly received data elements� �

The operator
n m� is used to compose two speci�cations by connecting the n last output

channels of the �rst speci�cation with n �rst input channels of the second speci�cation�
and by connecting the m �rst output channels of the second speci�cation with the m

last input channels of the �rst speci�cation� It can be seen as an operator for parallel

composition� For example� if
n m� is used to compose S� �i � x �o � y� and S� �y � r �x � s�� and

y and x represent n and m channels� respectively� we get the network pictured in Figure

� The channels represented by x and y are now hidden in the sense that they represent
local channels�

S� S�

� � � �

� �

�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
BB

i

x y

r

o s

Figure 
� S� �i � x �o � y�
n m� S� �y � r �x � s��

More formally�
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�� S� �i � x �o � y�
n m� S� �y � r �x �s� ��

def
�

f��
n m� ��j�� � �� S� �i � x �o � y� �� � �� � �� S� �y � r �x � s� ��g�

where for any pair of timed stream tuples i and r� ���
n m� ����i� r�

def
� �o� s� i� �o� s� is the

least �xpoint solution with respect to i and r� This is logically expressed by the following
formula�

�x� y � �o�� y�� x�� s� �
���i� x� � �o� y� � ���y� r� � �x� s� � ���
���i� x�� � �o�� y�� � ���y�� r� � �x�� s��� �o� y� x� s� v �o�� y�� x�� s��� �
�

��� requires �i� r� o� s� to represent a �xpoint� �
� requires this �xpoint to be the least�

When using
n m� to build networks of speci�cations� one will often experience that the

operator needed is not
n m� � but a slight modi�cation of

n m� � where for example the channels
represented by x are not hidden� or the order of the channels represented by y and r is
permuted in such a way that not all of the y�channels come before all the r�channels�

The
n m� �rules given below are valid for all these modi�ed versions if the identi�er lists in

the speci�cations are updated accordingly� Instead of introducing operators and rules for

each of these variations� we overload and use
n m� for all of them � with one exception�

to simplify the discussions of the
n m� �operator� we write

�nS �i � x �o�

as a short�hand for

S� �i � x �o �y�
n n� S� �y �x��

where RS�

def
� RS � y � o and RS�

def
� y � x� as indicated in Figure � Clearly S�

characterizes the identity component� When n and m are �xed by the context� we just

write � and � instead of
n m� and �n� respectively�

A speci�cation S� �i �o� re�nes another speci�cation S� �i �o�� written

S� �i �o�� S� �i �o��

i� the behaviors speci�ed by S� form a subset of the behaviors speci�ed by S�� formally�

�� S� �i �o� �� � �� S� �i �o� ���

Given a requirement speci�cation S �i �o�� the goal of a system development is to construct
a network of components C such that S �i � o�� C holds� The re�nement relation � is
re�exive� transitive and a congruence with respect to the composition operators� Hence�
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Figure � �nS �i � x �o�
def
� S� �i � x �o � y�

n n� S� �y �x��

� allows compositional system development� once a speci�cation is decomposed into
a network of subspeci�cations� each of these subspeci�cations can be further re�ned in
isolation�

Based on this de�nition it is clear that a speci�cation with an empty denotation re�nes
any speci�cation� Since speci�cations with empty denotations are inconsistent in the
sense that there is no program that ful�lls them� such re�nements are undesirable� Thus�
when formulating a speci�cation S �i �o�� one should always check whether it is consistent�
Consistency is logically expressed by�

�� � �T ��n
cp	 �T ��m � �r � �T ��n � RS�i�r

o
���r���

Or equivalently�

�� � �D��n
c	 �D��m � �r � �D��n � RS �ir

o
��r���

In other words� a speci�cation is consistent i� its denotation is nonempty� Note� the
consistency of a speci�cation does not guarantee that there is a program that re�nes the
speci�cation� There are namely non�computable stream processing functions that cannot
be expressed in any algorithmic language� It may therefore be argued that instead of
proving consistency one should prove that a speci�cation is implementable by a program�
However� from a practical point of view� it is generally accepted that it does not make
much sense to formally check the implementability of a speci�cation� The reason is that
to prove implementability it is often necessary to construct a program� which ful�lls the
speci�cation� and that is of course the goal of the whole program re�nement exercise�

We have explained what we mean by re�nement� The next step is to explain how re�ne�
ments can be proved correct� We give three rules for ti�speci�cations� The �rst one is a
straightforward consequence rule�

�



Rule � �
RS� � RS�

S� �i �o�� S� �i �o�

Its correctness should be obvious� Rule 
 and � which allow for decomposition modulo
the �� and the ��operators� respectively� are both based on �xpoint induction� In fact
they are also closely related to the while�rule of Hoare�logic�

Rule � �
adm��x � I�
I�x� �
I �RS� � I�xo�
I�xo� �RS� �

x
o�� RS�

S� �i �o�� �S� �i � x �o�

In this rule the stream tuples are named in accordance with Figure � The lambda
notation in the �rst premise is used to express that I only has to be admissible with
respect to x when i is kept constant� It is a well�known result that the least �xpoint of
a feedback construct is equal to the least upper bound of the corresponding Kleene�chain
�Kle�
�� This is what �xpoint induction is based on� and this is also the idea behind Rule

� The formula I can be thought of as an invariant in the sense of Hoare�logic and has
the elements of i and x as its only free variables� The second premise implies that the
invariant holds for the �rst element of the Kleene�chain� Then the third implies that the
invariant holds for each element of the Kleene�chain� in which case it is a consequence of
the �rst premise that it holds for the least upper bound of the Kleene�chain� Thus the
conclusion can be deduced from the fourth premise�

The following rule

RS� �
x
o�� RS�

S� �i �o�� �S� �i � x �o�

is of course also sound� We refer to this rule as the degenerated version of Rule 
� One
may ask� is it generally so that any decomposition provable by Rule 
 is also provable
by its degenerated version� The answer is �no�� With the degenerated version we can
only prove properties that hold for all �xpoints� Properties which hold only for the least
�xpoints can not be shown� In some sense the invariant of Rule 
 is used to characterize
the least �xpoint solutions� We now look at a simple example where the inductive nature
of Rule 
 is really needed�

Example � Elimination of Operationally Unfeasible Fixpoints�
Consider the following speci�cation�

S� �x �o� � x � o�

It is clear that the result of applying the ��operator to this speci�cation is a network�

	



which deadlocks in the sense that it never produces any output� i�e� a network which
satis�es�

S� � �o� � o � ��

Mathematically expressed� it should be possible to prove that�

S� � �o�� �S� �x �o�� ���

However�

RS� �
x
o�� o � �

does not hold� This demonstrates that the degenerated version of Rule 
 is too weak� On
the other hand� with

I
def
� x � ��

as invariant� it is straightforward to deduce ��� using Rule 
�
�

The rule for the ��operator is a straightforward generalization of Rule 
�

Rule � �
adm��x � I�� � adm��y � I��
I��x� � � I��y� �
I� � RS� � I�
I� � RS� � I�
I� � RS� � I� � RS� � RS

S �i � r �o � s�� S� �i � x �o � y�� S� �y � r �x � s�

I� and I� are formulas with the elements of i� r� x and i� r� y as their only free variables�
respectively� The third and the fourth premise implies that when one of the invariants
holds for one element of the Kleene�chain then the other invariant holds for the next
element of the Kleene�chain� The second premise then imply that both invariants hold
for in�nitely many elements of the Kleene�chain� in which case the �rst premise can be
used to infer that at least one of the invariants hold for the least upper bound of the
Kleene�chain� It then follows from premises three and four that both invariants hold for
the least upper bound of the Kleene�chain� Thus� the conclusion can be deduced from
premise �ve� See Proposition � in the appendix for a more detailed proof�

Example � Sender for the Unreliable Receiver�
The sender SND is supposed to hide the unreliability of UR� speci�ed in Example ��
The unreliability can of course be hidden only under the assumption that in�nitely many
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Figure �� SND �i � x �y��UR �y � r �x � s��

ok�s are sent along r� In fact� we can only hope that the resulting network satis�es the
speci�cation RR� which is speci�ed as follows�

RR �i � D� � r � K� �s � D�� � �ok c�r ��� s � i

Clearly� SND must repeatedly send the same data element until an ok is received on x�
Formally� SND is speci�ed as follows�

SND �i � D� � x � K� �y � D�� �

let

n � �ok c�x

in

n � �i
�

f�d� ok�jd � Dg c��y� x� v �i� ok���
��n � �i ��y � �x� � �n � �i ��y � �x� ���

The antecedent states the environment assumption� namely that the number of ok�s re�
ceived on x is less than or equal to the number of data elements received on i� This is a
sensible assumption� since UR only sends an acknowledgement along x for each properly
received data element� The �rst conjunct of the consequence states that the stream of
data elements sent along y� for which an ok is received on x� is a pre�x of i� This means
that for every received ok a fresh data element input from i is output� The second con�
junct requires that either the length of i is equal to the number of ok�s received on x and
the length of y is equal to the length of x� or the length of i is greater than the number of
ok�s received on x and the length of y is one greater than the length of x� Operationally
this means that the sender postpones outputting the next data element until it receives
a positive or negative acknowledgement for the previous one�

To prove that the network SND �i � x �y��UR �y � r �x � s� is a re�nement of RR �i � r �s��
it must be shown that

��



RR �i � r �s�� SND �i � x �y��UR �y � r �x � s�� ����

Let

I�
def
� ��ok c�x � �i � x v r� ��ok c�r 
���

I�
def
� �ok c��rj�y� � �i ��ok c�r 
���

then if

adm��x � I�� � adm��y � I���

I��x� � � I��y� ��

I� � RSND � I��

I� � RUR � I��

I� � RSND � I� � RUR � RRR�

it follows by Rule  that ���� holds� The two �rst premises hold trivially� The remaining
three can proved using straightforward predicate calculus�

�

Although Rule 
 and  are stronger than their degenerated versions� they are not as strong
as desired� This will be discussed in detail in Section ��

Nevertheless� a restricted completeness result may be stated� For any timed� pulse�driven�
stream processing function � � �T ��n

cp	 �T ��m� let

ti�� � �i �o�

be a ti�speci�cation� whose input�output relation is characterized by the following equiv�
alence�

Rti��� � �r� � �T ��n � i � �r� � o � �� �r���

Note� ti�� � is the strongest ti�speci�cation whose denotation contains � �

For any speci�cation S �i �o� and timed� pulse�driven� stream processing function � such
that

�� � ti�� � �i � x �o� �� � �� S �i �o� ��� ���

it follows by Rule 
 that

�




S �i �o�� � ti�� � �i � x �o��

under the assumption that any valid formula of the base�logic �in which the premises are
formulated� can be proved� and that the base�logic allows ti�� � �i � x �o� and the invariant

�x� � x v x� � �� �i� � x��

where � is overloaded to stream processing functions in a straightforward way� to be
syntactically expressed �this corresponds to relative� semantic completeness with respect
to deterministic components�� The de�nition of the invariant implies that the three �rst
premises of Rule 
 are valid� which means that the invariant is satis�ed by the least
�xpoint� Moreover� since the invariant holds for the least �xpoint only� it follows from the
assumption ��� that also the fourth premise is valid� A similar result holds in the case of
Rule �

When writing ti�speci�cations one has to be very careful because of the strong monotonic�
ity constraint imposed on their denotations� For example� consider the straightforward
speci�cation of fair merge �not necessarily order preserving� given below�

RFM �i � r �o� � �d � D � �fdg c�i��fdg c�r � �fdg c�o�

This speci�cation is inconsistent due to the monotonicity constraint� To see this� assume
that there is a function � which ful�lls the speci�cation� This means that

� �a�� �� � a��
b c�� �a�� b�� � b��

Clearly�

�a�� �� v �a�� b���
� �a�� �� 
v � �a�� b���

which means that � is not monotonic and therefore not continuous� This contradicts the
assumption� Thus the speci�cation is inconsistent�

The cause of this problem is that a ti�speci�cation makes no distinction between the
behavior of a function for partial ��nite� input and the behavior of a function for complete
�in�nite� input� More precisely� since

��a��p�� � ��a�� �� � �a�� ���

the speci�cation above requires that

�� �a��p�� � �� �a�� �� � a��

�



although strictly speaking we only want to specify that

�� �a�� �� v a��
�� �a��p�� � a��

Thus because we are not able to distinguish complete� in�nite input streams with only
�nitely many messages di�erent from

p
� from �nite� incomplete inputs� when time�ticks

are abstracted away� our requirements become too strong�

This observation was made already in �Par��� In �Bro�	� it led to the proposal of so�called
input choice speci�cations� In the next section we advocate a slightly di�erent approach
with a semantically simpler foundation�

� Weakly Time Dependent Speci�cations

A wtd�speci�cation of a component with n input channels and m output channels is
written in the form

S hi �oi � R�

where S is the speci�cation�s name� i and o are disjoint� repetition free lists of identi�ers
representing n respectively m streams� R is a formula with the elements of i and o as
its only free variables� As before R characterizes the relation between the input and
output streams� Syntactically� a wtd�speci�cation di�ers from a ti�speci�cation in that
the brackets hi are used instead of �� to embrace the lists of input�output identi�ers�
The denotation of the speci�cation S is the set of all timed� pulse�driven� stream processing
functions which ful�ll R when time signals are abstracted away and only complete inputs
are considered�

�� S hi �oi �� def� f� � �T ��n
cp	 �T ��mj�r � �T��n � R�i�r

o
���r��g

Thus in contrast to a ti�speci�cation� a wtd�speci�cation constrains the behavior for com�
plete inputs �in�nite inputs at the semantic level��� As before� for any wtd�speci�cation
S� RS denotes its input�output relation�

A wtd�speci�cation S hi �oi is consistent i�

�� � �T ��n
cp	 �T ��m � �r � �T��n � RS�i�r

o
���r���

Since� as in the time independent case� the denotation is a set of timed� pulse�driven�
stream processing functions� the composition operator � and the re�nement relation �
can be de�ned in the same way as earlier�

As shown in the next four examples� weakly time dependent components can be speci�ed

�Note that although the streams are in�nite they may have only �nitely many occurrences of messages

di�erent from
p
�

��



in a very elegant way�

Example � Fair Merge �with Reorderings��
The wtd�speci�cation

RFM hi � D� � r � D� �o � D�i � �d � D � �fdg c�i��fdg c�r � �fdg c�o

speci�es a component performing a �not necessarily order preserving� fair merge� Since
the speci�cation constrains complete inputs only �in�nite streams at the semantic level��
the monotonicity problem of the previous section does not apply here� �

Example � Fair Merge �without Reorderings��
A component� which not only outputs a fair merge of the streams of messages received
on its two input channels� but also preserves the ordering of the messages with respect to
the di�erent input channels� is speci�ed below�

FM hi � D� � r � D� �o � D�i � �p � f�� 
g� � split��o� p� � i � split��o� p� � r

where splitj � D� � f�� 
g� c	 D� is an auxiliary function which� based on a oracle �its
second argument�� can be used to extract the stream of messages received on one of the
input channels�

j � b� splitj�a� o� b� p� � a� splitj�o� p��
j 
� b� splitj�a� o� b� p� � splitj�o� p��

�

Example � Busy Sender�
A component� which sends requests� represented by the signal �� along its output channel
until it receives a message on its input channel and then feeds this message along its
output channel� can be speci�ed as follows�

BS hi � D� �o � �D � f�g��i � �i � � � o ���� � �n � N � o ��n � ft�i�

If no message is eventually received� then �nally in�nitely many requests are generated
as output� �

Example 	 Arbiter�
An arbiter is a component that reproduces its input data and in addition adds an in�nite
number of tokens� here represented by �� to its output stream� More formally�

AR hi � D� �o � �D � f�g��i � D c�o � i �� � c�o ��

It is assumed that � is not an element of D�
�

��



The rules for ti�speci�cations can be generalized to deal with wtd�speci�cations� The
consequence rule is unchanged if we adapt the brackets�

Rule � �
RS� � RS�

S� hi �oi� S� hi �oi

The modi�cations of the rules for the �� and ��operators are less trivial� The reason is
that wtd�speci�cations constrain the behavior for complete inputs �in�nite inputs at the
semantic level� only� which means that it is no longer straightforward to carry out the
induction over the Kleene�chain� We �rst show that Rule 
� with hi substituted for �� in
the conclusion� is unsound for wtd�speci�cations�

Example 
 �
Consider the following wtd�speci�cation

S� hx � N� �o � N�i � o � ��
� � �x 
� � � o � ��x��

Let

I
def
� x � � � �n � N � x � �n � 
��

It holds that

adm��x � I��

I�x� ��

I � RS� � I�xo��

I�xo� �RS� �
x
o� implies

o � ��
��

Thus we may use Rule 
 to prove that

S� h �oi� S� hx �oi�

where RS�

def
� o � ��
�� To see that this deduction is unsound� note there is a � �

�� S� hx �oi �� such that

� ��� � h�i�
� �
p
� r� � ��
��

a 
� p� � �a� r� � �� a� r�

��



Since � is pulse�driven� it has a unique� in�nite �xpoint� namely

� ���� � ���

Unfortunately� this �xpoint does not satisfy RS� � in which case it follows that Rule 
 is
unsound for wtd�speci�cations�

�

We now characterize a slightly modi�ed version of �xpoint induction� Given a wtd�
speci�cation S� hi � x � oi with two input and one output channel� Assume that � �
�� S� hi � x �oi ��� Let t be the in�nite sequence of in�nite streams t�� t�� � � � such that�

t� �
p�

�

tj�� � � �r� tj��

for some in�nite� timed stream r� For the same input r� let s be � �s Kleene�chain� i�e��

s� � ��

sj�� � � �r� sj��

Although t is not �normally� a chain� we refer to t as � �s pseudo�chain with respect to r�
Since � is pulse�driven� and r is in�nite� the equation

� �r� x� � x

has a unique� in�nite solution� and this solution is according to Kleene�s theorem �Kle�
�
equal to the least upper bound of the Kleene�chain�

� �r�ts� � ts�

Since s� v t� and � is monotonic� it follows by induction on j that

sj v tj�

The monotonicity of � implies

�sj v �tj� ���

Let I be a formula with free variables i and x such that �x � I is safe �which means that
�x � I is pre�xed�closed�� Then if for all j

I�x�tj�� ����

it follows from ��� and the fact that �x � I is safe

��



I�x�sj��

Since � is continuous and �x � I is admissible� we also have that

I�x�ts�� �����

Thus �x � I holds for � �s least �xpoint solution� when all time ticks are removed� Con�
sequently� to make sure that ����� holds� it is enough to show that ���� holds for each
element of the pseudo�chain� when time�ticks are removed� Since

I�x� ��

I � RS� � I�xo��

implies

I�i�t���

I�i�tj�� I�i�tj����

it follows by a slight generalization of the argumentation above that the following rule is
sound�

Rule � �
safe��x � I�
I�x� �
I �RS� � I�xo�
I�xo� �RS� �

x
o�� RS�

S� hi �oi� �S� hi � x �oi

Recall that safe�P � expresses that P is safe�

An interesting question at this point is of course� how strong is Rule �� We start by
showing that the invariant is really needed � needed in the sense that the degenerated
version

RS� �
x
o�� RS�

S� hi �oi� �S� hi � x �oi

is strictly weaker�

Example � Elimination of Operationally Unfeasible Fixpoints�
Given the wtd�speci�cation

��



S hx � N� �o � N�i � o � ��x � �ft�x� � � � o � x��

From RS �xo� we can deduce only that

ft�o� � ��

Let

I
def
� x � f�g��

Using Rule � we may deduce that

S� h �oi� �S hx �oi�

if

RS� � �o � � � o � f�g��

�

The rule for the ��operator can be restated in a similar way�

Rule � �
safe��x � I�� � safe��y � I��
I��x� � � I��y� �
I� � RS� � I�
I� � RS� � I�
I� � RS� � I� � RS� � RS

S hi � r �o � si� S� hi � x �o � yi � S� hy � r �x � si

I� and I� are formulas with the elements of i� r� x and i� r� y as free variables� respectively�
For any �� � �� � �� S� � S� ��� the second� third and fourth premise imply that both I�
and I� hold for in�nitely many elements of ��� ���s pseudo�chain� From the �rst premise
it then follows that at least one of the invariants holds for in�nitely many elements of the
corresponding Kleene�chain� and therefore also for the least upper bound of the Kleene�
chain� Since this least upper bound is in�nite �at the semantic level� it follows from
premise three and four that both invariants hold for the least upper bound of the Kleene�
chain� Thus the conclusion can be deduced from premise �ve� See Proposition 
 in the
appendix for a more detailed proof�

Rule � and � are quite useful� but they do not satisfy a completeness result similar to
that for ti�speci�cations� We now discuss this in more detail�

For any timed� pulse�driven� stream processing function � � �T ��n
cp	 �T ��m� let

�	



wtd�� � hi �oi

be a wtd�speci�cation� whose input�output relation is characterized by the following
equivalence�

Rwtd��� � �i� � �T��n � i � �i� � o � �� �i���

Note� wtd�� � is the strongest wtd�speci�cation whose denotation contains � � For example�
with respect to the speci�cation S of Example 	� it holds that if

� ��� � �
a 
� �� � �a� r� � �� a� r

� ��� r� � ��
p
� r�

then � � �� S hx �oi ��� Thus�

Rwtd��� � RS�xi ��

In fact� since per de�nition

� �
p
� r� � ��

p
� r�

� ��� r� � ��
p
� r�

it also follows that

RS�xi �� Rwtd����

The set �� wtd�� � hi �oi �� is of course not unary� and its elements may have di�erent �x�
points� In Example 	 we used Rule � to deduce that o is an element of f�g�� whose length
is greater than or equal to �� As a matter of fact� for each such output solution �n� there
is a corresponding function �n � �� wtd�� � hi �oi ��� such that

�n�r� � r � �r � �n�

For example� �n may be de�ned as follows�

�n��� � ��
k � n� �n��k� � �k���
�n��n � r� � �n �

p
� r�

k � n � a 
� �� �n��k � a� r� � �k�� � a� r�

To see that a completeness result similar to that for ti�speci�cations does not hold for wtd�
speci�cations with respect to the rules introduced above� consider the following example�


�



Example �� �
Given K � f�� 
�pg� Let � � K� cp	 K� be a function such that�

� ��� � h�i�
� �h�i� � h�� �i�
� �
p
� in� � ��
��

� ��� a� in� � ���� �if a � � then
p

else a�� in�

� �
� in� � ��
� in�

Rwtd��� is equivalent to

o � ��
� � ��i� � i � ���� i� � o � i� � �i 
� � � o � �� i��

Let

I
def
� �n � N� � f�g � x v �n � 
��

Then I is the strongest formula such that

safe��x � I��

I�x� ��

I � Rwtd��� � I�xo��

Moreover� I�xo� �Rwtd����
x
o� implies

o � ��
� � �z � f�g� � �y � f
g� � o � ���� z � y�

Unfortunately� this formula is too weak in the sense that there are solutions for which
there are no corresponding functions in �� wtd�� � hi �oi ��� For example� there is no � � �
�� wtd�� � hi �oi �� such that

� ��r� � r� �r � h�� �� 
i

To see that� let r� be a pre�x of r such that �r� � h�� �i� Since r is the �xpoint of � �� it
follows that r must be reachable from r� �

p� in the sense that

h�� �� 
i v �� ��r��p���

However� such a computation is not allowed by Rwtd���� Thus� Rule � is too weak in
the sense that it does not allow us to remove all �solutions� for which there are no
corresponding functions in �� wtd�� � hi �oi ���
�


�



In Rule �� the task of I is to characterize the elements of the Kleene�chains with their
corresponding least upper bounds� Since for any timed� pulse�driven� stream processing
function � � it holds that

rj v rj�� v � �s� rj �
p���

if r is � �s Kleene�chain with respect to the complete input s� we may strengthen Rule �
as follows�

Rule � �
��j � I�xcj� � �o � RS� �

x
cj
� � cj�� v o�� I�xtc�

I�x� �
I � x � x� v o � RS� � I�xx��
I�xo� �RS� �

x
o�� RS�

S� hi �oi� �S� hi � x �oi

c varies over chains� and I is a formula with the elements of i and x as its only free
variables� Rule � solves the problem of Example ��� if we choose

x v �� 
� � x � f�g�

as the invariant I�

For any timed� pulse�driven� stream processing function � � there is a function � � � wtd�� ��
which is identical to � for complete inputs �and therefore has exactly the same �xpoints
as � for complete inputs�� and whose Kleene�chain consists of only �nite stream tuples
�each stream in each tuple is �nite�� For example� we may de�ne � ��i� as � �i�j�i��� Due
to this fact we may weaken the premises of Rule � even further�

Rule � �
��j � I�xcj� � cj � �D��m � �o � RS� �

x
cj
� � cj�� v o�� I�xtc�

I�x� �
I � x � �D��m � x � x� v o �RS� � I�xx��
I�xo� �RS� �

x
o�� RS�

S� hi �oi� �S� hi � x �oi

It is here assumed that x has m elements� See Proposition  in the appendix for a
soundness proof� Rule � can be strengthened accordingly�

We can now state a completeness result similar to that for ti�speci�cations� For any
speci�cation S hi �oi and timed� pulse�driven� stream processing function � such that

�� �wtd�� � hi � x �oi �� � �� S hi �oi ��� ���

it follows by Rule � that







S hi �oi� �wtd�� � hi � x �oi�

under the assumption that any valid formula of the base�logic �in which the premises are
formulated� can be proved� and that the base�logic allows wtd�� � hi �oi and the strongest
formula I� such that the three �rst premises of Rule � hold� to be syntactically expressed
�this corresponds to relative� semantic completeness with respect to a restricted set of
components�� See Proposition � of the appendix for a proof�

The following conversion rule is also useful�

Rule � �
RS� � RS�

S� hi �oi� S� �i �o�

Due to this rule� ti�speci�cations and wtd�speci�cations can be used side by side in system
developments� Observe that the inverse of Rule 	� where a ti�speci�cation is replaced by
a wtd�speci�cation� is invalid� For example� as explained in the previous section� the
speci�cation RFM of Example � becomes inconsistent when it is assigned the denotation
of a ti�speci�cation� In fact� not even if S is deterministic� does it generally hold that

S �i �o�� S hi �oi�

For example� if RS
def
� i � o� then the function � � where

�i � ��� � �i� �
p�i��

�

�i � ��� � �i� �
p��

� i�
p�i

�

is an element of �� S hi �oi ��� but not of �� S �i �o� ��� The reason is that a wtd�speci�cation
does not constrain the behavior for partial ��nite at the semantic level� inputs� However�
the following rule is sound�

Rule �	 �
�i 
��� RS�

RS� � RS�

S� �i �o�� S� hi �oi

The �rst premise makes sure that S� does not constrain the behavior for �nite inputs�

Example �� Alternating Bit Transmission�
As in Example  we specify an unreliable receiver UR and a corresponding sender SND
and show that they behave correctly when composed as in Figure �� The communication
between the two components is based on alternating bit transmission� This means that
for each data element SND sends along z� a bit is sent along y� Clearly SND is required
to send the same data element accompanied by the very same bit until this data element
eventually is properly received by UR� in which case the actual bit is sent back along






x� The receiver UR looses input pairs �from z and y� in accordance with r� Thus the
messages ok and fail determine whether a data element is lost or not in the same way
as in Example �� Properly received input pairs� whose bit component is equal to the
bit component of the last properly received input pair� are ignored in the sense that no
output is produced� The reason is of course that this pair has been sent by SND before
the acknowledgement bit for the earlier pair was received� All other properly received
input pairs are sent on along x �the bit � and s �the data element��

SND UR

� � ��

�

�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
BB

i

x z y

r

s

Figure �� Alternating bit network�

The sender SND is formally speci�ed by�

SND hi � D� � x �M� �z � D� � y �M�i �

let

�z�� y�� � �z� y�
in

�x � �i
�

�y � �z � y� � �y� � z� v i�
��x 
� �i� �z ����z� � �x� ���
��x � �i� �z� � �i�

M denotes f�� �g� The antecedent states the environment assumption� namely that the
length of x is less than the length of i� The �rst conjunct of the consequence requires y
and z to be of the same length� the second makes sure that two di�erent consecutive data
elements sent along z are assigned di�erent bits� the third requires that when repetitions
are ignored then the stream of data elements sent along z is a pre�x of the stream of data
elements received on i� the fourth requires that if the length of x is not equal to the length
of i� then the length of z is in�nite and the number of data elements sent along z� when
repetitions are ignored� is equal to the length of x plus � � which basically means that
the same data element is sent in�nitely many times if no acknowledgement is received
from the receiver� the �fth requires that if the length of x is equal to the length of i� then
the number of data elements sent along z� when repetitions are ignored� is equal to the


�



length of i�

The behavior of UR is characterized by�

UR hz � D� � y �M� � r � K� �x �M� � s � D�i �

let

�z�� y�� r�� � f�d�m� ok�jd � D�m �Mg c��z� y� r�
in

�s� x� � �z�� y��

K denotes fok� failg� The streams of messages sent along x and s are required to be equal
to the streams of properly received input pairs when repetitions are ignored�

Given

RR hi � D� � r � K� �s � D�i � �ok c�r ��� s � i�

we want to prove

RR hi � r �si� SND hi � x �z � yi �UR hz � y � r �x � si� ���

Let

I�
def
� �x � �i�

I�
def
� ��z� y� � �i�

then ��� follows by Rule � since it is straightforward to show that

safe��x � I�� � safe��z � �y � I���

I��x� � � I��z�
y
� ��

I� �RSND � I��

I� �RUR � I��

I� �RSND � I� �RUR � RS�

Observe that only SND characterizes a weakly time dependent component� UR can also
be stated as a ti�speci�cation� In fact� after having shown that the network SND hi � x �
z � yi � UR hz � y � r � x � si behaves as desired� we may use Rule 	 to translate UR into
a ti�speci�cation and thereafter complete the development of UR using the rules for ti�
speci�cations only�

�


�



� Strongly Time Dependent Speci�cations

An std�speci�cation of a component with n input channels and m output channels is
written in the form

S fi �og � R�

where S is the speci�cation�s name� i and o are disjoint� repetition free lists of identi�ers
representing n respectively m streams� R is a formula with the elements of i and o as
its only free variables� Yet another pair of brackets fg is employed to distinguish std�
speci�cations from ti� and wtd�speci�cations� The denotation of the speci�cation S is
the set of all timed� pulse�driven� stream processing functions which ful�ll R when only
complete �in�nite� inputs are considered�

�� S fi �og �� def� f� � �T ��n
cp	 �T ��mj�i � �T��n � R�o��i��g� �y�

Observe that in this case the time signals are not abstracted away� Thus� time signals
may occur explicitly in R�

As for wtd�speci�cations� only the behavior for complete� in�nite inputs is constrained�
Nevertheless� the expressiveness of an std�speci�cation would not have been reduced if we
had used the following denotation�

�� S fi �og �� def� f� � �T ��n
cp	 �T ��mj�i � �T ��n � R�o��i��g� �z�

The reason is that in the case of std�speci�cations there is no time abstraction� which
means that� at the syntactic level� incomplete ��nite� inputs can always be distinguished
from complete �in�nite� inputs� However� from a practical point of view� it is not clear
that the latter denotation �z� o�ers any advantages� We therefore stick with the former
�y� although we also refer to �z� later on�

Example �� Timer for Timeouts�
We specify a simple timer for time�outs� It has one input and one output channel� When�
ever it receives a set timer message set�n�� where n is a natural number� and it is not reset
by a reset message rst� it responds by sending the timeout signal  after n time�units� Set
timer messages received before the  for the previous set timer message has been sent are
simply ignored�

Given K � fset�n�jn � N�g � frst�pg and M � f �pg� we may specify the timer as
follows�


�



TT fi � K� �o �M�g �

�� � N	 K� c	 M� � o �
p
� � ����i�

where �n�m � N � �i� � K� �
� ������ � ��
� �n��

p
� i�� �

if n � � then
p
� � ����i��

else if n � � then  � � ����i��
else

p
� � �n� ���i���

� �n��rst� i�� �
p
� � ����i���

� �n��set�m�� i�� � if n � � then � �m��
p
� i�� else � �n��

p
� i��

The existentially quanti�ed function � � which for each natural number n returns a timed
stream processing function � �n�� characterizes the relation between the input� and the
output�stream� It has a �state parameter� n� that is either equal to �� in which case the
timer is in its idle state� or � �� in which case n represents the number of time�units the
next time�signal  is to be delayed�

�

Any wtd�speci�cation can also be expressed as an std�speci�cation� Given the wtd�
speci�cation

S hi �oi � R�

then

S fr �sg � R�i�r
o
�s�

is an equivalent std�speci�cation� In general� the same does not hold for ti�speci�cations�
The reason is the way ti�speci�cations constrain the behavior for partial input� Let �
be a timed� pulse�driven� stream processing function� and assume that i and o are two
complete �in�nite�� timed stream tuples such that

� �i� � o� ���

Unfortunately� for any �nite pre�x i� � i� from ��� alone we can only deduce that
oj�i��� v � �i��� Thus although we operate with timed stream tuples� the behavior for
�nite inputs �partial inputs� is only partly �xed from the behavior for in�nite inputs�
This can be avoided by strengthening the pulse�driveness constraint� However� this is
hardly any improvement from a pragmatic point of view � on the contrary� such addi�
tional constraints may in some cases lead to more complicated speci�cations�

With respect to the alternative denotation �z�� we have that


�



S �i �o� � R�

S hi �oi � R

are equivalent to

S fr �sg � R�i�r
o
�s��

S fr �sg � �r ��� R�i�r
o
�s��

respectively� An std�speci�cation S fi �og is consistent i�

�� � �T ��n
cp	 �T ��m � �i � �T��n � RS �o��i���

Since the denotation of an std�speci�cation is a set of timed� pulse�driven� stream pro�
cessing functions� � and � can be de�ned in exactly the same way as above�

In the case of std�speci�cations� the rules are quite simple� The consequence�rule looks
as usual�

Rule �� �
RS� � RS�

S� fi �og� S� fi �og

One premise is su!cient also in the ��rule�

Rule �� �
RS� �

x
o�� RS�

S� fi �og� �S� fi � x �og

Since there is no time abstraction� and since any � � �� S� �i � x �o� �� is pulse�driven� which
means that� for any in�nite input stream s� the equation

� �s� r� � r ���

has a unique� in�nite solution r� an invariant is not needed� Thus there are no additional
�xpoints to be eliminated�

For any set � of timed� pulse�driven� stream processing functions of type �T ��n
cp	 �T ��m�

let

std��� fi �og

be an std�speci�cation� whose input�output relation is characterized by the following
equivalence�


�



Rstd��� � �� � � � � �i� � o�

Then� for any std�speci�cation S fi �og� if

�� � std��� fi � x �og �� � �� S fi �og ���

it follows by Rule �
 that

S fi �og� � std��� fi � x �og

under the assumptions that any valid formula of the base�logic �in which the premises
are formulated� can be proved� and that the base�logic allows Rstd��� to be syntactically
expressed �this corresponds to relative� semantic completeness with respect to arbitrary
components��

The rule for the ��operator is formulated accordingly and satis�es a similar completeness
result�

Rule �� �
RS� �RS� � RS

S fi � r �o � sg� S� fi � x �o � yg � S� fy � r �x � sg

Had we used the alternative semantics �z�� rules with invariants would have been needed�
because the equation ��� may have more than one solution if s is �nite� In fact� Rule 

and � with fg substituted for ��� would have allowed us to claim a completeness similar
to that for ti�speci�cations�

The following conversion rules are also useful�

Rule �� �
i 
��� RS�

RS� � RS� �
i
�r

o
�s�

S� �i �o�� S� fr �sg

Rule �� �
RS� �

i
�r

o
�s�� RS�

S� fr �sg� S� �i �o�

Rule �� �
RS� � RS� �

i
�r

o
�s�

S� hi �oi� S� fr �sg

Rule �� �
RS� �

i
�r

o
�s�� RS�

S� fr �sg� S� hi �oi

� Simple and General Speci�cations

Above we have advocated a relational approach for the speci�cation of data�ow networks
� relational in the sense that the relation between the input and the output streams
has been speci�ed� We have distinguished between ti�� wtd� and std�speci�cations� For


	



all three classes of speci�cations� we have formulated rules� which allow speci�cations
to be decomposed into networks of speci�cations� With respect to the rules for ti� and
std�speci�cations� we have been able to claim only rather restricted completeness results�
We now discuss this problem in more detail� As will be shown� the underlying cause is
the so�called Brock�Ackermann anomaly �BA����

Let K � f��pg� To investigate the issue� �inspired by �Bro	
c�� we de�ne three timed�
pulse�driven� stream processing functions

��� ��� �� � K� cp	 K��

such that

���in� � �� g��in��
where
g��
p
� in� �

p
� g��in��

g���� in� � ��
p�in

�

���in� � �� g��in��
where
g��
p
� in� �

p
� g��in��

g���� in� �
p
�h��in��

h��
p
� in� �

p
�h��in��

h���� in� � ��
p�in

�

���in� �
p
� g��in��

where
g��
p
� in� �

p
� g��in��

g���� in� � ����
p�in

�

The three formulas Rti����� Rti���� and Rti���� characterize three di�erent relations� It also
holds that

Rti���� � Rti���� �Rti�����

Thus any ti�speci�cation with �� and �� in its denotation has also �� in its denotation�
This is no problem as long as for any pair of ti�components C� and C�� characterized by

�� ti���� �i �o� ���
�� ti���� �i �o� �� � �� ti���� �i �o� ���

respectively� there is no observable behavior of C� that is not also an observable behavior
of C�� Unfortunately� since

�



� � �� ti���� �i �o� �� � � �s� � s� �s � h�� �i�
� � �� ti���� �i �o� �� � � �s� � s� �s � h�i�
� � �� ti���� �i �o� �� � � �s� � s� �s � ��

this is not the case� because when we apply the ��operator to C�� we get h�� �i as out�
put stream� and when we apply the ��operator to C�� we either get h�i or � as output
stream� Consequently� there is no sound and compositional proof system with respect
to ti�speci�cations� which allow us to prove that �C� cannot produce h�� �i� because any
ti�speci�cation ful�lled by C� is also ful�lled by C�� and C� does not satisfy the property
we want to prove� This explains why in the case of ti�speci�cations we could not formulate
rules for the �� and ��operators� which satisfy the same �strong� completeness result as
the corresponding rules for std�speci�cations�

We will now prove that there is a similar problem in the case of wtd�speci�cations� First
observe that the formulas Rwtd����� Rwtd���� and Rwtd���� characterize three di�erent rela�
tions� It also holds that

Rwtd���� � Rwtd���� �Rwtd�����

� � �� wtd���� hi �oi �� � � �s� � s� �s � h�� �i�
� � �� wtd���� hi �oi �� � � �s� � s� �s � h�i�
� � �� wtd���� hi �oi �� � � �s� � s� �s � ��

Thus we are in exactly the same situation as for ti�speci�cations�

Because we consider timed� pulse�driven� stream processing functions only� and we are
only interested in the behavior for complete �in�nite� inputs � which means that the
corresponding �xpoints are always in�nite and unique � there is no Brock�Ackermann
anomaly in the case of std�speci�cations� This is also the reason why the rules for this class
of speci�cations satisfy a stronger completeness result� On the other hand� had we used
the alternative denotation �z�� we would have run into trouble with the Brock�Ackermann
anomaly even in the case of std�speci�cations�

To get around the Brock�Ackermann anomaly� ti� and wtd�speci�cations are augmented
with so�called prophecies� More precisely� an additional parameter �actually a list� mod�
eling the nondeterministic choices taken inside a component is added� We use the same
tagging convention as before to distinguish ti� and wtd�speci�cations�

S �i �o �p� � R � P�

S hi �o �pi � R � P�

S is the speci�cation�s name� i and o are disjoint� repetition free lists of identi�ers repre�
senting the input and the output streams� p is a list of identi�ers representing prophecies�
R is a formula with the elements of i� o and p as its only free variables� P is a formula
with the elements of p as its only free variables� For each prophecy alternative p� R
characterizes the relation between the input� and the output�streams with respect to the
nondeterministic choice characterized by p� P is a so�called prophecy formula characteriz�
ing the set of possible prophecies� There is a close correspondence between what is called
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a prophecy variable in �AL���� an oracle in �Kel���� and what we refer to as prophecies�

These two new formats will be referred to as general ti� and wtd�speci�cations� respec�
tively� In contrast� the formats used in the earlier sections are now called simple ti� and
wtd�speci�cations� A general speci�cations can be thought of as a set of simple speci�ca�
tions � one simple speci�cation for each prophecy� Their denotations are characterized
as follows�

�� S �i �o �p� ��
def
� f� � �T ��n

cp	 �T ��mj�p � P � �r � �T ��n � R�i�r
o
���r��g�

�� S hi �o �pi �� def� f� � �T ��n
cp	 �T ��mj�p � P � �r � �T��n � R�i�r

o
���r��g�

General ti� and wtd�speci�cations are feasible i�

�� � �T ��n
cp	 �T ��m � �p � P � �r � �T ��n � R�i�r

o
���r���

�� � �T ��n
cp	 �T ��m � �p � P � �r � �T��n � R�i�r

o
���r���

respectively� For any general speci�cation S� we use respectivelyRS and PS to characterize
its input�output relation and prophecy formula�

Using general speci�cations� the Brock�Ackermann anomaly is no longer a problem� For
example� for any ti�component C� let L be a set of labels such that there is a bijection b

from L to C� then

S �i �o �p� � Rti�b�l�� � l � L

is a general ti�speci�cation� whose denotation is equal to C� Of course� we then assume
that our assertion language allows Rti�b�l�� to be syntactically expressed�

Again the de�nitions of � and � carry over straightforwardly� The rules are also easy to
generalize� We give the general versions of Rule � and ��

Rule �� �
PS� � safe��x � I�
PS� � I�x� �
PS� � I �RS� � I�xo�
PS� � I�xo� �RS� �

x
o �� RS�

S� hi �o �pi� �S� hi � x �o �pi






Rule �� �
PS � safe��x � I�� � safe��y � I��
PS � I��x� � � I��y� �
PS � I� �RS� � I�
PS � I� �RS� � I�
PS � I� �RS� � I� � RS� � RS

S hi � r �o � s �pi� S� hi � x �o � y �pi � S� hy � r �x � s �pi

In these rules the speci�cations are assumed to have identical prophecy formulas� The
invariants may now also refer to prophecies� The other rules for simple speci�cations can
be translated into rules for general speci�cations in a similar way�

We may also formulate rules which relate simple and general speci�cations�

Rule �	 �
PS� � RS� � RS�

S� hi �oi� S� hi �o �pi

Rule �� �
�p � PS�

PS� �RS� � RS�

S� hi �o �pi� S� �i �o�

As discussed in �SDW	�� �Bro	
b� there are a number of speci�cations� which can be
expressed as simple speci�cations� but which perhaps become clearer when formulated
as general speci�cations� To show that� alternating bit transmission is investigated once
more�

Example �� Alternating Bit Transmission� revisited�
We redo Example �� under the new requirement that the lossiness of the unreliable
receiver UR is nondeterministic� As indicated in Figure �� there is no input channel r�
which determines whether an input pair is properly received or not � this decision is now
taken inside UR�

SND UR

� � ��

�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
BB

i

x z y

s

Figure �� Alternating bit network�

The speci�cation of SND remains as in Example ��� We give two speci�cations of UR�
The �rst one is a simple wtd�speci�cation�





UR hz � D�� y �M� �x �M�� s � D�i �

�p � K� � �ok c�p ���
let

�z�� y�� p�� � f�d�m� ok�jd � D�m �Mg c��z� y� p�
in

�x� s� � �z�� y���

The relationship to the identically named speci�cation in Example �� is striking� The
existentially quanti�ed p simulates the input channel r� This simple wtd�speci�cation can
be transformed into a general wtd�speci�cation as follows�

UR hz � D�� y �M� �x �M�� s � D� �p � K�i �

let

�z�� y�� p�� � f�d�m� ok�jd � D�m �Mg c��z� y� p�
in

�x� s� � �z�� y��

�

�ok c�p ���

Thus the only di�erence is that the nondeterminism is characterized by a separate formula
� the prophecy formula� This supports an additional structuring of speci�cations� which
in many cases may lead to increased readability� Moreover� since the invariants in the rules
for general speci�cations may refer to prophecies� speci�cations written in this general
format may make it easier to construct proofs�

�

The rules for general ti� and wtd�speci�cations satisfy completeness results similar to
those for std�speci�cations � namely what is normally referred to a semantic� relative
completeness� These results follow easily from the restricted completeness results for
simple speci�cations� See completeness proof for general speci�cations given in �SDW	��

� Conclusions

Relational speci�cations have proved to be well�suited for the description of sequential
programs� Prominent techniques like Hoare�s assertion method �Hoa�	�� Dijkstra�s wp�
calculus �Dij���� or Hehner�s predicative speci�cations �Heh��� are based on formulas
characterizing the relation between the input and the output states�

In the case of interactive systems� the relational approach has run into di!culties� As
demonstrated in �BA���� speci�cations where the relationship between the input and
the output streams are characterized by simple relations are not su!ciently expressive

�



to allow the behavior of a data�ow network to be deduced from the speci�cations of
its components in a compositional style� Simple relations are not su!ciently expressive
to represent the semantic information needed to determine the behavior of a component
with respect to a feedback operator� Technically speaking� with respect to feedback loops�
we de�ne the behavior as the least �xpoints of the operationally feasible computations�
As shown above� for simple relations it is not possible to distinguish the least �xpoints
of the operationally feasible computations from other �xpoints� One way to deal with
this problem is to replace relations by sets of functions that are monotonic with respect
to the pre�x ordering on streams� However� for certain components like fair merge a
straightforward speci�cation leads to con�icts with the monotonicity constraint�

Our paper shows how one can get around these problems taking a more pragmatic point of
view� We have distinguished between three classes of speci�cations� namely ti�� wtd� and
std�speci�cations� The two �rst classes have been split into two subclasses� namely into
simple and general speci�cations� For each class of speci�cations a number of re�nement
rules have been formulated and their completeness have been discussed�

Components that can be speci�ed by wtd�speci�cations constitute an important sub�
class of data�ow components� Of course such components can easily be speci�ed by
std�speci�cations� However� it seems more adequate to specify these components without
mentioning time explicitly� In some sense a wtd�speci�cation can be said to be more
abstract than the corresponding std�speci�cation�

Similarly� many components are time independent in the sense that they can be speci�ed
by a ti�speci�cation� In practice such components may just as well be speci�ed by a
wtd�speci�cation� However� as we have seen� the re�nement rules for ti�speci�cations are
simpler than those for wtd�speci�cations� moreover it is easier to prove consistency since
it is enough to construct an ordinary �untimed� stream processing which satis�es the
speci�cation� To prove consistency of a wtd�speci�cation it is necessary to show that it
is satis�ed by a timed� pulse�driven� stream processing function�

Finally� since many components can only be speci�ed by an std�speci�cation� we may
conclude that all three classes of speci�cations have their respective merits� Moreover�
as we have emphasized� since they are all assigned the same type of semantics� the dif�
ferent types of speci�cations may be exploited in the very same system development�
In fact� the ��operator can be used to build networks consisting of both ti�� wtd� and
std�speci�cations� The rules� which allow one type of speci�cation to be translated into
another type of speci�cation� can be used for the development of such networks�

Our approach is related to Park�s proposals in �Par��� In some sense he distinguishes
between the same three classes of speci�cations as we� Our approach di�ers from his
in the insistence upon time abstraction and also in the use of prophecies to handle the
Brock�Ackermann anomaly� Another di�erence is our re�nement calculus�

The approach presented in this paper can easily be combined with a speci�cation style
based on the assumption�commitment paradigm� The rules for assumption�commitment
speci�cations presented in �SDW	� are basically the rules for ti�speci�cations given above�
In fact� this paper shows how the re�nement calculus and speci�cation technique given in
�SDW	� can be generalized to deal with wtd� and std�speci�cations�
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A Proofs

Proposition � Given disjoint lists of variables i� o� r� s� x and y� and formulas I� and I�
with respectively the elements of i� r� x and i� r� y as free variables� If

adm��x � I�� � adm��y � I��� ���

I��x� � � I��y� �� �
�

I� � RS� � I�� ��

I� � RS� � I�� ���

I� � RS� � I� �RS� � RS� ���

then

S �i � r �o � s�� S� �i � x �o � y�� S� �y � r �x � s�� ���

Proof� Assume that � � � hold� and that

�� � �� S� �i � x �o �y� ��� ���

�� � �� S� �y � r �x � s� ��� ���

Given two timed stream tuples i� and r�� and assume that

���i
�� x�� � �o�� y�� � ���y

�� r�� � �x�� s�� �	�

is a least �xpoint solution� Let

�i� r� o� y� x� s�
def
� ��i�� �r�� �o�� �y�� �x�� �s��� ����

The monotonicity of �� and �� implies that there are chains %o� %y� %x and %s such that

�%o�� %y��
def
� ��� ��� ����

�%x�� %s��
def
� ��� ��� ��
�

�%oj � %yj�
def
� ���i

�� %xj��� if j � �� ���

�%xj� %sj�
def
� ���%yj��� r

�� if j � �� ����

�



Since the least upper bound of the Kleene chain is equal to the least �xpoint solution
�Kle�
�� 	� ��� �
� � and �� imply

t�%o� %y� %x� %s� � �o�� y�� x�� s��� ����

Assume for an arbitrary j � �

I��x��xj�� ����

�� �� and � imply

RS� �
x
��xj

o
��oj��

y
��yj���� ����

� �� and �� imply

I��
y
��yj����

Thus

�j � I��x��xj�� I��
y
��yj���� ����

By a similar argument

�j � I��y��yj�� I��x��xj���� ��	�


� ��� �
� �� and �	 imply

�j � ��k � k � j � I��x��xk�� � ��k � k � j � I��
y
��yk��� �
��

�� 
� and the continuity of � imply
I��x�t�x� � I��

y
�t�y�� �
��

��� �� and 
� imply

I� � I��

Without loss of generality� assume

I�� �

�

�� 	 and �� imply

RS� � �
�

� 

 and 
 imply

I�� �
��

�� 	 and �� imply

RS� � �
��

�� 

� 
� 
� and 
� imply

RS� �
��

This proves ��

end of proof

�



Proposition � Given disjoint lists of variables i� o� r� s� x and y� and formulas I� and I�
with respectively the elements of i� r� x and i� r� y as free variables� If

safe��x � I�� � safe��y � I��� �
��

I��x� � � I��y� �� �
��

I� � RS� � I�� �
	�

I� � RS� � I�� ���

I� � RS� � I� �RS� � RS� ���

then

S hi � r �o � si� S� hi � x �o � yi � S� hy � r �x � si� �
�

Proof� Assume that 
� � � hold� and that

�� � �� S� hi � x �o � yi ��� ��

�� � �� S� hy � r �x � si ��� ���

Given two timed� complete �in�nite� stream tuples i� and r�� and assume that

���i
�� x�� � �o�� y�� � ���y

�� r�� � �x�� s��� ���

Let

�i� r� o� y� x� s�
def
� ��i�� �r�� �o�� �y�� �x�� �s��� ���

The monotonicity of �� and �� implies that there are chains %o� %y� %x and %s such that

�%o�� %y��
def
� ��� ��� ���

�%x�� %s��
def
� ��� ��� ���

�%oj � %yj�
def
� ���i

�� %xj��� if j � �� �	�

�%xj� %sj�
def
� ���%yj��� r

�� if j � �� ����

Since the least upper bound of the Kleene chain is equal to the least �xpoint solution
�Kle�
�� �� �� �� 	 and �� imply

t�%o� %y� %x� %s� � �o�� y�� x�� s��� ����

Let &o� &y� &x and &s be in�nite sequences of complete �in�nite� stream tuples such that

�&o�� &y��
def
� �

p�
�
p��� ��
�

�&x�� &s��
def
� �

p�
�
p��� ���

�&oj � &yj�
def
� ���i

�� &xj��� if j � �� ����

�&xj� &sj�
def
� ���&yj��� r

�� if j � �� ����

�� �� �
 and � imply

�%o�� %y�� %x�� %s�� v �&o�� &y�� &x�� &s��� ����

	



	� ��� ��� �� and the monotonicity of �� and �� imply

�%oj � %yj� %xj� %sj� v �&oj� &yj� &xj� &sj� �
�%oj��� %yj��� %xj��� %sj��� v �&oj��� &yj��� &xj��� &sj���� ����

��� �� and induction on j imply

�j � �%oj � %yj� %xj� %sj� v �&oj� &yj� &xj� &sj�� ����

Assume for an arbitrary j � �

I��
x
�	xj�� ��	�

� � and �� imply

RS� �
x
�	xj

o
�	oj��

y
�	yj���� ����


	� �	 and �� imply

I��
y
�	yj����

Thus

�j � I��x�	xj�� I��
y
�	yj���� ����

By a similar argument

�j � I��y�	yj�� I��x�	xj���� ��
�


�� �
� �� �� and �
 imply

�j � ��k � k � j � I��x�	xk�� � ��k � k � j � I��
y
�	yk��� ���

Without loss of generality� assume

safe��x � I��� ����

��� � and �� imply

�j � ��k � k � j � I��x��xk�� ����

��� �� and the continuity of � imply
I��x�t�x�� ����

�� �� and �� imply

I�� ����

� � and � imply

RS� � ����


	� �� and �� imply

I�� ��	�

�� � and � imply

RS� � ����

�� ��� ��� �	 and �� imply

RS� ����

This proves 
�

end of proof

��



Proposition � Given disjoint lists of variables i� x and o� and a formula I with the

elements of i and x as free variables� If

��j � I�xcj� � cj � �D��m � �o � RS� �
x
cj
� � cj�� v o�� I�xtc�� ��
�

I�x� �� ���

I � x � �D��m � x � x� v o �RS� � I�xx��� ����

I�xo� � RS� �
x
o�� RS� � ����

then

S� hi �oi� �S� hi � x �oi� ����

Proof� Assume that �
��� hold� and that

� � �� S� hi � x �oi ��� ����

Given a timed� complete �in�nite� stream tuple i� and assume that

� �i�� o�� � o�� ����

Let

�i� o� � ��i�� �o��� ��	�

The monotonicity of � implies there is a chain %o such that

%o� � �� ����

%oj � � �i�� %oj��� if j � �� ����

Since the least upper bound of the Kleene�chain is equal to the least �xpoint solution�
�Kle�
�� ��� �� and �� imply

t%o � o�� ��
�

Because of the observation made on Page 

� we may assume that

�j � %oj � �D��m� ���

� and �� imply

I�x��o��� ����

Assume

I�x��oj�� ����

�� implies

I�x���oj � 

p
��m��� ����

�� and the continuity of � imply

%oj�� v � �i�� %oj � �
p��m�� ����

��



��� the fact that %o is a chain and the continuity of � imply
�%oj v �%oj�� v �� �i�� %oj � �

p��m�� ����

�� implies

RS� �
x
���oj � 


p
��m�

o
���i���oj � 


p
��m��� ��	�

��� �� ��� �� and �	 imply

I�x��oj���� ����

��� �	 and �� imply

I�x��oj��� � �o � RS� �
x
��oj� � �%oj�� v o�

Thus

�j � I�x��oj�� I�x��oj��� � �o � RS� �
x
��oj� � �%oj�� v o� ����

��� �� and induction on j imply

�j � I�x��oj� � �o � RS� �
x
��oj� � �%oj�� v o� ��
�

�
� �� �
 and the continuity of � imply
I�x�t�o�� ���

�	� �
 and � imply

I�xo�� ����

��� �� and �	 imply

RS� �
x
o�� ����

��� �� and �� imply

RS� � ����

This proves ���

end of proof

Assume the base�logic allows any �semantic� predicate we need to be expressed� Then the
following proposition holds�

Proposition � Given a wtd�speci�cation S hi �oi and a timed� pulse�driven� stream pro�

cessing function � such that

�� �wtd�� � hi � x �oi �� � �� S hi �oi ��� ����

where i� x and o have respectively n� m and m elements� Then there is a formula I� with

the elements of i and x as its only free variables� such that

��j � I�xcj� � cj � �D��m � �o � Rwtd����xcj � � cj�� v o�� I�xtc�� ����

I�x� �� ��	�

I � x � �D��m � x � x� v o �Rwtd��� � I�xx��� �	��

I�xo� � Rwtd����xo �� RS� �	��

�




Proof� Let

I�
def
� x � ��

Ij��
def
� �x� � Ij�xx�� � x� � �D��m � �o � x� � x v o � Rwtd����

x
x���

I�
def
� �c � �j � Ij�xcj � � cj � �D��m � �o � Rwtd����

x
cj
� � cj�� v o � x � tc�

I
def
� �j � Ij � I��

Due to the expressiveness assumption made above� I is a formula in the base�logic�

It follows straightforwardly from the de�nition of I that ���	� hold� It remains to prove
	�� Given some i and o such that

I�xo� � Rwtd����
x
o �� �	
�

It is enough to show that

RS� �	�

We �rst prove the following lemma�

Lemma � There is a chain r such that


�j � rj � �D��m� �	��

r� � �� �	��

�j � �o � Rwtd����
x
rj
� � rj�� v o� �	��

tr � o� �	��

If I��
x
o � holds� then 	��	� follow trivially� If �I��xo�� it is enough to prove by induction on

j� that for any o such that Ij�xo � there is a chain r such that 	��	� hold� The base�case
j � � follows trivially� Assume the lemma holds for j � k� We prove that it holds for
j � k � �� Given some x such that

Ik��� �	��

	� and the de�nition of Ik�� imply there is an x� such that

Ik�xx��� �		�

x� � �D��m� �����

�o � Rwtd����xx�� � x� � x v o� �����

The induction hypothesis implies there is a chain r such that

�j � rj � �D��m� ���
�

r� � �� ����

�j � �o � Rwtd����
x
rj
� � rj�� v o� �����

tr � x�� �����

��� and ��� imply there is an l such that

�k � k � l� rk � x�� �����

�



Let r� be the chain such that

j � l� r�j � rj � �����

j � l� r�j � xjj�l� �����

��
� ��� and ��� imply

�j � r�j � �D��m� ���	�

�� and l � � imply

r�� � �� �����

���� ���� ��� and ��� imply

�j � l � �o � Rwtd����
x
r�j
� � r�j�� v o� �����

��� implies

tr� � x� ���
�

It remains to prove

�j � l � �o � Rwtd����
x
r�
j
� � r�j�� v o� ����

Let

t � l� �����

��� implies there are complete �in�nite� timed stream tuples y and z such that

��y� z� � �i� x��� �����

x v �� �y� z�� �����

���� ��� and ��� imply

r�t�� v �� �y� z�� �����

��	� ��� and the continuity of � imply there is a �nite timed stream tuple z� such that

�z� � x�� �����

r�t�� v �� �y� z��� ���	�

���� ���� ���� ���� ��� and ��� imply

��z�� �x� o r�t�� �
p��m� � r�t� ��
��

��	 and the monotonicity of � imply

r�t�� v �� �y� z�� �x� o r�t�� �
p��m�� ��
��

�
� and �
� imply

�o � Rwtd����xr�t� � r�t�� v o� ��

�

This proves ��� Thus 	��	� hold for j � k � �� This ends the proof of the lemma�

��



Let r be a chain such that 	��	� hold� Since each element of r is �nite� 	� and the
continuity of � imply we may �nd a chain t such that

�j � tj � �D��n� ��
�

tt � i� ��
��

�j � �o � Rwtd����
i
tj

x
rj
� � rj�� v o� ��
��

Since 	� implies that the �rst element of r is �� and it obviously holds that

�o � Rwtd����
i
�
x
� � � � v o� ��
��

we may assume that

t� � r� � �� ��
��

Let t� and r� be strictly increasing chains of timed stream tuples such that

�j � t�jj�t�
j
� t�j � r�jj�r�

j
� r�j ��t�j � �r�j� ��
��

�j � t�j � �D��n � r�j � �D��m� ��
	�

�j � ��t�j� r�j� � �tj� rj�� ����

These chains can easily be generated from r and t by adding
p
�s� Note that �
� requires

all streams occurring in r�j and t�j to be of the same length�

	�� �
� and �� imply

� t �t�� r�� � �i� o�� ����

Let t�� and r�� be sequences �not necessarily chains� of �nite timed stream tuples such that

�j � �t��j � tj � �r��j � rj � ��
�

�j � �t��j � �t�j ��r��j � �r�j� ���

�j � rj�� v �� �t��j � r��j �� ����

The existence of these sequences follows from 	�� �
� �
�� �
	 and the continuity of � �

�� and �� imply that 	 follows if we can construct a function

� � � �� wtd�� � hi � x �oi ��� ����

such that

� ��tt��tr�� � tr�� ����

We construct � � in a step�wise fashion� First we de�ne the behavior for any input �i� x�
such that

�i � �x � ij�i � i � xj�x � x�

�i�e� which means that all the streams in i and x are of the same length��

� CASE� �i� x� � �tt��tr���
Let

� ��i� x� � x� ����

��



� CASE� �i� x� � �tt��tr���
Let

� ��i� x� � r�j��� ����

where j � maxfk j �t�k� r�k� v �i� x�g�
� CASE� �i� x� 
v �tt��tr��
Let

� ��i� x� � r�j�� � �rj�� o �� �t��j � r��j ��� �
p���t��

j
�r��
j
��m �

�� �t��j � r
��
j � o � �t��j � �t�j o i�� r��j � �r�j o x���� ��	�

where j � maxfk j �t�k� r�k� v �i� x�g�

For any other input let

� ��i� x� � � ��ijk� xjk��
where k � minf�i��xg�
Since the di�erent cases are disjoint it follows that � � is well�de�ned� That � � is monotonic
and continuous follow straightforwardly from the monotonicity and continuity of � �

With respect to the two �rst cases in the de�nition of � � the pulse�drivenness property
follows trivially� With respect to the third case ��	� it follows that � � is pulse�driven
since � is pulse�driven and �� �	 imply

��i� x� � ��t��j � �t�j o i�� r��j � �r�j o x���
�� �t��j � �t�j o i�� r��j � �r�j o x�� � �� ��i� x��

Then� �nally� �� follows from 	
� ��� �� and �	�

end of proof

��


