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Abstract

We introduce an approach for the speci�cation of abstract data types based on
temporal logic� To this end we propose a constructive speci�cation method� We
present axiom schemes to get generally monomorphic and complete models� Non�
constructive operations are de�ned as abbrevations for algorithms using construc�
tors� We show that our approach is as expressive as the classical method� Moreover
we can specify semicomputable and co�semicomputable algebras monomorphically�

� Introduction

A well known problem in the area of program development is the speci�cation and
analysis of abstract data types� On the other hand� in the last years temporal logic
emerged to be a promising formalism for the description of the behaviors of state based
systems� In this paper we want to show how temporal logic formulae may be used for
the speci�cation of data types�
In the classical viewpoint a data type is a multisorted algebra consisting of a set of carrier
sets and a set of operations on these carrier sets� One can distinguish two di�erent
methods for the speci�cation of abstract data types� In the algebraic approach a data
type is regarded as a speci�c set of models� as e�g the initial ones� for a set of formulae of
�rst�order logic or of a subset of it like equational logic� In the operational or constructive
method the carrier sets are constructed in an imperative programming language from
the therein available data� de�ning the operations as procedures� Algebraic speci�cations
are more abstract� so one can avoid overspeci�cations and veri�cation gets easier� But
they lead to several problems concerning consistency and su�cient completeness of the
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axiom sets� enrichment and extension of the data types� and the treatment of partial
functions� To avoid these problems there exist di�erent approaches to combine the
algebraic framework with an applicative language in order to get abstract and algorithmic
speci�cations� like e�g� in �Klae�	
��Loe��
 or �Mir��
�
We want to follow mainly the work of �Min��
 who has used second�order logic for
constructive speci�cations� Instead we will use the weaker temporal logic� We use it as an
algorithmic language with the usual abstract semantics� We show that in our framework
we can state general axiom schemes for a unique description of any data type� In this
sense we generalize the work of �Sza��
� who has only reached monomorphic speci�cations
for speci�c data types as e�g stacks� Similiar results as ours appear in �Merz��
 who uses
a di�erent temporal logic and a di�erent speci�cation method to characterize initial
models� We also will show that with our axiom sets the speci�cations are complete with
respect to arbitrary temporal logic formulae�
If one deals with constructive speci�cations one comes up with the problem of enrichment�
that means the de�nition of a new operation as abbrevation for a �xed algorithm in terms
of the existing operations� We will work out a method for specifying di�erent data types
which are based on the same set of objects� but contain di�erent sets of operations�
�Kro��
 has already shown that unlike in �rst�order logic in temporal logic it is possible
to de�ne e�g� multiplication in Presburger arithmetic� We will show that based on the
constructors zero and successor it is possible to de�ne any recursive function in our
framework� We also will see that our approach �ts well for the de�nition of partial
functions�
As not every data type can be described as the term algebra of a set of constructors we
will then extend our speci�cation method to capture also such types like e�g� SET � We
will show then that we can specify monomorphically any data type in our framework
which may be speci�ed by a �nite set of equations in the initial approach� This means
that focussing only on constructive operations is not really a restriction�
On the other hand we will prove that when using temporal logic the expressive power of
data speci�cations increases� Di�erently from the classical case we can state monomor�
phic and complete speci�cations for semicomputable and co�semicomputable algebras�

� Speci�cation by Constructive Extension of a Sig�

nature

��� A Temporal Language for Speci�cation

First let us recall some notions about syntax and semantics�
A signature � � �S�F� is given by a set of sorts S � fs�� ���� skg� for easier notation
S � f�� ���� kg� and a set F of function and predicate symbols� The arity of functions and
predicates is denoted by � i�� ���� in �� � � il � k and n � �� A constant symbol of sort
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i is a function symbol with arity � i �� We assume F to be sorted� F � F� � ��� � Fk�
where Fl is the set of symbols with arity � i�� ���� in �� where at least one im � l and
ij � l for all � � j � n�
A signature morphism � � � � �� is a pair � �S� �F � where �S � S � S� and
�F � F� F� are mappings� such that for any f � F with arity � i�� ���� in � the arity of
�F �f� is � �S�i��� ���� �S�in� ��

Let X be a given S�sorted set of variables� A term of sort i is a constant symbol of
sort i or a variable of sort i or a function symbol with arity � i�� ���� in��� i � applied
to arguments which are terms of the respective sorts� The set of all terms of sort i is
denoted by T��i�X� and the set of all terms by T��X�� Terms without variables are
called ground terms and the respective sets are denoted by T��i and T��

For a signature � � �S�F� a temporal logic language TL� is de�ned� The alphabet
of TL� is F with additional denumerable S�sorted sets of global and local variables ��
the �binary� equality symbol �� the boolean and temporal connectives �e�g� �� �� e�
��� quanti�ers and brackets� Atomic formulae are de�ned as usual by application of
predicate symbols or the symbol � to terms of admissible sorts� Formulae are formed
by applying the logical and temporal connectives and additional by the following two
quanti�cation rules �

���� if A is a formula and xi is a global variable of sort i then �xiA is a
formula

���� if A is a formula and ai is a local variable of sort i then �aiA is a formula�

For more details about the construction of formulae see e�g� �Kro��a
�

For a signature � � �S�F� a ��algebra A � �jAj�FA� consists of a S�sorted family of
non empty carrier sets for each sort� jAj � fjAjigi�S� and a set FA of operations and
relations� with a total operation fA � jAji� � ��� � jAjin�� � jAjin for each function
symbol f � F with arity � i�� ���in��� in � and a relation pA 	 jAji� � ���� jAjin for each
predicate symbol p � F with arity � i�� ���� in ��
The term algebra T��X�� with respect to an S�sorted set X of variables has carrier sets
jT��X�ji � T��i�X� and operations fT��X� � T��i��X� � ���� T��in���X� � T��in�X�
de�ned by fT��X��t�� ���� tn��� �� f�t�� ���� tn��� for f � F with arity � i�� ���� in � and
tr � T��ir�X�� � � r � n
 �� The algebra of ground terms T���� is then also denoted
by T��
For a ���algebra A� and a signature morphism � � � � �� the ��reduct of A�� written
A�j�� is the ��algebra with carrier set jA�j�ji � jA�j��i� for each sort i � S and fA

�j� �
��f�A

�

for each f � F�

�The sorts of the variables may usually be determined from the context or� if not� they will be
characterized by an upper index�

�For simplicity we use here again the same denotation as for the set of terms� de�ned above�
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If � 	 �� and � is the canonical injection �i�e� ��x� � x for all x � S � F� we call A�j�
the ��restriction of A� and denote it by A�j��

A temporal structure K � �A� ��W� for the language TL� is given by a ��algebra A� a
valuation � of global variables and a denumerable sequenceW � f���������g of valuations
of local variables with respect to jAj� For any i � IN� a value Ki�t� � jAj for every term
t and a truth value Ki�A� � ff � tg for every formula A is de�ned as usual �compare e�g�
�Kro��
��

Ki�x� � ��x� for any global variable x
Ki�a� � �i�a� for any local variable a
Ki�f�t�� ���� tn�� � fA�Ki�t��� ����Ki�tn��
Ki�p�t�� ���� tn�� � t� �Ki�t��� ����Ki�tn�� � pA

Ki�t� � t�� � t� Ki�t�� � Ki�t��� where t�� t� are terms of the same sort
Ki��A� � t � Ki�A� � f

Ki�A � B� � t� Ki�A� � t and Ki�B� � t

Ki� eA� � t� Ki���A� � t

Ki��A� � t�Kj�A� � t for all j � i
Ki��A� � t� Kj�A� � t for some j � i
Ki��xA� � t�K�

i�A� � t for every K� � �A� ���W� with � x �
�

Ki��aA� � t�K�
i�A� � t for every K� � �A� ��W�� with W a W

��

where the relations x and a are de�ned as follows �

� x �
� � ��z� � ���z� for every z other than x

W a W
� � �j�b� � ��j�b� for every j � � and b other than a�

Note that �A is equivalent to ���A� We also will use additional connectives and
quanti�ers as e�g� A� B or �xA like in classical logic�
A formula A is called valid in K� or K satis�es A� or K is a model for A �written as
K j� A�� if K��A� � t� K is a model for a set F of formulae �or K satis�es F � i� it is a
model for every single formula in F � A formula B is a semantic consequence of a set F
of closed formulae i� every model for F is also a model for B �written as F j� B�� We
call a ��algebra A a data model of a formula B� written A j� B� if there is a W such
that every temporal structure K � �A� ��W� with arbitrary � satis�es B�

��� Direct Extensions

A data speci�cation SP � ��� E� is given by a signature � and a set E of formulae of
TL�� We assume E to be sorted E � E�� ����Ek� where El is the set of formulae which
contains symbols from Fl and possibly symbols from Fj for j � l� but no symbols from
Fj for j � l�

De�nition � A ��algebra A is a data model of a speci�cation SP � ��� E�� if there
is W such that for all �� K � �A� ��W� satis�es E�

	



For a given data model A of a speci�cation SP we call W a valid state sequence if for
all � the structure K � �A� ��W� satis�es E�

For two ��algebras A and A� a��homomorphism � � jAj � jA�j is a family of mappings
f�i � jAji � jA�jigi�S� such that for all tr � jAjr� � � r � n� and for all function symbols
f � F with arity � i�� ���� in� i � �

�i�fA�t�� ���tn�� � fA
�

��i��t��� ���� �in�tn��

and for all predicate symbols pj � F �

�t�� ���� tn� � pAj � ��i��t��� ���� �in�tn�� � pA
�

j �

A homomorphism � is called isomorphism if it is bijective�

Lemma � Let F �x�� ���� xn� a�� ���� am� be a formula with free global variables xi and free
local variables ai and � an isomorphism between two ��algebras A and A�� Then �

K j� F �x�� ���� xn� a�� ���� am� for a � K� j� F �x�� ���� xn� a�� ���� am� for a
structure K � �A� ��W� structure K� � �A�� ���W��

with ���xi� � ����xi�� and ��j�al� � ���j�al���

Proof � Let K and K� be two temporal structures with ���xi� � ����xi�� and
��j�al� � ���j�al��� One can easily show that for every term t � ��Ki�t�� �K�

i�t�� Then
by structural induction over the formulae one may prove thatKi�G�x�� ���� xn� a�� ���� am�� �
t i�K�

i�G�x�� ���� xn� a�� ���� am�� � t for any formulaG with free global variables x�� ���� xn
and free local variables a�� ���� am� This holds especially for F �x�� ���� xn� a�� ���� am� in the
�rst state and thus the assertion follows� �

De�nition � A data speci�cation SP is called monomorphic� if all data models of SP
are isomorphic�

We construct the data speci�cations by extension of the signature and by adding further
axioms�

De�nition � Let SP� � ���� E�� and SP� � ���� E�� be two data speci�cations� If
their sorts are f�� ���� kg and f�� ��� k� k � �g� respectively� F i

� � F i
� and Ei

� � Ei
� for

� � i � k� then SP� is called direct extension of SP��

If SP is one�sorted then it may be regarded as a direct extension of the empty speci�ca�
tion which is monomorphic� as its only model consists of the empty set for the sorts and
for the operations� respectively�

De�nition � Let SP� be a direct extension of SP�� Let A� and A� be a data model of
SP� and SP�� A� is called direct extension of A� with respect to SP�� if jA�j

i � jA�j
i

and FA�

i � FA�

i for all � � i � k�
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We can show that it is enough to consider only the direct extensions of the data models
of an extended speci�cation�

Theorem � Let SP� be a direct extension of a monomorphic data speci�cation SP�

and A� a data model of SP�� If all direct extensions of A� with respect to SP� are
isomorphic� then SP� is monomorphic�

Proof � One can easily adapt the proof for the second�order logic in �Min��
 to our
framework�
Let A�� ffjAj�� ���� jAjk��g� fFi� � � i � k � �gg be any data model for SP�� Then
ffjAj�� ���� jAjkg� fFi� � � i � kgg is a model for SP� and is isomorphic to A�� As A�

is a direct extension� it has to be isomorphic to all direct extensions of A� and thus the
theorem follows� �

��� Monomorphic and Complete Speci�cations

At next we want to consider how direct extensions can be made monomorphic in a
schematic manner� Therefore the constructive approach for the speci�cation of abstract
data types is chosen� We now will treat only data types for which the intended models are
isomorphic to the term algebra of a set of function symbols� the so called free constructors�
Later on we will show how to specify monomorphically the initial model of any data type
which may be de�ned by equational speci�cation�
In the following let SP� be a monomorphic speci�cation with sorts f�� ���� kg� Let SP�

be a direct extension by a sort k � � and a set of constructor symbols which consists of
constants c�� ���� cl �l � �� of sort k � � and functions f�� ���� fm where each fj has arity
� i�� ���� ivj� ���� inj� k � � � with � � i�� ���� ivj � k and ivj�� � ��� � inj � k � � and
nj � ��
We will state three kinds of axioms or axiom schemes for the constructive de�nition of
the objects of the intended data models� First we want to restrict our models to be
term�generated with respect to the new sort� Therefore let x be a global and a be a local
variable of sort k � ��

�CONS� �x�a�a� x � ��
Wl
i�� a � ci �

��
Wl
i�� a � ci �Wm
j�� �y�����yvj�xvj������xnj ��

Vnj
r�vj��

e�a � xr� �

a � fj�y����yvj� xvj�����xnj����

where y����yvj are global variables of sort � k and xvj�����xnj are global variables of sort
k � ��

The next two axiom sets assure that two ground terms of sort k�� are only interpreted
by the same objects in a model if they are syntactically equal �We use ���� as abbrevation
for the universal closure over all free global variables� �

�



�DIS� ���� �fi�xi�� ���� xin� �� fj�yji� ���� yjn��
where fi and fj are two di�erent constructors including constants�

�ID� �����fj�x�� ���� xn� � fj�y�� ���� yn� � x� � y� � ���� xn � yn�
for every constructor function fj�

Theorem � Let SP� � ���� E�� be a direct extension with constructors of a monomor�
phic speci�cation SP� with new sort k � �� If Ek��

� is the set of the respective instances
of �CONS���DIS� and �ID� then SP� is monomorphic�

Proof � Let A� � �jA�j�F�� be a data model of SP�� From the assumptions all other
data models of SP� are isomorphic�
We de�ne the set jA�j

k�� inductively �

�� ci � jA�j
k�� for � � i � l

�� for each function symbol fj� � � j � m �
if tr � jA�j

r� � � r � vj
and tr � jA�j

k��� vj � � � r � nj
then fj�t�� ���� tnj� � jA�j

k��

Herewith we can construct an algebra A� � �jA�j � jA�j
k��� F� � fc�� ���� cl� f�� ���� fmg�

where the operations of the extended algebra are de�ned as usual on the term algebra�
Then A� is a data model of SP��
We will show � every direct extension of A� with respect to SP� is isomorphic to A��
Because of Theorem � it is su�cient to consider only this type of models�

Let A�
� � �jA�j � jA�

�j
k���F� � fc

A�

�

� � ���� c
A�

�

l � f
A�

�

� � ���� f
A�

�
m g be a data model of SP� and

direct extension of A��
We de�ne a mapping � � ���� ���� �k� �k��� from A� to A�

�
� For i � ����k� �i is the

identity on jA�j
i� for the new sort k � �� �k���ct� � c

A�

�

t and �k���fj�t�� ���� tnj�� �

f
A�

�

j ��i��t��� ���� �
inj �tnj��� Obviously � is a homomorphism� Since A�

� satis�es the
�CONS� axiom it follows that �k�� is surjective� Thus from the validity of the �DIS� and
�ID� axioms in A�

� it follows that �
k�� is bijective and therefore � is an isomorphism� �

If we compare our axioms with the work of �Min��
� we �nd that we di�er in the �CONS��
axiom� While �Min��
 uses a general induction principle� formulated in second�order
logic� we only describe the construction of valid terms for which our temporal logic
su�ces� Of course� as our �CONS� axiom restricts the set of models to reachable �or
term�generated� algebras� it should be possible to derive a term induction rule in an
adequate formal system for our logic �e�g� the one from �Kro��a
 extended with respect
to quanti�cation over local variables�� A derivation of such a term induction rule for
a di�erent temporal framework is given in �Merz��
 who uses a temporal logic with
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�exible predicates� Compared to us his axioms are declarative� since he collects the
whole intended set of objects at once� while our formulae de�ne an algorithm for how to
construct each single object� Di�erently from our constructive approach �Merz��
 does
not propose a speci�cation method� but shows how to characterize initial models� where
the temporal logic plays the role of a meta language and not of a speci�cation language�

Interesting properties of a speci�cation are consistency and completeness� In our work
the notion of consistency is the classical one and can be veri�ed by checking the existence
of a model� To deal with completeness we �rst want to de�ne our understanding of a
complete speci�cation�

De�nition � Let SP � ��� E� be a data speci�cation� We say that SP is complete i�
for every closed formula A from TL� either E j� A or E j� �A�

Theorem � Let SP� be a direct extension of a monomorphic SP� with new sort k���
If Ek��

� consists of the respective instances of �CONS���DIS� and �ID�� and there is a
data model for SP�� then SP� is complete�

Proof � In our proof we will follow the ideas from �Sza��
 and extend them to our
framework�
First we will prove that for any ���algebra A which is a data model for SP� it follows
that A is a data model of a closed formula B from TL��

i� E� j� B�
��� � From the assumptions A is a data model for E� and B� If it is not the case that
E� j� B then there exists a ���algebra A� and a temporal structure K� � �A�� ���W��
such that K� j� E� and K� j� �B� Thus A� is a data model for SP� and because
of Theorem � isomorphic to A� Then from K� j� �B we get that there exists a state
sequenceW� and a global variable valuation �� such thatK� j� �B forK� � �A� ���W���
As B is a closed formula this is in contradiction with the assumption A j� B�
��� � Since A j� E� there has to be a state sequence W such that K j� E� for
K � �A� ��W� for all �� Suppose E� j� B and A is not a data model of B� This means
there exists a �� such that K� j� �B for K� � �A� ���W�� Thus K� j� E� and K� �j� B
which means E� �j� B and contradiction is reached�

Now we are ready to prove that SP� is complete� Let A be a data model which exists
from the assumptions� Then from the above it follows for any closed formula B from
TL��

that A is a data model of B i� E� j� B� Suppose that neither E� j� B nor
E� j� �B� Thus A is not a data model of B and not of �B� which cannot be true since
B is universally closed with respect to global and local variables� �

One should note that in �rst�order logic with induction it is not possible to obtain �rst�
order complete axiomatisations of data types� We here have generalised the work of
�Sza��
 who has reached �rst�order completeness only for some speci�c speci�cations�
while we have shown how to state complete axiom sets for any data type� Since we
also have quanti�cation over local variables our speci�cations are complete not only for
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classical �rst�order formulae� but with respect to arbitrary universally closed temporal
logic formulae�

So now we are able to build monomorphic and complete speci�cations starting from the
empty speci�cation�
To specify a data type SP we will use the following notation �

abstract data type SP is

extension of �

basic sorts �

new sort �

constructors �

axioms �

Example � A speci�cation NAT of the natural numbers is given as a direct extension
of the empty speci�cation �

abstract data type NAT is

new sort � nat
constructors � � � 
� nat

s � nat 
� nat
axioms � �x�a�a� x � ��a � � ���a � � � �z� e� a � z � a � s�z����

�x � �� s�x�
�x�y s�x� � s�y�� x � y�

If we take N as the data model with jNj � IN�� the zero for � and the successor function
for s� then we have a model for NAT and we get

Lemma � The speci�cation NAT is monomorphic and complete�

Example � Next we want to extend Example � to a speci�cation SEQN for sequences
of natural numbers �

abstract data type SEQN is

extension of � NAT
basic sorts � nat
new sort � seq
constructors � empty � 
� seq

push � nat � seq 
� seq
axioms � �x�a�a� x � ��a � empty �

��a � empty � �y�z� e�a � z � a � push�y� z����
�x�y empty �� push�x� y�
�x��x��y��y��push�x�� y�� � push�x�� y��� x� � x� � y� � y���
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The name for the operation pushmay be misleading� as until now no order of the elements
is de�ned� Clearly we have a model with the set of sequences over IN� as carrier set�
with the empty sequence as constant and with the usual push�operation� thus

Lemma � The speci�cation SEQN is monomorphic and complete�

The main di�erence for the distinct data models of SEQN does not lie within the carrier
sets which are all isomorphic� but within the di�erent methods of access de�ned by
additional operations� Later on we will see� that we can extend our speci�cation SEQN

by de�ning further operations� They then may depend on what kind of ouput behaviour
is required as e�g� stacks or queues�

� Extension by De�nitions

��� Adding Predicate Symbols

Until now we have de�ned a new data type as a direct extension of an existing data
type with free constructors as only operations� Normally in applications one wants more
complex operations to access the data elements� These additional operations will be
speci�ed by de�nition� so that the underlying theory of a speci�cation is not changed�

De�nition � Let SP� � ���� E�� be a data speci�cation� A speci�cation SP� � ���� E��
is called extension by de�nitions� if F� � F��fp�� ���� psg for a set of new predicate sym�
bols with arity � i�� ���� inj �� nj � �� for each pj � and E� � E� �E�� where E� is the set
of formulae

�x�����xnj �pj�x�� ���� xnj�� Fj�x�� ���xnj��

for every predicate symbol pj with xr global variables of sort ir and Fj�x�� ���� xnj� is a
formula from TL��

�

Now let us deal with the construction of data models for the extended signature�

De�nition 	 Let SP� be an extension by de�nitions of SP� with new predicate symbols
fp�� ���� psg� Let A� be a data model of SP� and W a corresponding valid state sequence�
We de�ne a ���algebra A� � �jA�j�F

A
� � as extension by de�nitions of A� with respect

to SP� by

jA�j � jA�j

FA� � FA� � fp
A�

� � ���� pA�

s g

where for � � j � s � pA�

j 	 jAji� � ���� jAjinj

with �d�� ���� dnj� � pA�

j � K��Fj�x�� ���� xnj�� � t for
every temporal structure K � �A�� ��W�
with ��xr� � dr� � � r � nj�

��



Lemma � Let SP� be an extension by de�nitions of SP�� A ���algebra A� is a data
model for SP� i� A� is an extension by de�nitions with respect to SP� of a data model
for SP��

Proof � ��� Let A� be a data model for SP�� Let A� nfp
A�

� � ���� pA�

s g be the restriction
without the new relations for fp�� ���psg� Clearly A� n fp

A�

� � ���� pA�

s g has to be a data
model for SP� and A� is an extension by de�nitions of it�
��� follows from the de�nition above� �

As by an extension by de�nitions nothing really �new� is added to the speci�cation the
following theorem holds�

Theorem � Let SP� be an extension by de�nitions of a monomorphic and complete
speci�cation SP�� then SP� is monomorphic and complete�

Proof � Let A� and A�
� be two data models for SP�� From the assumptions there is an

isomorphism � from A� to A�
�� Let A� and A�

� be respective extensions by de�nitions�
Because of Lemma 	 it su�ces to consider only such models� We only have to show that�

�d�� ���� dnj� � pA�

j � ���t��� ���� ��tnj�� � pA�
�

j �

From the de�nition it holds that �d�� ���� dnj� � pA�

j i� K j� Fj�x�� ���� xnj� for every
K � �A�� ��W�� where W is a valid state sequence and ��xr� � dr for � � r � nj� By
application of Lemma � and again by the de�nition we can prove the assertion�
Also the question of validity of a SP��formula can be reduced to the question of validity
of a SP��formula and therefore the completeness follows� �

If we extend our speci�cations by new de�nitions� sometimes we want the new predicates
to represent functions�� To express this� we will use the additional quanti�er �� as
abbrevation for

��x F �x� � �x F �x� � �x�y �F �x� � F �y�� x � y��

So if we have an extension by de�nitions with new predicates fp�� ���� psg we say a predi�
cate pj describes a total function if the following formula is a theorem in the speci�cation�

�x�����xnj����y pj�x�� ���� xnj��� y��

As notational convention we will use in the following the additional construct

de�ned operations �

to denote the new predicates�

�It is only for technical simplicity that we do not allow the extension by de�nition of new functions�
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��� Natural Numbers

Now let us carry on with the data type NAT� In �Hil�	
 it is shown that the function
of addition can not be de�ned in NAT in �rst�order logic� The same is valid for the
multiplication in the so called Presburger arithmetic� While �Min��
 has de�ned them in
second�order logic� �Kro��
 has shown that this is already possible in temporal logic� We
will recall these last de�nitions and add some additional interesting predicates �or func�
tions� as examples� Therefore we comprise several extension steps in the one following
speci�cation� �

abstract data type NATP is

extension of � NAT
basic sorts � nat
de�ned operations � add � nat � nat � nat

mult � nat � nat � nat
sub � nat � nat � nat
leq � nat � nat
fac � nat � nat
div � nat � nat � nat

axioms � add�x� y� z� � �a�b�a � � � b � y �
���a � x� z � b� �

�a �� x� �u�v�a� u � b � v �
e�a � s�u� � b � s�v������

mult�x�y�z� � �a�b�a � � � b � � �
���a � x� z � b� �

�a �� x� �u�v�a� u � b � v �
e�a � s�u� � add�y� v� b������

sub�x�y�z� � �a�b�a � � � b � x �
���a � y� z � b� �

�a �� y� �u�v�a� u � b � v �
e�a � s�u� ��v �� �� s�b� � v�

��v � �� b � �������
leq�x�y� � sub�x�y�	�
fac�x�y� � �a�b�a � � � b � � �

���a � x� b � y� �
�a �� x� �u�v�a� u � b � v �

e�a � s�u� � �u � �� b � v�
� �a �� �� mult�u� v� b�������

div�x�y�z� � �a�a � � �
��u�v��a� v �mult�s�v�� y� u���

���leq�u� x�� z � v�

�We will always omitt the universal quanti�ers in front of the de�nition formulae�
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� �leq�u� x�� ea � s�v����
� ��u�mult�s�a�� y� u�� leq�x� u����

In the axioms a and b are local variables� all other variables are global� In �Kro��
 it
is shown that add and mult describe a total function� the same proof holds for sub and
fac�
The predicate div describes a partial function� since div�x���z� is false for any x and
z� We can observe at this example� that it is easy to de�ne partial functions in our
framework� They do not ful�ll the requirement for total functions� but the following
weaker formula �

�x�����xnj����y pj�x�� ���� xnj��� y�� ��y pj�x�� ���� xnj��� y���

If we interpret our temporal logic formulae algorithmically� we may say that if a partial
function gets an argument for which it is unde�ned� it loops forever and will never satisfy
the termination criteria of the respective �sometimes��formula�

So now that we have de�ned some elementary functions for the natural numbers it
may be interesting to �nd out what class of functions is de�nable in our framework�
Thus we want to compare the expressivity of our approach with others� e�g� �Loe��
 or
�Klae�	
 who have used recursive or primitive recursive program schemes for constructive
speci�cations�

Lemma � Let SP be an extension by de�nition of NAT with a function symbol h �
natn � nat� It is possible to de�ne in a monomorphically and complete extension of SP
the ��recursion �h � natn � nat for h such that

�h�x�� ���� xn� � minfm j h�x�� ���� xn���m� � xng

Proof � We will extend SP by a new predicate �h � natn�� with the following de�nition�

�h�x�� ���� xn� z�� �a �a � � �
� �h�x�� ���� xn��� a� � xn � z � a �

h�x�� ���� xn��� a� �� xn � �u �a � u��a � s�u��� �
�h�x�� ���� xn��� a� � xn�

We will argue informally that �h modells �h�
It is easy to see that a takes as values the numbers �� s���� s�s�������� until the �rst
number m is reached such that h�x�� ���� xn���m� � xn� Thus m is the minimum� When
the minimum is found the value of a is unique and thus �h ful�lls the requirement of
functionality� If the minimum does not exist then the predicate is false for any natural
number� because the �sometimes��formula can�t be satis�ed� Thus we have speci�ed a
partial function� �

Lemma � Let SP be an extension by de�nitions of NAT with total function symbols
f � natn � nat and h � natn�� � nat� It is possible to extend SP by de�ning the
primitive recursive function g � natn�� � nat satisfying
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g�x�� ���� xn� �� � f�x�� ���� xn�
g�x�� ���� xn�m� �� � h�x�� ���� xn�m� g�x�� ���� xn�m��

for all global variables xi and m of sort nat�

Proof � We will extend SP by a new predicate gpr � natn�� as follows

gpr�x�� ���� xn�m� z�� �a�b �a � � � b � f�x�� ���� xn� �
� �a � m� z � b �

a �� m� �u�v �a � u � b � v �
��a � s�u� � b � h�x�� ���� xn� u� v�����

First we want to prove that gpr describes a total function� Let A be a data model
for SP and K � �A� ��W� a model for the axioms of SP� We construct a structure
K� � �A� ���W�� with � z �

� and W a�b W
� such that K� j� gpr�x�� ���� xn�m� z� and

the value ���z� is unique� We de�ne the sequence of states inductively by �

����a� � � and ����b� � fA���x��� ���� ��xn���
and for all i � ��
if ��i�a� � ��m� then ��j�a� � ��i�a� and ��j�b� � ��i�b� for every j � i�
else let ��i���a� � sA���i�a�� and
��i���b� � hA���x��� ���� ��xn�� ��i�a�� �

�
i�b�� � d� where d is a unique element of

jAj�

Because of Lemma � there is a smallest k such that ��k�a� � ��m�� If we �x the unique
value ���z� � ��k�b� then we get the desired property�
Now we can de�ne a total function g � natn�� � nat for which the above equations are
valid by

g�x�� ���� xn�m� � z � gpr�x�� ���� xn�m� z��

To argue informally again� let us observe the consecutive values of the local variables a
and b �for simplicity we will use �x instead of x�� ���xn�

a � � � � �
b � f��x� h��x� �� f��x�� h��x� �� h��x� �� f��x��� h��x� �� h��������

and we see from the values of b which are the results of g��x� a�� that the above equations
are satis�ed� �

Hence for the question of expressivity we get the following result�

Theorem � Let SP be an extension by de�nitions of NAT� Every recursive function in
SP is de�nable�

For example if we look at the speci�cation NATP we see that add is de�ned by primitive
recursion where f is the identity on nat and h�x� y� z� � s�z��

�	



��� Stacks and Queues

We have already de�ned the data type SEQN above� Now we want to show how we can
extend the speci�cation so that we get some more complex operations for the sort seq�

abstract data type SEQUN is

extension of � SEQN

basic sorts � nat� seq
de�ned operations �isempty � seq

in � seq � nat
length � seq � nat
reverse � seq � seq
conc � seq � seq � seq

axioms � isempty�s� � s � empty
in�s� x� � �a�a � s �

���isempty�a� �
�u �a � u �

���v �u � push�x� v�� � e�y�u � push�y� a���
� ��v�u � push�x� v�� � e a � u����

length�s�m�� �a�b�a � s� b � � �
���isempty�a�� m � b� �

��isempty�a��
�u�v �a � u � b � v �

e��y�u � push�y� a��� b � s�v������
reverse�s� t�� �a�b�a � s � b � empty �

���isempty�a�� t � b� �
��isempty�a��
�u�v�a� u � b � v �

e�x�u � push�x� a� � b � push�x� v������
conc�s� t� r� � �a�b�reverse�s� a�� b � t �

���isempty�a�� r � b� �
��isempty�a��
�u�v�a� u � b � v �

e�x�u � push�x� a� � b � push�x� v������

Until now we have no operations which allow reading access to our objects of sort seq�
Therefore we can de�ne di�erent behaviours for them� For example we may allow to
read any element for which the predicate in is true� More common are the two strategies
which are known as LIFO or FIFO� which mean that we can only read the last input
element or only the �rst input element� So next we will specify as extension of SEQUN

the data type of stacks of natural numbers�
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abstract data type STACK is

extends � SEQUN

basic sorts � nat� seq
de�ned operations � top � seq � nat

pop � seq � seq
axioms � top�s� x� � �r �s � push�x� r��

pop�s� t� � �x �s � push�x� t��

This data type is characterised by the property that one can always output only the
last input element� which is a LIFO behaviour� Next we want to show that based on
the same data type SEQUN we can specify by extension by de�nitions the data type of
queues of natural numbers which follows a FIFO behaviour�

abstract data type QUEUE is

extends � SEQUN

basic sorts � nat� seq
de�ned operations � first � seq � nat

rest � seq � seq
axioms � first�q� x�� �a�a � q � �isempty�a� �

���isempty�a��
�u �a � u ����y �u � push�y� empty���

e�y �u � push�y� a��� �
�y �u � push�y� empty��� y � x����

rest�q� r�� �a�b�a � q � b � empty � �isempty�a� �
���isempty�a� �
�u�v�a� u � b � v �

��x�u � push�x� empty��� reverse�b� r�� �
���x�u � push�x� empty���
e�x�u � push�x� a� � b � push�x� v������

Note that first and rest describe partial functions which are not de�ned for the empty
sequence in the �rst argument�
We also may now de�ne the abstract data type DEQUE� which allows access from both
ends of the sequence� as extension of STACK with e�g� the de�nition of first �

first�q� x�� �r �reverse�q� r�� top�r� x���

� Expressiveness

Up to now we have built speci�cations by using constructors such that there is an isomor�
phism between the term algebra and every other data model� This is a strong requirement
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and we will not always �nd a data model for our set of axioms� or� the other way round�
given a speci�c data model it may be impossible to �nd su�cient free constructor func�
tions� For example let us regard the sets of natural numbers� To build them from the
empty set we need a constructor function to insert elements in a set� This may be the
operation push like in the data typ SEQN � But then we are in trouble� because we
would need an axiom like

�x�s �push�x� push�x� s�� � push�x� s��

which con�icts with the �ID� axiom� since we might deduce then that every set is equal
to the empty set which is certainly not a desired property and is in contradiction to the
�DIS��axiom� The above shows that the �ID� axiom is too strong because it requires
equality� There are di�erent approaches in the literature to solve this problem� like e�g�
the semantic constructions in �Loe��
� We will again follow the approach of �Min��

which provides a solution for a further class of data models� Later on we will see� that
then we are as expressive as the classical approach�

Let SP� be a direct extension of SP� with new sort k��� such that all the non�constant
constructor functions fj have arity� i�� ���� inj� k�� � with nj � � and � � i�� ���� inj � k�
so we have no arguments of sort k��� In this case the set of new constant symbols may
be empty� Now we will replace the axiom scheme �ID� by the new axiom scheme

�ID�� �����fj�x�� ���� xnj� � fj�y�� ���� ynj�� Aj�x�� ���� xnj� y�� ���� ynj���

where each Aj is a formula which satis�es the following conditions �

���� Aj�x�� ���� xnj� x�� ���� xnj�
���� Aj�x�� ���� xnj� y�� ���� ynj�� Aj�y�� ���� ynj� x�� ���� xnj�
����Aj�x�� ���� xnj� y�� ���� ynj��Aj�y�� ���� ynj� z�� ���� znj�� Aj�x�� ���� xnj� z�� ���� znj��

As we have now special kind of constructor functions we can also simplify the �CONS��
axiom to �

�CONS�� �x�
Wl
i�� x � ci �

Wm
j�� �y�����ynj x � fj�y�� ���� ynj���

In our new axiomsets no temporal operator appears anymore� This means that for
this restricted class of data types the classical �rst�order logic is su�cient to specify
monomorphism and completeness�

Theorem � Let SP� � ��� E� be a direct extension of a monomorphic SP�� such that
the new sort k � � appears not in the arguments of the constructors� If Ek�� is the set
of the respective instances of �CONS
�� ��DIS� and �ID
� then SP� is monomorphic�

Proof � Let A� be a data model for SP� and the ��algebra A� be de�ned in the same
way like in the proof for Theorem �	� With the Aj we can de�ne a binary relation Rj on

jA�j
k�� by �

�It appears that in this case the de�nition of the carrier set for the new sort k � � is not inductiv�
That is why we do not need temporal logic for the 	CONS
�axiom�
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ciRjck � ci � ck
fj�x�� ���� xnj�Rjfj�y�� ���� ynj�� Aj�x�� ���� xnj� y�� ���� ynj�
fi�x�� ���� xni�Rjfi�y�� ���� yni�� fi�x�� ���� xni� � fi�y�� ���� yni�� for i �� j�

From the conditions on the Aj it follows that this is an equivalence relation� With Qr

denoting the identity relation on jA�j
r for � � r � k we can construct a congruence

relation 	j � fQr � � � r � kg � fRjg on jA�j� Then also 	 �
Sm
j�� 	j is a congruence

relation� Herewith we get a ��algebra� the quotient term algebra A�
	� by taking the
congruence classes of respective sort of 	 in A� as carrier sets� i�e� jA�
	ji � f�d
�� d �
jA�jig and de�ning the operations fA�����d�
�� ���� �dn
�� �� �fA��d�� ���� dn�
� for every
f � F with arity � i�� ���� in �� It is easy to see that the quotient algebra A�
	 satis�es
the axioms �CONS����DIS� and �ID��� Thus A�
	 is a model for SP�� By the same
isomorphism as de�ned in Theorem � we can prove that all other models of SP� are
isomorphic to it� �

In addition it is obviously that with the new axiomsets nothing is changed with respect
to the completeness of a speci�cation�

So now we are ready to specify the abstract data type SET in our framework� We will
join therefore the direct extension of SEQUN and the following extension by de�nitions
in one speci�cation�

abstract data type SET is

extension of � SEQUN

basic sorts � nat� seq
new sort � set
constructors � makeset � seq� set
de�ned operations � isempty � set

insert � set� nat� set
delete � set� nat� set
member � set� nat
subset � set� set

axioms � �sset�qseq �sset � makeset�qseq��
�pseq�qseq�makeset�pseq� � makeset�qseq� �

�nnat�in�pseq� nnat�� in�qseq� nnat���

isempty�s�� s � makeset�empty�
insert�s� n� t�� �q�s � makeset�q�� t � makeset�push�q� n���
delete�s� n� t�� �a�b�a � s � isempty�b���isempty�a� �

���isempty�a�� t � b� �
��isempty�a��
�v�u�m�insert�u�m�a�� b � v �

e�a � u � �m � n� b � v� �

��



�m �� n� insert�v�m� b������
member�s� n�� �q�s � makeset�q�� in�q� n��
subset�s� t�� �a�a � s ��isempty�a� �

��v�u�n�a � v � insert�u� n� v� �
��member�t� n�� ea � v� �
�member�t� n�� ea � u����

where a and b are local variables of type set� p and q are global variables of type seq� m
and n are global variables of type nat and the rest are global variables of type set�

Next we want to show that our conditions placed on the speci�cations are not really
restricting� The proof uses similiar constructions like in the work of �Merz��
�

Theorem 	 Let A be a ��algebra� If there exists a speci�cation for A with a �nite
set of equations in the initial semantic framework� then in our constructive framework
with temporal logic formulae there exists a monomorphic and complete speci�cation for
A using direct extension and extension by de�nitions�

Proof � Let A be a ��algebra� For simplicity we may assume � to be one�sorted�
Thus A consists of a carrier set jAj and a set of operations FA � ffA� � ���� f

A

mg� Let
SPEC � ��� E� be the speci�cation� where E � fsi � tij� � i � ng is a �nite set of
equations� such that every initial algebra of SPEC is isomorph to A�
Now let � � �fsg� fc�� ���� ck� f�� ���� fmg� where each fj� for � � j � m� has arity
� s� ���� s� �z �
nj�times

� s �� We de�ne a signatur �� � �fs�g� fc��� ���� c
�
k� f

�
�� ���� f

�
mg� where each op�

eration symbol f �i has arity � s�� ���� s�� �z �
nj�times

� s� ��

From each equation si � ti in E we construct the terms s�i and t
�
i by replacing the symbols

of � with the primed symbols of �� and letting the variables run over the sort s��
Now let us choose every constant and operation symbol of �� as a constructor� Thus�
as shown in Theorem � and Theorem �� with the respective instances of the axioms
�CONS���DIS� and �ID� we get a monomorphic and complete speci�cation SP�� A data
model for SP� is the term algebra of ���
In the next step we extend the speci�cation SP� by the de�nition of a new predicate
eqpE � s� � s�� Intuitively the predicate is true for two primed terms i� it is possible
to deduce the equality of the unprimed terms from the axioms of E in the equational
calculus� The de�nition of eqpE is as follows �

eqpE�x� y�� �a�b�a � x � b � y � ���a � b � �
Wn
i�� a � s�i � b � t�i�� �

��a � b � �
Wn
i�� a � s�i � b � t�i� �

�p�q� a � p � b � q �
� e��a � q � b � p� �
�z� e��a � p � b � z� � e��a � z � b � q�� �
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Wm
j�� �x�����xnj�y�����ynj

�
Vnj
r��� e��a � xr � b � yr��p � f �j�x�� ���� xnj�

�q � f �j�y�� ���� ynj������

If we look at the de�nition of eqpE we see that in the �rst state the values of the local
variables a and b are equal to x and y� In every state the values of a and b are identical
or they are equal to the left and right side of one of the primed axioms or their values
may be obtained by applying one of the rules of symmetry� transitivity or substitutivity
to some succeeding values of themselves� Thus we have for one state that the equality of
the values for a and b is deducible if it is in each following state� As from a certain state
on the values of a and b are constant and deducibly equal� the predicate eqpE is true for
all x and y for which the equality is deducible from primed E in the equational calculus�
The other way round it is clear that if the equality of two terms of sort s� is deducible
from the primed axioms of E� then there exists a deduction� such that the reverse of
it may be simulated by a state sequence of two local variables� beginning in the �rst
state with the values of the two terms and from one state on the local variables are
permanently equal to the left and right side of one of the premises of the deduction�
Thus we have

eqpE�x�� y��� E �EQ x � y

where EQ denotes a complete deduction system for the equational calculus �see e�g�
�Ehr��
 or �Wir��
��
Obviously eqpE is an equivalence relation� The new speci�cation with the predicate eqpE
is denoted by SP�� Now we de�ne a direct extension SP� of SP� with new sort s and
the only free constructor makes � s

� � s� As axioms we take the respective instances of
the formulae in Theorem � �

�x�x��x � makes�x���
�x��y��makes�x�� � makes�y��� eqpE�x�� y���

If we further extend SP� by additional operations fj which are de�ned by

fj�x�� ���� xnj� � y� �z������z
�
nj
�
Vnj
i�� xi � makes�z�i�� y � makes�f �j�z

�
�� ���� z

�
nj
���

we get a monomorphic and complete speci�cation SP��
It is easy to see that for every data model A� of SP� its restriction A�j� is isomorphic
to the quotient term algebra T�
 �E� where �E is the congruence relation induced by
E� And as T�
 �E is initial for SPEC� for every data model A� of SP� its restriction
A�j� is isomorphic to A� Thus we have a complete and monomorphic speci�cation for
A� �

��



� Computability of Algebras

In �Wir��
 it is shown� that in �rst�order logic all models of a monomorphic speci�cation
are computable and that the class of initial �terminal� models of a speci�cation is semi�
computable �co�semicomputable�� Similiar to Theorem � we will now show that in our
approach we may specify semicomputable and co�semicomputable algebras monomorphi�
cally� This demonstrates the greater expressive power of temporal logic for speci�cation
of data types�
To prove our next theorem we �rst have to recall some notions about computability of
algebras �see also �Wir��
�� For a signature � a ��algebra is called a number algebra if its
carrier sets are recursive subsets of the set IN� of the natural numbers� A coordinatization
of a ��algebra A is a pair � C� � �� where C is a number algebra of signature � and
� � C � A an epimorphism� For any sensible signature � �i�e� which admits at least
one ground term for each sort� exists a bijective coordinatization � C�� v � of the term
algebra� i�e� with an isomorphism v � C� � T� and a �xed number algebra C��
For any ��algebra A� the associated ��congruence �A	 T� �T� is de�ned by �

t �A t� � tA � t�A�

Then A is isomorphic to the quotient term algebra T�
 �A�

To characterize the classes of ��algebras we will use a theorem from �Wir��
�

Theorem 
 Let A be a ��algebra with associated ��congruence �A� Then the following
properties are equivalent �
��� A is computable� semicomputable or co�semicomputable respectively
��� �A is recursive� recursively enumerable or co�recursively enumerable respectively�

The computability notions of algebras are invariant under isomorphism�

We now can state an assertion about the speci�ability of number algebras

Lemma 	 Let C be a one�sorted recursive number algebra with carrier set IN� and
signature � �� fnatg�F �� Then C has a monomorphic and complete speci�cation
which is an extension by de�nitions of NAT with additional function symbols F � F��
where F� is a set of auxiliary function symbols�

Proof � The algebra C consists of the carrier�set IN� and of recursive functions fC �
INk

� � IN� for every f � natk � nat in F� In Theorem � we have shown that every
recursive function is de�nable in an extension by de�nitions of NAT � For every recursive
function symbol f � F let Af be the de�ning formula for the recursive function fC� In
Af we may need auxiliary function symbols for the de�nition of f � Then we denote by
Ef the set of formulae� which consists of Af and the de�ning formulae for the auxiliary
function symbols occuring in Af � Also let Ff be the union of f with the set of the
auxiliary function symbols occuring in Af � Then we de�ne
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abstract data type SPC is

extension of � NAT
basic sorts � nat
de�ned operations

S
fFf jf � Fg

axioms �
S
fEf jf � Fg�

As NAT is monomorphic and complete then because of Theorem 	 SPC is monomorphic
and complete� For every model A of SPC the ��restriction Aj� is isomorphic to C� �

Lemma 
 Let � � � fsg�F � be a one�sorted signature and let FN � ffN � natk �
natjf � sk � s � Fg be the set of function symbols from F with an upper index N
and ranging over nat� There exists a monomorphic and complete speci�cation SP with
signature �SP which is an extension by de�nitions of NAT with additional function
symbols FN �F� where F� is a set of auxilliary function symbols� such that the recursive
number algebra C� which is associated with T� is embedded in any model A of SP� i�e�
C�

�� Ajin where in � � � �SP is de�ned by in�s� � nat and in�f� � fN for each
f � F�

Proof � C� is a one�sorted recursive number algebra� Thus it su�ces to apply Lemma
� and to take the appropriate speci�cation SPC�

for SP� �

Theorem � Let� be a �nite signature and let A be a��algebra� IfA is semicomputable
or co�semicomputable� then in temporal logic there exists a monomorphic and complete
speci�cation SP such that for every data model ASP of SP the ��restriction ASPj� is
isomorphic to A�

Proof � W�l�o�g� we may assume that � is one�sorted� i�e� � � � fsg�F �� For � exists
a bijective coordinatization � C�� v �� According to Lemma � C� can be embedded in
a monomorphic and complete speci�cation SPC�

�
Let at �rst A be a semicomputable ��algebra� Then �A is recursively enumerable� i�e�
the relation �v de�ned by

i �v j � v�i� �A v�j� for i� j � IN�

is recursively enumerable� Thus we can choose primitive recursive functions gA� hA �
IN� � IN� to enumerate it� so that �v� f�gA�x�� hA�x��jx � IN�g� Hence we have that
fv�gA�x�� � v�hA�x��jx � IN�g is the set of ground equations which hold in T�
 �A�
Let g� h � nat� nat be the function symbols corresponding to gA and hA� According
to Theorem 	 and Lemma � gA and hA admit a �nite set Eg � Eh of de�ning axioms�
where the axioms for the auxilary functions occuring in the de�nitions of gA and hA are
included� We then may state a speci�cation
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abstract data type SP� is

extension of � SPC�

basic sort � nat
de�ned operations � Fg � Fh

axioms � Eg � Eh

which is monomorphic and complete�
Next we de�ne a direct extension of SP� with new sort s� and a set F� of constructor
functions which is the primed version of F with respective arity for each symbol in F�
�see proof for Theorem ��� For this new speci�cation SP� we take for the axiom set E�

the respective instances of the axiom schemes �CONS�� �DIS� and �ID� from Theorem
�� Then SP� is monomorphic and complete�
Now we extend SP� by the de�nition of a new predicate � � nat� s� with the following
axiom �

��n� d�� �a�b�a � n � b � d �
�
Wl
i�����a � cNi � b � c�i�� �

�
Vl
i����a � cNi � b � c�i� �Vm

j�� �x�����xnj�a � fNj �x�� ���� xnj� �
�y�����ynj�b � f �j�y�� ���� ynj� �Vnj

r��
e��a � xr � b � yr�����

The predicate � in this speci�cation SP� de�nes the bijective mapping v � IN� � T��
Similiar like in the proof for Theorem � we can introduce a single constructor function
makes � s� � s which maps the objects of the term algebra to the objects of the
intended quotient term algebra� Then we get a further speci�cation

abstract data type SP� is

extension of � SP�

basic sorts � nat� s�

new sort � s
constructors � makes � s� � s
axioms � �x�x��x � makes�x���

�x��y� �makes�x�� � makes�y�� �
�znat ����g�z�� x�� � ��h�z�� y��� � ���h�z�� x�� � ��g�z�� y����

That the right side of the equivalence in the second axiom de�nes an equivalence relation
follows then from the properties of the functions gA� hA and v�
In the last step we extend our speci�cation to de�ne the functions from F by the following
set of axioms

�����f�x�� ���� xn� � y � �z������z
�
n �

Vn
i��xi � makes�z

�
i� �

y � makes�f �j�z
�
�� ���� z

�
n����

��



with which we obtain the speci�cation SP� As in every step the monomorphism and the
completeness of the speci�cation is preserved and for every data model A� of SP the ��
restriction is isomorphic to T�
 �A� we have a monomorphic and complete speci�cation
for A�

Now let A be a co�semicomputable algebra� Then the complement ��A of �A is recur�
sively enumerable� i�e� the relation

i ��v j � v�i� ��A v�j� for i� j � IN�

is recursively enumerable� Again then we can choose primitive recursive functions gA�
hA � IN� � IN� so that fv�gA�x�� �� v�hA�x�jx � IN�g is the set of ground inequations
which are valid in T�
 �A�
Just as above we then can construct a speci�cation SP� with the de�nitions of the
functions gA� hA and �� which again we extend by a function makes � s� � s where we
now substitute the second axiom by the following �

�x��y� �makes�x�� � makes�y�� �
��z ����g�z�� x�� � ��h�z�� y��� � ���h�z�� x�� � ��g�z�� y�����

The right side of the equivalence then describes an equivalence relation�
By extending this speci�cation similiar to the proof above with the de�nitions of the
functions from F we get a monomorphic and complete speci�cation for which the ��
restriction of every data model is isomorphic to T�
 �A and therefore to A� �

� Conclusion

We have shown that with our constructive speci�cation method with temporal logic
formulae as axioms� we are at least as expressive as equational speci�cations with initial
semantics� By an appropriate extension of the predicate eqpE it may be easily seen� that
our proof above also holds for speci�cations using horn clauses� A major drawback of
our approach may be that proving in our incomplete logic will be much more complex
than in the classical case� But we have shown that we are able to state general applicable
axiom schemes� which allow us to specify the monomorphism and the completeness of
a data type without using any meta assumptions� And we have proven that we may
specify semicomputable and co�semicomputable data types monomorphically� In this
sense the expressive power of temporal logic for speci�cation of data types is stronger
than that of classical �rst�order logic� We also have seen� that temporal logic is powerful
enough to de�ne additional� even partial� operations without changing the underlying
set of objects�
Our speci�cations combine two interesting features� First they are abstract� using axioms
written in a formal logical language� But some of these formulae may also be interpreted
algorithmically� It should not be too di�cult to extract programs in an imperative
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language from our temporal logic axioms� And as research proceeds in executing directly
temporal logic formulae� our speci�cations may also be regarded yet as an implementation
in a high level programming language �
Temporal logic is often used for the description of parallel behaviours� In an integrated
approach of �Kro��b
 it is suggested to use temporal logic as logical language for the
speci�cation of the data types and as description language for valid state sequences of
parallel systems� The here presented work shall be a further step in the analysis of the
potentiality of such an approach� where arbitrary temporal logic formulae may be used
for the speci�cation of data types�
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