
Parallel Program Development for a Recursive Numerical

Algorithm� a Case Study

Sergei Gorlatch �

Institut f�ur Informatik TU M�unchen

Arcisstr� ��� ���� M�unchen �� F�R�G�

e�mail� gorlatch	informatik�tu�muenchen�de

Abstract

A systematic approach to the parallel program development for a new class

of numerical methods on sparse grids is presented� It combines formal design

and veri�cation methods based on stream processing functions with simple tools

for e�ciency evaluation� The use of this approach is demonstrated on a real�life

example� two�dimensional integration algorithm�

Keywords� parallel programming� formal design methodology� veri�cation�

e�ciency evaluation� numerical applications�

� Introduction

This paper describes the �rst results of a research project which is carried out with

the support from the Alexander von Humboldt Foundation� The work is being done

within the research funded by the German Science Foundation under contract SFB

���� �project A��� The aim is to derive formal methods and programming tools for

parallel program speci�cation and development� In our approach we try to achieve

the following goals advocated by several authors �e�g� 	FT
���

� to start with a speci�cation which is natural and familiar for the expert in the

corresponding problem domain�

� to postpone architecture�dependent design decisions until late in the develop�

ment process�

�The author� a senior research associate at the Institute of Cybernetics �Kiev� the Ukraine�� is
currently in Munich under the sponsorship of the Alexander von Humboldt Foundation �Germany�

�



As a methodological framework we use formal methods developed by M� Broy

et�al� 	Bro
�� which are based on stream processing functions� We apply this method�

ology to the new class of so�called sparse grid numerical algorithms 	Zen���� These

algorithms signi�cantly reduce the amount of computations in comparison with con�

ventional grid algorithms and are recursive in nature�

The development of parallel programs from original mathematical speci�cations

is a very promising and actively investigated area� There exist not only formal

development methods �they are surveyed in 	KLGG
��� but also supporting systems

such as Model 	TSSP
��� Crystal 	CCL
�� and Suspense 	RW
��� However these

methods and tools do not work in the problem domain of sparse grids because of the

inherently recursive and non�homogeneous nature of the corresponding numerical

algorithms�

The central point in our approach is the so�called abstract �data��ow� implemen�

tation of a speci�cation� For representing an abstract implementation the Applica�

tive Language �AL� is used it allows us to express streams� stream processing agents

�processes� and networks of agents� The abstract implementation of algorithms in AL

can be veri�ed with respect to the speci�cation using the denotational semantics of

the language 	BDD���a�� Programs in the AL language correspond quite directly to

nets of loosely�coupled asynchronously communicating agents� Such nets were inves�

tigated� e�g�� in 	Den
�� and used in the languages Lucid 	WA
�� and Sisal 	FCO����

AL�programs play a key role in our approach on the one hand� they contain all

the potential parallelism of the original numerical speci�cation� on the other hand�

a transformation and veri�cation formalism is developed for them� moreover� they

can be implemented and their e�ciency can be estimated� The transformation of

the AL�programs into parallel programs for particular multiprocessor architectures

and corresponding experiments constitute the future stage of our project�

In this paper we describe the modi�cation of the general design methodology

	BDD���a� for the case of numerical recursively de�ned algorithms� The presen�

tation is illustrated by the systematic development of two AL�implementations �a

straightforward one and an optimized one� for the algorithm of two�dimensional in�

tegration on a sparse grid� Technical details are taken out into Appendix� We also

present a simpli�ed variant of an abstract implementation that corresponds to the

functional program considered in 	Zen���� Modi�cations for the case of adaptive

integration algorithm are brie�y analyzed� Then a simple method of e�ciency eval�

uation for abstract programs is outlined� In the conclusion� the future research is

discussed�

In this case study we deliberately do not give a completely formal presentation�

but try to keep the derivation readable and understandable� In particular� formal

proofs are omitted�

�



� Methodology overview

In this section we �rstly present a short overview of the general design methodology

Focus 	Bro
��� 	BDD���a� and then outline its modi�cation for the numerical prob�

lems taken into consideration� We mainly aim at providing an initial understanding�

therefore all complications are avoided�

Focus uses a descriptive functional approach to the development of distributed

systems� The development is organised as a sequence of steps� Basically we have

the following four levels of system development requirements speci�cation� design

speci�cation� abstract implementation and concrete implementation� In the course

of development the description of a system is transformed and re�ned� At each step

the description is veri�ed with respect to the previous one� The basic modeling

notion used are sequences of elements called streams streams of actions �traces�

and streams of messages�

The Focus methodology was used up to now mostly for the development of

distributed systems interacting with an environment by receiving and producing

streams of messages 	BDD���b�� Here we try to modify this methodology having

in mind its use for a multiprocessor implementation of a certain class of numerical

algorithms� In particular� the �meaning� of some development levels is changed in

comparison with the original methodology�

The main feature of the problems we are interested in is that they usually have a

precise mathematical speci�cation� We will call it a requirement speci�cation� This

speci�cation does not have to be constructive �e�g� �compute an integral for the

function f in a given domain with a given accuracy��� To �nd corresponding algo�

rithmic concepts and investigate their adequacy is the task for experts in numerical

methods� They develop a constructive representation which we will consider as a

design speci�cation� We consider the design speci�cation as the entry point in our

approach� Such a speci�cation is usually still mathematical �e�g� a system of recur�

sive equations determining relations between the matrix of coe�cients� the vector

of the right hand side and the solution vector in the Gauss method for linear sys�

tems solution�� Our aim is to transform such a design speci�cation into a parallel

program�

As an intermediate level we develop a so�called abstract implementation which is

represented in a particular applicative language called AL� The AL�programs are still

quite abstract but already executable and thus are called abstract programs� An ab�

stract program describes a net of concurrently working agents which asynchronously

exchange messages over unbounded directed channels� A program consists of a num�

ber of agent declarations and a system of equations describing their interconnection�

The relation between the design speci�cation and its abstract implementation

is provided by the denotational semantics of the AL language which� together with

�



transformation rules for the language� is developed by F� Dederichs in his Ph�D�

thesis� The semantics assigns a set of stream processing functions to every agent

declaration� In this semantical framework the implementation and the equivalence

relations are formalized an agent de�nition O implements an agent de�nition I if

the set of stream processing functions constituting the semantics of O is a subset of

the set of functions constituting the semantics of I� Agents are equivalent if both

sets coincide� Using these relations we can formally verify di�erent variants of AL�

programs implementing a design speci�cation�

An abstract program should then be transformed into a concrete program for the

target multiprocessor� This �nal step� however� is not in the scope of this paper�

� Algorithms on sparse grids

We outline here the general idea of sparse grid algorithms and present the example

�design� speci�cation which is considered in the following�

Grids are called �sparse� because of their analogy to sparse matrices� For two�

dimensional problems on the unit square with the degree of partition m �i�e� the

boundary meshwidth ��m� the associated sparse grids contain only O�m logm� grid

points instead of O�m�� for the usual �full� grids �see Fig� ���

�

�

��

��

�

�

�

�

��

�

�

�

�

��

��

�

� �

�

��

��

�

�

�

�

��

�

�

�

�

��

��

�

�

m 
 � m 
 �

� �

��� �

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������������

��� ������� ����

���������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

� �

�

��

��

�

�

�

�

�

� �

�� � �

��

� ���

� ��

�

�

�

� �

�

�

�

�

�

�

�

��

�

�

�

�

��

Figure � Points in the square sparse grid for m�� and m��

It can be shown �see 	Zen���� that su�ciently smooth functions are represented on

sparse grids with nearly the same accuracy as on full grids� Thus� the main advantage

of sparse grids is that the dimension of the used space �and the amount of necessary

computations� is reduced signi�cantly� whereas the accuracy of approximation dete�

riorates only slightly� The same idea works even better in the multidimensional case

and was successfully used for a variety of numerical grid methods �	Gri����	Zen�����

As a simple example of a sparse grid method we consider an algorithm for numer�

�



ical two�dimensional integration� It is developed and implemented on a conventional

computer by Th� Bonk at the Technical University of Munich� To simplify the pre�

sentation� we restrict ourselves at �rst to the non�adaptive version of the algorithm�

which uses the meshwidth value m as a parameter� In the adaptive case the grid

is built dynamically for the required accuracy and thus may be heterogeneous� The

idea of the algorithm goes back to Archimedes and is based on domain partition�

The value of the integral for a given function f vanishing on the boundary in the

domain 	a�� b�� � 	a�� b��

q �
R
b�

a�

R
b�

a�
f�x�� x��dx�dx�

is computed for the given meshwidth ��m as q � A�a�� b�� a�� b��m� where the

function A is de�ned recursively using the auxiliary functions N and HB as follows

A�a�� b�� a�� b��m� � if m � � then � else A�a�� a��b�
�

� a�� b��m � ���

A�a��b�
�

� b�� a�� b��m � �� �N�a�� b�� a�� b��m�

N�a�� b�� a�� b��m� � if m � � then � else N�a�� b�� a�� a��b�
�

�m� ���

N�a�� b�� a��b�
�

� b��m� ��� �HB�a�� b�� a�� b��

HB�a�� b�� a�� b�� � Exprff�a�� a��� f�a�� b��� f�b�� a��� f�b�� b���

f�a��b�
�

� a��� f�a��b�
�

� b��� f�a�� a��b�
�

�� f�b�� a��b�
�

��

f�a��b�
�

� a��b�
�

�� a�� b�� a�� b�g

�����������������������
����������������������

���

For simplicity we use the informal notation Expr re�ecting just the values it depends

on� rather than the precise expression for the function HB�

For speci�cations similar to ��� a strict computational semantics based on �xed�

point theory can be constructed as in 	PZ
��� This semantics can be used for proving

correctness of an implementation with respect to the corresponding speci�cation�

� Abstract program development

In this section we describe the construction of an abstract program from the design

speci�cation ���� An abstract program in the AL language consists of a number of

agent declarations and a system of equations describing their interconnections�

��� Straightforward implementation

The �rst variant of an abstract implementation corresponds quite directly to classical

data��ow programs 	Den
��� The corresponding data��ow graph �we will call it a

net in the sequel� is presented in �gure ��

�



�

�

�

�

�

�

�

������ �

HHHHHj

� � �

�

� �

Q
Q
QQs

�
�

���
�

�
���

Q
Q
QQs

��

�

��

HHHHHj

������

u�u�

HBN

y

x

H�H�

N

Q�

a

x

y

q

G�

t�t�

S�

A

t�

u�u�u�

NA

G�G�

A

IF IF

N

u�

t�

S�

t�t�

Figure � Data��ow net for the speci�cation

This net is derived straightforwardly an agent is introduced for every operation

or function call in the original speci�cation�

We use three agents implementing the functions A� N and HB� these agents are

also denoted by A� N and HB� Moreover the following auxiliary agents are used

IF � implements a conditional expression�

S� � sums up three real values�

G�� G�� G� � compute arguments for the recursive call of A�

H�� H� � compute arguments for the recursive call of N�

We consider S� and HB as elementary agents� although it would be possible to

represent them as combinations of simpler agents�

A data��ow net can directly be represented by a corresponding AL�program� All

variables and channels in a program belong to some type� We will use the basic types

int and real� For handling tuples of values we also de�ne a new type using standard

techniques of abstract data types� Type r�i de�nes a tuple of four real values and

one integer value� We de�ne the operation 	 � � � � � of tuple construction and the

operation �i that gives the i�th element of a tuple�

In our case we have only one�element streams �this element may be a tuple�� This

�



allows us to simplify the AL syntax in comparison with the general case making no

di�erence between streams and stream elements�

The AL�program derived from the speci�cation ��� reads as follows

program Q� � chan r�i a � chan real q 

agent A � chan r�i x � chan real y 

y � IF�x� s�� s � S��t�� t�� t���

t� � A�u��� t� � A�u��� t� � N�u���

u� � G��x�� u� � G��x�� u� � G��x��

end�

agent N � chan r�i x � chan real y

y � IF�x� s�� s � S��t�� t�� t���

t� � N�u��� t� � N�u��� t� � HB�x��

u� � H��x�� u� � H��x��

end�

agent HB � chan r�i x � chan real y

y � Exprff�x���x���� f�x���x���� f�x���x���� f�x���x���� f��x���x������x����

f��x���x������x���� f�x����x���x������� f�x����x���x�������

f��x���x�������x���x������� x��� x��� x��� x��g�

end�

agent S� � chan real x� y� z � chan real w w � x�y�z� end�

agent G� � chan r�i x � chan r�i y y � 	x����x���x������x���x���x������ end�

agent G� � chan r�i x � chan r�i y y � 	�x���x������ x��� x��� x��� x������ end�

agent G� � chan r�i x � chan r�i y y � 	x��� x��� x��� x��� x������ end�

agent H� � chan r�i x � chan r�i y y � 	x��� x��� x��� �x���x������ x������ end�

agent H� � chan r�i x � chan r�i y y � 	x��� x��� �x���x������ x��� x������ end�

agent IF � chan r�i x� chan real y � chan real z

z � if x�� � � then � else y ��

end�

q � A�a�

end

First the program name and its input and output streams are de�ned� The

program Q� receives a tuple 	a��b��a��b��m� as input and produces a real value q as

output� Then follow the agents declarations and the equational part of the program

�here it consists of just one equation�� In the headers of the program and agents�

streams are declared by means of the keyword chan� The agents have zero or more

named input parameters and one or more named output parameters� The body of

an agent is built by equations just like the equational part of a complete program�

Every equation has a number of stream identi�ers on the left hand side and an

�



expression of adequate arity and type on the right hand side� On the left hand side

an output stream occurs exactly once while input streams may occur only on the

right hand side� Streams that are neither inputs nor outputs are called internal �e�g�

t� is an internal stream�� We again use the abbreviation Expr in the agent HB for

simplicity�

An agent may be called in its own body �see agents A and N�� This corresponds

to the so�called recursion in place which means that agents can be unfolded thereby

leading to a number of di�erent instantiations of the same agent working in parallel�

Each A� or N�instantiation in Q� can begin its work independently of the outputs of

other instances� Therefore the generation of new instantiations is restricted only by

the time used for preparing their input streams in the agents G�� G�� G�� H�� H��

Q
Q
Q
QQs

�
�

�
���

Q
Q
Q
QQs

�
�

�
�

���
j

� � � � � � � � � � � � � � � � � � � � � �
�

���������

��������
�

����������������������

�
�
���

PPPPPPPPPPPPPq�

�������������	

J
J
JJ�

�
�
���

J
J
JJ�

� �

�
�
���

J
J
JJ�









 C
C
C
CC

C
C
C
CC

















 C
C
C
CC

C
C
C
CC

















 C
C
C
CC

C
C
C
CC

















 C
C
C
CC

C
C
C
CC

















 C
C
C
CC

C
C
C
CC







CRCL

RRRLLRLL

y

y	y� y�y�

xA

N N

N

N N

N A

A

A A

A

AN

NN

Figure � A fragment of the recursion tree

Consider the tree of recursive calls for the program Q� where any node corre�

sponds to one instantiation of agents A or N �we call them A� and N�instantiations�

and an edge from one node to another means that the latter instantiation is called

by the �rst one� Nodes are labeled by the names of corresponding instantiations and

are called A� or N�nodes� A fragment of this tree is illustrated in �gure � by solid

lines� Subtrees are depicted as triangles� The meaning of dotted lines and the names

of subtrees will be explained in the sequel� Assume that the root of the fragment �

the node x � corresponds to the instantiation A�a�b�c�d�i� and thus has the recursion

level i �the root of the whole tree has level m and all the leaves have level ���

The process of generating new agent instantiations in the program Q� �nishes

when the current value of the recursion level decreases to zero� Each agent begins






to work as soon as the necessary input values are computed �by other agents� and

received via its input streams� E�g� agent IF can start to work without a value of its

second input provided the �fth component of the �rst input is equal to zero� In this

case it produces zero as output� Instantiations in the program Q� �nish their work

in an order opposite to the order of their generation� because every instantiation

depends on the output of the instantiation called from it�

In the sequel we present some facts which are supposed to be true but are not

proved formally� We call them claims�

Claim �� The program Q� implements the speci�cation ����

The proof should be based on the formal semantics for speci�cations and AL�

programs and on the de�nition of the implementation relation �see Section ���

��� Optimization� avoiding repetitive computations

An abstract program that is directly derived from the design speci�cation may of

course be ine�cient in some respect�

One possible optimization at the level of abstract programs is to eliminate repet�

itive computations� In our example all necessary values of the function f are com�

puted in each instantiation of the agent N � more precisely� in the agent HB within

the corresponding instantiation of N�� In the sequel we analyze which particular val�

ues are computed in more than one instantiation and then develop a new version of

an abstract program in which all the repetitive computations are eliminated�

Consider the computations in the N�nodes shown in �gure �� The node y cor�

responds to the instantiation N�a�b�c�d�i�� which computes HB in the rectangle

	a�b��	c�d�� and the instantiations of the level i�� y�� y�� y�� y� compute HB in

the corresponding halves of this rectangle �see �gure ���

To perform these computations� every instantiation needs values of f in nine

points of the corresponding rectangle� We will use straightforward abbreviations for

these values �z� for the central point of the rectangle� �nw� for the north�west point�

�se� for the south�east and so on� Thus for the instantiation N�a�b�c�d�i�� � � i � m

we have nw � f�a�d�� n � f��a�b����d�� ne � f�b�d�� e � f�b��c�d����� se �

f�b�c�� s � f��a�b����c�� sw � f�a�c�� w � f�a��c�d����� z � f��a�b�����c�d�����

These abbreviations will be used together with the name of the corresponding node

in the recursion tree� e�g� nw�x� denotes the north�west point for node x� 	nw�ne��y�

denotes the tuple of north�west and north�east values for node y� etc�

From �gure � we can see that the instantiations of the levels i and i�� use some

common values� More presicely� this is expressed in the following proposition where

si�w denotes the i�th son of the node w�

�



�����������

��������

�

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��
��
��
��
��
�

��
��
��
��
��
�

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��
��
��
��
��
�

��
��
��
��
��
�

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
b�c�d�i��


y�� N�a�b�c��c�d
��i��


y�� N�a�b��c�d
��d�i��


y� N�a�b�c�d�i

��c�d�i��


y	� N��a�b
��y�� N�a��a�b


d

c

ba

�

n

� � �

�

��

��

nw ne

w

sw s se

ez

Figure � Computation of N

Proposition �� For every A�node x of non�zero level the following N�nodes 

y�s��x� y��s��y� y��s��y� y��s��s��x� y��s��s��x have the property

	nw�n�ne�se�s�sw��y�� � 	w�z�e�se�s�sw��y�� 	nw�n�ne�se�s�sw��y�� � 	nw�n�ne�e�z�w��y��

	nw�ne�e�se�sw�w��y�� � 	nw�n�z�s�sw�w��y�� 	nw�ne�e�se�sw�w��y�� � 	n�ne�e�se�s�z��y��

The nodes y� y�� y�� y�� y� can be seen in �gure �� In contrast to the claims� the

proofs of propositions are known to the author but are omitted here for brevity�

We will distinguish two classes of N�instantiations those called from A �N��

instantiations� and those called from N �N��instantiations�� The notion �N�instantia

tion� is used for instantiations from both classes� The N�� and N��nodes in the

recursion tree are treated analogously�

Proposition �� For every N��node w of non�zero level holds

	nw�n�ne�se�s�sw��s��w� � 	w�z�e�se�s�sw��w��

	nw�n�ne�se�s�sw��s��w� � 	nw�n�ne�e�z�w��w��

It follows from the propositions � and � that every N�instantiation except that of

the level m� uses � values which are already computed in the N�instantiations of the

previous levels� Therefore we can avoid repetitive computations by means of addi�

tional communications between N�instantiations �the corresponding communication

lines between levels i and i� � are shown in �gure � by dotted lines��

��



Consider now another source of repetitive computations in the program Q�� We

will use the following functions for an arbitrary node w of the recursion tree tree�w �

subtree with w as a root� tree��w � the same subtree without leaves� The left and the

right subtrees of the binary tree T are denoted left�T and right�T� correspondingly�

For the A�node x in �gure � consider the following subtrees of the recursion tree

C�x� � tree��s��x� L�x� � tree�s��s��x� R�x� � tree�s��s��x

and their subtrees

CL�x� � left�C�x�� CR�x� � right�C�x�� LL�x� � left�L�x��

LR�x� � right�L�x�� RL�x� � left�R�x�� RR�x� � right�R�x�

�some of these subtrees can be seen in �gure ��� Here C is used as an abbreviation

for �center� � L for �left� and R for �right��

Proposition �� For every A�node x of the level more than �� the trees CL�x��

CR�x�� LL�x�� LR�x�� RL�x�� RR�x� are isomorphic to each other and for any col�

lection cl� cr� ll� lr� rl� rr of the corresponding isomorphic nodes from these trees� the

following property holds

	w�e��ll� � 	w�z��cl�� 	w�e��rl� � 	z�e��cl�� 	w�e��lr� � 	w�z��cr�� 	w�e��rr� � 	z�e��cr��

All the nodes in the subtrees from proposition � correspond to N��instantiati�

ons� Therefore� all N��nodes except those contained in the subtree tree�s��r �r is the

root of the whole recursion tree�� use � values� namely w and e which are already

computed in the N��instantiations of the previous levels� These values would not be

computed repetitively if we introduce some additional communications�

q

� � � � � � � � � � � � � � � � � � � � � � � �q

� � � � � � � � � � � � � � � � � � � � � � � � q

� � � � � � � � � � � � � � � � � � � � � � � �	

������������������������	

������������������������ q

� � � � � � � � � � � � � � � � � � � � � � � �

q

� � � � � � � � � � � � � � � � � � � � � � � �

q

� � � � � � � � � � � � � � � � � � � � � � � �

q

� � � � � � � � � � � � � � � � � � � � � � � �	

������������������������

	

������������������������	

������������������������

	

������������������������

	

������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������



R

A
A
AAU

�
�
���

A
A
AAU

�
�
���

�
�

��

�
�

��

�
�
���

A
A
AAU

�
�
���

A
A
AAU



R

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�
�

��

�
�
���

A
A
AAU

�
�
���

A
A
AAU



R

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

RLCLLL

N�N� N�

N�

N�

N�

N�

N�

N�

N�

N�

N�N� N�

N�

N�

N�

N�

N�N� N�

Figure � Communications between N��instances

In �gure � the necessary communications between N��instantiations in the sub�

trees CL� LL� RL of the recursion tree are shown by dotted lines�

��



The method of program optimization follows from propositions � � �� Correspond�

ing considerations are presented in appendix as they are quite space consuming� We

present here only the data��ow net for the optimized program Q� �see �gure ���

�

� �

J
J
J�

�

�

�
�
� � �

������ ����

HHHHHHj

�������

B
B
BN

�
�
��

�
�
��

�

��

�
�
��

�
�
�� �



R��

�
�

���

Z
Z
ZZ�

�

�

�

�

� �

��

�� �

�
PPPPPq

����� � �

�����

� �

�

����

�

�
�
�� ���

�� �

u�

p�

x�x�x�

u�

d�x�

N�HB�N�

H�R�H�

IF� IF�

S�TS�R�

HB�
N�N�

H�H�

tuu

t�u�t�u�
t�

p�p�

x�
d�d�

x�x�

p�

p�

t� t� t�
v�v�

uu� pp�t

yup�p�yu�u�u�u�

xdppd�xd�

u�

p�

t

t�t�t�

p

y

d�d�x

IF

S�

AN�A

G�G�G�

N�N�A
�� ��

�
�

Figure � The program Q�

��� Adaptive algorithm

We make here some comments about an adaptive version of the integration algorithm�

The speci�cation for the adaptive case reads as follows

A�a�� b�� a�� b�� �� � if HB�a�� b�� a�� b�� � � then N�a�� b�� a�� b�� ��

else A�a�� a��b�
�

� a�� b��m � ���

A�a��b�
�

� b�� a�� b��m � �� �N�a�� b�� a�� b��m�

N�a�� b�� a�� b�� �� � if HB�a�� b�� a�� b�� � � then HB�a�� b�� a�� b��

else N�a�� b�� a�� a��b�
�

� ���

N�a�� b�� a��b�
�

� b�� �� �HB�a�� b�� a�� b��

HB�a�� b�� a�� b�� � Exprff�a�� a��� f�a�� b��� f�b�� a��� f�b�� b���

f�a��b�
�

� a��� f�a��b�
�

� b��� f�a�� a��b�
�

�� f�b�� a��b�
�

��

f�a��b�
�

� a��b�
�

�� a�� b�� a�� b�g

������������������������������
�����������������������������

���

��



Here � denotes the required accuracy of the solution� The programs Q� and Q�

can be easily transformed into adaptive versions� However� the degree of parallelism

in Q� will be reduced new A�agents can be called only after evaluating the corre�

sponding value of the HB function� The program Q� can be also made adaptive as

in 	Zen��� but only with the assumption that all necessary boundary values of the

function f for the given �� are computed beforehand�

� E�ciency evaluation

In this section we advocate the use of special tools for predicting the e�ciency of

abstract programs and outline one possible simulation method for our case study�

Having two functionally equivalent versions of an abstract implementation we

would like to be able to compare their e�ciency� For our example we are interested

particularly in the following� Agents in the program Q� perform less computations

than in Q�� but more communications and data dependencies are involved� Thus

the number of agents working in parallel in Q� can decrease� We should analyse

therefore which factor prevails in a�ecting the e�ciency�

The e�ciency evaluation at the applicative level is also very important because

of the optimization problem� For applicative languages� especially for those intended

as AL for parallel implementation� optimization is a necessity and the potential gain

can be by an order of magnitude�

The straightforward way to evaluate program e�ciency is to execute the program

on the target machine� In this case however the result is substantially determined

by the features of the target machine and by the peculiarities of the implementation�

One has to take into account costs for computation and communication� intercon�

nection topology� OS characteristics and so on� Moreover� the experimentation with

large parallel systems is often quite a complex and an expensive job�

We therefore advocate the use of special simulation tools on a conventional com�

puter� We raise the following claims for these tools� Firstly� they must be �exible

enough to allow program simulation in various multiprocessor con�gurations� Sec�

ondly� simulated parallel programs must be relatively simple� otherwise it would

require too much time to investigate their e�ciency on a serial computer�

We are able to satisfy these requirements using the following observations

� at the stage of abstract implementation we are mostly not interested in receiv�

ing the exact numerical result produced by the program but in obtaining infor�

mation about its so�called control behaviour parallel processes interleaving�

communications� waiting times etc�� therefore� we can neglect the �computa�

tional� part of the program�

� numerical programs we are interested in have the feature that their control be�

��



haviour usually depends on a very small number of parameters� In particular�

for our example the number of agents working in parallel depends on the pa�

rameter m and is independent of a�� b�� a�� b� and the function f � This allows

to simplify the simulation�

A simulation method can be described brie�y as follows� An AL�program which

is to be simulated is transformed into a special simpli�ed version called timed�control

model� This model re�ects only those aspects of the original program that a�ect its

control behaviour� The corresponding objects and streams �as m in Q�� are called

control data� and for them simulation is identical to the real execution their values

are computed and transmitted through channels� For all other objects and streams

we simulate only timing and synchronization�

An elementary time unit is arbitrarily chosen and all time values are expressed

based on this unit� We assign an �execution time value� to every agent containing

no calls of other agents or recursive calls� e�g� among all elementary agents in Q�

the most time�consuming one is surely HB� �Time value� for a channel re�ects the

time required for transmitting one stream element through this channel� All time

values can be expressed using parameters� choosing appropriate parameters values

we can tune the model towards the target machine with particular characteristics�

As a result of simulation we obtain a timed history of the program execution

including communications between agents� waitings etc�

The simulation method described is very simple and can give only a preliminary

idea and information about the control behaviour of an abstract program� These

results however can be of great importance at the initial stages of parallel program

development�

� Conclusion and future work

In the paper we have shown how a systematic methodology can be used for parallel

program development in the particular problem domain of sparse grid algorithms�

This small case study induced us to take into consideration very di�erent aspects

of parallel computing formal speci�cation and veri�cation� design methodology�

e�ciency evaluation and simulation� numerical methods� The research carried out

was useful for understanding the advantages and weak points of the approach�

We see the novel feature of our development approach in using an abstract im�

plementation level that allows us to achieve the following

� the design speci�cation is formulated at a level of abstraction which is very

close to mathematical description� speci�cation development thus can be left

to the expert user�

��



� the development and transformation of the abstract implementation can be

formally veri�ed ��provably correct design���

� the e�ciency of implementation decisions can be evaluated at the level of ab�

stract programs by means of simulation�

� the abstract implementation is architecture�independent and can be mapped

onto various parallel architectures�

These bene�ts are surely not easily gained� In the future we are going to develop

the approach described here in the following directions we will

� derive simpli�ed veri�cation and transformation techniques for abstract pro�

grams using problem domain knowledge� e�g� this techniques should make the

proofs for the claims � and � easier�

� experiment with real multiprocessors �e�g�� Hypercube�architecture� in order to

investigate various opportunities of parallel implementation of AL�constructs�

� implement the described simulation method on a conventional computer�

One of the main problems concerning implementation of AL�programs is how

to make the process grain size �execution time between communication operations�

large enough to permit e�cient use of a machine that has comparatively high com�

munication costs �e�g� Hypercube�� We can not simply create a process for each

potentially parallel agent this could often lead to programs whose execution is

slower than the sequential one� Grain size of a process can be increased by merging

agents that interact only with each other� Quite a simple solution exists for our

example algorithm all newly created agents instantiations �processes� are mapped

onto free processors as long as those are available� then the whole �tree� of processes�

recursively created from the given one� remains on the same processor working in a

multiprogramming mode�

� Acknowledgements

The author is very grateful to the Alexander von Humboldt Foundation whose gen�

erous �nancial and organizational support made this project a reality�

I should stress the importance for this work of the experience gained within the

Kiev macroconveyor project under the guidance of Prof� Yulia V� Kapitonova and

Prof� Alexander A� Letichevsky�

I am very much obliged to my academic host in Germany � Prof� Manfred Broy

for his kind encouragements� I am indebted to Frank Dederichs� Max Fuchs and

��



Dr� Ketil Stoelen for helpful discussions on this paper� The area of sparse grid

algorithms was brought to my attention by Prof� Christoph Zenger and was several

times discussed with Thomas Bonk� Many thanks are due to Dr� Thomas Bemmerl

for his help on the Hypercube software�

� Appendix

This part of the paper includes the following three sections

�� implementation of additional communications which are necessary for avoiding

repetitive computations�

�� text of the optimized program Q��

�� simpli�ed version of the optimized program that corresponds to the consider�

ations in 	Zen����

��� Additional Communications

To implement the communications described in section ��� we will use one�element

streams of the type r�� We assume that every N�instantiation has an additional input

stream p� moreover� every N��instantiation has four output streams p�� p�� p�� p� and

every N��instantiation has two output streams p�� p��

Output streams for every N�instantiation y are de�ned as follows

p��y� � 	nw� n� z� s� sw� w��y�� p��y� � 	n� ne� e� se� s� z��y��

p��y� � 	nw� n� ne� e� z� w��y�� p��y� � 	w� z� e� se� s� sw��y��

The value of the input stream for the given N�node is de�ned by the output

stream of the node from the previous level as follows

�� for every A�node x of non�zero level

p�s��s��x� � p��s��x�� p�s��s��x� � p��s��x��

�� for every N�node y of non�zero level p�s��y� � p��y�� p�s��y� � p��y��

�� if y is the N�node of the level m then p�y� � ��

Proposition �� For every N��node y of a level less than m holds

	nw� ne� e� se� sw� w��y� � p�y��

and for every N��node y holds

	nw� n� ne� se� s� sw��y� � p�y��

The proof follows directly from the propositions � and � and the de�nition of

input and output streams�

Proposition � makes it possible that in every N�instantiation �except one of the

level m� the corresponding � values may be received from the input stream and thus

are not computed repetitively�

��



To implement necessary communications for managing the second source of repet�

itive computations �see proposition � and �gure �� we use streams organized as binary

trees of tuples� The corresponding abstract data type tree��	 �� is a type of tuples in

the nodes� is assumed to allow the following operations head�t � gives the root tuple

of the tree t� left�t and right�t give corresponding subtrees of t� We will distinguish

two kinds of streams input and output�

Every N��node y has four output streams U��y�� U��y�� U��y�� U��y�� They are

built as trees isomorphic to LL�x�� LR�x�� RL�x�� RR�x� correspondingly and they

are therefore isomorphic also to CL�x�� CR�x� where x � fa�y �father of y�� Elements

of these streams are de�ned as follows

u� � 	w�z��cl�� u� � 	w�z��cr�� u� � 	z�e��cl�� u� � 	z�e��cr��

where �u�� u�� u�� u�� cl� cr� is an arbitrary collection of isomorphic nodes from U�� U��

U�� U�� CL�CR correspondingly�

For any N��node w we de�ne N��node host�w such that w� tree�host�w� From

the de�nition of output streams follows that every N��instantiation w of non�zero

level produces one element for each of two corresponding output streams of host�w�

these elements are 	w�z��w� and 	z�e��w��

On the other hand� with every N��node y of non�zero level we associate two

input streams D��y��D��y� which are de�ned using output streams for the node

of the previous recursion level� For every A�node x of the non�zero level and the

corresponding y�s��x we assume

D��s��s��x� � U��y�� D��s��s��x� � U��y��

D��s��s��x� � U��y�� D��s��s��x� � U��y��

Input streams for N��node of the level m are assumed to be empty�

From proposition � and the de�nitions of streams we derive the following

Proposition �� For every N��node y of the level less than m and any collection

of isomorphic nodes cl� cr� d�� d� from CL�fa�y�� CR�fa�y��D��y��D��y� correspond�

ingly� holds 	w�e��cl� � d�� 	w�e��cr� � d��

From proposition � follows that every N��instance w except those contained in

the subtree tree�s��r can receive the tuple of values 	w�e��w� from the corresponding

input stream of the node host�w and thus must not compute them itself�

��� Optimized implementation

We use the propositions � � � in order to develop a new version of an abstract

implementation for the speci�cation ���� namely the program Q�� in which all repet�

itive computations are eliminated� The names of channels in Q� correspond almost

directly to the names of the streams introduced above�

Some comments� however� seem to be useful for understanding the program Q�

��



� instead of agent N we have two agents N� and N� corresponding to the classes

of instantiations introduced above�

� all streams are sent to the agent N� through its father A�agent� therefore the

agent A in addition to the channel x has also input channels p� d�� d� which

correspond to the streams p�D��D�� for the �rst instantiation of the agent

these streams are empty�

� output channels of the agent N� u�� u�� u�� u�� p�� p� implement the corre�

sponding streams� the streams p�� p� are implemented by inner channels with

the same names�

� we use di�erent variants of the agent HB for the agents N� and N� because

from the proposition � the ��tuples are produced and used only in the N��

instantiations� moreover� N� and N� di�er also in producing ��tuples�

� as the streams u� and u� have a common value z in every pair of corresponding

nodes� they are formed in the agent T as one stream with ��tuples of the form

	w�z�e�� the same is done for u� and u�� these two streams of ��tuples are then

decomposed by the agent R� into four streams with ��tuples�

The program Q� reads as follows �see also �gure ���

program Q� � chan r�i a � chan real q 

agent A � chan r�i x� chan r� p� chan tree�r�	 d��d� � chan real y 

y � IF�x� t�� t � S��t�� t�� t���

t� � A�x�� p�� u�� u��� t� � A�x�� p�� u�� u���

�t�� p�� p�� u�� u�� u�� u�� � N��x�� p� d�� d���

x� � G��x�� x� � G��x�� x� � G��x��

end�

agent N� � chan r�i x� chan r� p� chan tree�r�	 d��d��

chan real y�chan r� p�� p�� chan tree�r�	 u�� u�� u�� u� 

�y� p�� p�� u�� u�� u�� u�� � IF��x� t� pp�� pp�� uu�� uu�� uu�� uu���

t � S��t�� t�� t��� �uu�� uu�� uu�� uu�� � R��v�� v���

�t�� v�� � N��x�� p�� d��� �t�� v�� � N��x�� p�� d���

�t�� pp�� pp�� p�� p�� � HB��x� p�� x� � H��x�� x� � H��x��

end�

agent N� � chan r�i x� chan r� p� chan tree�r�	 d � chan real y� chan tree�r�	 u 

�y� u� � IF��x� t� uu�� t � S��t�� t�� t��� uu � T�u�� u�� u���

�t�� u�� � N��x�� p�� d��� �t�� u�� � N��x�� p�� d���

�t�� p�� p�� u�� � HB��x� p� d���

�d�� d�� d�� � R��d�� x� � H��x�� x� � H��x��

�




end�

agent R� � chan tree�r�	 v�� v� � chan tree�r�	 u�� u�� u�� u� 

head�u� � 	head�v���� head�v����� head�u� � 	head�v���� head�v�����

head�u� � 	head�v���� head�v����� head�u� � 	head�v���� head�v�����

�left�u�� left�u�� left�u�� left�u�� � R��left�v�� left�v���

�right�u�� right�u�� right�u�� right�u�� � R��right�v�� right�v���

end�

agent HB� � chan r�i x� chan r� p � chan real t�chan r� p�� p�� p�� p� 

t � Exprfsw� nw� se� ne� s� n� w� e� z� x��� x��� x��� x��g�

p� � 	nw�n�z�s�sw�w��� p� � 	n�ne�e�se�s�z��

p� � 	nw�n�ne�e�z�w�� p� � 	w�z�e�se�s�sw��

nw � if p�� then f�x���x��� else p���

ne � if p�� then f�x���x��� else p���

e � if p�� then f�x����x���x������ else p���

se � if p�� then f�x���x��� else p���

sw � if p�� then f�x���x��� else p���

w � if p�� then f�x����x���x������ else p���

n � f��x���x������x���� s � f��x���x������x���� z � f��x���x�������x���x�������

end�

agent R� � chan tree�r�	 d � chan tree�r�	 d�� d�� chan r� d� 

d� � left�d� d� � right�d� d� � head�d�

end�

agent HB� � chan r�i x� chan r� p� chan r� d � chan real t� chan r� u� chan r� p�� p� 

t � Exprfsw� nw� se� ne� s� n� w� e� z� x��� x��� x��� x��g�

u � 	w�z�e�� p� � 	nw�n�ne�e�z�w�� p� � 	w�z�e�se�s�sw��

nw � if p�� then f�x���x��� else p���

n � if p�� then f��x���x������x��� else p���

ne � if p�� then f�x���x��� else p���

se � if p�� then f�x���x��� else p���

s � if p�� then f��x���x������x��� else p���

sw � if p�� then f�x���x��� else p���

w � if d�� then f�x����x���x������ else d���

e � if d�� then f�x����x���x������ else d���

z � f��x���x�������x���x�������

end�

agent T � chan tree�r�	 u�� u�� chan r� u� � chan tree�r�	 uu 

left�uu � u�� right�uu � u�� head�uu � u��

end�

agent IF� � chan r�i x� chan real t� chan r� pp�� pp�� chan tree�r�	 uu�� uu�� uu�� uu��

��



chan real y�chan r� p�� p�� chan tree�r�	 u�� u�� u�� u� 

�y� p�� p�� u�� u�� u�� u�� � if x�� � � then ��� �� �� �� �� �� ��

else �t� pp�� pp�� uu�� uu�� uu�� uu�� ��

end�

agent IF� � chan r�i x� chan real t� chan tree�r�	 uu � chan real y� chan tree�r�	 u 

�y� u� � if x�� � � then ��� �� else �t� uu� ��

end�

q � A�a� �� �� ��

end�

The agents G�� G�� G�� H�� H�� S�� IF are omitted in Q� because they are the

same as in the program Q��

Claim �� The program Q� implements the speci�cation ����

��� Simpli�ed variant of the program

In this subsection we develop another variant of the optimized program� It corre�

sponds to the functional program presented in 	Zen��� and is simpli�ed in comparison

with the program Q� due to the following assumptions

� we use the following equivalent representation of the function HB

HB � Expr�fn� s� w�� e�� z� a�� b�� a�� b�g�

where n� s� z� a�� b�� a�� b� denote the same values as above and

w� � w � ����nw � sw�� e� � e � ����ne � se��

The values w� and e� are called hierarchical surpluses in the corresponding

points of the sparse grid�

� the values of the function f at the northern and southern bounds and the

surplus values at the eastern and western bounds of the original rectangle are

assumed to be computed beforehand and are considered as an input of the

program�

Consideration in 	Zen��� uses the method of the rectangle partition which is

orthogonal to our�s but this does not imply principial di�erences� In the program

Q� we try to use variables similar to those in 	Zen����

program Q� � chan r�i a� chan tree�real	 nn� ss� ee� ww � chan real q 

agent A � chan r�i x� chan tree�real	 n� s� e� w � chan real y 

��



�

��

�

�

� ��

�

�� �

��

��

�

�

�� � ���

�

�

�

��

�� �

��

�� �

���

��

���

�

� ��

��

�

� �

� �

im

titm

is
ms

in
mn

izmz

u
x� x�

wzesezen

swxen

y

i

iz iwie

m

x�

x�

swnz

x�

wsxne

AA

N

NN

RRR

H�HB

S�T

IFIF

S�

G� H�G�

G�R

NA

�

��

�� � �

�

� �

Figure � The program Q�

y � IF�x� i�� t � S��iz� ie� iw��

iw � A�x�� nw� sw� m� w�� ie � A�x�� ne� se� e� m��

�m� iz� � N��x�� nz� sz� e� w��

�nz� ne� nw� � R�n�� �sz� se� sw� � R�s��

x� � G��x�� x� � G��x�� x� � G��x��

end�

agent N � chan r�i x� chan real n� s� chan tree�real	 e� w �

chan tree�real	 m� chan real i

�m� i� � IF��x� tm� ti��

ti � S��iz� in� is�� tm � T�mz� mn� ms��

�mn� in� � N�x�� n� u� en� wn�� �ms� is� � N�x�� u� s� es� ws��

�mz� iz� u� � HB�x� n� s� ez� wz�� x� � H��x�� x� � H��x��

�ez� en� es� � R�e�� �wz� wn� ws� � R�w��

end�

agent HB � chan r�i x� chan real n� s� e� w � chan real m� i� u 

��



u � f��x���x������ �x���x������� m � u � �n�s����

i � Expr�fn� s� e� w� u� x��� x��� x��� x��g�

end�

agent R � chan tree�real	 t � real z� chan tree�real	 l�r 

z � head�t� l � left�t� r � right�t�

end�

agent T � chan real z� chan tree�real	 l� r � chan tree�real	 t 

head�t � z� left�t � l� right�t � r�

end�

agent IF� � chan r�i x� chan tree�real	 tm� chan real ti � chan tree�real	 m� chan real i 

�m� i� � if x�� � � then ��� �� else �tm� ti� ��

end�

q � A�a� n� s� e� w�

end�

References

	BDD���a� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and

R�Weber� The design of distributed systems � an introduction to FO�

CUS� Technical Report SFB�Nr� ��������� Techn� Univ� Muenchen�

January �����

	BDD���b� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and

R� Weber� Summary of case studies in FOCUS � a design method for

di stributed systems� SFB�Nr� �������� A� Techn� Univ� Muenchen�

January �����

	Bro
�� M� Broy� Towards a design methodology for distributed systems� In

M� Broy� editor� Constructive Methods in Computer Science� volume ��

of NATO ASI Series F� pages �������� Springer� ��
��

	CCL
�� M� Chen� Y� Choo� and J� Li� Theory and pragmatics of compiling

e�cient parallel code� Technical Report TR����� Yale University� ��
��

	Den
�� J� Dennis� Data �ow computation� In M� Broy� editor� Control Flow and

Data Flow� volume �� of NATO ASI Series F� Computer and System

Sciences� pages �������� Springer� ��
��

	FCO��� J� Feo� D� Cann� and R� Oldehoeft� A report on the Sisal languge project�

Journal of Paral� and Distr� Comp�� ���������� �����

��



	FT
�� I� Foster and S� Taylor� Strand� New concepts in parallel programming�

Prentice�Hall� Englewood Cli�s� N�J�� ��
��

	Gri��� M� Griebel� A parallelizable and vectorizable multi�level algorithm on

sparse grids� Technical report� Techn� Univ� Muenchen� October �����

	KLGG
�� Yu� Kapitonova� A� Letichevsky� S� Gorlatch� and G� Gorlatch� The

use of the equations over data structures for program speci�cation and

synthesis� Cybernetics� ��������� ��
��

	PZ
�� A� Pnueli and R� Zarhi� Realizing an equational speci�cation� Lect�Notes

Comp�Sci�� ���������
� ��
��

	RW
�� Th� Ruppelt and G� Wirtz� Automatic transformation of high�level spec�

i�cations into parallel programs� Parallel Computing� ������
� ��
��

	TSSP
�� J� Tseng� B� Szymanski� Y� Shi� and N� Prywes� Real�time software cycle

with the Model system� IEEE Trans� Software Engin�� ������������

��
��

	WA
�� W� Wadge and E� Ashcroft� Lucid� the data�ow programming language�

Academic Press� ��
��

	Zen��� Chr� Zenger� Sparse grids� Technical Report SFB�Nr� �����
��� A�

Techn� Univ� Muenchen� October �����

	Zen��� Chr� Zenger� Funktionale Programmierung paralleler Algoritmen� Un�

published paper� �����

��


