
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Using Protocol Buffers for
Resource-Constrained Distributed

Embedded Systems

Wolfgang Schwitzer
Vlad Popa

TUM-I1120
November 11

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-11-11-I20-300/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2011

Druck: Institut für Informatik der
Technischen Universität München

Abstract

Protocol Buffers are a widely used, robust and efficient data interchange for-

mat contributed and maintained by Google. Specifications of custom messages,

fields and enumerations are comfortably defined in the Proto language and then

compiled to a large variety of target programming languages like C++, Java and

Python. This makes Protocol Buffers an excellent choice when heterogeneous sys-

tem platforms and programming environments have to communicate with each

other. In this paper, we present our compiler Protobuf-Embedded-C that gener-

ates C as target language. This compiler generates lean and self-contained C-code

for resource-constrained, distributed and embedded real-time systems. We imple-

mented this new compiler from scratch, because an alternative Protocol Buffers

compiler targeting at resource-constrained and real-time systems was not available

at the moment of writing. We discuss the features and architecture of this com-

piler that accepts a subset of the Proto language and give an outline of possible

future extensions. To show the practicability, we present a successful application

of generated Protobuf-Embedded-C code for an E-Energy-Grid demonstrator, de-

veloped together with a major German power supplier during the national research

joint-project SPES2020.

This document refers to Protobuf-Embedded-C version 1.0M1 (protoc-0.1.jar).

2

Contents

1 Introduction 4

2 Quick Start Guide 6

3 Supported Protocol Buffers Features 10

4 Compiler Architecture 12

5 Quality Assurance and Test Automation 14

6 Case Example: The E-Energy-Grid Demonstrator 16

7 Future Work 19

8 Concluding Remarks 20

List of Figures 21

References 22

3

1 Introduction

This paper describes the application of Google’s Protocol Buffers [1] as data interchange

format for resource-constrained, distributed and embedded real-time systems. We discuss

the development of a compiler [2] that accepts a subset of the features of the Proto language

and generates lean and self-contained C-code. In this paper, we give an overview of the ar-

chitecture and features of this compiler and describe the successful use of generated Protocol

Buffers code within the research project SPES2020 [3] for an E-Energy-Grid demonstrator.

Protocol Buffers. Protocol Buffers [1] are an efficient, robust and comfortable to use seri-

alization method originally developed by Google. Data structures like messages, fields and

enumerations are defined in a “.proto” file written in the so-called Proto language. These

data structure definitions are read by a compiler and translated to a target programming

language. The source code generated by this compiler allows to read and write the defined

data structures. A variety of target programming languages is supported by different com-

pilers. Currently, the core Protocol Buffers implementation by Google supports the target

programming languages C++, Java and Python.

Why another Generator for C? The code generated for C++, Java and Python depends

on libraries that require several 100 kilobytes of memory and for Java and Python, an

additional runtime environment or an interpreter is usually required on the target device.

Other implementations for the C language with an extensive support of features do exist

already (see [4], for example). For some embedded devices with only a view kilobytes of

memory, the libraries used by these implementations might be too memory-consuming. If

you have to program such a resource-constrained embedded controller in the C language and

you only need to use a very reduced number of features of Protocol Buffers, then Protobuf-

Embedded-C might be an adequate tool for you. This document presents our Protocol

Buffers generator called Protobuf-Embedded-C, which is suitable for resource-constrained

embedded applications written in the C programming language. The following requirements

drive the development of Protobuf-Embedded-C:

1. Generated C-code runs on low-power and low-memory embedded controllers.

2. Generated C-code runs on real-time systems with static memory allocation.

3. Code is completely generated, so it is self-contained (no libraries on the target device).

4. API is easy to learn and (where possible) close to the concepts of the original Protocol

Buffers implementations by Google.

4

Please note, that the requirements above imply a quite reduced functionality. For exam-

ple, unbounded repeated fields and strings with unbounded length do not match well with

requirement (2). However, we believe that the API provided by Protobuf-Embedded-C is

still powerful enough to get most of the basic Protocol Buffers communication jobs done.

Typical usage scenarios of Protobuf-Embedded-C. Figure 1 illustrates two typical usage

scenarios of Protobuf-Embedded-C. In the scenario depicted in figure 1(a), a general pur-

pose desktop- or server-system communicates with resource constrained embedded systems,

using Google’s C++, Java and Python compiler on the desktop-/server-side and Protobuf-

Embedded-C on the embedded side. In the scenario depicted in figure 1(b), a number of

embedded systems communicate directly with each other, using Protobuf-Embedded-C.

Proto-File

Resource-Constrained
Embedded System

Desktop-/Server-
System

Google’s Compiler for
C++, Java, Python

Protobuf-Embedded-C

Protocol Buffers
Binary Wire Format

(a)

Proto-File

Resource-Constrained
Embedded System

Resource-Constrained
Embedded System

Protobuf-Embedded-C

Protocol Buffers
Binary Wire Format

(b)

Figure 1: Typical usage scenarios of Protobuf-Embedded-C: (a) connect desktop- or
server-systems with embedded systems; (b) connect several embedded sys-
tems directly to each other.

Outline of this paper. This paper is organized as follows. Section 2 presents a quick intro-

duction for Protobuf-Embedded-C users. Section 3 describes the list of features supported so

far. This section is followed by a presentation and overview of the internal architecture and

implementation of the Protobuf-Embedded-C compiler in section 4. The automated testing

procedure of these features and the quality assurance aspect of Protobuf-Embedded-C is

explained in section 5. Afterwards, section 6 presents how Protobuf-Embedded-C has been

successfully integrated in an E-Energy-Grid demonstrator as a case example. Planned and

optional future extensions are sketched in section 7. Finally, this paper concludes with some

remarks in section 8.

5

2 Quick Start Guide

This section is a quick start guide for using Protobuf-Embedded-C, which covers the follow-

ing basic topics:

1. Downloading and using the compiler.

2. Understanding the generated API.

3. Using the generated API.

We follow a small running example adapted from the original “phone number example” on

Google’s Protocol Buffers site [1].

Download the compiler and compile a first example. Download the most recent version

of the “protoc-<version>.jar”-file from the Downloads section of the Protobuf-Embedded-C

project-site [2]. At the time of writing, this is “protoc-0.1.jar”, which is ready to be executed

on the command line as a Java-archive. Suppose there is a “phone.proto”-file that looks

like this:

1 // F i l e : phone . proto

2 // Optional Embedded C i n t e r n a l opt ions :

3 // @max repeated length=100

4 // @max str ing length=32

6 enum PhoneType {
7 MOBILE = 0 ;

8 HOME = 1 ;

9 WORK = 2 ;

10 }

12 message PhoneNumber {
13 repeated int32 number = 1 ;

14 required string person = 2 ;

15 required PhoneType type = 3 ;

16 }

This example solely servers the purpose of demonstrating the key features of Protobuf-

Embedded-C. A “real” application would use a much more elaborate data model, of course.

To generate the C-code that allows for reading and writing “PhoneNumbers”, the following

command line needs to be executed with Java (1.6+), while protoc-0.1.jar and phone.proto

need to be in path:

6

1 java −j a r protoc −0.1 . j a r phone . proto

Understanding the generated API. Now, the files phone.c and phone.h are generated

next to phone.proto, where phone.h provides you with the API to deal with PhoneNumber

messages:

1 /∗ Excerpt from generated f i l e : phone . h ∗/

3 #define MAX REPEATED LEN 100

4 #define MAX STRING LEN 32

6 enum PhoneType {
7 MOBILE = 0 ,

8 HOME = 1 ,

9 WORK = 2

10 } ;

12 /∗ Maximum s i z e o f a s e r i a l i z e d PhoneNumber−message , u s e f u l

13 f o r b u f f e r a l l o c a t i o n . ∗/
14 #define MAX PhoneNumber SIZE 1240

16 /∗ Struc ture that ho lds d e s e r i a l i z e d PhoneNumber−message . ∗/
17 struct PhoneNumber {
18 int number repeated len ;

19 signed long number [MAX REPEATED LEN] ;

20 int p e r s o n l e n ;

21 char person [MAX STRING LEN] ;

22 enum PhoneType type ;

23 } ;

25 int PhoneNumber write de l imited to (struct PhoneNumber

26 ∗ PhoneNumber , void ∗ b u f f e r , int o f f s e t) ;

28 int PhoneNumber read del imited from (void ∗ b u f f e r ,

29 struct PhoneNumber ∗ PhoneNumber ,

30 int o f f s e t) ;

In line 14 of phone.h the maximum size of the serialized message is defined. It is computed

internally with the help of MAX REPEATED LEN and MAX STRING LEN which are

defined in the annotations at the beginning (lines 3, 4) of the phone.proto file. For example,

this size is useful for static allocation of buffers, which could contain the specified messages.

In our example, a size of 1240 bytes to store a phone number seems to be quite large, so you

can experiment with reducing the maximum length of repeated fields from 100 to a lower

number in line 3 of phone.proto. Please note, that this maximum size, which is calculated

7

for each message, is just the “worst-case” and the sizes of transmitted serialized messages

are often significantly smaller, due to the Protocol Buffers packed binary format.

The following structure PhoneNumber holds the deserialized message. The variables

number repeated len and person len contain the number of elements in the array number

and person. Hence, number repeated len ≤ MAX REPEATED LEN and person len ≤
MAX STRING LEN must hold.

Using the generated API. For each message M two methods, M write delimited to and

M read delimited from, are generated. In this case

PhoneNumber write delimited to writes a struct of type PhoneNumber into a buffer

starting at a given offset and

PhoneNumber read delimited from reads a struct of type PhoneNumber from a buffer

starting at a given offset.

The following code fragment shows an example of how these methods can be used:

1 #include <s t d i o . h>

2 #include ”phone . h”

4 // the maximum number o f phone numbers that can be r e c e i v e d

5 #define PNUMBER SIZE 256

7 stat ic struct PhoneNumber pnumber [PNUMBER SIZE] ;

8 stat ic int count = 0 ;

10 // read a l l PhoneNumber messages from b u f f e r r e a d

11 void read (void ∗ b u f f e r r e a d) {
12 int o l d o f f s e t = 0 , o f f s e t = 0 ;

14 while (∗ ((char∗) b u f f e r r e a d + o f f s e t) != 0) {
15 o f f s e t = PhoneNumber read del imited from (

16 b u f f e r r e a d ,

17 &pnumber [count ++],

18 o l d o f f s e t) ;

19 o l d o f f s e t = o f f s e t ;

20 }
21 }

23 // p r in t a l l PhoneNumber messages

24 void pr in t () {
25 int i , j ;

27 for (i = 0 ; i < count ; ++ i) {

8

28 p r i n t f (” number repeated len : %d\n” ,

29 pnumber [i] . number repeated len) ;

30 for (j = 0 ; j < pnumber [i] . number repeated len ;

31 ++ j) {
32 p r i n t f (”%ld ” , pnumber [i] . number [j]) ;

33 }

35 p r i n t f (”\ n p e r so n l e n : %d\n” ,

36 pnumber [i] . p e r s o n l e n) ;

37 for (j = 0 ; j < pnumber [i] . p e r s o n l e n ; ++ j) {
38 p r i n t f (”%c” , pnumber [i] . pe r son [j]) ;

39 }

41 p r i n t f (”\nPhone Type : %d\n” , pnumber [i] . type) ;

42 }
43 }

45 // wr i t e a l l PhoneNumber messages to b u f f e r w r i t e

46 void wr i t e (void ∗ b u f f e r w r i t e) {
47 int i , o l d o f f s e t = 0 , o f f s e t = 0 ;

49 for (i = 0 ; i < count ; ++ i) {
50 o f f s e t = PhoneNumber write de l imited to(&pnumber [i] ,

51 b u f f e r w r i t e , o l d o f f s e t) ;

52 o l d o f f s e t = o f f s e t ;

53 }
54 }

9

3 Supported Protocol Buffers Features

Protobuf-Embedded-C supports several core features of the original Proto language. Some of

the features are not supported, because they do not match with the design goal of statically

bounded buffer allocation (unbounded repeated messages or string lengths, for example).

Some other features like the support of all data types and optional fields are missing in the

first version and are scheduled to be implemented in future releases.

Currently supported features of the Proto language. The so-called Proto language is used

in “.proto” files to describe the structure of messages, exchanged in the Protocol Buffers

binary format. For an extensive documentation of the Proto language, please visit Google’s

Protocol Buffers homepage [1]. The following paragraphs summarize the language features

supported in Protobuf-Embedded-C version 1.0M1 and give a BNF-like [5] formalization of

the syntax, where appropriate:

Enumerations: an enumeration is introduced by the keyword enum followed by a unique enu-

meration identifier and a list of enumeration elements. The identifier of an enumeration

element as well as its integer index must be unique within the defining enumeration.

A valid index is an integer number within a range of [0 . . . 127]:

enumDecl ::= enum id { enumElement ∗ }

enumElement ::= id = index ;

Messages: a message is introduced by the keyword message followed by a unique message

identifier and a list of message elements. The identifier of a message element as well

as its integer tag must be unique within the defining message. Valid tags are integer

numbers within a range of [1 . . . 4095]:

messageDecl ::= message id { messageElement ∗ }

messageElement ::= modifier (type | id) id = tag ;

Modifiers: the modifiers required and repeated are supported at the moment. The mod-

ifier optional is scheduled for a future release:

modifier ::= required | repeated

Elementary types: the elementary types float, int32, bool and string are supported at

10

the moment. More extensive support of data types is scheduled for future releases:

type ::= float | int32 | bool | string

Custom types: if a message element is defined using the identifier of a user defined type

instead of an elementary type (id instead of type), solely references to enumerations are

supported at the moment. Support of references to other messages or the containing

message itself (recursive definition) are scheduled for future releases.

Additional embedded-related features. Two additional language features, which are re-

lated to resource-constrained embedded systems, are introduced by the Protobuf-Embedded-

C compiler. The maximum length of repeated message elements and the maximum length

of strings can be constrained globally by using the declarations

//@max repeated length and

//@max string length.

An example of how to use these declarations is found in the code block on page 6 in lines

3 and 4. Note, that both declarations are planned to be available locally for each field in

future releases.

Some notes on currently unsupported features. Two major features of the original Pro-

tocol Buffers compiler are currently not supported. First, compilation and generation of

services with remote procedure calls is not supported. Second, compilation of packages and

name resolution using multiple “.proto” files is not supported. Though service oriented

architectures for resource-constrained embedded applications would be an exciting feature

to add, first investigations showed that this could be quite complex to implement with re-

spect to Protobuf-Embedded-C’s design goals. Further research is necessary, to find out

whether a subset of the Protocol Buffers’s service and remote procedure call functionality

can effectively and efficiently be realized in self-contained C-code for resource-constrained

embedded systems.

11

4 Compiler Architecture

Protobuf-Embedded-C’s compiler generates C-code, nevertheless, it is mainly written in the

Java programming language. Large parts of the compiler’s code are automatically generated

by using the parser generator ANTLR [6, 7]. The output of files in the target language C is

driven by the template language StringTemplate [8]. Actually, the main file “Protoc.java”,

which starts and coordinates the different compiler stages, has only about 100 lines of code.

This section explains the architecture of Protobuf-Embedded-C’s compiler and is especially

interesting from a developer’s point of view.

The ANTLR parser generator. ANTLR is a popular parser generator, which is available

and continuously maintained since many years [7]. ANTLR is well documented [6] and gen-

erates robust and efficient lexer- and parser-implementations. These lexers and parsers can

be generated in several languages, including Java, which is the main programming language

we use for Protobuf-Embedded-C. As a remark concerning language theory, ANTLR gener-

ates parsers that can recognize languages belonging to the LL(∗) class of grammars, which

is sufficient for many practical languages and so it is for recognizing the Proto language.

•Grammar:
 Proto.g

• Inputs:
 Source “.proto”-File

•Outputs:
 AST

Lexical and
Syntactic Analysis

•Grammar:
 ConstraintChecker.g

• Inputs:
 AST

•Outputs:
 AST
 Semantic errors

Semantic Analysis
•Grammar:

 EmbeddedCGen.g

• Inputs:
 AST
 embedded-c-file.stg
 embedded-h-file.stg

•Outputs:
 Target “.c” & “.h” files

Target Code
Emission

Proto-File

“.c”-File “.h”-File

Figure 2: The compiler pipeline architecture and its stages.

Compiler pipeline architecture. A recent feature of ANTLR is its ability to construct

modular staged compilers. In this approach, stages work directly on the initially parsed

abstract syntax tree (AST), which is then recognized by so-called tree grammars. We de-

cided to employ this modular staged compiler architecture for Protobuf-Embedded-C, using

12

three separate stages for the different tasks lexical and syntactic analysis, semantic analysis

and target code emission. This modular compiler pipeline architecture is shown in figure

2. Each stage of the compiler is specified in a dedicated “.g” grammar specification file.

First, the abstract syntax tree is parsed by a combined lexical and syntactic analysis stage.

Subsequently, the semantic analysis stage and the code emission stage are specified by tree

grammars that directly operate on the abstract syntax tree.

Lexical and syntactic analysis. The lexical and syntactic analysis recognizes the Proto

language, which is defined in the grammar file “Proto.g”. Supported grammar rules of

this language are explained in section 3. Input to the lexical and syntactic analysis is a

“.proto”-file and the output is an abstract syntax tree of this file.

Semantic analysis. Semantic analysis is defined in the grammar file “ConstraintChecker.g”.

The semantic analysis checks namespace and integer range constraints. For example, the

names of enumerations and messages must be unique within one “.proto”-file and tags of

fields in messages must be within a range of [1 . . . 4095]. Input to the semantic analysis is

an abstract syntax tree and the outputs are semantic error messages if any errors are found.

Target code emission. Target code emission is defined in the grammar file “Embedded-

CGen.g”. In this last stage of the compiler, the “.c” and “.h” files are generated and

written out. Input to this stage is an abstract syntax tree, which drives the execution of

several templates, defined in the two template files “embedded-c-file.stg” and “embedded-

h-file.stg”. Outputs of this stage are the respective “.c” and “.h” implementation- and

header-files, which contain the read- and write-code for messages specified in the original

“.proto”-file.

13

5 Quality Assurance and Test Automation

As communication protocols are crucial for the stability of distributed applications, we

believe that having a wide test case coverage by automated test generation and execution is

crucial for the quality of the Protobuf-Embedded-C compiler. Therefore, we use automated

“in-the-loop” testing, which covers an extensive set of equivalence class tests, robustness

tests and a high amount of randomized tests.

Java-Pack

Java-Program

Java-Unpack

C-Unpack C-Pack

C-Program

Packed Message
File F1

Message
.properties

Packed Message
File F2

Message

Figure 3: A message on its way along the testing loop.

Test setup. In the testing phase we verify the correctness of results produced by Protobuf-

Embedded-C with the help of Google’s Java Protocol Buffers compiler as a reference im-

plementation. At the beginning of a test case, a message is packed and written to a file F1,

using the generated code of the Java compiler. Subsequently, generated C-code of Protobuf-

Embedded-C unpacks the message stored in file F1 and writes down its interpreted contents

in a “.properties”-file. In a following step, the C-code packs the message again and writes

it to a file F2. Finally, the contents of file F2 are unpacked by the Java generated program.

Now, the Java program is able to compare the original message with the unpacked message

of F2 and the message stored in the “.properties”-file. Figure 3 schematically shows the way

of a message along this testing loop. In each such testing loop, two conditions are verified:

14

The C-program sees the same message as the Java-program. This is tested with the

help of the “.properties”-file.

The Java-program finally receives the same message which has been initially sent.

A typical test run. A complete test run executes the following test cases:

For each supported data type (int32, string, bool, float, enum) each possible combina-

tion is tested (equivalence class tests).

All supported data types are tested again with 1000 random tests.

The repeated feature of all supported data types is evaluated by 1000 tests of random

messages.

The testing of 100 messages without the “repeated” modifier packed in a single buffer.

The testing of 100 messages with the “repeated” modifier packed in a single buffer.

The results of a typical test run on a Intel(R) Core(TM)2 Duo CPU with 2.4GHz can be

seen in picture 4. A testing cycle with 100 messages in one buffer takes somewhere between

0.1s and 0.2s. The equivalence class tests contain 360 individual testing loop executions,

which are executed in a total of ≈ 30s. Additional 1000 testing loops with random messages

take a total of ≈ 79s.

Figure 4: A typical test run is executing several thousands of single test cases and takes
more than three minutes.

Conclusion. Quality with respect to functional correctness and robustness is an important

aspect of a protocol compiler like Protobuf-Embedded-C. We plan to make integration

tests with a wider range of embedded platforms. This means the generated C-code will be

tested “in-the-loop” on different embedded controllers. For example, Protobuf-Embedded-C

has been tested for an ARM Cortex M3 CPU in the “E-Energy-Grid Demonstrator” case

example presented in section 6.

15

6 Case Example: The E-Energy-Grid Demonstrator

In this section we show a practical application of Protobuf-Embedded-C. We employ Proto-

col Buffers as wire format over TCP/IP in an E-Energy-Grid demonstrator which was build

during the SPES2020 research project [3]. On the one hand, this demonstrator simulates a

number of interactive clients that represent volatile energy producers and consumers. On

the other hand, this demonstrator is connected with a so-called E-Energy Server. This

server constantly collects data from the consumers and producers, minimizes the cost in a

linear inequation system (based on collected data and business database information) and

sends commands for the resulting optimal energy-mix to the clients. Each of the simulated

clients is running on a C-programmed ARM Cortex M3 platform [9] having less than 40KB

statically allocatable memory per device. In contrast, the server is running on a standard

x86-based and Java-programmed PC with several GB of memory.

Figure 5: The SPES2020 E-Energy Grid Demonstrator.

SPES2020 and the E-Energy-Grid demonstrator. The national research joint-project

SPES2020 “Software Platform Embedded Systems 2020” is dedicated to software and sys-

tems engineering for embedded systems from the industrial domains automation, automo-

tive, avionics, energy and medical technology [3]. Within the energy domain, the SWM (a

major German power supplier) together with the Technische Universität München developed

an E-Energy-Grid control concept, based on a combination of distributed embedded software

systems and a central business-logic server. In this concept, it is the server’s responsibility

16

to calculate a minimum cost energy-mix for the grid, so that the energy that is consumed

and produced during the next 15 minutes remains in balance. To show the practicability

of this concept, we built a demonstrator that simulates a small-scale E-Energy-Grid as de-

picted in figure 5. This demonstrator simulates two kinds of energy consumers (households

and e-cars) and four kinds of distributed energy producers (photo-voltaics, wind-turbines,

bio-gas plants and block thermal power stations). The consumers and producers constantly

exchange monitoring and control messages with the server. We decided to use Protocol

Buffers as communication protocol “on the wire” between these quite different classes of

systems and programming environments. Note, that we deliberately did not use protocols

like e.g. IEC 61870-5-104 (virtual power plant automation) here.

Figure 6: ARM Cortex M3-based embedded controller with touchscreen.

Distributed ARM Cortex M3 microcontrollers. The consumers and producers are sim-

ulated by ARM Cortex M3 microcontrollers, each connected to a small touchscreen for

visualization and interactive user input as shown in figure 6. A standard ethernet network

connection with a 100 MBit/s switch and TCP/IP transport protocol is used. With this

system configuration, each controller has less than 40KB of memory available for application

use. We use static memory allocation and static data structure sizes to guarantee a worst

case execution time for the simulated consumer’s or producer’s local control loop. This is

an example where it is important for Protobuf-Embedded-C to generate code that can be

used in the context of static memory allocation and statically bounded buffer sizes.

Application of Protobuf-Embedded-C. Figure 7 shows the topology of the demonstrator’s

switched ethernet network. Note, that the depicted model in figure 7 is a rather coarse-grain

17

ARM Cortex
M3 MCU

ARM Cortex
M3 MCU

ARM Cortex
M3 MCU

ARM Cortex
M3 MCU

ARM Cortex
M3 MCU

ARM Cortex
M3 MCU

Ethernet Switch
100 Mbit/s

Server (x86-based)

Eclipse Frontend

Touchscreen Touchscreen Touchscreen

Touchscreen Touchscreen Touchscreen

DB Backend
Wire Format:

Protocol Buffers
over TCP/IP

Internet Protobuf-Embedded-C

Protobuf (--java_out)

Figure 7: Switched ethernet network topology.

abstraction of the system’s technical architecture (compare to [10]). Each of the six ARM

Cortex M3 MCUs (inside the gray dashed box on the left hand side) is connected directly

to a switch by a standard ethernet cable with RJ45 sockets. The x86-based server PC is

connected to the switch as well. In this scenario, the same “.proto” file is re-used to

generate C-code for the ARM controllers with Protobuf-Embedded-C and to

generate Java-code for the server with Google’s standard protoc compiler.

Whenever we needed to add fields to the transmitted messages during development of the

demonstrator, this could conveniently be done by changing the “.proto”-file once and re-

generating the protocol code for the different platforms subsequently.

Conclusion. We re-used the same “.proto”-file to generate C-code for the embedded con-

trollers with Protobuf-Embedded-C and to generate Java-code for the server system with

Google’s standard protoc compiler. This allowed for flexible modifications of the protocol

during the development phase. We were able to tune the sizes of messages by evaluating

the resulting “MAX” message size constants in the generated code (see section 2). The

generated C-code was compact and required only a few kilobytes of memory on the em-

bedded client side. In the course of the project, we steadily increased the coverage of our

automated test-suite for Protobuf-Embedded-C (see section 5). Finally, the E-Energy-Grid

demonstrator could run for several hours, exchanging thousands of messages packed and

unpacked by Protobuf-Embedded-C and Google’s Java implementation, without observable

errors caused by the generated protocols.

18

7 Future Work

At the moment of writing, Protobuf-Embedded-C is published as version 1.0, Milestone 1.

This first version offers some basic features of the original Protocol Buffers implementation,

yet still some important or convenient features are missing. Depending on feedback from

users of Protobuf-Embedded-C, the most pressing feature extensions are summarized in this

section.

Supporting more data types. More data types such as: double, bytes, int32, uint32,

uint64, fixed32 and fixed64 will be supported beginning with 1.0M2. Note that depending

on the embedded platform, floating point operations (especially on 64bit double fields) might

be emulated and can be comparatively inefficient.

Supporting optional fields. The “optional” modifier is planned to be available beginning

with 1.0M3. This feature also makes it necessary to implement the “default” values of

optional fields.

Supporting a maximum repeated length and string length per field. In the current

version of Protobuf-Embedded-C the “max repeated len” and “max string len” annotations

globally define the maximum allowed length for all repeated fields and strings. We plan to

make this more customizable on a per-field base, as repeated fields and strings may strongly

vary in maximum length. This improvement, which is planned for 1.0M3, allows for refined

tuning of maximum message sizes for static buffer allocation.

Platform specific testing procedure. The current testing procedure is presented in sec-

tion 5. It is basically an integration test of Protobuf-Embedded-C with Google’s Protocol

Buffers Java implementation, both executed on a x86 platform. In future versions, the test

automation of Protobuf-Embedded-C will include integration tests with a wider range of

platforms. Because of the different architectures and tool-chains, the same generated code

may produce various (and sometimes unexpected) outputs on different microcontrollers.

Providing an error handling API. Future versions should include an interrupt-safe error

handling API to signal runtime errors during read- or write-operations.

Leaner compiler binary. The compiler binary “protoc-0.1.jar” has a size of about 1.8

MB, which can be reduced significantly in future versions by including only those parts of

ANTLR, that are actually used by the compiler.

19

8 Concluding Remarks

We developed Protobuf-Embedded-C during the research project SPES2020 from scratch,

because no suitable implementation for the C programming language that would run on

our ARM Cortex M3 based systems was available. At the moment of writing, Protobuf-

Embedded-C is available as the first milestone of version 1.0, which is just the first publica-

tion of source code under the Apache 2 license. Within a few weeks, Protobuf-Embedded-C

1.0M1 has been downloaded more than 50 times.

Design goals and trade-offs. On the one hand, it sounds exciting to use such a powerful

communication infrastructure as Google Protocol Buffers on tiny embedded devices. On the

other hand, the limitations of these tiny embedded devices (e.g. available memory, static

memory management, real-time-constraints) make many features of Protocol Buffers at least

challenging or even impossible to implement. It is ongoing research, how close Protobuf-

Embedded-C can get to resource-constrained embedded services in a future version.

Practicability. Though many features of Google’s original Protocol Buffers are not imple-

mented yet, Protobuf-Embedded-C has proven its practicability for basic communication

jobs on embedded controllers, which have only a few kilobytes of memory available. The

application of Protobuf-Embedded-C in a heterogeneous platform environment is shown

in the E-Energy-Grid demonstrator case example in section 6 of this document. In the

meantime, embedded developers around the world begin to report the successful use of

Protobuf-Embedded-C in their embedded applications.

Acknowledgement

The authors thank Martin Feilkas for developing and supporting the idea of “using a well-

known, stable, easy to maintain and efficient” protocol on the wire in the SPES2020 demon-

strator. The authors also thank Andreas Wandinger for his great support and feedback

during the testing and debugging phase on the ARM Cortex M3 controllers. We also thank

the embedded developers around the world, which have sent very constructive and positive

feedback on Protobuf-Embedded-C to us since publication at Google code. Please note that

this work was partially funded by the German Federal Ministry of Education and Research

(BMBF), grant SPES2020, 01IS08045A.

Disclaimer

Note that any (registered) trademarks used in this document like Google, ARM, TI, Intel

and others belong to their respective owners.

20

List of Figures

1 Typical usage scenarios of Protobuf-Embedded-C. 5

2 The compiler pipeline architecture and its stages. 12

3 A message on its way along the testing loop. 14

4 A typical test run is executing several thousands of single test cases and takes

more than three minutes. 15

5 The SPES2020 E-Energy Grid Demonstrator. 16

6 ARM Cortex M3-based embedded controller with touchscreen. 17

7 Switched ethernet network topology. 18

21

References

[1] Google, “protobuf – Protocol Buffers – Google’s data interchange format – Google

Project Hosting.” http://code.google.com/p/protobuf/, 2011. [Online; accessed 29-

September-2011].

[2] W. Schwitzer, V. Popa, and M. Feilkas, “protobuf-embedded-c – Protocol Buffers for

Resource Constrained Embedded C Applications – Google Project Hosting.” http:

//code.google.com/p/protobuf-embedded-c/, 2011. [Online; accessed 29-September-

2011].

[3] Technische Universität München, “SPES2020 – Software Plattform Embedded Sys-

tems 2020.” http://spes2020.informatik.tu-muenchen.de/, 2011. [Online; accessed 29-

September-2011].

[4] Protobuf-C Authors, “protobuf-c – C bindings for Google’s Protocol Buffers – Google

Project Hosting.” http://code.google.com/p/protobuf-c/, 2011. [Online; accessed 04-

November-2011].

[5] Wikipedia, “Backus–Naur Form – Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Backus%E2%80%93Naur Form, 2011. [Online; accessed 16-

November-2011].

[6] T. Parr, The definitive ANTLR reference: building domain-specific languages. Prag-

matic Bookshelf Series, Pragmatic, 2007.

[7] T. Parr, “ANTLR Parser Generator.” http://www.antlr.org/, 2011. [Online; accessed

29-September-2011].

[8] T. Parr, “StringTemplate Template Engine.” http://www.stringtemplate.org/, 2011.

[Online; accessed 29-September-2011].

[9] ARM, “Cortex-M3 Processor – ARM.” http://www.arm.com/products/processors/

cortex-m/cortex-m3.php, 2011. [Online; accessed 30-September-2011].

[10] J. Thyssen, D. Ratiu, W. Schwitzer, A. Harhurin, M. Feilkas, and E. Thaden, “A system

for seamless abstraction layers for model-based development of embedded software,” in

Software Engineering (Workshops), pp. 137–148, 2010.

22

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf-embedded-c/
http://code.google.com/p/protobuf-embedded-c/
http://spes2020.informatik.tu-muenchen.de/
http://code.google.com/p/protobuf-c/
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
http://www.antlr.org/
http://www.stringtemplate.org/
http://www.arm.com/products/processors/cortex-m/cortex-m3.php
http://www.arm.com/products/processors/cortex-m/cortex-m3.php

	Introduction
	Quick Start Guide
	Supported Protocol Buffers Features
	Compiler Architecture
	Quality Assurance and Test Automation
	Case Example: The E-Energy-Grid Demonstrator
	Future Work
	Concluding Remarks
	List of Figures
	References

