
A Requirement Speci�cation for a Lexical Analyzerz

Rudolf Hettler�

February ��� ����

Abstract

This report gives an abstract requirement speci�cation of lexical analysis as it

is employed in compiler construction� We focus on the behaviour of a special lexi�
cal analyzer� the UNIX tool LEX� Using the high�level axiomatic speci�cation lan�

guage Spectrum we show the importance of abstract speci�cations for formalizing
a problem domain and the necessity of keeping such a requirement speci�cation

as clear and understandable as possible� despite its formality and mathematical
rigour�

� Introduction

In this case study we give a requirement speci�cation for a lexical analysing tool similar
to UNIX LEX in the speci�cation language Spectrum� Spectrum is an axiomatic
speci�cation language supporting full �rst�order logic� Its loose semantics allows for
stepwise development as it is possible to re�ne speci�cations by adding additional axioms
�properties�� This has the e�ect that the class of models of the re�ned speci�cation is
always included in the class of models of the original one� The expressiveness of its full
�rst�order logic makes it suited for giving highly abstract �and de�nitely not executable�
requirement speci�cations� A few hints on how to read a Spectrum speci�cation will be
given in this paper� For a detailed description of Spectrum see �BFG���a	 BFG���b
�

In performing this case study we mainly have to cope with two quite di�erent speci�
�cation tasks�

�� We have to formalize regular expressions and regular expression matching� For
the concept of regular languages abstract mathematical de�nitions can be found
in many books on formal languages and automata theory� Thus	 our main task is
here to transform those abstract de�nitions into our formal language�

zThis work was sponsored by the German Ministry of Research and Technology �BMFT� as part of
the compound project �Korrekte Software �KORSO���

�Fakult�at f�ur Informatik der TU M�unchen� D��	
�	 M�unchen

�

� We have to specify the behaviour of the lexical analyzer itself� Books on compiler
construction often do this by explaining how to use a certain scanner� Like �ASU��

we will use the UNIX scanner generator LEX as a model for our scanning function�
The main task here is to analyze the behaviour of scanners generated by LEX	 �nd
out the essential parts of it and �nally formalize them using Spectrum�

The rest of this paper is organized as follows� Section introduces all the basic
concepts we need for specifying the lexical analyzer� In section � regular expressions
and their languages are formalized� Based on this speci�cation section � develops and
discusses a requirement speci�cation of a LEX�like lexical analyzer� Section � draws
some conclusions and relates this case study to other work done in this area�

� Prerequisites

In order to be able to do our main work �specify the concepts of lexical analysis�	 we
need formal speci�cations of some primitive concepts which are not tightly connected
to our problem domain� Instead	 they are general concepts which serve as a basis for
formalizing the concepts we are interested in� Although these speci�cations are given
collectively in this chapter	 this does not mean that they all were completely worked
out before the main work was started� Parts of them evolved together with the main
speci�cation and are collected here to allow for a smooth presentation of our results�

To start with	 we need the concepts of natural numbers	 lists	 characters and	 as a
special case of lists	 character strings� The speci�cation of these concepts is taken from
Spectrum�s standard library which can be found in Appendix A�

List � f
data List � � �� j cons��first� ���rest� List ���

List���EQ�EQ�

�����List � � List � � List � prio ��� left�

���� strict total�

axioms � s�s	�List �� e�� in

fl�g �� �� s � s�

fl
g cons�e�s	� �� s � cons�e�s	 �� s��

endaxioms�

g

Figure �� A Spectrum speci�cation of lists

With the example of the speci�cation List taken from the standard library �see

Figure �� we now give some remarks which should help in understanding Spectrum

speci�cations �for a detailed introduction to Spectrum see �BFG���a	 BFG���b
��

� Comments are preceded by ���

� All sorts in this case study are introduced as free data types via the data construct�
This construct is similar to the data or datatype constructs in functional languages
like ML or Haskell� It introduces the new sort together with its constructors and
selectors�

� Spectrum has a polymorphic type system with type classes very similar to the
type system of Haskell �HJW�
� In this case study we have to do with the three
type classes EQ	 PO and TO which are used for sorts that provide equality	 a partial
order or a total order	 respectively�

� Functions are de�ned by giving a signature and axioms they have to obey� In
speci�cation List	 for example	 the function ���� has the signature

�����List � � List � � List � prio ��� left

This signature gives the sort of ���� and states that it is an in�x function with
a certain precedence which is left associative� For ����	 there are three axioms�
Two of them are given as logical formulae between axioms and endaxioms	 the
third is given by the line ���� strict total	 which demands ���� to be strict
and total� If logical axioms start with an identi�er enclosed in curly brackets	 those
identi�ers are names for the following axiom �the logical axioms of ���� have the
names l� and l���

Besides the standard library some more primitives will be needed for the study� For
convenience	 we will use a ��� relation on natural numbers which is �based on a given
relation ���� de�ned by�

Nat � f enriches Naturals�

��� � Nat � Nat � Bool prio ��

��� strict total�

axioms � n�m�Nat in

n � m � �n � m � n �� m��

endaxioms�

g

As our speci�cation will make heavy use of lists	 we need some more functions on
lists than provided by List� The following speci�cation extends List by all functions
we will need�

�

Ext Lists � f

enriches List � Nat�

�� all functions in this specification are strict

strict�

mklist � � � List ��

len � List � � Nat�

concat � List �List �� � List ��

mklist� len� concat total�

axioms �s�List ��ss�List�List ���e�� in

mklist e � cons�e�����
len �� � ��

len�cons�e�s�� � succ�len s��

concat �� � ���

concat �cons�s�ss�� � s �� concat ss�

endaxioms�

��� � ���EQ � � � List � � Bool prio ��

�is prefix of� � ���EQ � List � � List � � Bool prio ��

�is postfix of� � ���EQ � List � � List � � Bool prio ��

precedes in � ���EQ � � � � � List � � Bool prio ��

���� �is prefix of�� �is postfix of�� precedes in total�

axioms ���EQ � �s�s	�List �

�e�e	��
in

e � s � 	s��s
� s � s� �� mklist�e� �� s
�

s	 is prefix of s � 	s		� s � s	 �� s		�

s	 is postfix of s � 	s		� s � s		 �� s	�

precedes in �e� e	� s� � 	s��s
�s��
�e	� s�� �
s � s� �� mklist�e� �� s
 �� mklist�e	� �� s��

endaxioms�

g

� Regular Expressions

Now we are ready to formalize the concept of regular expressions and the languages they
denote� We start by taking the de�nition of regular languages out of a book on compiler
construction and translate it into a Spectrum speci�cation�

�

Books on compiler construction like �ASU��
 de�ne regular expressions and their
languages as follows�

De�nition � Let � be an alphabet ��nite set of symbols�� A language over � is a �pos�
sibly in�nite� set of ��strings� On languages L and M we de�ne the following operations�

Union L�M � fsjs�L�s�Mg

Concatenation LM � fstjs�L�t�Mg

Exponentiation

�� denotes the empty string� Li �

�
f�g if i � �
LLi�� else

Kleene Closure

�Zero or more concatenations of L� L� �
S
�

i�� L
i

Given these operations we can de�ne regular expressions and the language they denote
by�

�� � is a regular expression denoting the language f�g�

�� If a � � is a symbol� then a is a regular expression denoting fag�

	� If r and s are regular expressions denoting the languages L�r� and L�s�� then

�a� rjs is a regular expression denoting L�r� � L�s��

�b� rs is a regular expression denoting L�r�L�s��

�c� r� is a regular expression denoting L�r���

�d� �r� is a regular expression denoting L�r��

In order to save brackets we adopt the following precedence conventions�

� � has the highest precedence

� concatenation has the second highest precedence and is left associative

� j has the lowest precedence and is left associative

�

Now we have to transform this semi�formal de�nition into a Spectrum speci�cation�
In our case � is the set of characters de�ned by �the primitive speci�cation� Character�
In an attempt to stick as close to the above de�nition as possible one might consider to
model languages as sets of character strings and specify the above mentioned operations
as Spectrum functions on them� The problem with this approach is that languages
often contain in�nitely many elements and thus are in�nite objects� All the standard
speci�cations of sets found in the literature	 however	 specify only �nite sets� While
it is possible in Spectrum to specify in�nite objects	 a speci�cation of in�nite sets is

�

a tricky thing to do and would certainly not enhance understandability of the whole
speci�cation� Because of this we prefer another way of specifying regular languages�
Instead of trying to specify the possibly in�nite language L�r� generated by a regular
expression r	 we specify a characteristic predicate for L�r� which decides for any string s
if s is in L�r�� The test if a string is in a certain regular language is often calledmatching�
Thus	 instead of saying �s is in L�r�� one usually says �r matches s�� We now have to
de�ne this characteristic predicate�

From the de�nitions of the operations on languages we can deduce�

s�L��� � s � �

s�L�a� � s � �a�
s��L�r��L�t�� � s�L�r��s�L�t�
s��L�r�L�t�� � 	s�� s��s � s�s��s��L�r��s��L�t�
s�L�r�� � s � ��	s�� � � � � sn�s � s� � � � sn�s��L�r�� � � ��sn�L�r�

Using these equivalences we can rephrase our de�nition of regular languages along the
structure of regular expressions as follows�

De�nition �

�� � is a regular expression matching the string ��

�� If a � � is a symbol� then a is a regular expression matching the string
a
�

	� If r and t are regular expressions and s is a string� then

�a� rjt is a regular expression and matches a string s i� r matches s � t matches
s�

�b� rt is a regular expression and matches s i� 	s��s�� s�s�s� � r matches s� � t
matches s��

�c� r� is a regular expression and matches s i� s�� � 	s��� � � �sn� s�s�� � � sn � r
matches s� � � � � � r matches sn�

�d� �r� is a regular expression and matches s i� r matches s�

�

There are two points about this transformation of our de�nition of regular languages
that are worth noting�

� It was not a formal transformation as we have not yet given a formal speci�cation
for the whole topic� Rather it was a transformation to make formalization easier
and more understandable� It is only justi�ed by our general knowledge about the
problem domain and not by a formal �machine checkable� proof�

� We have got rid of the notion of in�nite sets� From now on we only have to deal
with �nite objects�

�

Our second de�nition of regular expressions can now quite easily be transformed into
a Spectrum speci�cation� For regular expressions we recursively specify a free data
type Regexp along the inductive structure of the de�nition� In order to obey the lexical
conventions of Spectrum we use the following naming conventions�

empty regular expression �

atomic regular expression a mkreg�a�

rjs rjjs
rs r
 s

r� ���r�

The characteristic predicate �r matches s� is speci�ed as a �in�x� Spectrum function
�matches��

Regexp � f

enriches Character � String � Ext Lists�

data Regexp � �

j mkreg �� Char�

j ��� �� Regexp�� Regexp� prio ��

j �jj� �� Regexp�� Regexp� prio ��

j �� �� Regexp��

Regexp �� EQ�

�matches� � Regexp � String � Bool prio ��

�matches� strict total�

axioms � c� r�� r
� s� s	 in

� matches s � �s � ��

mkreg�c� matches s � �s � mklist c��

r�jjr
 matches s � r� matches s r
 matches s�

��r� matches s � �s � 	ss � List String� s � concat ss �

�s	 � String� s	 � ss � r� matches s	��

r��r
 matches s � 	s��s
� s � s� �� s
 � r� matches s� � r
 matches s
�

endaxioms�

g

� Lexical Analysis

��� Informal Requirements

Informally	 lexical analysis partitions a given string �for example a program text� into a
list of substrings called lexemes such that each substring belongs to one of a given set

�

of lexical categories� These categories are described via regular expressions� A string s
belongs to the lexical category described by a regular expression r i�� r matches s� The
lexical analyzer then outputs a list of tokens which are assigned to the lexical categories
of the respective lexemes� In order to keep things simple	 we will from now on identify
tokens with the regular expressions they represent	 which means that our scanner outputs
a list of regular expressions�

Unfortunately	 the description given so far is not su�cient for a requirement speci��
cation� It is incomplete in several ways�

�� Often there are a lot of di�erent ways how a given string can be partitioned into
lexemes� Consider for example the set fa�� abg of regular expressions and assume
that we want to scan the string �aaaab� with them� According to the above
de�nition there are many possible results for this scan as we can partition this
string in several ways such that each substring is matched by either a� or ab�

� ��a�	�a�	�a�	�ab�
 which is matched by �a�	a�	a�	ab

� ��aaa�	�ab�
 which is matched by �a�	ab

amongst others� Note that according to this de�nition also the following partition�
ings are possible�

� ��	�aaa�	�ab�
 which is matched by �a�	a�	ab

� ��	�	�aaa�	�ab�
 which is matched by �a�	a�	a�	ab

and so on� In order to avoid this last kind of ambiguity we strengthen our above
description of lexical analysis by demanding lexemes to be nonempty strings�

Even with this restriction	 however	 our characterization of lexical analysis is too
loose� Lexical analysis is mostly used to check text written by humans �for example
program texts written by programmers�� For a human programmer to write correct
code it is vital to know how the lexical analyzer fragments his text� Therefore
scanners have to adopt a strategy for resolving ambiguity which is intuitive and
easily comprehensible� All scanners known to the author	 especially the UNIX
tool LEX which serves as our example	 have adopted the following longest�pre�x
strategy�

Process the input string from the left to the right� The next lexeme
to recognize is always the longest �nonempty� pre�x of the unprocessed
input that is matched by one of the given regular expressions� If there
is more than one regular expression matching this longest pre�x	 choose
the regular expression which is the �rst according to a given order on
the set of regular expressions�

� We have to determine for which values of the input we expect results as we have
characterized them above and what to do in the rest of the cases� Obviously	 not

�

all strings can be broken into lexemes according to a set of regular expressions�
Suppose we have again the regular expressions fa�� abg and want to scan the string
�abc�� It is clear that this scan has no solution as the letter �c� does not appear
in any of the regular expressions� The problem is even more subtle� There are
strings that can be broken into lexemes according to our �rst abstract de�nition
but not according to the longest�pre�x strategy� Suppose again the example where
we want to scan the string �aaaab� with the regular expressions fa�� abg� As we
have already seen there are many possibilities to break this string into lexemes
but none of them complies with the longest�pre�x strategy	 because the longest
pre�x of �aaaab� which can be matched is �aaaa� matched by a�� Having matched
this pre�x we are left with an unprocessed input �b� which cannot be matched by
neither a� nor ab� Thus there is no longest pre�x solution for this scan� We can
therefore only demand our scanner to yield a result as characterized above if for
the given input string there is a longest pre�x solution�

We have seen that for any given set of regular expressions there may be many
strings which cannot successfully be scanned according to the above de�nition� We
now have to decide what to do in those cases� From the scanner�s point of view	
on the one hand	 those cases are error situations	 because it cannot ful�ll its task�
For a requirement speci�cation it would be perfectly appropriate to work with
underspeci�cation and to postpone all decisions regarding error recovery to later
development steps� On the other hand	 seen from the user�s point of view	 a string
which cannot be scanned is a quite normal input for a scanner	 since it is one of
the scanner�s tasks to �nd lexically illegal constructs in the input� Therefore those
cases are more than simply erroneous situations for our scanner and so we have
to cope with them in the requirement speci�cation� One of many possible ways to
deal with those situations is again to have a look at the UNIX scanner generator
LEX and mimic its behaviour	 which is to scan the input string as far as possible
and to return the unprocessed post�x of the input string in case of an error�

��� Speci�cation

We will now present a speci�cation which ful�lls all the informal requirements given
in section ���� We will then proceed with a discussion of the this speci�cation and its
properties�

Based on the speci�cation Regexp our scanner can be speci�ed as follows�

Scan � f enriches Ext Lists � Regexp�

�is prefix match of� � �String � Regexp� � String � Bool prio ��

�is prefix match of� strict total�

axioms � r�� s� s	 in

�s�r��is prefix match of s	 � r� matches s � s is prefix of s	�

�

endaxioms�

�is longest prefix match of� �

�String � Regexp� � �String � List Regexp� � Bool prio ��

�is longest prefix match of� strict total�

axioms �s� s	� t� rs in

�s	� t� is longest prefix match of �s� rs� �
t�rs � �s	� t� is prefix match of s �
�s��t�� t� � rs � �s�� t�� is prefix match of s � �s�� t�� �� �s	� t� �

len s� � len s	 �len s� � len s	 � precedes in �t� t�� rs���

endaxioms�

data Scan Result � mkres�� tokens� List Regexp� � unprocessed� String��

scan � String � List Regexp � Scan Result�

scan strict total�

axioms �s� s	� rs� ts in

scan�s� rs� � mkres�ts� s	� �

s	 is postfix of s �
��r� r � ts � r � rs� �
�ts � �� � s�s	 �

�s		�r� r � rs � s		 �� �

��s		� r� is prefix match of s�

� �
�ts �� �� � 	s��s
� s � s� �� s
 �

scan�s
� rs� � mkres�rest�ts�� s	� �
�s�� first�ts�� is longest prefix match of �s� rs�

��

endaxioms�

g

The speci�cation of our scanner is split into the de�nition of two functions� The
main function scan describes the way in which the input is processed from left to
right searching for pre�xes which can be matched and gives thus some kind of con�
trol structure to the scanner� The longest pre�x criterion is formalized in the function
�is longest prefix match of�	 which checks for a given match �i�e� a string together
with a regular expression matching it� if it has the longest pre�x property�

The function scan has two arguments� the input string that is to be scanned and
the regular expressions available for scanning� The regular expressions are organized in
a list as we need an order on them for expressing the longest pre�x strategy� It yields a
composite result �Scan Result� which consists of a list of regular expressions standing
for the lexemes recognized during lexical analysis and a string which is the unprocessed
part of the input in case of error� If scanning is successful this string is empty� For better

��

understanding we will now translate the axiom of scan into english sentences�

The result mkres�ts�s�� of the lexical analysis scan�s�rs� of a string s

according to the regular expressions in rs has the following properties�

� the unprocessed rest s� is a post�x of s

� the result ts contains only regular expressions which are already con�
tained in rs

� an empty regular expression sequence ts in the result implies that the
input string is completely unprocessed �s�s�� and is only possible if
there are no regular expressions in rs which match a nonempty pre�x
of s

� if the result contains a nonempty regular expression list ts then s can
be split into a pre�x s� and a rest s� such that

� mkres�rest ts� s�� is the result of scan�s��rs�

� the tuple �s��first ts� is a longest pre�xmatch of s	 which means
it ful�lls the predicate �is longest prefix match of� according to
s and rs

�s��t�is longest prefix match of�s�rs� checks if a string s� and a regular ex�
pression t form a longest pre�x match of s according to the set of regular expressions
rs� For this the following facts have to be ful�lled�

� t is contained in rs

� s� is a pre�x of s and is indeed matched by t� This is checked by the function
�is prefix match of��

� s� is the longest pre�x that can be matched by a regular expression from rs and
t is the �rst regular expression in rs matching s�

��� Discussion

The speci�cation Scan from section �� is in some way a quite typical requirement spec�
i�cation	 in some other way it is not� In the following we will discuss this issue in more
detail�

Scan is not a typical requirement speci�cation because it determines the scanner
uniquely� There is no freedom left concerning the behaviour of the scanner to an imple�
mentor� This property stems from the special kind of task we are dealing with which is to
specify the behaviour of a speci�c tool �LEX�� If we had given ourselves the task of spec�
ifying some problem for which we do not know the solution beforehand	 our speci�cation
would much more likely contain underspeci�ed cases�

It is	 however	 a typical requirement speci�cation because it does not give an al�
gorithm for performing lexical analysis� All the sophisticated algorithms known from

��

automata theory do not appear in this speci�cation� The speci�cation is thus not exe�
cutable� Furthermore	 in contrast to algorithmic speci�cations it contains redundancy�
The part s� is postfix of s in the axiom of scan is redundant and could as well be de�
rived from the rest of the speci�cation� It is quite normal for a requirement speci�cation
to contain redundancy because in this early development phase the speci�er is concerned
with simply collecting requirements and formalizing them as comprehensibly as possible�
Minimality is not important in this step	 often it even a�ects understandability� On
the way to a design speci�cation and �nally to an executable program	 however	 this
redundancy has to be eliminated which means that the redundant parts of the axioms
have to be proven as theorems�

� Conclusion

In this paper we have given a requirement speci�cation for a lexical analyzer similar
to the UNIX tool LEX� As explained in Section � we had to tackle two quite di�erent
speci�cation problems�

When formalizing the concept of regular languages we have realized that not every
abstract mathematical de�nition is equally suited for formalisation in a speci�cation
language like Spectrum� The reason for this is that such mathematical de�nitions
often work with quite di�cult basic notions which turn out to be complex and not very
comprehensible when speci�ed formally� In our example this was the case with the notion
of in�nite sets� In such situations often it is better to look for some equivalent de�nition
which is based on simple and easily understandable concepts�

In the speci�cation of the scanner we have seen that the attempt to specify some
already existing piece of software results in a quite concrete speci�cation which is not
necessarily typical for a requirement speci�cation�

The speci�cation given in this paper has been the starting point for a lot of other
case studies concerning LEX throughout the compound project KORSO �Bey��	 KLW��	
AFHL�	 RSS��	 DS��	 Han��
� All of those publications regard the LEX example from
di�erent points of view and thus give together a quite general treatment of this topic�

�

References

�AFHL�
 A� Ayari	 S� Friedrich	 R� Heckler	 and J� Loeckx� Das Fallbeispiel Lex�
Technical Report WP����	 Uni Saarbr�ucken	 ����

�ASU��
 Alfred V� Aho	 Ravi Sethi	 and Je�rey D� Ullmann� Compilers� Principles�
Techniques and Tools� Addison�Wesley	 �����

�Bey��
 Martin Beyer� Speci�cation of a Lex�like scanner� Technical report	 TU
Berlin	 ����� To appear�

�BFG���a
 M� Broy	 C� Facchi	 R� Grosu	 R� Hettler	 H� Hussmann	 D� Nazareth	 F� Re�
gensburger	 O� Slotosch	 and K� St�len� The Requirement and Design Seci�
�cation Language Spectrum� An Informal Introduction� Version ���� Part
I� Technical Report TUM�I����	 Technische Universit�at M�unchen� Institut
f�ur Informatik	 May �����

�BFG���b
 M� Broy	 C� Facchi	 R� Grosu	 R� Hettler	 H� Hussmann	 D� Nazareth	 F� Re�
gensburger	 O� Slotosch	 and K� St�len� The Requirement and Design Seci�
�cation Language Spectrum� An Informal Introduction� Version ���� Part
II� Technical Report TUM�I���	 Technische Universit�at M�unchen� Institut
f�ur Informatik	 May �����

�DS��
 A� Dold and M� Strecker� Program Development with Speci�cation Opera�
tors � illustrated by a speci�cation of the LEX scanner� Technical report	
Uni Ulm	 �����

�Han��
 R� Handl� Veri�kation eines Scanners� Master�s thesis	 TU M�unchen	 �����

�HJW�
 P� Hudak	 S� Peyton Jones	 and P� Wadler	 editors� Report on the Program�
ming Language Haskell� A Non�strict Purely Functional Language �Version
����� ACM SIGPLAN Notices	 May ����

�KLW��
 K� Kolyang	 J� Liu	 and B� Wol�� Transformational Development of an
E�cient Implementation of Lex� Internal Report	 Uni Bremen	 �����

�RSS��
 W� Reif	 G� Schellhorn	 and K� Stenzel� A Veri�ed Lexical Scannner � a
Methodological Case Study with the Kiv System� Technical report	 Uni
Karlsruhe	 ����� To appear�

��

A Spectrum�s Standard Library

This appendix contains Spectrum�s standard library as it is de�ned in �BFG���a	
BFG���b
�

Character � f

data Char � 	a	 j 	b	 j 	c	 j 	d	 j 	e	 j 	f	 j 	g	 j 	h	 j 	i	 j 	j	 j 	k	
j 	l	 j 	m	 j 	n	 j 	o	 j 	p	 j 	q	 j 	r	 j 	s	 j 	t	 j 	u	 j 	v	
j 	w	 j 	x	 j 	y	 j 	z	 j 	A	 j 	B	 j 	C	 j 	D	 j 	E	 j 	F	 j 	G	

j 	H	 j 	I	 j 	J	 j 	K	 j 	L	 j 	M	 j 	N	 j 	O	 j 	P	 j 	Q	 j 	R	
j 	S	 j 	T	 j 	U	 j 	V	 j 	W	 j 	X	 j 	Y	 j 	Z	 j 	�	 j 	�	 j 	
	

j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	
j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	 j 	�	

j 	�	 j 	�	 j 	�	 j 	j	 j 	�	 j 	f	 j 	g	 j 	�	 j 	�	 j 	�	 j 	�	
j 	�	 j 	�	 j 	 	 j 	 	 j 	nn	j 	nt	j 	nv	j 	nb	j 	nr	j 	nf	j 	na	

j 	nn	j	n		 j 	n	�
Char �� EQ�

g

List � f
data List � � �� j cons��first� ���rest� List ���

List���EQ�EQ�

�����List � � List � � List � prio ��� left�

���� strict total�

axioms � s�s	�List �� e�� in

fl�g �� �� s � s�

fl
g cons�e�s	� �� s � cons�e�s	 �� s��

endaxioms�

g

String � f enriches Character � List�

�� String is only an abbreviation for lists of characters

sortsyn String � List Char�

g

Ordering � f

class PO subclass of EQ�

���� ���PO � � � � � Bool prio ��

��

axioms ���PO � �x�y�z�� in

freflg x�x�
ftransg x�y � y�z � x�z�

fantg x�y � y�x � x��y�

endaxioms�

class TO subclass of PO�

axioms ���TO � �x�y�� in

ftotg x�y y�x�

endaxioms�

g

Numericals � f enriches Ordering�

class NUM subclass of TO�

�� functions for sort class NUM

�������NUM � � � � � � prio �� left�

�������NUM � � � � � � prio ��

�������NUM � � � � � � prio �� left�

�������NUM � � � � � � prio ��

��������������� strict�

������� total�

axioms ���NUM � �a�b�c�� in

�� Associativity

fassoc�g �a�b��c � a��b�c��
fassoc
g �a�b��c � a��b�c��

�� Commutativity

fcomm�g a�b � b�a�

fcomm
g a�b � b�a�
endaxioms�

g

Naturals � f enriches Numericals�

data Nat � � j succ��pred�Nat��

Nat��NUM�

�mod��Nat � Nat � Nat prio ��

�mod� strict�

axioms �n�m�Nat in

�� Addition

��

fa�g n�� � n�

fa
g n�succ m � succ�n�m��
�� Subtraction

fs�g ��n�m� � m�n�
fs
g �n�m��m � n�

�� Multiplication

fm�g n�� � ��

fm
g n�succ m � n�n�m�
�� Division

fd�g ��n�m� � m����

fd
g m ��� � n mod m�m � n mod m �� m�

fd�g m ��� � n � �n�m��m � n mod m�

�� Ordering

fo�g n�succ n�

endaxioms�

g

��

