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Abstract

Focus is a framework for the systematic formal speci�cation and development of

distributed interactive systems and their components� Focus provides models

formalisms and veri�cation calculi for the stepwise speci�cation and development

transformation and veri�cation of such systems� Focus aims at the modular de�

velopment and implementation of distributed interactive systems through several

abstraction levels by stepwise re�nement�



�

Chapter �

Methods for System

Development

A �distributed� system consists of a family of interacting conceptually or spatially

distributed components� A system development method provides a framework for

organizing the stepwise construction of such systems� During the development

process several descriptions are produced that re�ect di�erent abstraction levels�

Only if formal techniques are used these descriptions can be made as precise and

unambiguous as necessary� Moreover formal techniques allow to establish for�

mal relationships between descriptions that belong to di�erent levels� A piece of

software for a distributed system is a formal description in our sense too�

The system development method Focus that is outlined in the following provides	

� formalisms for the representation of distributed systems at di�erent abstrac�

tion levels

� advice at which level which system properties should be �xed

� concepts for the relationship between the di�erent levels

� techniques that support the transition from one level to another�

In general a development method identi�es activities to be carried out as well as

their objectives and their goal�directed organisation� Development activities are

related to the following notions which can be seen as development method �in the

large�	

� analysis

� speci�cation

� motivation and explanation

� documentation

� validation

� transformation

� justi�cation
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� implementation

� veri�cation

� integration�

In addition a methodological framework provides techniques for the development

�in the small� including hints how to analyse specify and verify particular system

properties at particular abstraction levels�

Besides this questions of organisation and management of economics and team�

work of resources and technical devices etc� have to be handled� They are not

treated explicitly in the following� Moreover the step from informal to formal

descriptions is not tackled here�

Before entering into the presentation of Focus let us �rst have a look at some

major concepts underlying our approach�

��� Aspects of Systems and System Models

There is no principal di�erence between the techniques of classical software en�

gineering i�e� techniques for the production of sequential software and the tech�

niques for the production of distributed systems� However certain notions like

safety�liveness assume�commit and system�environment are essential for distri�

buted systems only� Moreover distributed systems tend to be more complex and

more di�cult to develop than sequential software� In the sequential as in the

distributed case a system design is organised as a sequence of increasingly de�

tailed descriptions of the involved system components� The �nal result will be a

constructive description �usually a program� of those components that are to be

implemented�

System models are formal mathematical structures representing particular aspects

of a �real or planned� system while abstracting from others� Thus every system

model de�nes a certain abstraction level� In models for distributed systems often

the following aspects are represented in more or less detail	

� Spatial distribution� a system can be �distributed� in space or conceptually

in the sense that it is composed of subsystems called components� Actions

may be associated with these components� States may be decomposed into

substates that belong to these components�

� Causality� interaction� synchronization� the execution of actions may depend

on the previous execution of other actions �or on the system�s state�� This is

called a causal dependency� Causal dependencies between actions that belong

to di�erent components are called interactions� Interaction �for instance by

message passing or by accessing shared storage� is the only way by which
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components can synchronize and coordinate their work while accomplishing

a common task�

� Concurrency� typically some actions may be carried out independently and

simultaneously� Then they are called concurrent � When system runs are

represented by ��nite or in�nite� action sequences concurrency is modelled

implicitly by interleaving� In such a sequence concurrent actions may occur

in any order� This way concurrency is reduced to nondeterminism� Alter�

natively if the system model allows to express �in a single run� that two

actions may be carried out independently it is said that the model includes

explicit ��true�� concurrency�

� Nondeterminism� in most systems choices occur� A choice is called nonde�

terministic if it cannot be in�uenced from outside or if it depends on factors

not explicitly represented in the system model�

In principle distributed systems interact by asynchronous communication syn�

chronous communication �for instance by shared actions� or via shared states�

Roughly speaking two complementary types of system models can be distinguished	

� action�oriented models �with or without shared actions�

� state�oriented models�

In action�oriented models a system is described by specifying the set of actions

it might exhibit and the causal relationships between these actions within system

runs �histories traces�� In a state�oriented model a system is described by spec�

ifying its state space and its dynamic behaviour in terms of these states� The

two views indeed are dual	 an action can be viewed as a relation on states and

distinguished relations on states can be viewed as actions� Of course there are

models combining both views�

The overall behaviour of a system often depends on the behaviour of its environ�

ment� Basically there are two ways to capture such dependencies� On the one

hand one can explicitly include the environment into the system representation

thus considering it a particular system component� This leads to a closed system

view  where everything relevant is included� A closed system forms an isolated

complex that executes actions and assumes states without being in�uenced what�

soever� On the other hand one can refrain from including the environment into the

system description explicitly rather admitting the system to be in�uenced from

outside� This leads to an open system view � An open system reacts on environ�

ment stimuli and these reactions in turn usually have impact on the environments

behaviour� In this sense every �sub�component of a system is an open system

again�

A description how an open system is in�uenced by its environment is called an in�

terface speci�cation� Particular actions can now be attributed to the environment

thus called environment actions while others are controlled by the system thus
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called system actions� These two action sets are described in the syntactic part

of an interface speci�cation� Accordingly the semantic part is given by specifying

causal relationships between system and environment actions in system runs� In

a state�oriented view we may similarly specify which parts of the state may be

changed by the environment and which parts may be changed by the system�

There are several possibilities to derive an open system view systematically from

a closed system view and vice versa� The step from a closed to an open view is

essential since it is the decisive step towards a modular description� Interface spec�

i�cations of open systems �their semantic part to be precise� are sometimes written

according to the assume�commit style� This style re�ects the fact that open sys�

tems are usually not supposed to run in arbitrary environments but only in those

which ful�l certain assumptions� Moreover one often distinguishes between safety

and liveness properties� Technically a closed system can be considered a special

case of an open system namely an open system with an �empty� environment�

��� System Models and Speci�cation in Focus

In the following our development method called Focus is outlined� Focus is

a �mainly� action�oriented model that admits the description of open as well as

the description of closed systems� Although it is geared towards systems that

communicate by asynchronous message passing in principle shared state programs

can also be modelled� At eh level of system runs concurrency is represented by

interleaving� The basic notion of Focus are �nite and in�nite sequences �called

streams� of elements from given carrier sets� One can distinguish between two

di�erent types of streams	 streams of actions and streams of messages� Since in

our framework actions and messages are closely related we will be very liberal in

our terminology and notation�

Streams of actions which we call traces are mainly used to model the behaviour

of closed systems� Sets of traces are described by predicates or state transition

systems� Predicates describe trace sets in a straightforward way� State transition

systems are more implicit descriptions of trace sets�

Streams of messages are used to represent communication histories of channels�

We distinguish between input and output channels� These channels are the com�

munication links between system components�

The behaviour of a system component �as well as the behaviour of an open system

that is connected to its environment by channels� is described in Focus mainly

by logical formulas specifying stream processing functions� A stream processing

function maps tuples of input streams on tuples of output streams� In the liter�

ature one can �nd many di�erent names for the entities we have called system
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components above e�g� process task module� In the sequel besides component

we sometimes use the term agent �

In the beginning of a development process one is not concerned with internal details

of a system component but rather with its interface� In an interface speci�cation

all actions are considered which are relevant for the interaction between the com�

ponent and its environment� In addition the causal relationship between system

and environment actions are speci�ed �see section �����

In the implementation phases algorithmic languages are used to describe system

components� This way components are represented by pieces of program code�

The semantics of these code fragments is again given by sets of stream processing

functions� This way we obtain a coherent formal framework basically using the

same notions�

All in all there are several ways to specify system components in Focus	

� by �sets of� traces of input and output actions

� by state transition systems

� by �sets of� stream processing functions

� by executable descriptions in terms of programming languages�

All these formalisms re�ect di�erent abstraction levels and are thus used in di�er�

ent phases during the development process� It is part of the methodological frame�

work to provide means to go from a trace oriented speci�cation to a functional

speci�cation and �nally to an executable descriptions in terms of an adequate

algorithmic language�

��� Phases of Development in Focus

System development in Focus is organized into a number of phases namely �see

also �gure ����	

� requirements speci�cation

� design speci�cation

� abstract implementation

� concrete implementation�

In a formal requirements speci�cation the properties are formalized that are rele�

vant for the envisaged system from the customers point of view� It is decisive to

formulate and validate a requirements speci�cation carefully since it is the �rst

formal description of the customer�s wishes and the starting point of the entire

development process� Since it is derived from informal descriptions there is no

way of formally verifying its correctness� Instead some evidence has to be given

for instance by a number of case demonstrations that the formal speci�cation
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design steps

determination
interface

by	
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technique 	 procedural programming

chapter ���abstract implementation � AL
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transition to agents

transition to constructive programs
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informal description

transformation

transformation

and re�nement

Figure ���	 Overview of Focus
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actually captures the informal requirements� Technically within a requirements

speci�cation �rst all relevant data structures and are described by algebraic spec�

i�cations �for instance using the algebraic speci�cation language Spectrum as

described in �BFG������ One may aim at a closed or an open system description�

A closed view might be appropriate if the interface between the envisaged system

and its environment is not clear yet� In this case determining this interface is

an important task of requirements engineering� after that an open system view is

�xed�

In Focus a requirements speci�cation of a closed system is given by a trace speci�

�cation� Such a speci�cation formally describes a set of actions and a set of traces�

If the interface is clear right from the beginning an open system speci�cation will

be the starting point thus skipping the closed system description� A requirements

speci�cation of an open system may be given again either by a trace speci�cation

or by a functional speci�cation in terms of stream processing functions�

Having �nished the requirements speci�cation in a design speci�cation the step�

wise re�nement of those system components which are to be implemented is the

point of interest� This includes the introduction of input and output channels

often a transition from non�constructive to constructive speci�cations and usu�

ally a further decomposition of components into a number of subcomponents� In

Focus a design speci�cation is given by a network of system components �agents�

connected by channels� The �rst step in the design speci�cation is to determine

the exact number and use of communication channels for each of these compo�

nents� Then every single component is modelled by a set of stream processing

functions mapping the communication histories �i�e� streams� of the input chan�

nels on the communication histories of the output channels� A set of functions

is used instead of a single function to model nondeterministic components and to

enable underspeci�cation leaving a spectrum of possibilities for the subsequent

implementation� Formally a component speci�cation is a predicate on stream

processing functions�The design speci�cation has to be veri�ed with respect to

the preceding requirements speci�cation� In particular it has to be proved that

the behaviour generated by the interaction of all components meets the overall

requirements speci�ed on the previous level�

Descriptions of system components that are formalized in the design phase do not

have to be constructive� However during the development process new versions

of these speci�cations are derived which are closer to an executable program� For

example introducing a notion of state often leads to constructive forms� However

for arbitrary design speci�cations there is no way to generate the system behaviour

algorithmically from these descriptions� Thus a further development steps are

necessary�

These steps to an abstract implementation� In Focus a particular applicative

language called AL is used to represent abstract programs� It is tailored to �t
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in the general framework of streams and stream processing functions� In general

abstract programs are not tuned towards a speci�c machine� They leave room for

a lot of optimizations and e�ciency increasing transformations� These aspects are

treated when a concrete program is derived from an abstract one�

In a concrete implementation basically more e�cient representations of the data

structures are chosen and more e�cient algorithms are given� Data structures

and algorithms are formulated in a way tuned towards particular machines or

programming languages� One way to obtain more e�cient programs �at least for

many existing machines� consists in replacing applicative descriptions by proce�

dural ones� Therefore Focus o�ers a procedural language called PL for concrete

programs� Like AL it is carefully embedded in the formal framework� The step

from abstract to concrete descriptions can be done using program transformation

techniques or by freely constructing the procedural version and then proving its

correctness with respect to the applicative one�

Up to now we only mentioned the standard way of system development in Focus�

However depending on the particular application certain deviations may be ap�

propriate	 if the overall structure of the planned system is already given and the

interfaces of the components to be implemented are given in an explicit form the

design speci�cation is the appropriate starting level� The standard exit point of

our methodology is at the concrete implementation level� This is easily motivated

by the need for e�cient programs� Nevertheless an implementation in a certain

concrete language di�erent from PL can be required in the informal description�

In this case the abstract implementation level is a suitable exit point�

From our point of view it does not make sense to exit already before an abstract

implementation is gained when aiming at program development� Furthermore we

do suggest not to start the speci�cation process on levels lower than the design

speci�cation level to keep the �rst formalisation abstract and comprehensible�

All development steps can in general not be done in a purely automatic way�

Accordingly the step from a higher to a lower level cannot be carried out just

by a machine� However if done in an appropriate way all steps can be formally

justi�ed which means that they can be veri�ed with respect to the previous levels�

Of course it is advisable to do both development and veri�cation hand in hand

since design and veri�cation steps in general are closely related�

This brings us to the concepts of re�nement and veri�cation� Re�nement is the

basic notion of system development in Focus� In every re�nement step a given

description of a system or of one of its components is replaced by a re�ned de�

scription� One can distinguish several concepts of re�nement� In its simplest form

we have to show that the formulas describing the properties of the re�ned system

representation imply the properties of the original one�

All re�nement steps in Focus can in principle be done using classical predicate
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logic� However it is often appropriate to apply more schematic rules� The Focus

development method gives guidance to re�nement steps�

Having obtained two di�erent system descriptions where one is claimed to re�ne

the other we have to verify this claim� This means we have to show that the

re�ned version has all the properties required by the previous version� How such a

veri�cation is carried out strongly depends on the way in which the requirements

are described� For di�erent description styles di�erent veri�cation techniques have

to be used� Focus o�ers a number of speci�c proof principles�

��� How to read this Report

This report contains a description of the design method Focus� We included

some small examples to illustrate key techniques� In particular a simple message

transmission system appears as a running example� Several case studies have

been made with Focus� �BDD���� contains a summary� We just mention two of

them	 the speci�cation of a lift controller in �Bro��a� and the development of an

implementation of the so�called Stenning�protocol in �DW����

The structure of Focus is also mirrored in the organization of this report	 trace

speci�cations �used for requirements speci�cations� are treated in chapter � func�

tional speci�cations �used for design speci�cations� are dealt with in chapter �

chapter � is concerned with implementation �both abstract and concrete imple�

mentations�� Chapter � presents conclusions�

To improve the readability of the report we have marked certain paragraphs	 the

labelA indicates essential features of our methodology often recipes for its

use� The paragraphs comprising theoretical aspects which are not necessary for a

�rst understanding are marked with��
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Chapter �

Trace Speci�cation

��� Overview

Trace speci�cations describe the behaviour of distributed systems in a very abstract

way� They are well�suited for formalising requirements�

A A trace speci�cation describes the set of all runs of a distributed system

by sequences of actions �traces��

Actions �sometimes also called events� constitute the key concept of trace speci��

cations� They represent the basic activities in a system like �sending a message�

or �pressing a button�� Actions are thought to be atomic and instantaneous� For

the present we do not care where in a system a particular action occurs which

entity generates it and what its e�ect is�

A trace represents a record of a run �history� of the system� This is more pictorially

described in �Hoa��� p� ��	

�Imagine there is an observer with a notebook who watches the process

and writes down the name of each event as it occurs� We can validly

ignore the possibility that two events occur simultaneously� for if they

did the observer would still have to record one of them �rst and then

the other and the order in which he records them would not matter��

As unbounded and in�nite behaviour is a typical phenomenon of distributed sys�

tems both �nite and in�nite traces are considered� Based on a possibly in�nite

set of actions Act  the set of traces i�e� streams of actions is denoted by

Act� � Act� � Act��

where Act� denotes the �nite traces and Act� the in�nite ones�

Trace speci�cations provide action oriented models of distributed systems in con�

trast to state oriented formalisms like for instance temporal logic� However we
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shall present means to support a state�oriented speci�cation style as well for certain

system properties�

We distinguish two di�erent kinds of trace speci�cations� The �rst is called global

speci�cation� It gives a description of a system as an unstructured entity and does

not take any decomposition into components into account� The second is called

component�oriented speci�cation� Here a system is modelled as being composed of

several interacting components� In a component�oriented speci�cation there may

be two kinds of requirements	 global and local requirements� A global requirement

refers to more than one component possibly to the whole system� A local require�

ment applies to just one component� A component is described by its input and

output actions and its behaviour which is represented by a set of traces of input

and output actions� In the preceding chapter we have called this an interface spec�

i�cation� Components communicate via input and output actions asynchronously

with each other� Accordingly a component may issue an output action �send a

message� and continue to work without waiting until the communication partner�s�

is �are� ready to receive the message�

Methodologically we �rst give a global speci�cation which corresponds to a closed

system view and then switch to a component�oriented view which corresponds

to a closed system view� This usually includes some design steps� Starting from a

global speci�cation is considered appropriate by various researchers in the �elds of

formal speci�cation and requirements engineering �e�g� �CM��� �DHR���� because

customers initially often do not state the obligation of each system component but

rather state what the global objectives of the whole system are�

In the course of program development we use traces for the requirements speci��

cation� We proceed as follows	

A The starting point are informal requirements by the customer�

�� We �rst formalize the informal requirements in a global speci�ca�

tion�

�� We then produce a component�oriented speci�cation� It is based

on the global speci�cation but contains additional structuring in�

formation�

�� Design steps are then carried out to gradually localize all global

requirements�

The end point is a local speci�cation of each component which may

then be further developed independently of each other�

In the following we �rst present the basic structure that is underlying all formal

models used in Focus	 streams �section ����� After that we consider the speci�ca�

tion of actions �section ���� then we illustrate the formalisms and methods used

for the global speci�cation �section ���� and the component�oriented speci�cation

�section ����� An extension of the trace formalism for describing time sensitive

systems is sketched �section ����� For a completely formal program development
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besides speci�cation techniques also proof methods are necessary� we present proof

methods based on traces �section ��
��

��� The Basic Structure� Streams

The data type of streams is fundamental in Focus� Streams appear as streams

of actions �shortly traces� in trace speci�cations and streams of messages in func�

tional speci�cations and programs� Given some set of items S �in Focus mainly

actions or messages� the set of streams over S is denoted by S� � it is the union

of the set of �nite and in�nite sequences	 S� � S� � S��

There are several basic operations and relations concerning streams �let s� t � u be

streams and a� b� c be items�	

� h i denotes the empty stream�

� hs�� � � � � sni denotes the stream containing the elements s�� � � � � sn �

� ft�s� yields the �rst element of s if s is not empty otherwise it yields �

��unde�ned���

� rt�s� yields the stream in which the �rst element of s is deleted�

� a 	 s denotes the stream in which a is pre�xed to s� If a is de�ned i�e� a �� �

we have ft�a 	 s� � a and rt�a 	 s� � s�

� s�t denotes the concatenation of s and t � If s is in�nite then s�t just yields

s� We frequently write a�s for a 	 s and a�b for a 	 b 	 h i thus identifying

items with streams of length ��

� s v t denotes that s is a pre�x of t  which is formally expressed by �u 	

s�u � t � The pre�x order is canonically �by pointwise application� extended

to tuples of streams and to functions producing streams as results�

� a in s yields true exactly if a occurs in s�

� �s gives the length of s which may also be 	 ��in�nite���

� a c
s the �lter operation yields the substream of s that consists of a�

items only for instance a c
ha� b� a� ci � ha� ai� As a generalization the

�rst operand may also be a set of items for instance fa� bg c
ha� b� a� ci �

ha� b� ai�

� Our methodology is based on certain mathematical concepts which we brie
y intro�

duce in the following� For a detailed explanation of these concepts confer e�g� LS����

from which the de�nitions below have been taken�
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De�nition ��� �partial order�� A partial order is a pair �D �v� with a setD and a relation

v � D � D such that v is re�exive �i�e� d v d for all d � D�� antisymmetric �i�e� if

d� v d� and d� v d�� then d� � d� for all d�� d� � D� and transitive �i�e� if d� v d� and

d� v d� then d� v d� for all d�� d�� d� � D�� �

De�nition ��� �least upper bound�� Let �D �v� be a partial order and S a �possibly

empty� subset of D � An element u � D is said to be an upper bound of S �in D��

if d v u for all d � S � u is said to be the least upper bound �lub� of S �in D�� if u is the

least element of the set of all upper bounds of S in D � The least upper bound is denoted
F

D S or� shortly�
F
S � provided it exists� �

De�nition ��� �chain�� Let �D �v� be a partial order� A non�empty subset S of D is

called a chain in D if d v d � or d � v d �or both� holds for every two elements d � d � � S �

Said another way� S is a chain if the order relation �v� restricted to S is total� �

De�nition ��	 �complete partial order�� A partial order �D �v� is a complete partial or


der �cpo� if the following two conditions hold�

��� The set D has a least element� This element is denoted by �D or simply by � �read

�bottom���

��� For every chain S in D the least upper bound
F
S exists� �

� Streams with the pre�x relation v constitute a complete partial order with least

element h i�

� Streams may be speci�ed by axiomatic techniques using algebraic speci�cation�

see Bro���� In�nite objects �like in�nite streams� are somewhat unusual in the

framework of algebraic speci�cation� In fact� the notion of a model for an algebraic

speci�cation needs some slight modi�cation to overcome this di�culty� all sorts are

interpreted as complete partial orders�

��� Speci�cation of Actions

A The �rst step in writing a trace speci�cation is to de�ne which actions

occur in the system�

Example ��	 �A simple message transmission system��

Throughout this paper we use the example of a simplemessage transmission system

to illustrate our methods� �For more complex examples we recommend �Bro��b�

and �DW���� see also �BDD���� for a current summary of all Focus case stud�

ies�� The message transmission system consists of a sender and a receiver which

are connected by a bu�er component called �transmitter�� The following picture

illustrates this situation	
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Sender Transmitter Receiver
�

�

send�m

ok
error

�
�

trans�m
fail

req

The sender may send messages to the transmitter� each send�message is acknowl�

edged with either ok or error by the transmitter� If the acknowledgement is ok  the

message is stored in the transmitter otherwise it is discarded� The receiver issues

requests for messages to the transmitter which are answered with the transmission

of a message or fail  if no message is available�

Below we shall have a closer look at the requirements on this communication

system� At the moment we only state which actions may occur in our system�

Given a set M of messages we de�ne the actions of the system as follows	

send actions	 Send � fsend �m j m�M g�

transmit actions	 Trans � ftrans�m j m�M g�

altogether	 Act � Send � Trans � fok � error � fail � reqg�

� In more complex cases we suggest to use algebraic speci�cations to specify action

sets and data sets� such as the set M � �

��� Global Speci�cation

A global trace speci�cation describes the behaviour of a distributed system not

taking any structuring into components into account yet� At this level the system

behaviour is completely de�ned by its set of traces�

Basically we distinguish two di�erent styles of trace speci�cation� The �rst is

called history�oriented � Here we impose restrictions on the complete histories

�runs traces� of the system� The second is called transition�oriented � Here the

behaviour is speci�ed by de�ning how the system evolves in a stepwise manner

starting from some initial state�

A In Focus we may use two di�erent means to specify trace sets	

�� trace logic to support a history�oriented speci�cation style

�� transition systems to support a transition�oriented style�

These means may be combined	 It is possible to describe some system

properties by trace logic and others by transition systems�



���� Global Speci�cation ��

����� Trace Logic

We use the term trace logic for a �many�sorted� predicate logic in which we have a

particular sort for traces �or many trace sorts if we want to distinguish di�erent

kinds of traces see the next section��

A Using trace logic the runs of a distributed system are characterized by

giving a logical formula with a free variable of sort Act� � This is called

a trace predicate� Every trace that satis�es this predicate represents a

run of the system�

Predicate logic o�ers su�cient expressiveness and is a well�understood subject�

A pragmatic advantage is that it is in widespread use �at least in the computer

science engineering and natural sciences community��

There are two di�erent kinds of system properties	 Some of them refer to all �nite

pre�xes of a trace and have an invariant�like character whereas others apply to the

trace as a whole� The �rst are called safety properties� these are properties whose

violation can always be detected after a �nite amount of time i�e� by considering

a su�ciently large but �nite pre�x of a trace� Formally a safety property is a

predicate P that satis�es the following condition

�t � Act� 	 �P�t�  �s � Act� 	 s v t � P�s���

This means that a trace of the system is safe with respect to the property P if and

only if all �nite pre�xes of the trace are safe�

The second kind of properties are called liveness properties� in contrast to safety

properties the violation of liveness properties can only be detected after a complete

possibly in�nite observation i�e� by considering a complete possibly in�nite trace�

Formally a liveness property is a predicate P that satis�es the following condition	

�s � Act� 	 �t � Act� 	 P�s�t��

Thus every �nite partial trace can be extended to become a trace that is correct

with respect to the liveness property P �

Example ��� �The message transmission system described by trace logic��

The allowed traces of our message transmission system are those that ful�l the

predicates S and L de�ned below	

T � ft � Act� j S �t� � L�t�g�

The safety requirements are verbally expressed as follows	

� There do never occur more send acknowledgements �ok  error� than send

actions �send �m��



�� �� Trace Speci�cation

� There do never occur more transmit acknowledgements �trans�m fail� than

transmit requests �req��

� Only those messages are transmitted which were sent before and which were

acknowledged with ok � moreover the messages are transmitted in the same

order as they were sent�

Formally these requirements are captured by the following predicate S 	

S �t� � �t � � Act� 	 t � v t �

�fok � errorg c
t � � �Send c
t � �

��Trans � ffailg� c
t � � �req c
t � �

msg�Trans c
t �� v success�msg�Send c
t ��� fok � errorg c
t ���

where msg and success are de�ned as follows �let w be a stream of send � and

trans�actions x be a stream of messages y be a stream of ok � and error �actions�	

msg�h i� � h i�

msg�send �m 	w� � m 	msg�w��

msg�trans�m 	w� � m 	msg�w��

msg �lters the messages that were sent or transmitted in a trace�

success�x � y� � h i� if x � h i � y � h i�

success�m 	 x � ok 	 y� � m 	 success�x � y��

success�m 	 x � error 	 y� � success�x � y��

Given a message stream x and a stream y of send�acknowledgements success�x � y�

gives the message substream of x consisting of those messages that were acknowl�

edged with ok � These are just those messages which are accepted by the transmit�

ter�

A It is considered one of the advantages of Focus that auxiliary functions

and operations can be introduced whenever needed� We recommend to

introduce a number of auxiliary functions and operations to keep a

speci�cation readable�

The informal liveness requirements read as follows	

� Send acknowledgements are not delayed for an in�nite amount of time�

� Transmit acknowledgements are not delayed for an in�nite amount of time�

� If an item is sent in�nitely often and it is requested in�nitely often then it

is �nally transferred from the sender to the receiver�

These three verbal requirements are captured by the following predicate L	

L�t� � �Send c
t � 	 � �fok � errorg c
t � 	 �

�req c
t � 	 � ��Trans � ffailg� c
t � 	 �

�Send c
t � 	��req c
t � 	 � �Trans c
t � 	�
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Note that in the de�nition of S all �nite approximations t � of t were considered

whereas L is only concerned with the entire trace t � �

The example shows that a trace predicate can be composed from several more

simple predicates each representing a particular requirement� This way an ap�

propriate structuring of the speci�cation can be achieved� This is quite useful

for requirements speci�cations	 a trace speci�cation can easily be extended new

requirements may simply be added obsolete requirements may be deleted without

changing the rest of the speci�cation�

����� Transition Systems

By transition systems �also called automata or state machines� a model of a

distributed system is given in terms of states and state transitions which are caused

by actions� A state comprises a snapshot of the system and state transitions

indicate how the system may evolve from one snapshot to the next by executing

an action�

Formally a transition system is a tuple �Act �State��� Init� with

Act a set of actions

State a set of states

� � State�Act�State� the transition relation

Init � State� the set of initial states�

We also write �
a
� �� for ��� a� ��� � � � Given a transition system its executions

are sequences of states and actions of the form

��
a�� ��

a�� �� � � � �

where �� is an initial state and �i

ai��
�� �i�� holds for all i � The sequence may be

in�nite or �nite in the latter case it ends with a state� Given such an execution

its trace is just a��a�� � � �� The traces described by a transition system consist

of the traces of all executions of the system� Obviously if a��a�� � � � �an���an is

a trace of a transition system so is the trace a��a�� � � � �an��� Thus in Focus

transition systems are used to describe safety properties�

Note that the states used here are global states� In a distributed system states

will be distributed� nevertheless global states are a convenient conceptual tool

in the development of a global trace speci�cation� Aspects of logical or physical

distribution are only considered in the later phases of the development process�

A In Focus also a transition system may be used to describe traces� It

describes all traces that correspond to its executions�
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Transition systems may conveniently be described by a notation in which states

are seen to consist of values of state components ��variables��� Transitions are

given by a logical formula� An example illustrates this technique	

Example ��
 �The transmission system described by a state transition system��

We may specify the safety properties of our message transmission system by a

transition system� �In fact for the sake of simplicity we give a slightly more

restricted version of the safety properties	 acknowledgements for send� and request�

actions must be sent immediately��

Let the state space consist of all mappings

� 	 fbuf � acksg � Msg� � Act��

such that ��buf � Msg� � ��acks � Act��

��buf denotes the bu�er contents in state � ��acks the list of acknowledgements

that are due to be sent in state �� The initial state is speci�ed by the predicate

init �� � ��buf � h i � ��acks � h i�

which expresses that the bu�er is empty initially and so is the list of the acknow�

ledgements to be sent� The transition relation is speci�ed in the following way	

�
send�m
� �� �

�full���buf � � ���buf � ��buf �m � ���acks � ��acks�ok �

full���buf � � ���buf � ��buf � ���acks � ��acks�error �

�
req
� �� �

�empty���buf � � ���buf � rt���buf � � ���acks � ��acks�trans�ft���buf �� �

empty���buf � � ���buf � ��buf � ���acks � ��acks�fail �

�
ft���acks�
� �� �

�empty���acks� � ���buf � ��buf � ���acks � rt���acks� �

empty���acks� � false�

This speci�cation reveals some information about the internal structure of the

transmitter namely that it has an internal bu�er for messages to be stored� The

bu�er may be full which may lead to error�messages if the sender tries to send

messages in this case� This information cannot be derived from the logical speci�

�cation of example ���� �
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��� Component�oriented Speci�cation

����� Motivation

A global speci�cation seen as a requirements speci�cation of a distributed system

imposes requirements on the system as a whole� However in many cases there

is already some structure information available on the requirements level� In our

message transmission example the system was seen to consist of three components�

It was also obvious what actions should be considered input or output to which

component�

An important point is that in a global speci�cation often requirements on the

component to be developed and its environment are stated� A particular goal of

the component�oriented speci�cation is to separate the requirements on the com�

ponent from the assumptions about the environment� This is done by explicitly

stating the responsibility of the environment in terms of a number of assumptions�

A correct implementation of the component is then required to satisfy the com�

mitments whenever the environment satis�es the assumptions� This is called the

assume�commit�style of a component speci�cation �see �LA��� �Pan�����

More generally there may not be just one component and its environment but

an arbitrary number of components� The environment may also be further struc�

tured� The goal of component�oriented speci�cation is to gradually localize global

requirements�

����� Formal Treatment

Let us �rst look at the description of components by traces� A component is

described by its input�output behaviour which is called its interface� The interface

is described by de�ning input and output actions �the set of input actions must

be disjoint from the set of output actions in order to distinguish inputs from

outputs in a trace� and a predicate on traces of input and output actions� These

predicates are again described by trace logic and�or transition systems� Formally

a component is described by a tuple �I �O �C � with I �O � � and

C 	 �I � O�� � ftrue� falseg�

The whole system is composed of a set of components �I��O��C��� � � � � �In�On �Cn�

where Oi � Oj � � for i �� j � The disjointness condition ensures that output

actions can be uniquely assigned to the components� If the speci�cation models a

closed system view �at least� one of these components represents the environment�

Two components are understood to be �directly� connected if an output action of

one component is an input action of the other� The composition determines the
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predicate Sys 	 �I� � � � � � In �O� � � � � �On �� � ftrue� falseg de�ned by

Sys�t�  �i � f�� � � � �ng 	 Ci��Ii �Oi � c
t��

Sys is a speci�cation where all requirements are localized � The �nal component�

oriented speci�cation has to be of this form� On the other hand the initial

component�oriented speci�cation consists of just global requirements� Between

these two extremes there will be mixtures of both	

A A component�oriented speci�cation consists of local requirements on the

components and of global requirements on the system as a whole�

Our method to derive �local� component speci�cations consists of the following

three steps	

�� We start from a global speci�cation� We identify a number of say n compo�

nents and �x their inputs and outputs I��O�� � � � � In�On resp� such that I��O� �

� � � � In � On � Act and Oi � Oj � � for i �� j � this means that all actions of

the global speci�cation are considered and each action is uniquely assigned to one

component as output action� �Actions that are not output actions of a component

are seen to be output of some unspeci�ed additional environment component� In

this case the speci�cation models an open system��

�� We �x what �local� assumptions can be made about the environment � usually

these assumptions are just some of the requirements of the global speci�cation �

and we may also assign some requirements to some system components� There

may still remain some global requirements that cannot be assigned to a speci�c

component� Accordingly a component�oriented speci�cation has the form

G�t� � C���I� �O�� c
t� � � � � � Cn��In �On � c
t��

with a global part G and local parts Ci �some of which may be true expressing

that there is no local requirement for the i �th component yet��

�� We gradually localize the components� requirements� This is done in a number

of re�nement steps	 new global requirements G � and local requirements C �
i are

derived such that

� G ��t� � C �
���I� �O�� c
t� � � � � � C �

n��In �On� c
t� �

G�t� � C���I� �O�� c
t� � � � � � Cn��In �On � c
t�

� C �
i �t� � Ci�t� if i is the index of a component to be developed� This means

some more restrictions on this component are imposed

� C �
i �t�  Ci�t� if i is the index of an environment component� This means

the assumption about the environment remains the same

� G�t� � G ��t�� The global requirements are reduced�
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The requirements are completely localized when G ��t�  true� Then there are no

more global requirements�

A In order to derive interface speci�cations for the components	

�� Start with the global speci�cation and identify the components

plus their syntactic interface�

�� State the environment assumptions�

�� Localize the components� requirements�

The proposed requirements speci�cation method is described in more detail in

�Web���� In particular in this thesis the methodological use of both global and

component�oriented speci�cations is motivated and the localization of require�

ments is investigated in detail� An application of the method is can be found

�DW����

Example ��� �Component structure of the message transmission system��

Our system is structured into the components �sender� �transmitter� and �re�

ceiver�� The sender is responsible for send �m actions the receiver is responsible

for req and the transmitter is responsible for trans�m actions and for fail  ok and

error � This is already illustrated by the picture above�

In our simple example there are in fact no requirements on the sender and the

receiver	 they may issue arbitrary messages at arbitrary times� Hence the re�

quirements S and L both apply to the transmitter� So in fact the requirements

are already localized and the localization steps described above are not necessary

here� Let

I � fsend �m j m � M g � freqg�

O � ftrans�m j m � M g � fok � error � failg�

Then �I �O �TM � with TM � S � L is the component�oriented trace speci�cation

of the transmitter� �

��	 Timed Trace Speci�cation

So far issues related to time and time sensitivity of systems have not been dis�

cussed� Of course every physical system is carried out in a particular physical

time frame� For many systems this time frame is not important for modelling

their behaviour� In some application areas �for instance process control in factory

automatization� however timing is of great importance� We will now sketch how

the trace formalism can be used to specify time sensitive systems�

We model time �ow �discrete time� via a global clock represented by an additional

action� Therefore we introduce an actionX ��tick�� which occurs in a stream when

no other action takes place at this point in time� We consider timed streams to be



�� �� Trace Speci�cation

elements of �Act � fXg�� for which in addition �t � 	 holds� This requirement

expresses that the ticking of the clock never stops	 their either appears a �real�

action or there is a tick of the clock� We denote the set of timed streams by Act�X 

and the set of �nite partial timed streams by Act�X�

To give just a �avour of this approach we formalize the requirement �after action

a occurs at most N units of time elapse before action b occurs�	

P�s� � �p � Act�X 	 p�a v s � �q � Act�X 	 p�a�q�b v s � �q � N �

The action X can be used like any other action� This simple and naive way of

incorporating time nevertheless allows us to express discrete timing properties of

systems conveniently in our formal framework�

��
 Proof Principles

�
This section contains advanced material� which can be skipped at the �rst reading�

Proofs are used in system developments for two purposes� First during a system

development descriptions occur which vary in their degree of abstractness� A more

abstract description may be re�ned by a more concrete one� The correctness of

re�nements generally is not obvious and therefore has to be proven�

Secondly reasoning about a formal speci�cation also requires proofs� As a formal

speci�cation determines a model or a model class we are often interested whether

particular properties hold for these models� These properties range from very gen�

eral properties like consistency of the speci�cation �which means that there is at

least one model for the speci�cation� to speci�c properties concerning the partic�

ular application� Reasoning about a trace speci�cation is especially important in

the area of a requirements speci�cation� In particular it is the only way to get a

deeper insight into an axiomatic speci�cation� In general proofs may be carried

out in predicate logic but there are also more speci�c proof techniques�

Safety properties are usually proved by induction� For instance by induction on

the stream structure	

Proof Principle ��	 �Induction on the stream structure�� In order to show that a

safety property S holds for a trace speci�cation P  we show that	

��� P�h i� � S �h i��

��a� �s � Act�� a � Act 	 P�a�s� � S �s� � S �a�s� or alternatively

��b� �s � Act�� a � Act 	 P�s�a� � S �s� � S �s�a��

This proof technique is based on the fact that only �nite traces have to be con�

sidered in the proofs of safety properties� ��a� and ��b� di�er in the way a �nite
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trace can be built up� ��a� appends at the beginning ��b� at the end� It depends

on the particular application which rule is most convenient to use� �

If transition systems are used in speci�cations in principle also classical predicate

logic proofs may be carried out after the transition system is translated into logical

formulas� However there are other useful proof principles too� Safety properties

expressed by transition systems may be proved by an invariant technique	

Proof Principle ��� �Proof by Invariants�� In order to prove a safety property ex�

pressed by a transition system we may give a predicate Inv �invariant� over states

and �nite traces such that	

��� Init�s�� � Inv�s�� h i� � �Inv�s� t� � s
a
� s � � Inv�s �� t �a���

��� Inv�s� t� � S �t��

It is easy to see that in this case the property S �t� holds for all traces t described

by the transition system� �

Proofs of liveness properties are in general more di�cult to carry out and hard to

categorize�

Example ��� �Proof of a liveness property of the message transmission system��

We claim that the property

�Send c
t � 	� �req c
t � 	� �ok c
t � 	

holds for all traces t that ful�l S �t� � L�t�� This means that if the sender sends

in�nitely many messages to the transmitter and the receiver in�nitely often tries to

read messages from the transmitter then in�nitely many messages will be received

successfully by the transmitter�

Proof� We base our proof on two lemmas� Let t be a trace such that S �t� and L�t�

holds�

Lemma ��	� For all k � N and all t � � Act� it holds	

t � v t � �msg�Trans c
t �� � k

� �success�msg�Send c
t ��� fok � errorg c
t �� � k �

Lemma ���� For all k � N and all t � � Act� it holds	

t � v t � �success�msg�Send c
t ��� fok � errorg c
t �� � k

� �ok c
t � � k �

Both lemmas may easily be proven by induction on k � The �rst implies

�msg�Trans c
t� � 	� �success�msg�Send c
t�� fok � errorg c
t� � 	

and the second	

�success�msg�Send c
t�� fok � errorg c
t� � 	� �ok c
t � 	�



�� �� Trace Speci�cation

Now we can deduce	

�Send c
t � 	��req c
t � 	

� �Trans c
t � 	 �by L�t��

� �msg�Trans c
t� � 	 �Def� of msg�

� �success�msg�Send c
t�� fok � errorg c
t� � 	 �Lemma ����

� �ok c
t � 	 �Lemma ����

�

We do not discuss the possibility to support proofs by machine based tools al�

though this way a lot support can be obtained�



��

Chapter �

Functional Speci�cation

��� Overview

In the previous chapter the behaviour of a system was described by its set of pos�

sible action traces� This leads to a very abstract view well�suited for requirements

speci�cation� We will now treat techniques for the design phase of the development

process �see �gure ����� For this phase we use the paradigm of communicating sys�

tem components� Such components are connected by directed channels to form a

network� Each channel links an input port to an output port �

On the trace speci�cation level closed and open systems were distinguished� The

starting point of this chapter is the interface description of an open system �tech�

nically a component�oriented trace speci�cation� where the actions are already

marked as input or output actions� A closed system can easily be converted into

an open one by marking the system actions of interest as outputs� In order to view

an open system as a component with several input and output ports the trace

speci�cation�s input and output actions have to be further partitioned into sets

which correspond to the individual ports�

A functional component accepts input messages processes them and produces

output messages� Our operational intuition is that every component has full con�

trol over the messages that appear on its output ports but no control over the

messages that arrive on its input ports� Of course it is assumed that all mes�

sages are of the appropriate type for the channel they arrive on� A component

may always send an arbitrary number of messages which will be bu�ered on the

connecting channels� This means that we consider asynchronous communication�

Communicating components still provide quite an abstract view of a system�s

behavior� Agents can be related to a variety of concrete computational units such

as recursive de�nitions in a functional programming language procedures in an

imperative programming language processors in a multiprocessor machine and
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even digital circuits in hardware design� In Focus components are modelled by

sets of stream processing functions� These functions operate on �tuples of� input

and output streams which correspond to the respective communication channels�

Stream processing functions may also be parameterized by �auxiliary� non�stream

arguments� Remember that traces and streams are technically the same thing

namely �nite or in�nite sequences� However in the context of our method we use

a trace to model a run of the whole system or a system component and a stream

to model the communication history of just a single channel�

If the components described at the trace speci�cation level are not too complex

then it may be acceptable to replace every component�oriented trace speci�cation

by one monolithic functional speci�cation� Sometimes however it is more conve�

nient to specify a component not as a single processing agent but as a network

composed of sub�component� The speci�cation and development techniques which

are presented in this chapter can be applied repeatedly to re�ne components that

way� The sub�components in a network are connected by internal channels and

communicate via internal messages which are hidden from the environment� At

this level of the development process the structure of an network should only

depend on the physical and�or logical structure of the system to be speci�ed�

Implementation considerations should not be taken into account yet�

A The design steps described in this chapter can be summarized as follows	

�� Start with a component�oriented trace speci�cation of a single

component�

�� Partition the sets of input and output actions given by the trace

speci�cation into subsets corresponding to the component�s input

and output channels�

�� Specify the component in terms of �a network of� stream process�

ing functions�

�� Prove that this speci�cation re�nes the initial trace speci�cation�

�� If the speci�cation is too abstract to be implemented then give

a more constructive speci�cation and prove that it re�nes the ab�

stract one� Repeat this step if necessary�

The �rst two steps deal with the classi�cation of actions and their association

with certain channels� These points will be described in section ���� Steps � to �

refer to functional component speci�cations� In section ��� we will have a closer

look at stream processing functions which model the behaviour of components�

Then in section ��� techniques for the functional speci�cation of components will

be explained� The important special case of state�oriented speci�cations will be

handled in section ���� In ��� we will present techniques for the description of

component networks� In section ��
 we address re�nements and �nally timing

aspects �section ���� and the advanced topic of proof principles �section �����
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��� Actions� Channels and Messages

In this section we give some additional information on the �rst two design steps

described above� Assume we are given a component�oriented trace speci�cation

�see section ���� which consists of a triple �I �O �C � where I and O are disjoint

sets of input and output actions respectively and C is a predicate characterizing

a set of traces over these actions� The set I may be empty but O must not� In

the following we write A for I �O �

A component is connected to its environment by a �xed number of input and

output ports �corresponding to the channels�� There must be at least one output

port and if the action set I is not empty then there must also be at least one

input port� The input actions in I are associated with the input ports and the

output actions in O are associated with the output ports� Every action must be

associated with exactly one port� Formally this means that the set I is partitioned

into p � � sets I�� � � � � Ip and the set O is partitioned into q � � sets O�� � � � �Oq �

The component is represented by functions of the functionality

I�
��� � ��Ip

� � O�
��� � ��Oq

��

This functionality �xes the syntactic interface of a system component stating the

number of input ports the number of output ports and which sorts of messages

can be sent over the individual ports�

While the sets of input and output actions are already �xed on the trace speci�

�cation level it is an additional design decision to determine the �appropriate�

number of input and output ports and the actions that are associated with the

individual ports� This decision is based on the designer�s application dependent

understanding of the overall system structure� The designer must also take into

account that putting two actions onto di�erent channels hides the information

about the relative ordering of these two actions �at least if no timing information

is available see the discussion of the non�strict fair merge in section �����

The association of actions to ports already carries some information which can

be used to characterise the actions uniquely in an abbreviated notation� We call

this the transition from actions to messages� For example consider the message

transmission system introduced in the previous chapter� There we had actions

of the form send �m and trans�m for every m � M � If we decide that send and

transmit actions should be associated with di�erent channels then it is obviously

su�cient just to refer to the message m appearing on one or the other channel�

Knowing on which channel a message m appeared is su�cient to determine whether

it stands for the action send �m or trans�m�

Formally this means that we replace an action set Ik by some message set I �k 

provided that there exists a total bijection between Ik and I �k � The same can be

done for each set of output actions Ok � The elements of the sets I �k and O �
k are
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called messages� Since this way actions and messages can be converted into each

other we will be very liberal in our terminology and notation� We always use the

concept which is most convenient� The reader can imagine that messages are just

a notational shorthand for actions�

For the rest of this chapter we write Instreams for I�
��� � ��Ip

� and Outstreams

for O�
��� � ��Oq

��

The next step in the development which will be described in detail in the following

sections is to specify a component as �a network of� stream processing functions

of the overall functionality comp 	 Instreams � Outstreams� For the internal

channels of such a network actions and messages fromA and newly de�ned internal

actions and messages may be used�

Example 
�	 �Messages of the message transmission system��

The actions in our message transmission system example were de�ned by �see

example ����	

Act � fsend �m j m � M g � ftrans�m j m � M g � fok � error � fail � reqg�

From example ��� we already know that I � fsend �m j m � M g � freqg are the

transmitters input actions and O � ftrans�m j m � M g � fok � error � failg are the

transmitters output actions�

Furthermore from the picture in example ��� we see that the output actions ok and

error should go to the sender and trans�m and fail should go to the receiver� so it

is appropriate to model the transmitter as a component with two output channels�

The input is not split into two channels because the relative order of the incoming

messages is important� The component speci�ed here expects that the messages

coming from the sender and receiver are merged by the environment� The reason

for this will be explained in section ���� We also perform a transition from actions

to messages as described above and obtain the following sets of messages	

In � M � freqg�

Out � M � ffailg�

Ack � fok � errorg�

Hence the transmitter to be speci�ed has the functionality	

trans 	 In� � Ack��Out�

Performing several design steps we are going to develop a procedural program that

realizes the transmitter� �
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��� Stream Processing Functions

A A stream processing function is a �pre�x continuous� function that oper�

ates on �tuples of� streams and produces �tuples of� streams as results�

A deterministic component can be represented to a single stream processing func�

tion� For the moment we restrict our attention to stream processing functions�

The way components �including nondeterministic ones� are speci�ed is discussed

in the next section�

Our operational understanding that stream processing functions model interacting

components leads to some basic requirements for them� In particular an interac�

tive component is not capable to undo �take back� an output message that has

already been emitted� This observation is mirrored by the requirement of mono�

tonicity� It also re�ects our notion of causality	 if some sequence of input messages

already causes some output messages to occur then a longer input must be causal

for at least the same or more output�

�
Formally� this requirement is expressed as follows�

De�nition ��� �Monotonicity�� Let �X �v� and �Y �v� be cpos �complete partial orders��

A function f � X � Y is monotonic� if for all x � x � � X we have that x v x � � f �x� v

f �x ��� �

� Besides the operational justi�cation of monotonicity� there is also a theoretical one�

From theorems by Knaster and Tarski it is well known that monotonic functions

over cpos have a least �xed point� Recall that the set of streams M� together with

the �partial� pre�x order forms a cpo �see section ����� Since �the streams generated

in� feedback loops will be modelled by least �xed points� the use of monotonic stream

processing functions is a necessity if we want to be able to give a semantics for functional

networks with feedback loops within the framework of domain theory�

The second basic requirement for stream processing functions is that of continuity	

a function�s behaviour should be fully described by its behaviour for �nite inputs�

Given some �possibly in�nite� input the function�s output for all �nite pre�xes of

the input must successively approximate the function�s total output� For example

this means that it is not possible to specify an agent that produces some output

only as a reaction to in�nite input�

� Formally� the requirement of continuity is expressed as follows� where
F
X stands

for the least upper bound of a chain �totally ordered set� X �

De�nition ��� �Continuity�� A monotonic function f � X � Y is continuous� if for all

chains X � � X the following equation holds
F
ff �x� j x � X �g � f �

F
X ��� �

� Note that continuity implies monotonicity� but not vice versa� As it was the case

with monotonicity� continuity also has important theoretical aspects�
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� Consider an input stream x �
F
fxi j i � Ng� where the xi �s form a chain� Then the

output of a continuous function can be determined either by f �x� or equivalently

by
F
ff �xi� j i � Ng� This demonstrates that the behaviour of a continuous

function is uniquely de�ned by its behaviour for �nite inputs�

� It has been shown by Kleene that �x �f �
F

n�N f
n��� for continuous functions f �

where f ��x� � x and f n���x� � f �f n�x�� and �x �f denotes the least �xpoint of

f � i�e� the least element that ful�ls the equation f �x� � x � Building this chain

of repeated function applications models the stepwise computation process that

takes place when feedback loops are considered �see Kah�����

A Continuous functions are �well�behaved� functions in the sense that

they properly model a stepwise computation process� In Focus only

continuous functions will be considered as descriptions of components�

In spite of the continuity requirement for individual stream processing functions

fairness and even more general liveness properties can be expressed in Focus�

Fairness is not modelled as a property of a single function but as a property of a

component which corresponds to a set of functions�

While the behaviour of a component is represented by continuous stream process�

ing functions non�continuous auxiliary functions may also be used to support the

speci�cation� An example is the concatenation function � which is non�monotonic

�and therefore not continuous� in its second argument�

��� Speci�cation of Components

A A component is modelled by a �non�empty� set of continuous stream pro�

cessing functions� Such a set is represented by a predicate on functions�

Each function from this set corresponds to one particular �deterministic�

behaviour�

Hence a functional component speci�cation is given by a predicate	

P 	 �Instreams � Outstreams� � B �

that describes the following set of �continuous� stream processing functions	

f f 	 Instreams � Outstreams j P�f � � f is continuous g�

The functionality Instreams � Outstreams corresponds to the component�s input

and output channels� Every function describes a potential input�output behaviour

of the component stating how it reacts to all possible inputs� Obviously if the

above set contains only one element it stands for a deterministic component since

in this case for any input the output is uniquely prescribed� In general however

there will be more than one continuous function ful�lling a predicate P � In this
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sense a component speci�cation is a description of the properties the component

is required to have expressed by a formula of predicate logic�

Example 
�� �A summation component��

We specify a component operating on streams of natural numbers which for every

input gives an output which is not less than the sum of the inputs received so

far� Let xi denote the i �th element of a stream x for � � i � �x � The predicate

Sum which is a straightforward translation of the informal requirements gives

a speci�cation for such a component� Note that it is su�cient to describe the

component�s behaviour for �nite input streams because of the implicit requirement

of continuity�

Sum� 	 �N� � N
�� � B �

Sum��f � � �x � N��n � N 	 �x � �f �x � �

�� � n � �x �	 � f �x �n �
P

��i�n xi ��

Alternatively the component Sum� can also be speci�ed by stating that the input

and output streams have the same length and for a �nite input stream only the

last output is greater than or equal to the sum of the input elements received so

far� Together with the implicit requirements of monotonicity and continuity this

alternative speci�cation is equivalent to the speci�cation given above� Generally it

is a question of style to decide whether a more explicit speci�cation or an implicit

one is preferable� �

Example 
�
 �A fair merge component��

An example of an often�needed component is one that merges two input streams

into a single output stream� As an additional constraint we require the component

to be fair in the sense that it does not neglect

one input in�nitely long� Suppose that I� and I� are disjoint� The speci�cation of

the component Fair�Merge reads as follows	

Fair�Merge 	 �I�
��I�

� � �I� � I��
�� � B �

Fair�Merge�f � � �x � I�
�� y � I�

� 	

�x � �y � 	� x � I� c
f �x � y� � y � I� c
f �x � y��

This is an example of a very implicit speci�cation which explicitly restricts the

component�s behaviour for in�nite input streams only� For �nite inputs certain

restrictions for its behaviour follow from monotonicity and continuity� For ex�

ample it is easy to show that no output can ever appear which has not already

been received as input� The assumption that this could be the case leads to a

contradiction if the inputs are extended to in�nite streams� �

Example 
�� �Functional speci�cation of the message transmission system��

We now specify the transmitter component of the message transmission system by

a predicateTrans�� In this predicate the safety requirements exactly correspond to

those of the original trace description �see section ����� example ����� We could do
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the same with the liveness requirements thus creating a certainly correct but not

very constructive speci�cation� However as a �rst step towards an implementable

component we replace the liveness requirements stating that acknowledgements

may be delayed an arbitrary but �nite amount of time by certain �xed �nite

bounds� Moreover we now explicitly introduce a �nite bound on the transmitters

capacity to store messages� The �rst bound �mds� represents the maximum delay

between the sending of a message by the sender and the reply �ok or error� of

the transmitter� The second bound �mdr� represents the maximum delay between

a request �req� issued by the receiver and the reply �a message m or fail� of the

transmitter and the third bound �mstor� represents the transmitter�s capacity to

store messages� For example a value of mstor � � means that the transmitter can

store at most one message at any given time�

Trans� 	 �In� � Ack��Out�� � B

Trans��f � � �mds�mdr � N�mstor � Nnf�g 	

�x � In� 	 �y � Ack�� z � Out� 	 f �x � � �y� z � �

�y � �M c
x � mds � �y �

�z � �req c
x � mdr � �z �

M c
z v success�M c
x � y� �

�success�M c
x � y� ��M c
z � � � lt�z � �� fail �

�success�M c
x � y� ��M c
z � mstor � lt�y� �� error �

Here lt is the function dual to ft � it gives the last element of a �nite non�empty

stream� Remember	 In � M � freqg Out � M � ffailg and Ack � fok � errorg�

The transmitter�s behaviour is fully described by an explicit speci�cation of its

behaviour for �nite input streams and by our implicit requirement of continuity�

This implies that because of the design decision to introduce �nite bounds we

have managed to transform liveness into safety properties� We only need the

additional liveness assumption concerning the length of the output streams� �

We have already seen that a component speci�cation need not describe exactly

one stream processing function� In fact all specifying predicates of the examples

above are ful�lled by many functions� This is called underspeci�cation� It can

be used to represent nondeterminism� Given a nondeterministic component there

are no means for its environment of controlling which of the allowed behaviours

will occur in an actual run of its implementation� In fact we cannot even con�

trol when the nondeterministic choices are made	 they can be made during the

design process since a speci�cation may always be strengthened for instance to

add error handling capabilities or to implement the component in a deterministic

programming language� The choice can also be made during the run of the im�

plementation where di�erent choices are possible for each individual run and for

multiple instances of the same agent�

� It should be noted that the seemingly straightforward relational approach to nonde�

terminism� where a nondeterministic agent corresponds to a relation on streams� is
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not su�cient� since it is not compositional� A relation in general does not convey enough

information about an component�s behaviour� This has� for instance� been demonstrated

by Brock and Ackermann in BA����

The requirement of continuity is implicit in all component speci�cations even if it

is not explicitly stated each time� A component speci�cation P is called consistent

if it does not describe the empty set i�e� if it exists at least one continuous function

f such that P�f � holds� Usually we are only interested in consistent speci�cations�

Sometimes however it is hard to tell whether a given speci�cation is consistent�

Example 
�� �A non�strict fair merge component��

The agent Fair�Merge as de�ned above does not guarantee that given two �nite

input streams every element of the inputs re�appears in the output stream� It is

easy to write down a speci�cation which seems to solve this problem	

Non�Strict�Fair�Merge �f � � Fair�Merge�f � �

�x � I�
�� y � I�

� 	 �f �x � y� � �x � �y�

Unfortunately this speci�cation is not ful�lled by any monotonic function	 suppose

we had a monotonic function f which performed a non�strict fair merge� Without

loss of generality we assume that f �hai� hbi� � ha� bi� Because of monotonicity

f �h i� hbi� cannot be hbi but any other result would violate the predicate given

above� Thus Non�Strict�Fair�Merge is an inconsistent speci�cation in our sense�

�

It is indeed not possible to specify such a non�strict fair merge in a straightforward

manner by predicates on stream processing functions� This is a general problem

with stream�oriented functional methods� The more elaborate formalism of input

choice speci�cations which is presented in �Bro��� is able to handle this case�

Another less sophisticated solution �the inclusion of dummy messages similar to

time ticks indicating the lack of input is presented in chapter ����

��� State�oriented Functional Speci�cation

In the section on trace speci�cations we distinguished between the history�oriented

and the transition�oriented speci�cation style� In a similar way we may use and

combine these speci�cation styles also in functional speci�cations� We have already

presented the general framework of stream�processing functions and methods for

specifying components using predicates on functions� In some of the examples

given in section ��� a component was speci�ed by relating complete input and

output streams �for instance the summation component in ��� and the fair�merge

component in example ����� this corresponds to the history�oriented speci�cation

style� On the other hand a transition� or state�oriented functional speci�cation

style is also possible� We shall now have a closer look on the methodological use

of such a speci�cation style�
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There are two possible cases when a state�oriented speci�cation is useful� Firstly it

may simply be di�cult to specify a component by a history�oriented speci�cation�

Secondly a state�oriented speci�cation can already look very much like an abstract

program� Therefore the transformation of a history�oriented speci�cation into a

state�oriented one is often an important design step� Of course it must then be

shown that the state�oriented speci�cation implies and thus re�nes the history�

oriented one�

A stream�processing function can � because of its monotonicity and continuity �

be considered to be an abstract model of an agent which receives some input and

depending on its internal state produces some output and changes its state� The

functional view is an abstraction of this operational model� For certain applica�

tions however it is convenient to introduce an explicit notion of state and use it

for a transition�oriented speci�cation� This speci�cation method will be explained

in the following�

Let us �rst consider deterministic components only i�e� components that may be

described by a single function� For the moment let us assume for simplicity that

specify a function f 	 I� � O� with a single input stream and a single output

stream �this may easily be generalized to functions with more than one input or

output stream�� To specify f  we introduce a set State and describe f using an

auxiliary function

h 	 State � �I� � O���

with a state parameter such that

f � h�init��

where init is some particular initial state� Then we specify h by giving formulas

of the form	

��� P�s� � h�s��h i� � o�

��� Q�i � s� � h�s��i�x � � o� � h�s ���x ��

where i � I is a single input o � O� is a �possibly in�nite� output o� � O� is a

�nite output x � I� is an input stream s � State is the �old� state s � � State

is the �new� state and P and Q are predicates �which can of course be omitted

if they are identical to true�� The stream o �usually� depends on s and o� and s �

�usually� depend on i  x and s�

��� is the �termination case�	 if the input stream is empty and s ful�ls a certain

condition P  then o is output � and nothing more happens�

��� expresses the transition behaviour	 if an input i and a state s ful�l a certain

condition Q  then h reads i in state s outputs o� and enters state s �� Obviously

this �rule� may only be applied if the input stream is not empty�

� In fact� a stream�processing function can be represented by a �not necessarily �nite�
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automaton with input and output� This formal relationship has been investigated

in LS����

By h a deterministic component is speci�ed	 we have described exactly one func�

tion� The state�oriented speci�cation of nondeterministic components is treated

below�

Example 
� �State�oriented speci�cation of the message transmission system��

In order to achieve a simpler speci�cation we now make the design decision to

set the maximum delay between send and request messages and the corresponding

acknowledgements introduced in example ��� to zero	 mds�mdr � �� This implies

that our new agent must give a reply as soon as new input arrives� However

we still have the freedom to choose an arbitrary storage capacity mstor  for a

subsequent implementation�

Let M � be the state space	 any sequence buf � M � represents the messages the

transmitter has currently stored� Initially no message is stored thus h i is the initial

state� Now we give a state�oriented speci�cation of the transmitter component as

follows	

Trans��f � � �h 	 M � � �In� � Ack��Out�� 	

�x � In� 	 f �x � � h�h i� x � � H �h��

H �h� � �mstor � Nnf�g 	 �x � In��m � M 	

h�buf ��h i� � h i �

�buf � mstor � h�buf ��m�x � � �ok � h i� � h�buf �m��x � �

�buf � mstor � h�buf ��m�x � � �error � h i� � h�buf ��x � �

�buf � � � h�buf ��req�x � � �h i� ft�buf �� � h�rt�buf ���x � �

�buf � � � h�buf ��req�x � � �h i� fail� � h�buf ��x ��

Here we use a generalization of the concatenation operation � to concatenate pairs

of streams� �

The state�oriented speci�cation of a nondeterministic component is a slight gen�

eralization of the procedure described above	 we specify a set of initial states by

giving a predicate Init�s� on states moreover we specify the transition relation

nondeterministically in the following way	

���� P�s� � �o 	 R�o� s� � h�s��h i� � o�

���� Q�i � s� � �s �� o� 	 S �o�� s �� i � s� � h�s��i�x � � o� � h�s ���x ��

Here P �Q � i � o� o�� x � s� s � are as above and R and S are predicates� R�o� s� ex�

presses the range of possible outputs o in a state s S �o�� s �� i � s� expresses the

range of possible outputs o� and next states s � for a given input i and a state s�

Such a speci�cation can as before be seen as the description of a predicate H on

functions	 H �h � S� � � � � � Sn  where S�� � � � �Sn are formulas as in ���� and ����

above� The predicate H describes all functions with the speci�ed behaviour�
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Example 
�� �A state�oriented version of the summation component��

The component Sum� introduced in example ��� will now be speci�ed in a state�

oriented way� The current state is just the sum of input elements received so

far�

Sum��f � � �h � N� �N� � N
�� 	 �x � N� 	 f �x � � h����x � � H �h��

H �h� � �n�m � N� x � N� 	 h�n��h i� � h i �

�k � N 	 h�n��m 	 x � � �n � m � k� � h�n � m��x �� �

A The complete procedure is as follows	

�� Embed the function to be speci�ed in an auxiliary function with

an additional state parameter�

�� Choose an appropriate state space for the auxiliary function�

�� Specify the initial states�

�� Specify the transition behaviour with several rules of the form ���

and ��� or their generalizations ���� and �����

There are alternative ways of writing state�oriented speci�cations� For example

one can use recursively de�ned predicates� See �Den��� for an example where a

relatively large system has been speci�ed using this approach� There exist special

notational conventions to denote state transitions such as for instance the notation

presented in �Lam���� This makes use of a state oriented speci�cation concept

possible for complex systems�

��	 Speci�cation of Networks

A The de�nition of networks is the main structuring tool on the functional

speci�cation level� There is no �semantical� di�erence in principle be�

tween a single component and a network of components� A network

can be de�ned either by recursive equations or by special composition

operators�

In Focus networks of components can be represented by directed graphs where

the nodes represent components and the edges represent point�to�point directed

communication channels� It is a fundamental fact known as the Kahn principle

�see �Kah
�� �KM

�� that such networks of components can �semantically� be

seen as components again� Hence we are allowed to build an component from a

collection of simpler components�

����� Equational De�nitions

A In an equational de�nition a network is de�ned by a set of mutually

recursive stream equations�
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Recall the summation component Sum� from example ��
� For the moment we

restrict ourselves to a deterministic version which always outputs the exact sum

of the inputs obtained so far �choose k � � in the speci�cation of Sum��� Now

suppose that we do not want to build it from scratch but instead employ an

already implemented component add that adds two input streams element by

element� Then the speci�cation can be rewritten as follows	

Sum��f � � �x � N� 	 �y� z � N� 	 f �x � � z � z � add�x � y� � y � �	 z �

Thus a function f that satis�es the predicate Sum� corresponds to the following

network	

�x
add �z

���y

� f �x � � z � where z � add�x � y��
y � �	 z �

or equivalently	
f �x � � z � where z � add�x � �	 z ��

� The semantics of an equationally de�ned network is the least function �with respect

to the pre�x order� that ful�ls the de�ning equations for all input values� This

interpretation is consistent with an operational view of component networks connected

by asynchronous communication channels�

����� Compositional Forms

The introduction of channel names �which is necessary for equational speci�ca�

tions� is often helpful but in some cases it may clutter a speci�cation� Depending

on the regularity of the network structure the use of channel names may or may

not be advisable� Moreover di�erent proof methods are used for the parallel and

sequential composition of agents �here equational reasoning is su�cient� and for

feedback loops �where induction arguments are required�� It may therefore be ap�

propriate to build a network of functional components using speci�c composition

operators� Below we call a stream processing function with n input ports and m

output ports an �n�m��ary function�

De�nition 
�
 �Sequential �functional� composition�� Let f be an �n�m��ary func�

tion and let g be an �m� o��ary function� Then f � g is the �n� o��ary function

de�ned by	

�f � g��x � � g�f �x ��� �

De�nition 
�� �Parallel composition�� Let f be an �n�m��ary function and let g

be an �o� p��ary function� Then f k g is the �n � o�m � p��ary function de�ned by	

�f k g��x�� � � � � xn�o� � �f �x�� � � � � xn �� g�xn��� � � � � xn�o�� �



�� �� Functional Speci�cation

De�nition 
�� �Feedback�� Let f be an �n�m��ary function where n � �� Then

�f is the �n���m��ary function such that the value of ��f ��x�� � � � � xn��� is the

least solution �with respect to the pre�x order v� of the equation	

�y�� � � � � ym� � f �x�� � � � � xn��� ym�� �

The ��operator de�ned above always feeds back the mth output channel of a

�n�m��ary component� A generalized version of this operator is also possible�

� Alternatively� the ��operator is often de�ned as follows� where �x �g denotes the

least �xed point of a function g �see section �����

��f ��x�� � � � � xn��� � �x �g � where g�y�� � � � � ym� � f �x�� � � � � xn��� ym� �

The example speci�cation Sum� can now be rede�ned as follows where id denotes

the identity function	

Sum��f � � f � � ��id k ��� � add��

It corresponds to same net as depicted above� Every network given in terms of

the introduced compositional forms can easily be transformed into an equational

form�

The compositional forms de�ned for stream processing functions can also be lifted

to predicates on such functions in a straightforward way� This sometimes shortens

the notation since one need not write quanti�ers and sorts etc��

De�nition 
� �Compositional forms for speci�cations�� Let P and Q be predi�

cates describing functional components� Then we de�ne	

�P �Q��f � � �g� h 	 P�g� �Q �h � f � g � h�

�P kQ��f � � �g� h 	 P�g� �Q �h � f � g k h�

��P��f � � �g 	 P�g� � f � �g� �

As an example consider the following network Double whose output for every

input element is not less than twice the sum of the inputs received so far	

� Split

� Sum �

� Sum �
Add �

Double � Split � �Sum k Sum� � Add �

where Split�f� � f �x � � �x � x ��

Add�f� � f � add �

Functional calculus provides a basis for reasoning about networks�
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��
 Re�nement

As stated in section ��� re�nement is the basic notion of development in Focus�

�see also �Bro��b� and �Bro��a��

A In general a re�nement relates two di�erent system representations that

�possibly� belong to di�erent levels of abstraction�

Re�nement steps are taken when going from one development phase to the next

for instance from the requirements speci�cation phase to the design phase but

also within these phases�

In chapter � we have already shown how global trace speci�cations are gradu�

ally re�ned into component�oriented trace speci�cations� In design phase com�

ponents are no longer represented by traces but by �sets of� stream processing

functions� Hence we technically have to re�ne a component oriented trace speci�

�cation �I �O �C � into a functional component speci�cation

P 	 �I�
��� � ��Ip

� � O�
��� � ��Oq

�� � B �

where I �
S
Ij and O �

S
Oj �see section ��� for an explanation why I and O are

partitioned into subsets��

In order to prove the correctness of such a re�nement step it is necessary to relate

both kinds of speci�cations formally� This is done by de�ning the set of traces that

is generated by a stream processing function� The following de�nition states that

all outputs of a stream processing functions eventually appear in the trace ��rst

conjunct of the de�nition� but that they may be delayed arbitrarily long �second

conjunct�� This corresponds to the behaviour of an asynchronous communication

channel�

De�nition 
�� �Traces corresponding to a function�� Given a stream processing

function f 	 Instreams � Outstreams� The traces of f are de�ned by	

Traces�f � f t � �I � O�� j �O� c
t � � � � �Oq c
t� � f �I� c
t � � � � � Ip c
t� �

� t � v t 	 �O� c
t �� � � � �Oq c
t �� v f �I� c
t �� � � � � Ip c
t �� g�

where as usual Instreams stands for I�
��� � �� Ip

� and Outstreams stands for

O�
��� � ��Oq

�� �

Now the trace set corresponding to a functional component speci�cation can be

de�ned straightforwardly	

De�nition 
�� �Traces corresponding to a component speci�cation�� Let P be as

above� The traces corresponding to P are de�ned by

Traces�P �
S
fTraces�f j P�f � � f is continuousg�
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Thus Traces�P is the union of all trace sets that correspond to the continuous

functions which ful�ll the predicate P � �

A component speci�cation is said to re�ne a trace speci�cation �I �O �C � if all

traces admitted by P are also admitted by C � Formally	 P re�nes �I �O �C � i�

Traces�P � ft � �I �O�� j C �t�g�

Remember that we only considered total traces which correspond to complete

computations� Hence all liveness properties are taken into account� In general P

only generates a subset of the traces described by the trace predicate C �

In fact if P is inconsistent  i�e� if there is no continuous function ful�lling P  then

Traces�P is the empty set which re�nes any trace speci�cation� Of course we are

only interested in consistent speci�cations�

The obligation to prove that P re�nes the initial trace speci�cation is the con�

necting link between the trace and functional speci�cation stages� See section ���

for some advice on how such a proof can be done� For some cases there exist

syntactic transformation between trace speci�cations and corresponding function

predicates� Examples for such an easy transition between these two formalisms

are given in �DW����

Once a component is represented functionally there are several ways how it can

be re�ned� As explained in section ��� a functional component speci�cation de�

scribes the properties the component is required to have� It can be re�ned by

adding further requirements� Technically this means that the specifying predicate

is strengthened� In our logical framework re�nement of component speci�cations

is therefore expressed by an implication� This is called behaviour re�nement� Let

P �Q 	 �Instreams � Outstreams� � B

be two component speci�cations� Then Q is a behaviour re�nement of P i�

Q � P

holds� Any behaviour admitted by Q is also admitted by P but Q may be more

restrictive� It is important to notice that this re�nement notion is consistent with

the one introduced to connect the trace and the functional layer since apparently

Q � P impliesTraces�Q � Traces�P � Thus if P re�nes a given trace speci�cation

so does Q �

Example 
�� �Re�nement of the message transmission system��

In the previous sections several versions of the transmitter component of the mes�

sage transmission system have been developed� We gave these examples in order

to study di�erent speci�cation styles but also to demonstrate how a systematic

development is performed in Focus� This is formally re�ected by the fact that

the initial trace speci�cation of the transmitter �I �O �TM � �see example ���� is
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re�ned by the �rst functional component speci�cation Trans� �see example �����

It holds	

Traces�Trans� � ft � �I � O�� j TM �t�g�

Moreover the �rst transmitter speci�cation is �behaviourally� re�ned by the second

�see example ���� since the following formula is valid	

Trans� � Trans��

These claims can be proved using the proof principles of section ��� below� �

Behaviour re�nement is the most basic re�nement notion for component speci��

cations� It only considers a component�s input�output behaviour not taking into

account changes of the internal structure and the way the speci�cation is repre�

sented� For instance it might be a considerable step towards an implementation

if a speci�cation P is replaced by a state�based speci�cation Q  although P and Q

are equivalent with respect to their external behaviour i�e� P  Q � This demon�

strates that a re�nement step may bring a speci�cation in a more concrete form

although the speci�ed external behaviour is not changed� We call this re�nement

by reformulation� Semantically re�nement by reformulation is just a special case

of behaviour re�nement �and so are all other re�nement notions introduced further

on��

Example 
�� �Re�nement by reformulation of the summation component��

The summation component Sum� speci�ed in example ��� is re�ned with respect

to its representation by Sum� speci�ed in example ��
� The external behaviour is

not changed	

Sum�  Sum��

In Sum� a state is introduced� This speci�cation is already executable� �

A way of re�nement typical for distributed systems consists of a change of their

conceptual or spatial distribution� Often a �rst speci�cation describes a system

as monolithic black box only considering its external interface as we do it in

the global trace speci�cation �see section ����� During the development process

it is then split up into a network of interconnected components� We regard it

as one of the main features of Focus that one can do such a decomposition at

all development phases� In particular in the design phase one can re�ne a given

component speci�cation P by a speci�cation Q that describes a network of �more

basic� components� This is called distribution re�nement � Of course these more

basic components can be further re�ned for instance by reformulation or again

by distribution re�nement�

Example 
�	� �Distribution re�nement of the summation component��

The speci�cation Sum� introduced in section ����� represents the summation com�
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ponent by a �cyclic� network� It is a distribution re�nement of Sum� and also a

�real� behaviour re�nement since Sum� � Sum�� �

All the re�nement notions introduced above have in common that they restrict the

behaviour or change the structure of a component but not its syntactic interface�

In the rest of this section we now study a form of re�nement that also allows to

change the syntactic interface consisting of the number and type of the input and

output channels� Hence this form of re�nement is called interface re�nement �

Technically the interface of component corresponds to the functionality of the

specifying predicate	 a predicate

P 	 �I�
��� � ��Ip

� � O�
��� � ��Oq

�� � B

speci�es a component with p input and q output channels� When the interface of

Q is re�ned one may change the numbers of input and output channels as well

as the type of these channels i�e� the granularity of the communicated message�

Consider an agent P that performs some manipulation on an input stream� If we

want to design an agent Q that ful�lls the same task in an environment that issues

messages of a more �concrete� datatype we need to specify a transition A from the

concrete to the abstract level and a transition R from the abstract to the concrete

level� The agent Q is then an interface re�nement of P if R �Q �A behaviourally

re�nes P � Here � is one of the composition operators for speci�cations introduced

in section ������ The following �gure shows the situation	

� �P

R A

Q�

� �

�

De�nition 
�� �Abstraction and representation�� Consider a tuple of streams of

type M on the abstract level and a tuple of streams of type M � on the con�

crete level� Two component speci�cations A and R are called abstraction and

representation respectively i� the following conditions hold	

� A has the functionality �M � �M � � B

� R has the functionality �M � M �� � B

� R � A � Id  where Id is the predicate that is only ful�lled by the identity

function �

Based these notions we formally call a component Q an interface re�nement of a

component P if there is an abstraction A and a representation R of appropriate

functionality such that	

�R �Q � A� � P

holds�
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Example 
�		 �Interface re�nement of the summation component��

Suppose we want to add integers by a hardware device� At a higher level of abstrac�

tion this is achieved by the summation components Sumi treated above� In order

to implement the adder in hardware the integers of our abstract speci�cation are

to be replaced by �nite sequences of bits which are to be transferred sequentially�

According to our de�nition we need a speci�cation R 	 �N� � �B ���� � B of

the representation and a speci�cation A 	 ��B ��� � N
�� � B of the abstraction�

Here we give just the informal description that R converts a stream of integers to

a stream of equivalent binary representations and A performs the converse opera�

tion� Obviously the equation R �A � Id holds� Suppose that we also have de�ned

an agent Sum�� To prove that Sum� is a correct implementation of for instance

Sum� it has to be shown that the following implication holds	

�R � Sum� � A� � Sum� �

In this example we have replaced a single action �transmission of an integer� by

several actions �transmission of individual bits� but have not changed the number

of channels� One can also re�ne a speci�cation in a way that a single channel

is replaced by a group of new channels� For example we could implement a

hardware summation component that is connected to its environment by � input

and � output channels�

��� Timed Component Speci�cation

So far no explicit timing information is given in functional speci�cations� However

as we already pointed out in chapter � there are situations where the inclusion of

time aspects is necessary� One possible reason is that a time critical component

is to be speci�ed where timing aspects are part of the component�s functionality�

A second reason is that the inclusion of time may lead to simpler speci�cations�

This will be explained below�

There are many possible models of time� Here we consider a rather simple model	

we assume a global discrete time� This means that in every time interval at most

one message can be sent or received� Each element of a timed stream represents the

�single� communication event on a channel during one time interval� The situation

that no proper message has been sent during one time interval is modelled by a

special element X �pronounced  tick��� Formally let A be a set of actions which

does not contain X� Then a timed stream is an element of �A � fXg���

The model re�ects a global notion of time� In a timed environment we have

to make sure that every component conforms to such a view� In particular we

require that as soon as the input stream is known for some time interval the

output stream is �xed for at least the same interval� This requirement is called

the time progress property	
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De�nition 
�	� �Time progress property�� Let f be a stream processing function

of the functionality f 	 Instreams � Outstreams� For any tuple of streams

minlength �x�� � � � � xp� is de�ned to be minf�x�� � � � ��xpg� Then f has the time

progress property if	

�x � Instreams 	 minlength�f �x �� � minlength�x � �

Of course for an agent speci�cation P we must prove that every f with P�f � has

the time progress property� See section � of �BD��� for further information on this

class of timed functions�

Remember that we cannot de�ne a non�strict fair merge within Focus� With

timed streams this is no longer a problem since total timed streams �these are

streams that correspond to a whole run of the system� are always in�nite� There�

fore the Fair�Merge agent speci�ed in section ��� is su�cient�

Another interesting aspect is that the introduction of timing information usually

leads to an introduction of nondeterminism� This is because nondeterminism is

often just introduced by the abstraction from time�

�� Proof Principles

�
This section contains advanced material� which can be skipped at the �rst reading�

An important method to prove properties of stream processing functions in general

is the principle of Noetherian induction�

Proof Principle 
�	 �Noetherian induction�� Let f 	 Instreams � Outstreams be

an arbitrary stream processing function and let P be a total predicate �Instreams�

Outstreams� � B � Select an arbitrary Noetherian strict order � on Instreams

�for example take the strict pre�x order�� To prove that P�x � f �x �� holds for all

x � Instreams show that	

�x � Instreams 	 ���x � � x 	 P�x �� f �x ���� � P�x � f �x ��� �

In some cases this method can be modi�ed to make it more usable	 consider a

predicate that holds for an in�nite stream whenever it holds for all �nite pre�xes

of this stream� Such a predicate is called admissible� In particular continuous

predicates �and safety predicates� are always admissible� For other classes of ad�

missible predicates see for example �Man
��� Given an admissible predicate P

and a continuous function f  it must only be shown that P�x � f �x �� holds for all

�nite inputs x � This means that induction on the length of x can be used which

is often easier to handle than full Noetherian induction� All in all we get the

following modi�ed proof principle	
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Proof Principle 
�� �Modi�ed Noetherian induction�� To prove that P�x � f �x ��

holds for all x � Instreams show the following	

��� P is an admissible predicate�

��� f is a continuous stream processing function�

��� P�x � f �x �� holds for all �nite x � Instreams� This is often proved by induc�

tion on the structure of the input streams �see proof principle ����� �

Of course besides Noetherian induction there are more speci�c induction principles

related to recursive declarations� We shall come back to these later on�

In the previous section on re�nement we saw that we had to prove that a function

f satis�es a trace speci�cation in order to establish the connection between the

trace speci�cation and the functional speci�cation� This proof can often be struc�

tured into two parts �provided that the function f never outputs in�nitely many

elements in response to a single input�� Since our techniques are geared towards

asynchronous message passing we can imagine that every channel is allowed to

introduce arbitrary �but �nite� delays� This is re�ected by the de�nition of the

operator Traces� Therefore a trace speci�cation that is not closed with respect

to �nite output delays can certainly not be re�ned by a functional component�

On the other hand once it is shown that the trace speci�cation does allow such

delays it su�ces to show that those traces of f are allowed in which no output

delays occur� We will �rst de�ne the set of these traces	

De�nition 
�		 �Normal form traces�� The normal form traces of a stream pro�

cessing function f 	 Instreams � Outstreams are de�ned by	

NF�Traces�f � f t � Traces�f j �t � � �I �O��� i � I 	 t ��i v t �

f �I� c
t �� � � � � Ip c
t �� � �O� c
t �� � � � �Oq c
t �� g

An alternative and more operational characterization of normal form traces is

that immediately after every input all the outputs generated by this input appear�

�

The proof principle given above will now be summarized� See �Ded��� for a com�

prehensive example�

Proof Principle 
�
 �Re�nement of a trace speci�cation�� Let �I �O �C � be a

component�oriented trace speci�cation and f be a stream processing function� In

order to prove that f re�nes �I �O �C � show that �let A be �I � O��	

��� C is closed with respect to �nite output delays	

�t � A�� t � � A�� o � O � i � I 	

�t ��o�i v t � C �t�� � ��t �� � A� 	 t ��i �o v t �� � C �t �����

��� C is true for all normal form traces of f 	 NF�Traces�f � ft � A j C �t�g� �
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Properties of equationally de�ned networks can be proved by exhibiting values for

each of the network�s internal channels as well as output channels such that the

de�ning equations are ful�lled in other words by exhibiting a �xed point of the

network� Such a set of values is generally not the least �xed point� If desired this

must be established independently� Note that for example safety predicates are

downward closed such that it is su�cient to show that some safety property holds

for any �xed point �or indeed for any other value that is greater than the least

�xed point��

We now show some proof methods for networks de�ned by the composition opera�

tors� For the parallel and sequential composition of functions equational reasoning

is the standard tool� Fixpoint induction can be used to prove properties of feedback

loops�

Proof Principle 
�� �Fixpoint induction for the feedback operator�� Given an

�n�m��ary function of the form �f and an n�tuple of input streams �x�� � � � � xn��

Let g be a function such that g�y�� � � � � ym� � f �x�� � � � � xn � ym�� Then for ev�

ery m�tuple of output streams �y�� � � � � ym� if g�y�� � � � � ym� v �y�� � � � � ym� then

��f ��x�� � � � � xn� v �y�� � � � � ym�� �

Other commonly used methods are folding and unfolding operations and the fol�

lowing application of Kleene�s theorem which is often helpful to establish safety

properties�

Proof Principle 
�� �Computational induction�� Given an �n�m��ary function of

the form �f  an admissible predicate P of appropriate type and an n�tuple of

input streams �x�� � � � � xn�� De�ne g by g�y�� � � � � ym� � f �x�� � � � � xn � ym�� To

prove P���f ��x�� � � � � xn�� it su�ces to show that for all n � N	

��i � n 	 P�g i �h i� � � � � h i��� � P�gn�h i� � � � � h i���

Here the superscript i on g stands for function iteration� �

As for trace speci�cations the proof principles for functional component speci�ca�

tions are an immediate consequence of well�known general principles form domain�

theory and �xpoint theory�
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Chapter �

Implementation

��� Overview

The implementation phase covers the two �nal stages of a system development in

Focus namely	

� the derivation of an abstract program and

� its transformation into a concrete program�

A A major characteristic is the use of programming languages with fully

�edged syntax and formal semantics�

During the preceding development steps we described distributed systems by log�

ical and functional means in the language of mathematics so to speak� This

resulted in considerable expressive power notational �exibility and allowed for the

direct use of a variety of mathematical methods and techniques� However since

the ultimate aim of the methodology is program construction one eventually has

to switch over to representations that can be interpreted by a machine� This

requires unambiguity and therefore a precisely de�ned syntax and executability

and therefore the absence of non�algorithmic descriptive constructs� In this chap�

ter two algorithmic �programming� languages are introduced which ful�ll both

requirements�

The �rst one � AL � is an applicative language� AL is close to the functional style

used in the design phase �see section ����� In particular streams stream processing

components and networks may be expressed� System descriptions in AL are still

quite abstract but already executable� They are therefore called abstract programs�

The second one � PL � is a procedural language� It comprises the classical im�

perative features like variables assignments loops etc� and additional means for

parallel programming and communication� Component networks can be repre�
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sented in PL too� Once a system is described in PL no further change of the

formalism takes place� Therefore we call PL�programs concrete�

The applicative language is deliberately chosen to ease the step from functional

descriptions �see chapter �� to abstract programs� A functional system description

consists of a number of communicating components interconnected by streams�

Technically these components are denoted by predicates that determine sets of

�continuous� stream processing functions� Streams are de�ned by �recursive�

stream equations �see section ������� On the abstract program layer components

are described in AL�syntax �here we use the keyword agent��

A The re�nement relation between functional component speci�cations

and AL component declarations is provided by the denotational seman�

tics of AL� It assigns a set of �continuous� stream processing functions to

every component declaration� Thus the notion of behaviour re�nement

introduced in section ��
 can straightforwardly applied to this situation�

Example ��	 �Re�nement of a functional speci�cation by an AL declaration��

To get an idea how a functional component speci�cation is re�ned by an AL

declaration let us look at the following speci�cation	

P 	 �N� � N
�� � B

P�f � � �g 	 P�g� � �x � N��n � N 	

f �n 	 x � � �� � n�	 g�x � � f �n 	 x � � �� � n�	 g�x ��

It corresponds to the following AL fragment	

agent P � chan nat i � chan nat o 	

o � �� � ft�i��� � ft�i��	P�rt�i��

end�

Here i is the �local� name of the input stream of P and o is the �local� name of

the output stream� The operator of �erratic� nondeterminism � admits straight�

forward context free choice between two alternatives� So every element of i is

multiplied either by � or �� �

We have already mentioned that abstract programs can be executed� Often how�

ever they are not e�cient enough� During the previous development steps ef�

�ciency aspects only played a minor role� We mainly tried to achieve a clearly

structured problem oriented solution� In the last phase however implementation

details become increasingly important� One way to obtain more e�cient solutions

is to transform applicative programs into procedural ones� In our context this

means to go from an applicative AL to a procedural PL program�

A A distributed PL program constitutes the end point of a complete de�

velopment process� The step from AL to PL programs may be carried

out by transformations�
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Transformations are correctness preserving rules that relate pieces of AL code to

�semantically equivalent� pieces of PL code� In section ��� some transformation

rules are given� For the moment we do not know whether the rules developed so far

�see �Ded���� are complete in the sense that every AL program can be translated

into a PL program� It is one of the future research topics to look for a general

strategy to guide the transformation process� If such a strategy exists then the

AL�PL transition could be automated thereby shifting the methodological exit

of a development process upward by one abstraction layer� At present neither AL

nor PL are implemented�� In the long run we plan to implement both of them� We

believe that AL and PL are in particular suitable to be implemented on parallel

distributed memory machines e�g� hypercube architectures since both languages

are based on asynchronous message passing communication� The channels of PL

can be mapped to the communication lines between the processors of the parallel

machines� Either directly �and statically� or by means of appropriate system calls

�e�g� by mailbox commands of the MMK the Munich hypercube program library

see �BL����� Dynamic networks could be tackled by load�balancing�

In the next two subsections the languages for abstract and concrete programs

are described mostly in terms of examples� Then the transformational style of

program development is explained �see �CIP��� and �CIP�
��� Some sample trans�

formation rules are given� A comprehensive treatment of these issues can be found

in �Ded���� �Bro��a� contains a case study where abstract and concrete programs

are developed for a lift control module� in �DW��� components for a protocol are

developed�

��� An Applicative Language

A An abstract program consists of a number of component declarations

and a system of equations describing their interconnection�

The paradigm underlying this representation is the same as on the previous layer

�see section ��	 a distributed system is modelled by concurrently working compo�

nents that asynchronously exchange messages over unbounded directed channels�

The syntactic framework for abstract programs is provided by the applicative lan�

guage AL� The language is derived from Ampl ��applicative multiprogramming

language�� developed in �Bro���� Conceptually it can be compared to functional

languages like Haskell �HJW���� or data�ow languages like Lucid �WA���� AL

contains means for the de�nition of stream processing functions and moreover

admits the de�nition of mutually recursive stream equations� Here is a simple

numerical AL�program	

�In fact� there exists an implementation of Ampl� a predecessor of AL� on the SUN SPARC�
station �see �Nue����� Moreover some experiments concerning the implementation of AL on a

INTEL hypercube using the Munich program library MMK are under way �see �Gor�	���
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Example ��� �A simple AL�program��

program factorial � � chan nat o 	

funct fac � nat n � nat 	 if n � � then � else n � fac�n � �� ��

agent streamfac � chan nat i � chan nat o 	

o � fac�ft �i�	 streamfac�rt �i�

end�

agent streamadd � chan nat i�� i� � chan nat o 	

o � �ft �i� � ft �i��	 streamadd�rt �i�� rt �i��

end�

o � streamfac�s��

s � streamadd��	 s� t��

t � �	 t

end factorial �

First the program name and its input and output streams are de�ned� The ex�

ample program is called factorial and has only one output stream of type nat� It

generates the stream �! �! �! ��� of all factorials in increasing order� �

In the headers of programs and components �for which the keyword agent is used�

streams are declared by means of the keyword chan� This keyword �instead of

str for instance� is motivated by the fact that streams represent communication

channels and because we want to have a common syntactic interface for both the

applicative and the procedural language �see section �����

AL is a typed language� Every data object or stream belongs to some type which

semantically means that it is an element of a particular cpo� In this sense chan nat

stands for N�  the pre�x ordered cpo of streams over N�

There is a syntactic distinction between functions mapping data objects to data

objects and components mapping data objects and�or streams to streams� Func�

tions like fac are de�ned by expressions� They may have zero or more named input

parameters and yield exactly one output� With if�then�else�� and �mutually� re�

cursive function calls the standard concepts of functional languages can be used

to de�ne them� However AL is not a higher order language so that functions and

components can not be passed as arguments or results�

A Components are modelled by �sets of� stream processing functions�

They have zero or more named input parameters and one or more output param�

eters� Therefore in component headers output parameters are named too� Any

combination of data objects and�or stream parameters are allowed as inputs but

only streams are allowed as outputs� This restriction is imposed since AL compo�

nents are intended to model system components that communicate via channels�

On the other hand admitting non�stream inputs makes programming more �exi�
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ble� The body of a component is built by equations just like the equational part

of complete programs	

agent �lter � bool b� chan bool bs� chan nat i � chan nat o 	

o � if ft �bs � b then ft �i 	�lter�b� rt �bs� rt �i�

else �lter�b� rt �bs� rt �i� �

end�

agent switch � chan bool bs� chan nat i � chan nat o�� o� 	

o� � �lter�true� bs� i��

o� � �lter�false� bs� i�

end�

Every equation has a number of stream identi�ers on the left hand side and an

expression of adequate arity and type on the right hand side� Every stream oc�

curs at most once on a left hand side	 output streams occur exactly once while

input streams never occur� Streams that are neither input nor output are called

internal � Since output streams and internal streams may appear on both the left

and the right hand sides of equations one can express sequential composition of

components as well as feedback loops� This becomes obvious if the graphical repre�

sentation of equational systems is considered� The factorial program for instance

corresponds to the following net	

������

streamadd

streamfac

� �

� �

�

�o

s

t

The component switch is graphically is represented as follows	

�lter�true� �� �� �lter�false� �� ��
� �� �

� �

bs i

o� o�

switch

The relationship between equations and nets can be made strictly formal �see

�Bro��� �Bro��b���
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A Because the body of a component can again be seen as a network

AL supports hierarchical structuring of programs� Certain components

that appear as black boxes on one layer may be re�ned as networks of

more elementary components on a lower layer� This is just distribution

re�nement as de�ned in section ��
�

Note that components are restricted from being de�ned within the body of other

components� However they can be called there� This way already �nished compo�

nents can be used for the de�nition of new ones� Two di�erent types of recursion

may be used	

� Stream recursion	 the body of a component may contain �mutually� recursive

stream de�nitions� As in the factorial �example this leads to networks with

feedback loops�

� Functional recursion	 a component may be called in its own body �see

streamfac or streamadd above�� Since this call can be unfolded arbitrary

often �during run time� this kind of recursion leads to in�nite networks�

Conceptually stream recursion can be viewed as recursion in time �a particular

component is used more than once for items that are fed back� while functional

recursion corresponds to recursion in place �functional recursive components can

be unfolded and thereby lead to a number of di�erent instances of the same compo�

nent working in parallel�� Often it is a particular development goal to transform

a functional recursive component into a stream recursive one thus replacing a

potentially in�nite network by a �nite one�

Since AL comprises the �nite choice operator � one can de�ne nondeterministic

expressions �AL��functions components and programs� The denotational seman�

tics of AL relates any of these syntactic categories to sets of continuous functions�

�
Consider� for instance� the following component declaration�

agent f � chan nat i � chan nat o �

ES

end�

Here� ES is a system of equations that may contain nondeterministic right hand sides�

The semantic mapping F gives a set of stream processing functions

Fagent f � ��� � ES end�� � N
� � N

�
�

which is taken to be the meaning of f �

This approach is consistent with functional component speci�cations� It avoids

the well�known anomalies �see �Kel
�� �BA���� that appear when a relational

semantics is used� �Such a semantics assigns relations or set valued functions to

nondeterministic declarations��
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�
Based on the semantic mapping F it is easy to de�ne when an AL component

declaration re�nes a functional component speci�cation� let

P � �Instreams � Outstreams�� B

be a component speci�cation� Then an AL component declaration p re�nes P i��

Fagent p � Instreams � Outstreams � ES end�� � ff j P�f �g�

Obviously� when going from P to p the speci�cation formalism has changed� but we

might also constrain the behaviour�

Example ��
 �The message transmission system described in AL��

The functional version of the transmitter presented in example ��� can be imme�

diately represented as an AL�component� Let

queue � M �

be the datatype of �nite streams �sequences� over M � The component transmitter

looks as follows	

agent transmitter � nat mstor � chan in i

� chan ack a� chan out o 	

�a� o� � h�mstor � h i� i�

end�

mstor is the parameter that speci�es the maximum number of messages the trans�

mitter is able to store� The auxiliary function h is de�ned below	

agent h � nat k � queue q� chan in i

� chan ack a� chan out o 	

�a� o� � if ft �i � req

then if �q � � then �y� ft �q�z � else �y� fail�z � �

else if �q � k then �ok�y� z � else �error�y� z � �

��

�y� z � � if ft �i � req

then if �q � � then h�k � rt �q� rt �i� else h�k � q� rt �i� �

else if �q � k then h�k � q � ft �i � rt �i� else h�k � q� rt �i� �

�

end�

Note that h has an additional state parameter	 q represents the queue of currently

stored messages� In each recursive call it is updated appropriately� Initially q is set

to h i which represents the empty queue� This example also demonstrates the close

relationship between state�oriented functional speci�cations and AL�components

�see example ����� In fact transmitter re�nes �in the sense de�ned above� the

functional component speci�cation Trans�� �
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��� A Procedural Language

A According to our terminology a program is called �concrete� if there is

no further re�nement necessary �in particular no rewriting into another

formalism�� Methodologically a concrete program constitutes the �nal

result of the development process� It depends on the designer �and his

customer� whether a program is considered concrete� In this section as

an example a procedural language is proposed for the representation of

concrete programs�

While on the applicative layer distributed systems were represented by stream

processing components and recursive stream equations on the procedural layer we

have procedures and channels� The procedural language PL used here comprises

the usual imperative constructs	

� variables

� assignments

� while loops

� procedural components �procedures��

Moreover it is equipped with means for communication and concurrency	

� components can be executed in parallel

� channels are used to establish directed point to point communication

� they are accessed by send and receive commands�

Let c be a channel x be a variable and E be an expression �c x and E of

compatible type�� Then c"x is the command by which the �rst element of the input

channel c is removed and assigned to x � If c is empty then the execution of c"x is

delayed until an item becomes available� This implies that the execution may be

delayed forever if that item never appears� The command c!E �rst evaluates E and

then sends the result to the output channel c� Provided that the evaluation of E

terminates c!E is never delayed� This models asynchronous communication� �Thus

the meaning of " and ! in PL should not be confused with the meaning of these

operators in CSP �see �Hoa���� where they stand for synchronous communication��

A In PL two types of components can be distinguished� The �rst type is

called sequential�

The body of a sequential component consists of a �sequential� statement sometimes

preceded by variable declarations� The procedural version of the �lter �component
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from section ��� is a sequential one�

agent �lter � bool b� chan bool bs� chan nat i � chan nat o 	

var bool x � var nat y�

loop bs"x � i"y�

if x � b then o!y else skip �

pool

end�

Here loop stat pool denotes the in�nite execution of the statement stat  i�e� a

nonterminating loop�

A Components belonging to the second type are called hierarchical or

parallel� The body of an hierarchical component consists of a number

of parallel component calls�

Syntactically these calls are represented by equations� Thus an hierarchical PL

component looks very much like an AL component	

agent switch � chan bool bs� chan nat i � chan nat o�� o� 	

i�� i� � split�i��

bs�� bs� � split�bs��

o� � �lter�true� bs�� i���

o� � �lter�false� bs�� i��

end�

Here split is an component that copies every input message to both of its output

channels� Every equation in the body of switch stands for an component call

generating a new instance of the called entity� Channel identi�ers on the right hand

sides denote input channels those on the left hand sides denote output channels�

Parallelism is expressed by simple juxtaposition of equations� Since recursion is

permitted for PL programs new channels can be introduced and dynamically

changing networks can be modelled� Here a channel identi�er occurs at most once

on the left hand side of the equations and at most once on the right hand side�

This distinguishes PL from AL where �stream� identi�ers may occur twice or more

on the right hand sides� At this point the di�erence between channels and streams

becomes obvious�

A Conceptually the �denotational� semantics of AL and PL are quite sim�

ilar� In both cases the meaning of components is described by sets of

�continuous� stream processing functions�

�
A special treatment is needed only for sequential components that are de�ned by

statements� Semantically a statement corresponds to a set of state transformations that

change the contents of its input and output channels� �see BL����� By suitable abstrac�

tion �see Ded���� every state transformation � can be related to a stream processing

function f
�
� So we obtain a coherent functional framework�
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�
The re�nement relation between AL and PL is obvious� a PL declaration q re�nes

an AL declaration p� i�

Fagent q � Instreams � Outstreams � STAT end��

�

Fagent p � Instreams � Outstreams � ES end��

The same de�nition applies if p and q are both from AL or both from PL�

On both the applicative and the procedural layer communication is asynchronous�

Channels can be viewed as unbounded bu�ers accessed by �non�blocking� send

and �blocking� receive commands� The decision to use just these two commands

facilitates the semantic de�nitions� On the other hand it restricts the expressive

power of the language� For instance a fair �non�strict� merge can not be expressed

in PL �nor in AL� see �Bro����� Obviously one can think of various enhancements

overcoming this constraint� One possibility would be to introduce a polling state�

ment that tests whether a channel is currently empty yielding true in this case and

false otherwise� Another option would be to introduce a disjunctive wait command

allowing an agent to wait for two channels at the same time taking the �rst item

that arrives� In fact both constructs can be seen as timing features� they allow

for the description of agents that show time dependent behavior� This heavily in�

�uences the semantic description� When having to choose between simplicity and

expressiveness we vote for the �rst and thus decide not to include such constructs�

Example ��� �The message transmission system described in PL��

The procedural version of the transmitter described as AL�component in the pre�

vious section looks as follows	

agent transmitter � nat mstor � chan In i

� chan ack a� chan out o 	

var in x �

var queue q 	� empty�

loop i"x �

if x � req

then if �q � � then o!ft �q� q 	� rt �q else o!fail �

else if �q � mstor then o!ok � q 	� q � x else o!error �

�

pool

end�

Note that we do not need an auxiliary component h here because we can store the

incoming messages in a variable of the type queue� The transmitter is described

as a sequential component� �
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��� Transformational Synthesis of Concrete

Programs

Program transformation is a highly formalized method of software development�

By applying only semantics preserving transformation rules �which are rules that

preserve an implementation relation or even semantical equivalence� to a given

speci�cation a program is derived that is correct by construction�

Since the early seventies various transformation calculi have been developed for se�

quential programs �see for instance �BD

� or �CIP��� an overview can be found

in �Fea�
�� but only recently has the transformational approach been applied to

concurrent programs �see �Bar��� �Bar��� �KB���a� �Old�����

In Focus transformation rules are mainly applied in the implementation phase in

order to deduce a concrete program from an abstract program� This restricted use

is due to the following reasons	

In the early development phases the planned system is described at a quite abstract

level� Many design decisions are necessary to derive more concrete representations�

Since these decisions are rather speci�c and problem dependent it will be di��

cult to �re��use standard transformation rules� Furthermore the application of

transformation rules requires a precisely de�ned syntactical frame� In Focus such

a frame is only �xed for the implementation phase� On the previous layers we

deliberately choose a more liberal style of notation �which nevertheless is strictly

formal�� At the beginning of a system development we try to achieve an ade�

quate mixture of top�down steps �development steps� and bottom�up steps �proof

steps� while on the later stages the emphasis is shifted towards the top�down�steps

conducted in the form of program transformation�

A In the sequel some basic rules for the transformation of applicative �ab�

stract� programs into procedural �concrete� ones are given� Actually

not all transformations really relate applicative components�programs

to procedural components�programs� Some of them are applied to ap�

plicative components and yield applicative components again� Method�

ologically one applies the later group of rules to a given component

de�nition until it is in a suitable form to admit the use of the �rst

group�

Every rule has the form	

I

O
C

where I and O are program fragments and C is an application condition� I is

called the the input template O is called the output template �see �Par����� A rule

is correct when O is a re�nement of I  whenever C holds�
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As described in the previous section the re�nement relation is formalized by set

inclusion� Thus a rule is correct if

C � F��O �� � F��I ���

Every transformation rule given in the sequel is correct in this sense and therefore

represents a re�nement� Correctness proofs can be found in �Ded���� Transfor�

mation rules can be applied locally i�e� to small fragments of complete programs�

Here we can again take advantage from the similarity between AL and PL�

A Although both languages are treated distinctly in the previous sections

they can be integrated into a wide spectrum language �see �CIP�����

So mixed forms become possible which nevertheless are syntactically

correct and semantically sound�

We now start with the most fundamental transformation rule relating �functional�

recursive components to iterative ones	

� rule	 recursion�to�iteration I

agent f � chan v i � chan w o 	

o � F �ft �i �	 f �rt �i�

end

agent f � chan v i � chan w o 	

var v x �

loop i"x � o!F �x � pool

end�

The form of recursion displayed by f is called tail�recursive�modulo�cons where

cons stands for the stream constructor 	 � In the realm of stream processing

this kind of recursion plays the same role that ordinary tail�recursion plays for

sequential programs �see �BW����� The above rule basically uses the fact that 	

is non�strict in its second argument i�e� E�S can partially be evaluated without

evaluating the stream expression S on the left� Operationally this means that the

�rst input item can be processed before the second one arrives thus admitting a

loop construct on the procedural layer� A lot of similar agents can be transformed

by rules like this for instance	
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� rule	 recursion�to�iteration II

agent f � u p� chan v i � chan w o 	

o � if B �p� ft �i � then F �p� ft �i �	 h i

else G�p� ft �i �	 f �T �p� ft �i �� rt �i� �

end

agent f � u p� chan v i � chan w o 	

var u x 	� p�var v y�

i"y� while �B �x � y� do

o!G�x � y�� x 	� T �x � y�� i"y

od�

o!F �x � y��

close	o

end�

Here the role of the object parameter p becomes apparent� It is used as local

variable that is updated appropriately in each cycle� The ft�rt combination of the

applicative layer corresponds to the i�y command on the procedural layer since

this assigns the �rst item of i to y and removes it�

Equationally de�ned components

agent f � chan u i � chan u o 	

s� � f��t��� ���� t�m�
��

����

sn � fn�tn�� ���� tnmn
�

end�

where o � fs�� ���� sng� ft��� ���� tnmn
g � fi � s�� ���� sng and every tij occurs exactly

once on a right hand side can immediately be seen as PL components�

Thus one can bring applicative agents into procedural form by simply transform�

ing the equations in their body� General stream expressions on the right hand

side of AL�equations must be substituted by component calls of the above type�

Various rules are necessary for this purpose �see �Ded����� They can be obtained

as particular combinations from the following basic network transformation rules	

� folding�unfolding of equations

� folding�unfolding of agent de�nitions

� introduction of auxiliary streams etc�

Due to lack of space only one rule is presented here	
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� rule	 unfolding of stream equations

agent f � chan v i � chan w o

s� � S�� ���� sk � Sk � ���� sl � Sl � ���� sn � Sn
end

agent f � chan v i � chan w o

s� � S�� ���� sk � Sk �Sl�sl �� ���� sl � Sl � ���� sn � Sn
end

Using network transformation rules only leads to quite schematic concrete pro�

grams� In particular the recursive structure of the applicative program is entirely

transferred to the procedural version� Often one wishes to avoid this for instance

to admit a static mapping of processes to processors� Then rules must be used

that realize a dynamic network on the applicative layer by a static network on the

procedural layer� This can be done by replacing functional recursion by stream

recursion� For the moment it is not clear weather this is always possible� For

special cases rules can be found in �Ded����

Once the step from AL to PL has been made further rules can be applied in order

to optimize the procedural program obtained by then� Here one can make use of

many standard transformations for procedural programs known from the sequen�

tial case� But also more speci�c rules can be applied for instance certain feedback

loops may be replaced by local variables�

In general the application of a transformation rule requires three separated activ�

ities� First a rule is chosen and �syntactically� matched with the agent�program

under consideration� Then the application conditions is checked and �nally the

rule is applied by substituting the �matched� input template by the output tem�

plate� All these activities can be supported by appropriate tools �see �CIP�
�

�KB���b��� Nevertheless transformational program development is not automatic

programming� The designer still plays an important role	 he has to check the

validity of application conditions� Furthermore although it is desirable that there

is a considerable number of prede�ned transformation rules available from time to

time he may �nd it necessary to develop new transformations appropriate for his

current problem� A complete automatic translation would be possible if we can

�nd a transformation strategy that is universally applicable� Here many questions

remain to be solved�
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Chapter �

Conclusion

Focus is not a syntactically �xed formalism but rather a collection of mathemat�

ical models logical concepts and rules centered around the idea of descriptive

functional system modelling based on the notion of streams� Much more work has

been done in this area than has been presented in the previous chapters� They

are intended to give a rather informal basic introduction to Focus� Much more

work needs to be done to explore the potentials and limitations especially from

the practical point of view�

It was the goal of this presentation to demonstrate a formal framework for the

systematic development of information processing systems�
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Glossary

Action
 Indivisible unit of activity �at the considered abstraction level��

Agent
 Component of a system modelled by a set of stream processing functions�

AL
 Applicative language for the representation of abstract programs allowing

the de�nition of streams and stream processing functions�

Algebraic speci�cation
 Property oriented speci�cation of a data structure and

related operations using axioms �mostly conditional equations��

Bottom�up step
 Development step by which a more concrete system descrip�

tion is related to more abstract one �for instance by veri�cation step��

Communication
 Exchange of messages�

Component
 Subsystem of a system	 in Focus a component communicates via

its interface with its environment� the interface is given in terms of the

input�output�behaviour of the component� In the design phase a component

is modelled by a set of stream processing functions�

Component�oriented speci�cation
 �Trace� speci�cation of a system struc�

tured into components�

Denotational semantics
 Approach to program semantics that assigns mathe�

matical objects �e�g� functions� to syntactical entities in order to describe

their meaning�

Distribution
 Spatial or conceptual decomposition of a system�

Interaction
 Causality between actions �especially send and receive actions� of

distributed system components�

Global speci�cation
 �Trace� speci�cation of the whole closed system without

explicitly referring to particular system components�
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Implementation relation
 Relation between two system descriptions one being

more abstract the other one being more concrete�

Liveness property
 Property of a system of a form that misbehaviour with re�

spect to this property cannot be �nitely observed �cannot be observed just

by looking at �nite pre�xes of a trace��

Nondeterminism
 Freedom of choice between several behaviours of a system in

an instantiation without possibility to in�uence this choice by the environ�

ment�

Network
 Collection of agents connected by communication channels�

PL
 Procedural language for the representation of concrete channels based on

imperative constructs and asynchronous channels�

Port
 Name for an input or output channel of an agent�

Process
 Instantiation �run� of a system or system component�

Re�nement
 Replacing a system description by one containing possibly more

details�

Safety property
 Property of a system of a form that misbehaviour of a system

with respect to this property can be �nitely observed �by looking at �nite

pre�xes of traces��

State
 Representation of the relevant aspects of a �nite history of a system by

some element from a mathematical set �called the state space��

Stream
 Finite or in�nite sequence of elements� used for communication channels

histories of actions by traces or histories of states of state machines�

System
 Conceptual or technical distinguished structure with a dynamic be�

haviour�

Top�down step
 Development step by which a more concrete system description

is derived from a more abstract one�

Trace
 Stream of actions modelling a process�

Transformation Technique
 Formal method of software development based on

semantics �correctness� preserving transformation rules�

Veri�cation
 Showing that a system description ful�ls its speci�cation by giving

a formal proof�
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