
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Selected Topics in Software Quality

Stefan Wagner, Florian Deissenboeck, Benjamin Hummel,
Elmar Juergens, Benedikt Mas y Parareda, Bernhard Schaetz

(Eds.)

TUM-I0824
Juli 08

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-07-I0824-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut für Informatik der
Technischen Universität München

Preliminaries

Software quality is a make-or-break criterion for acceptance and success of soft-
ware systems. Therefore, developers have to pay great attention to performance,
stability and the long-term cost efficiency of software systems. Key to achieve
these attributes is a high software quality. However, even the term ”software
quality” itself is highly disputed and no broadly accepted definition exists. At
the same time, it is clear that achieving this elusive goal is one of the greatest
challenges in software enigneering and that due to its multi-faceted nature, all
activities exercised as part of a development effort need to contribute to achieve
high quality software.

This report offers insight into selected aspects in the field of software quality.
All of the topics are active fields of research and innovative ideas and results are
shown. The report is a result of the master seminar ”Software Quality” at the
Technische Universität München. To ensure practical relevance, the seminar was
carried out in collaboration with itestra GmbH.

July 2008 Stefan Wagner, Florian Deisenboeck, Benjamin Hummel,
Elmar Juergens, Benedikt Mas y Parareda, Bernhard Schaetz

Supervisors of the seminar

Table of Contents

Quality Requirements . 1
Christian Viezens

Detection and Fixing of Model Inconsistencies . 19
Frieder Pankratz

Model-Based Testing . 35
Philip Preissing

Cost/Benefit-Aspects of Software Quality Assurance 65
Marc Giombetti

Process Quality . 88
Christina Katz

Sustainable Change in Organizations . 107
Stefan Puchner

Quality Requirements

Christian Viezens

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
viezens@in.tum.de

Abstract. To assure quality of a software product the fundamental step
in the engineering processes is the elicitation and specification of quality
requirements that the product must meet. Correct and complete elicited
and clearly formalized quality requirements are the base of the prod-
uct’s quality verification. Furthermore, the specification of quality re-
quirements saves time and cost and is much more efficient then adjusting
the characteristics of software product features during design, implemen-
tation or further phases of the product life cycle. The later in the software
development process missing or conflicting quality requirements are de-
tected the more expensive it will be to fix it. This paper focuses on the
need of completely elicited, documented and measurable quality require-
ments. As quality models are a widely applied way of defining quality, a
short introduction in those models is shown and the spectrum of practical
quality requirements engineering approaches discussed in the literature
for finding, eliciting and formalizing quality requirements is highlighted.
Subsequently, four of the most interesting and cited practical approaches
are presented in more detail. The characteristics and differences of those
four approaches are discussed and finally concluded.

1 Introduction

Quality is an essential need in high critical software systems like embedded flight
control systems. Furthermore, it is a key differentiator between a software prod-
uct and its competitor products. However, it is a very hard challenge to assure
quality in todays software systems because on the one hand software system’s
size, lifetime and complexity is continuously growing and on the other hand there
is often not much flexibility to deadlines and budget. This implies a need for reli-
able, systematical and methodical software engineering concerning quality. Since
quality is very complex and very hard to achieve this is big challenge. One pos-
sibility to meet this challenge is to define quality models which can be used as
a common terminology for quality. Based on these models a subsequent step
in the engineering process is to specify the quality requirements the products
must meet. Without a well-defined set of quality requirements, software projects
are vulnerable to failure [1]. Using quality requirements in software engineering
gives a common terminology for software and requirement engineers to talk with
stakeholders like users about the desired quality aspects of the product from the

2 Christian Viezens

outset. As the quality requirements in sum are the specific product quality that
has to be reached, they are a mighty tool for quality measurement and assur-
ance. Once they are elicited and clearly specified, they can be measured during
the whole development process. However, the are the following questions. What
exactly are quality requirements? Are they comparable to functional require-
ments (FR) or non-functional requirements (NFR) and how can a requirement
engineer identify and elicit them? Is there a practical and standardized way to
specify them so that they are measurable?

1.1 Problem

The fundamental problem is that there is no clear definition of quality require-
ments in the literature. Some people understand them as a special part of NFR,
some see them as equal to NFR but others use their own definitions. Customers
call them generic quality attributes and software engineers call it NFR [2]. An-
other challenge dealing with quality requirements is that they are hard to elicit.
This aspect depends on the nature of quality, it is complex and hard to de-
fine. So the question is how to capture an essential set of quality requirements
for a software systems. This set has to be complete, no requirements should
be missed, and it should be rather minimal than sophisticated and crammed
with redundant or mutually conflicting requirements. The certain way to find
all essential requirements is to introduce the end-users and other stakeholders.
However, what is a practical method to bring to light what quality attributes the
different stakeholders like developers, maintenance stuff or the end-user desire?
Many of the problems in software development had their root cause in insuffi-
cient understanding of the customer and unclear requirements [3]. The proximate
challenge, once a set of quality requirements is found, is to refine them that they
become unambiguous and further, they have to be formalized so that they are
traceable and measurable. Yet, the past shows that it is very hard to find criteria
and metrics which can be applied to them.

1.2 Contribution

This paper gives a short literature review about approaches dealing with elicit-
ing and documenting quality requirements. After defining quality requirements
in Section 2 quality models are discussed and an example model, the ISO/IEC
9126 is presented in Section 3. Subsequently, an overview of the software engi-
neering approaches for eliciting and documenting quality requirements is shown
in Section 4 and four of the most relevant and cited are explained in more detail
and illustrated by practical applications. The assets, drawbacks and differences
between the approaches are discussed in Section 5 and finally, in Section 6, a
conclusion is presented.

Quality Requirements 3

2 Definition of Quality Requirements

There is no clear definition of quality requirements in the literature due to the
fact that there are still a lot of research activities focusing on this challenge.
In requirements engineering, software and systems requirements are classified
in functional requirements and non-functional requirements. Functional require-
ments are like verbs and non-functional requirements are like adjectives or char-
acteristics [4]. This indicates that quality requirements can be associated with
non-functional requirements. Quality requirements are usually seen as part of the
non-functional requirements of a system [5]. This paper use the latter definition,
obviously not all non-functional requirements are quality requirements, for ex-
ample legal and political issues, or cost of ownership, but all quality requirements
are NFR because they describe characteristics.

3 Quality Models

To talk about quality requirements a common terminology is needed which gives
a precise definition of quality. [6] categorize approaches to define quality in guide-
lines, metric-based approaches, quality modeling and processes and process mod-
els. The quality requirements approaches presented in this paper are based on
quality models.

3.1 Defining Quality by Structuring

Quality models give abstract definitions of the most important quality attributes
(QA). They try to categorize quality in these quality attributes or quality char-
acteristics which typical depend on a certain domain, project or organization
context. Typically, QA are structured and broken down to sub attributes. A fine
structured model leads to a level of sub attributes which are not further separable
which means that they are very well and clearly specified. Such a clear specifica-
tion of a sub attribute make them measurable so a metric can be applied. Hence,
quality models are a good tool to define quality at any level of granularity which
means that they are a good base for quality requirements engineering. As an
example approach of a quality model this paper illustrates the quality model of
the International Standard Organization (ISO) below. Due to the fact of limited
space in this paper quality models can not be discussed in more detail but it is
to say that [6] points out quality modeling has been and continues to be a very
active field of research. Existing quality models lack in accessibility, justification,
homogeneity and operationalization. Another lack in existing quality models is
that there is usually no explicit modeling for stakeholder activities which concern
quality attributes although activities are the biggest costs factor [7].

3.2 ISO/IEC 9126

The ISO/IEC 9126 [8] is a well defined international standard model, so it as a
good base for conversation and is an ideally example. It is concerned primarily

4 Christian Viezens

with the definition of six high level quality characteristics and attributes re-
spectively for software products. The main characteristics are broken down in
further sub-characteristics which can be refined to a desired level of abstraction,
and additionally the ISO gives suggestion and ideas for refinements of these
characteristics. An overview of the high level attributes is given below.

1. Functionality describes the existence, qualification and effects of the re-
quired functions of the software system using sub-characteristics like suit-
ability, accuracy or security.

2. Reliability describes the capability of the software to maintain its level of
performance under stated conditions for a stated period of time. For exam-
ple, the amount of failures and the ability to recover system and data after
failure with regard to time and costs can be broken down in maturity and
recoverability respectively.

3. Usability is characterized by the effort needed for use and the individual
assessment of such use, by a stated or implied set of users. Further sub
categorization could lead to learnability which is users effort to learn the
handling of the software application or operability which is users effort to
handle the software application.

4. Efficiency is the relationship between the level of performance of the soft-
ware and the amount of resources used, under stated conditions. Time and
resource behaviour and also compliance are suggested sub attributes.

5. Maintainability characterize the effort needed to make specified modifica-
tions to the software. Modification can cover fixes, advancements or adaption
of the environment, the requirements or of the specification. Sub attributes
can be stability analyzability, changeability and so on.

6. Portability is the attribute which refers to the ease of software to be trans-
ferred from one environment (hardware, software or organizational environ-
ment) to another which can be described in sub attributes like installability
or replaceability.

3.3 Discussion

As an typical example of a quality model the biggest advantage of the ISO/IEC
9126 is that it is an international standard which is accessible worldwide and
which provides a common terminology for requirements engineers. It covers qual-
ity requirements and NFR respectively with high-level preciseness and proposes
a structured decomposition of quality. It can be used as a initial base model
but it has to be refined because the course-grained decomposition is not suitable
for an actual assessment. So an individual refinement depending on project and
system context and breaking down the quality attributes in measurable criteria
has to be down when applying. Additionally, the model fail to indicate how to
design and trace the quality attributes for a specific project or domain context.
All attributes are covered equal, there is no distinction between use cases or
activities like development, maintenance or usage of the system. Furthermore,
there is no suggestion how to prioritize the quality requirements or how to detect

Quality Requirements 5

and mark conflicts between them. Finally, the ISO/IEC 9126 provides common
terminology and serves as a solid base which can be used as an initial quality
model in software engineering but projects experiences should be used to refine
the model down to a metric level for specific domains and contexts. Besides, it
should be considered that features like activity modeling and conflict detection
are not provided by the model.

4 Approaches for Quality Requirements

Lots of related work and research activities are concerned with quality, non-
functional requirements or just one special quality attribute, e.g. usability, main-
tenance or security. Even so only few approaches are currently being applied in
industry and none of them is really at a level of usage for education and ap-
prenticeship at universities or software engineering schools. However, one of the
first comprehensive methods for specifying NFR is described in [9]. This frame-
work, provides detailed guidance on NFR refinement and includes identification
and modeling of relationships between them. As the focus is on refinement, no
detailed elicitation support or guidance for documentation is given. In addi-
tion, it provides no assistance in relating NFR with FR and architecture. [10]
shows an approach on how to combine non-functional requirements and use
cases which are elicited separately and are then combined to make sure that
the use cases satisfy the non-functional requirements. Boehm and In introduce
in [1] an approach to identify quality requirements conflicts. The main focus is
on conflict identification using a knowledge-based tool that helps stakeholders
to analyze requirements and identify conflicts among them, rather then elicita-
tion and specification. Another approach to classify quality requirements based
on cost is proposed in [11]. There the quality requirements are directly derived
from the business goals to determine the costs of each requirement. A method of
capturing, structuring and also verifying of quality requirements using activity-
based quality models is discussed in [7]. The idea of that approach is that quality
requirements are classified by stakeholder activities on quality attributes. For ex-
ample, usability has the activity “usage” by the stakeholder “end-user” and the
activity “training” for the stakeholder “teachers”. Further they introduce prior-
itization of the quality attributes and conflict resolution of concurrent quality
attributes. A comprehensive survey on NFR approaches can be found in [12].

This paper illustrates in the following section four approaches concerning
quality requirements engineering. The approaches are chosen because they have
relatively many citations in literature and all of them concerning the problems
of elicitation and specification of quality requirements described above by sug-
gesting detailed solutions. While the first three approaches, the experience-based
NFR method by Doerr et al., the approach of dealing with NFR proposed by
Ebert, and the Volere Requirements Process by Robertson and Robertson, con-
cern non-functional requirements in general, the last one focus in the treatment
of the special quality characteristic dependability.

6 Christian Viezens

4.1 Approach by Doerr et al.

The experience-based NFR method by Doerr et al. is introduced in [13]. The
objective of this method is is to achieve an essential and sufficient set of measur-
able and traceable non-functional requirements. It gives complete guidance for
the process of requirements elicitation and documentation so the main features
of the method are:

– a process for common treatment of the high level quality attributes,
– experience-based quality models that capture experience with general char-

acteristics of quality attributes, metrics to measure and means to achieve
them,

– distinction between different types of quality attributes,
– detailed elicitation guidance in terms of checklists and a prioritization ques-

tionnaire,
– documentation guidance by providing document structure and template,
– use of rationales to justify non-functional requirements,
– treatment of non-functional requirements together with functional require-

ments and system architecture, and
– requirements management support including dependencies analysis.

The method distinguishes between quality attributes and non-functional re-
quirements. A quality attribute is a non-functional characteristic of a system,
user task, system task or organization and is captured in a quality model. Non-
functional requirements are captured in documents based on templates and de-
scribe a certain value of a quality attribute that should be achieved in a specific
project and associate it with a metric. For example, a quality model for the high-
level quality attribute Efficiency can have a sub level quality attribute Resource
Utilisation and one of the corresponding non-functional requirements for that
quality attribute could be Capacity. A notation based on goal graphs for depen-
dencies and refinement is used, so the relationship between quality attributes
such as Efficiency and Maintainability can be designed by that notation in the
reference quality model.

The procedure and structure of the method is illustrated in Fig. 1. In the first
step high-level quality attributes are prioritized using a questionnaire and quality
models are selected. After selecting the quality attributes the reference quality
models are tailored by domain experts in a workshop and dependencies will be
identified additionally. Based on the tailored quality models the reference check-
lists and templates will be tailored for the specific needs. In a second workshop
the tailored templates, the tailored checklists and the initial functional require-
ments will be used to elicit and document the non-functional requirements. Since
the method is experienced-based the artifacts (questionnaire, reference model,
reference checklists, and reference template) are initially developed from litera-
ture but evolve from project to project which will result in more mature quality
models.

Quality Requirements 7

Fig. 1. Overview on Doerr’s approach (adapted from [13])

Case studies The method was applied in three case studies. A wireless plant
control project, a multi-functional printer system and a geographical information
system. The first case study was used for non-functional requirements elicitation
in a development project of a wireless plant control system. This system is a
distributed and embedded system. The focus was on Reliability due to loss of
production, Efficiency due to the needs that the application must run on hand-
held devices, and Maintainability due to further extensions and maintenance.
Because the case study was the first time the method was used, there was no
previous experience which implied that the initial models were based directly
on the ISO/IEC 9126. The initial set of artifacts were requirements documents
and a non systematic set of non-functional requirements, so the first step was
to transform all initial requirements in use cases. In two subsequent workshops
with stakeholders the QM of maintainability, reliability, and efficiency were tai-
lored and based in that tailoring the NFR were elicited. It was observed that
the most time was spent for the elicitation of maintainability and gathered ex-
periences showed that the prioritization of the QA was helpful. At the end new
non-functional requirements were found in an efficient way and the three quality
models of the corresponding quality attributes were enriched. Only 5 of 54 NFR
were not measurable which means that 90 percent of the elicited NFR are mea-
surable and a very important advantage was the early recognition of conflicts
between requirements by performing a dependency analysis based on the goal
graphs.

The second case study was performed for a multi-functional printer system
project which is mainly based on integrated office equipment and embedded
systems. The focus was on just one single quality attribute, Efficiency. Again,
two workshops were performed to tailor the quality models for efficiency and to
elicit the non-functional-requirements. At the end 16 new NFR were found. A
web based geographical information system project was subject to the last case

8 Christian Viezens

study where security was prioritized. All together the authors conclude that the
experienced-based NFR method needs more effort then before but brings a pos-
itive return of investment due to reuse of models, completeness and correctness
of NFR. The case studies also showed that the method gave sufficient guidance
in eliciting and documenting NFR. Actually, the reference QM were helpful by
capturing experience and offering means of communication. No irrelevant NFR
were elicited, in fact the prioritization of the quality attributes and the tailoring
were helpful to find an essential set of NFR which consists of measurable and
traceable elements.

4.2 Approach by Ebert

Ebert discusses in [2] his approach to specify, trace and measure NFR and illus-
trates practical guidelines. Furthermore he provides prioritization of the elicited
non-functional requirements using tables and suggests the design of roadmaps
to achieve them. Ebert does not use the quality model ISO/IEC 9126, he intro-
duces his own experience based quality attributes which are similar to ISOs but
reasoned them not in detail. Actually, he distinguishes between user-oriented
NFR and development-oriented NFR.

User-oriented NFR:

– performance (e.g., call set up time),
– reliability (e.g., critical failures per month),
– availability (e.g., supplier dependent total downtime per year),
– failure tolerance (e.g., failure recovery upon restart)
– usability (e.g., reaction time upon performing changes of ISDN features),
– correctness (e.g., dropped cell rate per second).

Development-oriented NFR:

– extendibility (e.g., free memory space of modules);
– maintainability (e.g., few ripple effects of changes);
– readability (e.g., consistency of code and comments);
– reusability (e.g., clearly defined and separated functionality of distinct com-

ponents);
– fault tolerance (e.g., distributed functionality);

Guidelines for specifying and tracing NFR The first step of this iter-
ating process is to elicit the user-oriented NFR according to contracts, pro-
posals, required standards and marketing strategies. Separated from them the
development-oriented NFR according to internal product or platform strategies
can be collected in a further step. After that a technical analysis of the collected
non-functional requirements in terms of impact, effort and interactions is pro-
posed to performed. Based on the technical analysis a commercial analysis of
the non-functional requirements is intended. By assigning priorities to the non-
functional requirements a conflict resolution is aided. Those NFR with highest

Quality Requirements 9

priority are selected and a roadmap which shows how to achieve them can be
created. Specific measures for in-process quality checks and risk assessment will
also be defined. Furthermore, an establishment of continuous risk assessment for
each milestone of the NFR roadmap and of the project’s master plan is advised
and a design scenario for covering these NFR is suggested to be built. Due to
the broad relationship with other requirements, Ebert mentions that this should
start already during architectural design. Actually, a very important step is to
measure and verify intermediate goals that have to be achieved according to the
NFR roadmap.

Conflict resolution for interacting NFR The next step is to analyze con-
flicts between non-functional requirements. For example, performance might in-
terfere with maintainability because complex coded algorithms are indeed high-
performance but hard to understand for maintenance personal. Thus, it is neces-
sary to prioritize such conflicting non-functional requirements after having them
identified.

Guidelines for measuring NFR Measurement of non-functional require-
ments is primarily achieved by reviews because of the lack of clearly defined
metrics. This includes the plan and effort estimation on the base of allocated
requirements. It has to be noted that Ebert states that the achievement of mile-
stones and related work products should be also periodically reviewed. He pro-
pose to use checklists for measuring NFR. This lists should contain properties of
the software that together determine whether or how far the criteria have been
met. A goal oriented approach is to find out goals and break these goals down
according to the specific environment to find sub goals. Questions related to
achieving these goals and finally metrics have to be selected that clearly answer
the questions. These metrics can be numbers with units or on nominal scale.

4.3 Approach by Robertson and Robertson

In [4] an extensive requirements engineering approach called Volere Requirements
Process is presented. It contains a set of requirements engineering templates
designed by Suzanne and James Robertson which are described in detail in
their book, this set is called Volere. The approach points out how to elicit and
define requirements using Volere. This paper will concentrate on that part of the
process which deals with NFR. This part consist of the sub-processes Trawl for
Requirements, Prototype the Requirements, Write the Requirements, and Quality
Gateway which are introduced below. Fig. 2 gives an overview of the processes.

The Volere Requirements Process The process is an iterative generic method
for requirements specifications. One part of the process is about discovering,
eliciting, specifying and testing non-functional requirements, i.e. quality require-
ments. The iteration contains the extraction of the potential requirements and

10 Christian Viezens

Fig. 2. Overview of the approach from Robertson and Robertson (adapted from [4])

the prototyping of that potential requirements. Each potential requirement will
be specified using a template so it will become formalized. The formalized po-
tential requirements will go throw a quality gateway which will reject or accept
it. All accepted requirements together are the requirements specification. These
steps will be described now in more detail.

Trawling for Requirements The process called Trawling for Requirements
is about techniques for discovering, eliciting and inventing requirements. After
eliciting the functional requirements and specifying the products functionality
the non-functional requirements which are the properties the product must have
will be discovered and specified using templates. The Robertsons points out that
the non-functional requirements describe the qualities of the product - whether
it need be fast, or safe, or attractive, and so on. The qualities depend on the
functions the product have, the functional requirements. The Robertsons state
that NFR can come to light at any time and that they are usually uncovered by
the functional requirements. However, the other way around the FR are covered
by NFR so they describe a method to ask for each FR what properties or qualities
must this piece of functionality have. Their systematical process for finding non-
functional requirements is to create a list with all FR and use cases and write to
each of them the needed NFR types. To find the corresponding non-functional
requirements they suggest to interview the user by using a list of the 8 types of
non-functional requirements probing for examples of each type. These types are
described below.

Quality Requirements 11

Non-Functional Requirements Classification System The Volere tem-
plate defines 8 types of non-functional requirements. Applying the terminology
used in this paper this types can be seen as quality attributes which means that
the Robertsons define their own quality model. However, the requirement types
are their device for finding non-functional requirements. The proposed practical
application is to create a checklist with that types and interview the stakeholders
to find potential requirements covered by this types which are as follows:

1. Look and Feel Requirements - the spirit of the product’s appearance.
2. Usability Requirements - the product’s ease of use, and any special usability

considerations.
3. Performance Requirements - how fast, how safe, how many, how accurate

the functionality must be.
4. Operational Requirements - the operating environment of the product, and

what considerations must be made for this environment.
5. Maintainability and Portability Requirements - expected changes, and the

time allowed to make them.
6. Security Requirements - the security and confidentially of the product.
7. Cultural and Political Requirements - special requirements concerning cul-

tural and political guidelines which the product must meet.

Prototype the Requirements The Robertsons describe a process called Pro-
totyping and Scenarios which use simulation techniques helping to find require-
ments. Prototypes can be used to drive out the non-functional requirements by
giving the stakeholders the opportunity to try out the functions so that non-
functional requirements belonging to the categories like usability, look and feel,
and security can be determined. At the stage of prototyping a vague description
of each elicited non-functional requirements is written.

Writing the Requirement The Volere offers a template which is a container
for the whole specification. A further template, called The Shell, is a container
explicit for requirements which will be used to specify them. The shell contains:

– requirements number: unique identifier
– requirements type: the type from the template
– Event/Use Case numbers: List of events or use case that need this require-

ment
– Description: One sentence about the intention of the requirement
– and so on.

Having prototypes, consecutively the vague description of the elicited require-
ments have to be formalized so the next step is to write measurements which
quantify the meaning of each requirement. Those measurements and criteria re-
spectively for each requirement are called by the Robertsons the Fit Criterion
which is described below.

12 Christian Viezens

Fit Criterion Robertson and Robertson state that if a requirement can not be
measured, then it is not really a requirement. The Fit Criterion is an instrument
to quantify quality requirements. Again, the 8 types and the prototyping help
to find the requirements and at those stages they elicited requirements are doc-
umented vaguely. However, not until the Fit Criterion is applied to each elicited
requirement they are not measurable and testable. Actually, the Fit Criterion
is a formal description of an requirement and is usually derived some time after
the requirement description is written down. The idea is for each requirement
to have a quality measure that makes it possible to divide all solutions to the
requirement into two classes, those for which it can be agreed that they fit the
requirement and those for which it can be agreed that they do not fit the require-
ment. The Fit Criterion is not a test or the design for a test, it is a unambiguous
goal that the product has to meet. It can be used as input for a test which will
ensure if each products requirement complies with its Fit Criterion. Robertsons
points that quantifying the requirement gives a better opportunity to interact
with the stakeholders and that both, the requirements engineer and the client,
have the same understanding of the requirements. They also suggest that testers
should be early involved because they are a good help for specifying the Fit
Criterion.

Quality Gateway The Quality Gateway is a process that prevents unworthy
requirements from entering the specification. It is the entry point of each for-
malized potential requirement into the requirement specification. If accepted a
potential requirement becomes a real requirement. The Quality Gateway applies
a number of tests to formalized potential requirements. For example, each re-
quirements will be tested focusing different issues like completeness, consistency,
relevancy, and correctness. All requirements which pass the Quality Gateway
create together the final requirements specification.

4.4 Approach by Basili, Donzelli and Asgari

The next approach is called Unified Model of Dependability (UMD) and is de-
scribed in [14]. It is focusing on the quality attribute dependability of software
systems and is not a complete quality requirements elicitation and specification
process in the matter of quality models like the ISO/IEC 9126. Dependability
is considered by the authors as a key system or quality property that must be
guaranteed regardless of continuous, rapid, and unpredictable technological and
context changes. It is defined as trustworthiness of a computing system which
allows reliance to be justifiably placed on the services it delivers.

The UMD is capturing and analyzing the impact of negative events (like
denial-of-service attacks) on critical system properties such as system safety,
availability or security. Different stakeholders will focus on different system at-
tributes like availability, performance, real-time response, and ability to avoid
catastrophic failures and resist adverse conditions. UMD helps these stakeholders
to build dependability models by providing a structured framework for eliciting

Quality Requirements 13

and organizing dependability needs. These models identify the measurable and
implementable properties that individual systems need to be dependable for
their users. For example, performance is a specific dependability attribute of a
web application’s query service and can be defined as a static or dynamic ca-
pability by using metrics like response time or throughput. Based on this the
desired behavior can be specified in a performance requirement, for example, the
response time should be not greater than 10 seconds. This means a performance
failure occurs when the query service responds in more than 10 seconds. Yet, the
same failure can also result in a lack of safety (e.g. if the application supports an
emergency operator) or in a lack of availability, survivability, security or so on.
What we see is that the same failure can be interpreted differently which is a
one-to-many relationship between failures and attributes. This implies the need
for bottom-up modeling which is covered by this approach.

The UMD uses issues as starting points concerning requirement elicitation.
So stakeholders model dependability by defining an issue which should not affect
a defined scope of a system until an negative event occurs that cause it. While an
event causes an issue, an issue concerns a scope. For example, a denial-of-service
event causes a response time greater then 10 seconds which concerns the scope
of the query service. Fig. 3 illustrates the structure and the main elements of
the UMD method, the concept will be explained subsequently.

Fig. 3. Structure of UMD (adapted from [14])

14 Christian Viezens

Supporting Elicitation The approach of Basili et al. guides stakeholders dur-
ing the elicitation process and incorporates models, definitions and classifications
adopted in the literature. Issues can be categorized into concepts of failures and
hazards to help stakeholders identify potential system misbehaviors. The con-
cepts can be further broken down and refined by introducing subclassifications
for both failures and hazards. Either ad hoc definitions can be introduced or
standards can be applied or adopted for failures and hazards, and also for events
and scopes. The method is experience based, so issues, failures, hazards, events,
scopes and so on can be reused. The concepts of issue, scope and event are in-
variant while the mapping of issue to failure is semi-invariant. In addition, the
concepts of failure classes, hazards and events are completely customizable.

Measuring Dependability Issues that should not occur have to be specified
using an operational definition of dependability. UMD provides measurement
models via the invariant concept measure. The stakeholder can choose a mea-
surement style for the definition of dependability. For example, the following
measurement classes are suggested: ordinal and probalistic, ratio and probalistic,
or ratio and deterministic.

Improvement of dependability UMD is one of few approaches that provides
improvement of dependability. It uses the invariant concept of reaction. Stake-
holders can suggest reactive or proactive services. Reactive services are triggered
by an issue and can warn the user or try to reduce the issue consequences. Proac-
tive services can reduce the probability of an issue’s occurrence or can allow a
quicker recovery by doing data backups. Classes for reaction which are proposed
by UMD are warning services, alternative services, migration services, recovery
behavior, and occurrence reduction.

Case Study A feasibly analysis of the UMD concept has been performed within
the NASA High Dependability Computing Program. UMD was used to find pre-
cisely expressed dependability requirements for a software system designed to
aid air traffic controller in detecting and resolving short-term conflicts between
aircrafts. Before applying UMD some dependability requirements were elicited
by an conventional method so the results can be compared with them. For sup-
porting the process a software tool concerning UMD was used which provides a
scope frame and an issue frame. The first step of the case study was the scope
definition which means to select the main services of the software and specify it
in a scope table. The next step was the model building while each stakeholder
filled as many tables as necessary to define his dependability needs. Available
characterizations has been used and when necessary extended. In the data anal-
ysis phase the tool was used for data visualization based on the completed tables
of the data gathering. Analyzing the visualization risk areas could be pointed
out. Iterations were performed and ended until stakeholders and analysts felt
confident about the results. Finally, data reconciliation has been done, for ex-
ample when some stakeholders had filled in tables concerning the same service

Quality Requirements 15

but identified different classes of failures. At the end it has to be said that the ap-
plying of UMD brought additional and more precise dependability requirements
to light which have not been elicited before.

5 Discussion / Open Issues

All analyzed approaches are comprehensive methods concerning requirements en-
gineering which use structured quality models and quality attributes, and provide
methods for elicitation and documentation. The first three approaches concern
NFR and not only quality requirements. Furthermore, Robertson and Robertson
provide with their Volere Requirements Process comprehensive requirements en-
gineering for both types of requirements, FR and NF. The approaches of Doerr
et al. and Ebert concentrate more on non-functional requirements then on func-
tional requirements but they suggest to intertwine functional requirements with
non-functional requirements. Basili’s et al. approach is not designed for common
NFR engineering but is focusing in the quality requirement domain of depend-
ability which can be seen a part of quality requirements and non-functional
requirements, respectively.

Doerr’s et al. method provide the most comprehensive elicitation guidance
by using a prioritization questionnaire in a workshop with stakeholders to elicit
the primary quality attributes. Based on the elicited quality attributes this ap-
proach utilize checklists derived from quality models of these quality attributes
which help to elicit NFR in concern with use cases and a high-level architec-
ture. Ebert’s approach has no detailed elicitation guidance but separates the
requirements in two groups, user-oriented NFR and development-oriented NFR
and suggest to elicit them separately with different stakeholders, e.g. users and
developers. That separation could be helpful for finding the requirements but
the general approach is not as systematically in elicitation and specification as
Doerr’s approach. Robertson and Robertson’s elicitation process base upon the
assumption that FR are covered by the NFR. The idea is to create a list with
all functional requirements and use cases and ask for each entry what properties
or qualities must this piece of functionality have. They also suggest to inter-
view the stakeholder, in particular the user, using their quality model of the 8
non-functional requirement types and probing for examples of each type. Ad-
ditionally they provide a reuse library of requirements which can be used as a
reference while elicitation. Basili et al. utilize issues for the requirements elic-
itation and incorporates models, definitions and classifications adopted in the
literature. Starting with selecting the scopes of the system and functional re-
quirements, respectively, issues are defined for each scope which can be broken
down in hazards and failures. The approach is buttom-up and is the only one
analyzed in this paper which uses issues. By defining issues for each pre-selected
scope and FR respectively the possible failures and resulting hazards will bring
additional NFR to light. Issues seem to be a very interesting possibility for
quality elicitation because it is a systematically way to find new requirements.

16 Christian Viezens

Additionally applying this method in other NFR elicitation approaches could be
an advantage.

All approaches provide templates for the documentation of the NFR. The
Robertsons provide fix templates which can be obtained from their website.
Ebert use domain- and project-dependent templates in his approach and Doerr
provides customizable and experienced based templates which will be adapted
in every project. Basilis et al. suggest to use templates from the literature. The
measurement of NFR is intended in all approaches by providing experience-
based reference models concerning metrics. The Robertsons and Ebert constrain
the requirement engineer to specify a criteria and fit criterion respectively for
a specified non-functional requirement. Doerr uses experienced-based quality
models which will be tailored in each project and refined until their sub categories
are on metric level. Basili propose different measurement characterizations that
can be selected for an certain issue. Yet, no approach gives a comprehensive
algorithm how to specify the metric for a certain quality attribute but help by
providing reference metric characterizations or refinement of quality attributes
in quality models down to metric levels.

The integration of the subjects of functional requirements, non-functional
requirements and system architecture is concerned in all methods, especially in
Doerr’s and Ebert’s approaches. Of course, the integration is very important
because the three subjects have mutual dependent aspects, actually, they have
even impact on each other. Furthermore, Ebert’s is the only approach which
propose commercial analysis of the elicited non-functional requirements. Yet,
it can be discussed if cost aspects should play a more important role in all
approaches. An further aspect of Ebert’s approach is the separation of user-
oriented NFR and development-orient NFR which maybe helpful for finding
NFR, comparable to the divide and conquer principle. He also impose the design
of roadmaps for NFR which might be an interesting instrument under project
managing aspects, in particular time management.

The approach of Basili et al. is limited on the quality attribute dependability
but provides extended and detailed examination and coverage for this attribute.
By working not only top-down but rather bottom-up the effect of issues to scope
can be used to find a more complete set of NFR concerning dependability. It
might to considered to introduce the concept of issues in other quality attributes.
Further, the only approach that envision the use of CASE-Tools is the UMD.
A tool was used in the cases study concerning UMD that provides an interface
to input scopes and issues and provides an visualization feature which helps
engineers to analyze the requirements in a more convenient way.

Finally, nearly all methods combine concepts like quality models, non-functional
requirements, experience, iteration, and tailoring. Open issues in all the ap-
proaches are that there is no explicitly implying of assignment from stakehold-
ers and activities to quality requirements. Further, the treatment of cost aspects
concerning quality requirements have to be discussed in more detail.

Quality Requirements 17

6 Conclusions

There is a wide spectrum of approaches concerning non-functional requirements
or quality aspects in industries and literate. Yet there is no approach that ex-
clusively deals with generic quality requirements engineering. However, quality
requirements are part of non-functional requirements so the approaches are adap-
tive for this domain. Concerning non-functional requirements so far no standard
approach has been crystallized. However, all approaches use the concepts of
quality models and quality attributes to define quality. Actually, they try to
give guidance in elicitation by using reference models and reuse libraries. Do-
err’s and Basili’s approaches also allow to use standard quality models like the
ISO/IEC 9126. However, the Robertsons as well as Ebert introduce their own
proprietary quality models. There is no accepted standard way how to make
a non-functional requirements measurable so the approaches force the require-
ments engineer to refine specifications of the elicited requirements until they are
measurable. No approach intertwine explicitly activities and stakeholders with
selected non-functional requirements. Cost and benefit analysis are not explicit
considered in all approaches.

In summary it can be said that all analyzed approaches provide elicitation
and specification of non-functional requirements. Volere is the most compre-
hensive requirements engineering method which can be used as a stand-alone
method. It has to be kept in mind that this method is proprietary and uses
his own concepts, for example the quality model or the requirements templates.
Ebert’s and Deorr’s approach can be integrated in other requirement engineering
methods and are more adaptable. Actually, Doerr’s et al. approach is the most
detailed and systematically approach concerning elicitation and specification of
non-functional requirements. Basili’s approach is very interesting and has a lot of
potential due to the use of issues concerning non-functional requirements but it
is for now limited to the quality attribute dependability. It should be considered
to expand the method to an level that covers all types of quality requirements,
and not just dependability requirements.

References

1. Boehm, B., In, H.: Identifying quality-requirement conflicts. IEEE Software 13
(1996) 25 – 35

2. Ebert, C.: Dealing with nonfunctional requirements in large software systems.
Ann. Softw. Eng. 3 (1997) 367–395

3. Jacobs, S.: Introducing measurable quality requirements: a case study. In: Pro-
ceedings of the 13th IEEE International Conference on Requirements Engineering,
IEEE Computer Society Press (1999) 172–179

4. Robertson, S., Robertson, J.: Mastering the Requirements Process. ACM Press,
Addison-Wesley (1999)

5. Wagner, S., Deissenboeck, F., Winter, S.: Managing quality requirements using
activity-based quality models. In: 5th Workshop on Software Quality (6-WoSQ),
ACM Press (2008)

18 Christian Viezens

6. Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.: An activity-based
quality model for maintainability. In: IEEE International Conference on Software
Maintenance, IEEE Computer Society Press (2-5 Oct. 2007) 184–193

7. Wagner, S., Deissenboeck, F., Winter, S.: Erfassung, Strukturierung
und Überprüfung von Qualitätsanforderungen durch aktivitätenbasierte
Qualitätsmodelle. In: Erhebung, Spezifikation und Analyse nichtfunktionaler An-
forderungen in der Systementwicklung. Halbtägiger Workshop in Zusammenhang
mit der SE Konferenz 2008. (2008)

8. ISO: ISO/IEC 9126-1, International Standard Information Technology, Software
Engineering - Product Quality Part 1: Quality Model (2001)

9. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers (2000)

10. Cysneiros, L., Leite, J.: Driving NFR to use cases and scenarios. In: XV Brazilian
Symposium on Software Engineering. (2001)

11. Deissenboeck, F., Wagner, S., Pizka, M.: Kosten-basierte Klassifikation von
Qualitätsanforderungen. In: Erhebung, Spezifikation und Analyse nichtfunk-
tionaler Anforderungen in der Systementwicklung. Halbtägiger Workshop in
Zusammenhang mit der SE Konferenz 2007. (2007)

12. Paech, B., Kerkow, D.: Non-functional requirements engineering quality is essen-
tial. In: 10th International Workshop on Requirments Engineering Foundation for
Software Quality. (2004)

13. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-functional require-
ments in industry - three case studies adopting an experience-based NFR method.
In: 13th IEEE International Conference on Requirements Engineering, IEEE Com-
puter Society Press (29 Aug.-2 Sept. 2005) 373–382

14. Basili, V., Donzelli, P., Asgari, S.: A unified model of dependability: Capturing
dependability in context. IEEE Software 21(6) (2004) 19–25

Detection and Fixing of Model Inconsistencies

Frieder Pankratz

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
pankratz@in.tum.de

Abstract. In software engineering processes and development, software
models are used for an abstract view on the project. In these models
inconsistencies can arise, in the model itself or between two different
models. This paper will present three different approaches on how to
detect inconsistencies in a model. It will also give a brief overview of
the development support tool implementations of these approaches. The
third section of this paper is about how to fix an inconsistency, once
located, and which problems are related to fixing an inconsistency. In
the end the advantages and disadvantages of the three approaches will
be discussed.

1 Introduction

The more complex a project is, the more difficult it is to maintain the quality
standards for the documentation and implementation. In large software projects,
with hundreds of developers working on different but related models representing
parts of the same system specification, the system is bound to contain incon-
sistencies among the models, because of the distributed development and the
number of people involved [1]. The same holds true for collaborative projects
involving developers with different areas of expertise. Here, not the number of
people working on the same document are the origin of the inconsistencies but
they might have different conflicting viewpoints on the matter or process devia-
tions.

Models define an abstract view on the system. These models are for example
data models, architectural models or models describing the functionality of the
program. Different models are used to specify the different parts of the system. In
the beginning the models where created by hand, but now almost all models are
created using some tool. The tools themselves might even prevent you from con-
structing inconsistent model elements, but their capabilities to keep the model
overall consistent are not enough. If a development technique like “model driven
development” [2] or “model based testing” (pages 35ff.) is used, which heavily
depends on the model, then even a minor inconsistency can lead to a major
failure either during code generation or during runtime and reduce the quality
of the software product heavily. It is inefficient and sometimes even impossible
to find and keep track of these inconsistencies by hand. Therefore this paper will

20 Frieder Pankratz

cover three different approaches about how to detect and fix inconsistencies in
a model.

This paper will mainly focus on UML [3] for defining a model, since the UML
standard defines different diagram types with their semantics. Each UML dia-
gram type has its own meta-model and UML also defines a meta-meta-model.
UML defines diagrams for the static and dynamic structure of a program. For
the static structure of a program diagrams like class diagrams, component dia-
grams or deployment diagrams are used. The dynamic structure of a program
is represented in diagrams like the state machine diagram, sequence diagram or
use case diagram.

Since UML defines many different diagram types, some information between
the diagrams might overlap. These overlapping information is wanted, to create
relations between the diagram types, but it can cause inconsistencies if the infor-
mation from the different diagrams contradict each other. An example for incon-
sistency between different models is illustrated in figure 1. The class Streamer
is defined in a class diagram and contains two functions. The associated state
chart describes the behavior of the class, that is, in which order the functions
of the class are allowed to be called. These models are inconsistent since the
class does not contain a function pause() or the state machine uses the function
pause() as a transition which is not defined in the class. An inconsistency can
also be within a single model. In this case the model does not follow the UML
specification or the forms of best practice, if one wants to use that as consistency
criteria. For example figure 2 shows a use case with the actor being within the
system. This is generally not allowed and can be considered an inconsistency.

Fig. 1. Class description and associated state chart

To detect such inconsistencies the three approaches, discussed in this paper,
will now be presented.

The first approach by Alexander Egyed [4] will extract the information about
a model through its meta-model and use specific consistency rules(which know
about the different model elements used and their semantics) to check the model
for inconsistent elements. In this paper this approach will be referred to as
“Egyed”.

Detection and Fixing of Model Inconsistencies 21

Fig. 2. Use case diagram with an actor within the system

Holger Rasch and Heike Wehrheim [5] developed the second approach, which
aims at a formal definition of consistency. A formal language is used as a com-
mon semantic domain for the different models. Definitions of consistency are
then made on this semantic domain. Referred to as “Rasch/Wehrheim” in the
remainder of this paper.

The last approach by Xavier Blanc, Isabelle Mounier, Alix Mougenot and
Tom Mens [6] relies on elementary model construction operations instead of the
model elements themselves, to be independent of any meta-model. The meta-
meta-model of UML will be used as the basis for information gathering. The rules
for consistency are defined on the sequence of elementary model construction
operations. This approach will be referred to as “BMMM”.

The next section covers the different techniques used for detecting inconsis-
tencies and their development tool implementations. In section 3 ways for fixing
inconsistencies and problems like dependencies between inconsistencies will be
discussed. The different approaches will be compared in section 4. The last sec-
tion concludes this paper.

2 Detecting an Inconsistency

The general approach to detect inconsistencies is illustrated in figure 3. To detect
an inconsistency, information about the model must be obtained through some
way. Rules/definitions for consistency must be evaluated on these information.
The evaluation will be performed by a component, in the remainder of this
paper called “check engine”. The check engine uses the obtained information
and the defined rules or definitions for consistency and verifies whether the
information is consistent or not. Depending on the quality of the informations
and the rules/definitions for consistency, the check engine is able to name the
model elements that caused the inconsistency and provide further information
that might be useful for fixing these inconsistencies. There are two basic concepts

22 Frieder Pankratz

to detect an inconsistency in a model. The first is to directly use the model as
the basis for information and to define the consistency rules/definitions onto
the model. The second is to transform the model into an different (formal)
representation and to define the consistency rules/definitions onto the (formal)
representation.

Fig. 3. General approach for detecting inconsistencies

2.1 Approach by Egyed

This approach extracts the needed information about the model through its
meta-model. The check engine uses specific consistency rules, meaning that the
rules know about the structure and the semantics of the elements in the model.
An instance of each rule is applied to the each model element, if the rule can be
applied. It determines wherever the model is consistent or inconsistent. If there
are model elements that cause the model to become inconsistent then these
model elements are automatically identified through the evaluation process. The
rule instance that determined an inconsistency is bound to a model element and
hence the inconsistency can be located. A model profiler is used to reduce the
reevaluation of the model to the rules that where affected by some change [7].
A model profiler is much like a source code profiler. Instead of observing the
source code during execution, a model profiler observes the evaluation of a model
during consistency checking (i.e., it knows what fields of what model element are
accessed when and how often) [4]. In the case study in [4] no special language
was used to define the consistency rules, they where hard coded into the check
engine instead. But the design of the tool would allow to replace the hard coded
rules and the check engine with some form of rule language and a modified
component.

The same example as in [4] will be used to further explain this approach. In
Figure 4 the four UML diagrams describing the example model are displayed.
The model represents a simplified video on demand system. The class diagram
represents the static structure of the system. The class Display represents the
component used for displaying the video content and receive user input. The class
Streamer is used for downloading and decoding the video content. The state
machine diagrams describe the behavior of the two classes when they receive
input. The sequence diagram contains the interactions between the instances of

Detection and Fixing of Model Inconsistencies 23

the classes and the user. First the user has to select a specific content, symbolized
by the message 1: select, then the user starts the stream by invoking the message
2: stream on the object d of class Display. This in return invokes the message
3: stream on object s of class Streamer. The sequence diagram also shows that
when the user invokes the message 4: stop on object d, to stop the playback, the
message 5: wait is sent to object s.

Fig. 4. UML model illustration of an video on demand

Consistency Rules The consistency rules describe conditions that all models
must satisfy for them to be considered valid. Rules covering class, sequence and
state machine diagrams where defined. These rules where for example:

Rule 1: message name must match class method
Rule 1 states that the name of a message in a sequence diagram must match

a method name in the receiver’s class [4]. If this rule is evaluated on message1:
select in the sequence diagram then the receiver(see arrowhead of message) of
this message is identified first. The receiver of the message would be object d.
The base class of object d is the class Display, containing the set of methods
select, stream, stop. Since the message select is part of the set of methods of
class Display the condition will return true. This is a rule to check the syntactic
consistency of the model since only static information is needed.

Rule 2: message sequence must match behavior
Rule 2 states that the sequence of incoming message in an object of a sequence

diagram must match the allowed behavior of the state machine diagram of the
object’s class [4]. For example, object d receives the messages select, stream and
stop - in this order. The state machine diagram of class Display(the base of
object d) allows this behavior because it is a valid sequence. This rule performs

24 Frieder Pankratz

a semantic check on the model since the state machine must be simulated to
know if the message sequence is a valid run of the state machine.

Development tool support This approach is the only one in this paper that
is able to provide choices for fixing an inconsistency. The tool implementation of
Egyed was evaluated in a case study using 48 small-to-large-scale UML models
covering a total of 250,000 model elements and over 400,000 separate rule eval-
uations using 34 consistency rules [4]. The tool implementation was integrated
into the design tool IBM Rational RoseTM.

An average of 5.4(between 2.5 and 8 in average) choices per inconsistency
where made by the tool during the case study. During the case study the scal-
ability of the tool implementation was determined to be linearly complex(both
memory and computation cost) and thus quite scalabe [4]. The case study was
performed on a 1.7Ghz Intel Centrino processor. The costs for consistency check-
ing where 9 ms per change in average, with a worst case of 2 seconds [4]

2.2 Approach by Rasch/Wehrheim

The aim of this approach is to give a formal definition of consistency. For that
the models are translated into a common semantic domain. A formal language
is used to define the common semantic domain. The definitions of consistency
are made on this semantic domain. Here the information about the models is
obtained by the translation. This is done by giving the formal semantic for class
definitions and state machines, as these are the only two diagram types covered
by this approach. Also Object-Z [8] is used instead of UML [3] to specify the
class definitions, because UML does not prescribe a fixed syntax for attributes
and methods of classes. The common semantic domain is the failures-divergences
model of the process algebra CSP [9]. CSP simulates processes, hence the classes
from the class diagram with their state machines are translated into processes.
To check the model for consistency the class definitions and the state machines
are first translated into CSP. This gives two different views on a class. One
view describing the attributes of the class and the possible effects of method
execution, derived from the class definition. The second view is derived from
the state machine, describing in which order the methods are allowed to be
executed. Every element that should be included in the consistency check must
be translated into CSP. The formalism to translate state machines into CSP are
only known for restricted classes of state machines. The check engine in this
case would be the commercial product FDR (Failures/Divergence Refinement)
developed by Formal Systems Europe. Two formal definitions of consistency
would be:

Definition 1:

A specification consisting of an Object-Z class and an associated state
machine has the property of satisfiability iff the corresponding process
in the semantic model has at least one non-terminating run [5].

Detection and Fixing of Model Inconsistencies 25

Definition 2:

A specification consisting of an Object-Z class and an associated state
machine has the property of basic consistency iff the corresponding pro-
cess in the semantic model is deadlock free [5].

To explain further how inconsistencies are found using this mechanism, un-
derstanding CSP is required which is out of the scope of this paper. For further
information please read [5].

2.3 Approach by BMMM

Information about a model is extracted in a different way by this approach than
by the other two. Every model can be represented by a sequence of elemen-
tary construction operations. So instead of extracting the information out of the
model using it’s meta-model, the sequence of elementary construction operations
is obtained ans stored in its own model. This way consistency can be checked be-
tween different kinds of models, regardless of their meta-model. The advantage
of this approach is that not only different kind of models can be processed in a
uniform way, but also structural and methodological consistency rules can be ex-
pressed uniformly as logical constraints on sequences of elementary construction
operations. A structural consistency rule would be like rules of “Egyed”. They
define relationships between model elements. A methodological consistency rule
on the other hand are constraints over the construction process itself [6].

Inspired by the MOF reflective API they defined four elementary operations
to construct their model:

– create(me,mc) Create a new model element me of meta-model class mc
– delete(me) Delete the model element me
– setProperty(me,p,Values) Set the property of model element me, property p

with the values in Values
– setReference(me,r,References) Set the reference r of model element me to

the model elements defined in References

The same example as in [6] to illustrate the mechanisms of this approach
will be used. In Figure 5 (a) a simplified part of the UML 2.1 meta-model for
use cases is illustrated. This meta model will be referred to as UCMM for Use
Case Meta Model in the rest of this paper. Figure 5 (b) contains a use case
based on the UCMM. It is composed of an actor (named “Customer”) that is
associated with three use cases (named “Create eBasket”, “Buy eBasket” and
“Cancel eBasket”) belonging to a class (named “PetStore”) representing the
system.

Using the previously defined construction operations, the use case model in
figure 5 (b) can be constructed using the following construction sequence σ:

The meta-model classes “Class”, “UseCase” and “Actor” can be found in
the UCMM class diagram as the class names. The properties “name”, “owne-
dUseCase”, “useCase” are derived from either class attributes or from relations
between the classes.

26 Frieder Pankratz

(a) The UCMM class diagram (b) A use case model instance of UCMM

Fig. 5. UML model illustration of the UCMM example

1. create(c1,Class)
2. setProperty(c1,name, “PetStore”)
3. create(uc1,UseCase)
4. setProperty(uc1,name, “Buy eBasket”))
5. create(uc2,UseCase)
6. setProperty(uc2,name,“Create eBasket”)
7. create(uc3,UseCase)
8. setProperty(uc3,name,“Cancel eBasket”)
9. setReference(c1,ownedUseCase,uc1,uc2,uc3)

10. create(a1,Actor)
11. setProperty(a1,name, “Customer”)
12. setReference(a1, useCase, uc1,uc2,uc3)

Fig. 6. Construction sequence σ of use case diagram in figure 5 (b)

Detection and Fixing of Model Inconsistencies 27

To define structural consistency rules three predicates can be defined: lastCre-
ate, lastSetProperty, lastSetReference. The last indicates that this operation per-
formed in the current sequence will not be followed by an operation negating this
operations. This would be the case for example if a create(me, mc) operation
is followed by a delete(me) operations somewhere in the sequence. These last-
operations are useful since the structural consistency rules concern themselves
only with the model obtained after the sequence of construction operations is
performed, hence operations that later get negated are not of interest. A struc-
tural consistency rule for example would be:

Rule 1: An actor should not own a use case
This structural consistency rule is inspired by the UML 2.1 specification

that states that an actor should not own a use case even if the meta model
permits it. For our sequence σ in figure 6 it would mean that all create(me,
Actor) operations, to create actors, must not be followed by a setReference(me,
ownedUseCase, References) operations. The last-operations can be used in the
following logic formula to keep things more simple and efficient:
ActorsDoNotOwnUseCase(σ)=true iff

∀ a ∈ σ,
if a = lastCreate(me,Actor) then
6 ∃ o ∈ σ
o=lastSetRefernce(me,ownedUseCase,R) and R 6= ∅

In our example in figure 6 at operation 10 a new actor is created. After that
no setReference(a1,ownedUseCase,R) occurred, hence our example is consistent.

As methodological inconsistency rules constrain the construction process, the
order between operations should be taken into account during the evaluation of
the rules [6]. Therefor we define:
Let σ = a1; ...; am−1; am; am+1; ...; an be a construction sequence.
We denote by ai <σ aj the occurrence of operation ai before aj in sequence σ.

Rule 2: A class must exist before a state chart, describing the class,
can be created

This methodological consistency rule is based on figure 7. This class diagram
introduces a relationship between classes and state charts, a state chart describes
a class. The intention of this rule is to make sure that first a class is designed
using a class diagram and then further specified using a state chart, and not
the other way around. Using the construction operations, this can be expressed
through: if there is a setReference(sc, describes, c) operation, then there must
be no create(sc,StateChart operation before the create(c,Class) operation. As a
formula it would be:

ClassBeforeStateChart(σ) = true iff
∀a ∈ σ, if a = setReference(sc, describes, cl) then
∃c ∈ σ, create(cl, Class)
and ∃b ∈ σ, create(sc, StateChart)

28 Frieder Pankratz

and c <σ b <σ a

Fig. 7. Class diagram describing the relationship between class diagrams and state
chart diagrams

In figure 8 we see the simplified construction sequence of the class and state
chart diagrams of figure 4.

1. create(c1,Class)
2. setProperty(c1, name, “Display”)
3. create(sc1, StateChart)
4. setProperty(sc1,name,”StateChart for Display”)
5. setReference(sc1, describes, c1)
6. create(sc2, StateChart)
7. setProperty(sc2, name, “StateChart for Streamer”)
8. create(c2,Class)
9. setProperty(c2, name, “Streamer”))

10. setReference(sc2, describes, c2)

Fig. 8. Construction sequence σ for state chart and class diagram for example 4

The first part with the operations {1 - 5} in figure 8 is consistent as the
class {1} is constructed before the state chart {3}. The second part with the
operations {6 - 10} is inconsistent, as the state chart is created before the class.

For the evaluation of this approach the checker engine was developed in
Prolog. The sequence of construction operations was stored as Prolog facts, and
the rules where translated into Prolog queries by hand. The Prolog queries where
implemented as the negation of the consistency rules.

Detection and Fixing of Model Inconsistencies 29

Development Tool Support A prototype was build using Prolog as the pro-
gramming language for the checker engine and integrated into the modeling
environments Eclipse EMF and Rational Software Architect. The prototype has
been validated on a real large-scale UML model. 58 constrains where defined
for the test. The model contained about 1.3 million construction operations. 45
seconds where needed to load the model into the memory and 3 minutes where
needed for checking the 58 consistency rules using an Intel Pentium D CPU
3.00GHz with 3 GM ram memory.

3 Fixing an Inconsistency

An inconsistency can not only arise from human error but also from desired
design changes or from fixing an inconsistency. Since an inconsistency is not an
independent event, they either share erroneous model elements or the erroneous
model elements are located in close proximity in the model [4]. Because of these
dependencies among the inconsistencies, fixing an inconsistency can have desired
and undesired side effects.

The approaches by Rasch/Wehrheim and BMMM only offered ways to detect
inconsistencies, but Egyed also offers a way to analyse these dependencies and
give reasonable suggestions and hints for fixing inconsistencies.

Egyed detects inconsistencies by creating an instance of each rule for every
model element(only if the rule can be applied to the model element), like a class
or a message. If these rules detect an inconsistency then the corresponding model
element introducing the inconsistency is identified through the rule instance. By
using the model profiler and further investigating the scope of the rule that de-
tected the inconsistency, the cause of the inconsistency can be further isolated.
The scope of a rule are the model elements and attributes that must be accessed
to evaluate the rule. By further investigating the scope of an inconsistent rule
all dependencies to other rule instances can be obtained. Basically, fixing an
inconsistency is the same as a design change. A design change may cause one or
more of the following situations. A new rule instance might be created and the
rule evaluates itself to be either consistent or inconsistent. A reevaluation might
occur on some rules. These rules may stay in their current state (consistent/in-
consistent) or may change. Also a design change can cause an rule instance to
become obsolete and be removed.

An example will be used to further explain the process for fixing an incon-
sistency. As a basis, the model that was used to explain Egyed(see figure 4) will
be used. Assuming the designer of the video on demand system decided to re-
name the stream method of the class Display to play, to reduce confusion since
the same method names are used in the two classes. He did not only rename
the method, he also renamed the state transition in the Display state machine
diagram and the message 3: stream in the sequence diagram. Unfortunately the
designer renamed the wrong message in the sequence diagram, he should have
renamed the message 2: stream and because of that multiple inconsistencies are
introduced. The rules will now be reevaluated and the following rule instances

30 Frieder Pankratz

have become inconsistent. The first column in table 1 introduces a name for the
rule instances, the second column gives information about with rule was instan-
tiated and the last column describes to which model element the instance was
assigned.

Table 1. Inconsistent rule instances

Identifier Rule Rule location

R11 Rule 1 evaluated on link message 2: stream()
R12 Rule 1 evaluated on link message 3: stream()
R21 Rule 2 evaluated on object s:Streamer
R22 Rule 2 evaluated on object d:Display

R11 became inconsistent because the class Display no longer contains a
method with the name stream. R12 became inconsistent because the message
play is not included in the methods of the class Streamer. R21 and R22 became
inconsistent for the same reasons. By a small mistake four inconsistencies where
introduced. By further investigating the the scope of the rule R12 using the
model profiler we can identify all elements that could cause this inconsistency
and derive from those information ways to fix it. Possible fixes could be:

1. renaming message play to stream
2. changing the receiver of the message play to object d
3. adding a new method play to the class Streamer
4. change the ownership of object s to class Display
5. rename method play to stream
6. delete the message 3: stream

There are more possible solutions to fix this inconsistency and not all of the
presented fixes really solve the problem. The tool can’t automatically decide
which fix should be applied, only the designer has enough knowledge to decide
which fix should be used. So changing the class of object s from Streamer to
Display would solve the inconsistency of rule instance R11 but application would
not be able to function any longer. The designer must be the one to decide how
to fix an inconsistency since application design is more then just the consistency
of the model. Fixing the inconsistency of rule R12 by renaming the message 3:
play back to 3: stream, fixed also the rule instance R22 as a side effect. In [4]
inconsistencies have dependencies if they share at least one possible fix. Egyed
also determines to some extent which side effects could occur if a specific fix
would be used. Using this information the the tool is able to categorize the
offered choices for fixes into four categories.

1. Unused Choices do not have Side Effects
These fixes for a inconsistency have no side effects because the fix affects
only one model element.

Detection and Fixing of Model Inconsistencies 31

2. I-Only Choices have Positive Side Effects Only
A fix marked as I-Only affects multiple rule instances that are currently
inconsistent but no rule instances that are currently consistent.

3. C-Only Choices have Negative Side Effects Only
These fixes may affect consistent rule instances, but this is not guaranteed
since false positives are possible.

4. C&I Choices have Positive & Negative Side Effects
A choice marked C&I affects both inconsistent and consistent rules.

Fig. 9. Histogram of the fixing choices of the four categories

Every inconsistency has more then just one possible fix, which is why the
percentage numbers in figure 9 don’t add up to 100%. For further information
please read [4].

4 Advantages and Disadvantages

Since the purpose of each approach is different, comparing the three approaches
with each other might create a wrong impression. Egyed tried to develop a system
capable of providing real time feedback, mostly for syntactic inconsistencies. The
approach by Rasch and Wehrheim tried to give a formal definition of consistency,
using a model checker from a related problem domain. The goal of BMMM’s

32 Frieder Pankratz

approach was to include the construction process of a model into the consistency
checks, enabling methodical consistency checks. In this chapter the advantages
and disadvantages of each approach will be discussed.

All three approaches have in common that all needed information about
the model is extracted through the model. No special annotations in the model
are necessary to enable the translation or to extract the information. Also all
three approaches where able to define syntactic consistency, but not all provide
support for semantic inconsistencies. To provide support for semantic inconsis-
tencies, for example between a sequence diagram and a state chart, the state
machine has to be simulated, to make sure that the sequence of messages in the
sequence diagram is allowed. Egyed’s and Rasch/Wehrheim’s approach allow
such consistency checks, without further development of the approach.

Even though the rules are hard coded into the checker engine in Egyed’s ap-
proach, the design of the application allows an easy replacement of that compo-
nent without any restraints. Since this approach was developed with evaluation
speed in mind, the evaluation is fast enough (9ms - 2sec) to provide real time
feedback to the designer, as soon as he begins to change the model. Another
advantage is that it is able to provide choices for fixing the found inconsistencies
and categorize these choices so that the designer knows of any possible side ef-
fects. Even scalability is linearly complex with the size of the model. Therefore
a tool implementation of this approach could be used in practice and not just
as an academic test.

In the approach by Rasch and Wehrheim all consistency definitions are trans-
formed into semantic definitions since the FDR is like a model checker. Which is
why this approach is the best for semantic definitions of consistency. But since
all model elements must be translated into the semantic domain, a lot of work
is needed to extend this approach to other models.

The approach by BMMM was the only one able to define methodical con-
sistency rules. But to do this, the history of the model construction is needed.
Another strong point of BMMM is that all consistency rules can be applied
uniformly. There is no distinction between the different model types and their
meta-models since they use their own model to store the information. Since their
model is inspired by the MOF, which defines the meta-meta-model of UML, it is
easy to include the UML diagram types into this approach. For other models, a
transformation into their model must be possible. As a drawback the consistency
rules are more complex to define than the ones defined by Egyed. This is because
Egyed uses the meta-model as the basis for his information gathering, hence the
semantic information of the classes in the meta-model can be used to define the
consistency rules. As in BMMM’s approach, the meaning of the sequences must
be reconstructed to express the constraints.

5 Conclusion

Inconsistencies can arise within a model or between different models from differ-
ent situations. This paper demonstrated three completely different approaches

Detection and Fixing of Model Inconsistencies 33

for detecting inconsistencies. Egyed used the UML meta-model and a model pro-
filer to gather information and specific consistency rules to evaluate the model.
Rasch/Wehrheim tried to give a formal definition of consistency by transforming
the model elements into the process algebra CSP and specifying consistency def-
initions on those CSP elements. The last method by BMMM used its own model
to gather all instruction needed to construct the model in question and defined
consistency rules on those sequences of instructions. All three approaches where
able to detect inconsistencies and name the model elements causing them. But
detecting inconsistencies alone is not enough. Inconsistencies have dependencies
to other inconsistent or consistent model elements and fixing an inconsistency
can cause more problems than it might fix. So if a tool for model consistency is
developed, it must inform the the designer not only about the inconsistencies in
the model but also about the dependencies of them. If not, then in large projects,
in which a tool support like this is needed the most, the designer is most likely
overwhelmed by the number of found inconsistencies. A proper post processing
of the information is needed to determine the origin of each inconsistency, group
inconsistencies according to their origins and maybe even provide possible fixes
of the inconsistencies. In this paper only the approach by Egyed was able to
provide such information. There are many other approaches on how to detect
inconsistencies, for example [10, 11], but few of them go much further then on the
detection. I think it’s equally important to refine the gathered information about
inconsistencies and think of ways to present this information to the designer.

References

1. Briand, L.C., Labiche, Y., O’Sullivan, L.: Impact analysis and change management
of UML models. In: ICSM ’03: Proceedings of the International Conference on
Software Maintenance, Washington, DC, USA, IEEE Computer Society (2003)
256

2. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5) (2003)
19–25

3. OMG: Unified modeling language specification v2.0. Technical Report 05-07-04,
Object Management Group (2005)

4. Egyed, A.: Fixing inconsistencies in UML design models. In: ICSE ’07: Proceedings
of the 29th International Conference on Software Engineering, Washington, DC,
USA, IEEE Computer Society (2007) 292–301

5. Holger Rasch, H.W.: Checking consistency in UML diagrams: Classes and state
machines. In: Formal Methods for Open Object-Based Distributed Systems, Berlin,
Germany, Springer Berlin / Heidelberg (2003) 229–243

6. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: ICSE ’08: Proceedings of the
13th international conference on Software engineering, New York, NY, USA, ACM
(2008) 511–520

7. Egyed, A.: Instant consistency checking for the UML. In: ICSE ’06: Proceedings
of the 28th international conference on Software engineering, New York, NY, USA,
ACM (2006) 381–390

8. Smith, G.: The Object-Z specification language. Kluwer Academic Publishers,
Norwell, MA, USA (2000)

34 Frieder Pankratz

9. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

10. Simmonds, J., Bastarrica, M.C.: A tool for automatic UML model consistency
checking. In: ASE ’05: Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, New York, NY, USA, ACM (2005)
431–432

11. Kotb, Y., Katayama, T.: Consistency checking of UML model diagrams using the
xml semantics approach. In: WWW ’05: Special interest tracks and posters of the
14th international conference on World Wide Web, New York, NY, USA, ACM
(2005) 982–983

Model-Based Testing

Philip Preissing

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
preissip@in.tum.de

Abstract. This work gives an overview of model-based testing, which
aims at automatically generating test cases for a software system from
a formal model of its intended behavior. It first describes the theoreti-
cal foundations, including different modeling languages and different test
generation techniques. After that, the practical use of model-based test-
ing is examined. For this purpose, several case studies are described.
Here, a focus lies not only on the different application domains, but
more on empirical results that help to evaluate the technique and com-
pare it to other quality assurance techniques. The paper concludes with
an overview of the academic and commercial tool support for model-
based testing. A practical example is conducted using one commercial
tool.

1 Introduction

Models play a key role in software engineering. They are, among other things,
extensively used to describe the structure and behavior of a software system
on a more abstract level than code, thus providing a common understanding
between all stakeholders. With the rise of Model Driven Development (MDD),
models are now being put in even wider use by employing them in the whole
development process, e.g. by generating artifacts out of them or automatically
checking consistency between model and code. Considering this trend, it seems
straight-forward to use (probably already existing) models for (semi-)automatic
test case generation.

A test case compares intended and actual behavior of a software system
thereby proving that the system does not operate as expected or increasing the
confidence that it does. Test cases are usually designed manually. This process is
often undocumented, not systematic, non-repeatable and depends on the knowl-
edge of few test experts. Model-based testing, in contrast, aims at generating
test cases from an explicit behavioral model, e.g. a state machine. In a nutshell,
the idea is to automatically collect so called model traces (an input to the model
and its corresponding output). Since the model describes the intended behavior
of the system, these traces can then be used as test cases for the real system
under test (SUT).

36 Philip Preissing

Today, testing is probably the most widely applied quality assurance tech-
nique. Software firms put great effort in test generation and testing. While test-
ing is often automated, the test case generation has still to be made by hand.
Model-based testing promises to heavily reduce this effort without loss in the
quality of test cases. In fact the quality could even increase: when the model is
available, many more test cases can be generated automatically than could rea-
sonably be created manually. Another point is that the complexity of software
systems increases steadily. This influences the complexity of test cases making
manual generation of tests even more time-consuming.

Yet model-based testing is no push-button technology and there is still much
research effort necessary, not only to improve the technique itself but more im-
portantly to examine whether it actually pays off in practice. Some empirical
findings regarding this matter are presented later in this paper.

The next section of this paper explains model-based testing in detail. It de-
scribes the testing procedure, which types of models are useful, and how test
cases are generated out of them. Section 3 presents empirical findings about the
practical usefulness of model-based testing. Section 4 presents the current tool
support for model-based testing and Section 5 concludes with a summary, open
issues and an outlook.

2 Model-Based Testing

This section explains model-based testing in greater detail. It first discusses the
general testing procedure and which models are applicable. Approaches how to
select interesting tests out of the probably very large set of possible test cases
are also presented. The section concludes with a small example that shows how
the different parts work together.

2.1 Testing Procedure

Figure 1 depicts the general approach of model-based testing. Note that some
argue that every testing is model-based because a test engineer that manually
derives tests has an implicit model of the system in his mind. However, in this
paper, model-based testing does always refer to an explicit model of the SUT’s
intended behavior.

In a first step, an abstract behavioral model, for example a finite state ma-
chine, is created. There are several different approaches for this: It can either be
extracted automatically from the source code, may be a reused, already existing
model from the software design phase, or can be created separately based on
the requirements. These choices and their implications are covered in the next
subsection.

The model is then used to create the mentioned model traces which are
essentially a series of actions together with input and the final output of the

Model-Based Testing 37

Fig. 1. Model-based testing (from [1])

model. Those traces can be validated to make sure they meet the actual user
requirements.

Usually, the creation of test cases happens with respect to so called test case
specifications. Those are specifications that in some way influence the test case
generation, i.e. act as a selection criterion on the set of all possible traces. For
example, they can limit the total number of tests by restricting the generation
to the most critical parts of a system. This is for example useful if an embedded
system is considered that can only handle few test cases in a reasonable timespan.

Before the traces can now be applied to the SUT, it has to be considered
that the model is on a higher abstraction level than the source code. Thus, the
model traces usually have to be concretized before they can communicate with
the real system. For the same reason the SUT’s output has to be abstracted
before comparing it to the model’s output. This process of concretization (γ)
and abstraction (α) is performed by a test driver or adapter which has usually
to be customised for each individual software system.

The testing procedure then consists simply in comparing the SUT’s ab-
stracted output with the model output: if it matches, the test is passed thereby
increasing confidence that the code corresponds to the model, otherwise it fails
thereby proving its non-conformance. This is then a form of verification in the
sense that it is assured that the actual code conforms to a more or less formal
specification encoded in the model.

The main benefits of model-based testing compared with manual test design
include ([2]):

– Cost Savings: Costs are saved, when the modeling time is smaller than the
time necessary for manual test design.

– Systematic Testing: Tests are based on test specifications that control
the number of tests as well as the desired coverage. Test case generation is
repeatable.

38 Philip Preissing

– Modeling benefits: Through the mere activitity of modeling, requiremen-
t/specification errors and ambiguities are detected in an early stage of de-
velopment where they are still cheap to fix. A model also makes knowlegde
explicit and conserves it for future developers and testers.

– Quick response to evolving requirements: Changing requirements re-
quire simply an adaption of the model. Then the test cases can be re-
generated and re-run without any further changing activity, whereas in man-
ual test design a probably high number of existing test cases would have to
be adapted by hand.

– Automated Traceability: The model provides an automated traceability
between requirements and tests. Failures that were found in the code can be
traced to model elements and then to requirements.
This can for example be supported by annotating requirement numbers to
model elements.

Note that there is not the one model-based testing procedure. Possible vari-
ations and their implications in the different steps are discussed in the next
subsections. A taxonomy of model-based testing, which aims at providing an
overview of the variations, is presented in [3].

2.2 Models

The popular and widely accepted definition of Stachowiak [4] identifies three
important properties of models:

1. Mapping: Models are mappings from a real world to a model world.
2. Pragmatism: Models serve a specific purpose.
3. Reduction: Models are simplifications. They are more abstract and do not

represent every single aspect of the real world.

Figure 2 illustrates Stachowiaks definition. A model results from some map-
ping from an original to a model world while some (waived) attributes of the
original are abstracted away and other (abundant) attributes are added. For ex-
ample, a specification language introduces syntactical elements, e.g. the shape of
an arrow used, that have no meaning for the software to be developed. There is
no need that the original exists physically; it may be planned or totally fictious.

Models are fundamental for software-engineering: process models, process
maturity models, design models and interaction models are part of every software
engineer’s daily work. Some argue that all programs are itself models of the real
world and thus programming is an activity of modeling, too.

When working with models, it is crucial to maintain consistency between all
different model artifacts as well as between model and code. This holds espe-
cially true when employing models in the test process, where an inconsistent
model would probably lead to inconsistent test cases and thereby to tests that
fail although the behavior is actually correct. Pankratz (pages 19ff.) describes
different approaches how to detect inconsistencies and how to fix them.

Model-Based Testing 39

Fig. 2. Mapping between original and model according to Stachowiak (from [5])

Abstraction
The main reasons why models are so widely used in software engineering today,

is that they are easier to create, understand, communicate and maintain than
their counterparts in the real world. This is mostly due to abstraction, which is
achieved by omission and encapsulation of details.

Omission of details means that aspects that seem too detailed or even unnec-
essary for the model’s purpose are abstracted away. Some abstracted information
can be reinjected by the driver component whereas other information is lost com-
pletely. For example, in a smart card case study [6], cryptographic algorithms
were considered too complex and were excluded from the model. The test driver
reinjected that functionality before the generated test cases were applied to the
SUT.

When some information is encapsulated, models can be made a lot easier
to understand by simply referencing this information instead of including it in
each individual model. This happens for example in programming languages
where stack manipulations are encapsulated in function calls. Another benefit is
that this concept of encapsulation also restricts the programmer’s possibilities,
e.g. the way function calls work cannot be altered. This makes the model more
suitable to automatic analysis.

Prenninger and Pretschner [7] differentiate the following different kinds of
abstraction used in model-based testing.

– Functional Abstraction means to concentrate on the main functionality
that has to be verified. The model does not contain the complete intended
behavior of the whole system but only significant aspects. For example, ex-
ception handling could be abstracted away.
Funtional abstraction can also be used to divide the SUT’s functionality in
different parts which can be modeled independently.

– Data Abstraction aims at reducing the complexity by using logical or ab-
stract data types instead of concrete ones. This can happen with and without
information loss. An example for data abstraction without information loss
is encoding binary numbers as integers. Another example is to use equiva-
lence classes of values instead of concrete ones, which does clearly involve
information loss. To be able to compare the model output with the SUT’s

40 Philip Preissing

output, it is necessary to define a mapping between concrete datatypes and
abstract ones.

– Communication Abstraction is typically necessary when dealing with
a distributed system. In the case of an distributed method invocation, a
complex communication protocol including handshakes in the SUT can ab-
stracted by a simple atomic operation in the model. During test case gen-
eration those simple operations can be substituted with the real interaction
procedure.
But communication abstraction is not limited to distributed systems, it can
also be very helpful when testing hardware components that interact using
a complex sequence of signals.
Communication abstraction is often combined with functional and data ab-
straction.

– Temporal Abstraction means that only the ordering of events, not their
precise timing is relevant for the model.
There are basically two forms of temporal abstraction. The first is that model
and SUT have a different granularity of discrete time, e.g. a clock cycle in
the model corresponds to many clock cycles in the SUT. The other form is
that physical time is abstracted, e.g. a timer that lasts for X ms is reduced
to two events: one for starting the timer and one indicating it’s expiration.
When also the ordering of events is irrelevant, this is considered communi-
cation abstraction.

But abstraction comes with a cost in the context of model-based testing:
functionality that was abstracted away cannot be tested. Therefore, the model
designer has to trade off between abstraction and precision, so that all aspects
worth testing are included. It can thus be infered that there is an inherent
complexity in systems that cannot be abstracted away.

A typical example of this is that input parameters in the model are always
considered to be in certain bounds. This makes it impossible to test for mal-
formed inputs. When functional abstraction is used to break the system off into
different parts, it is hard to detect failures due to interaction between them.
Finally, overdosed temporal abstraction can lead to not detecting timing-related
failures in real-time components.

Model Redundancy
After reading the preceeding sections, one question might arise naturally: If

I already put effort in creating a behavioral model for specification and code
generation, is it possible to use the same model for test case generation, since
this would save the effort necessary to create another model?

In fact there are more approaches than these two. Figure 3 shows four possible
scenarios of model-based testing, ranging from using a common model for both
code generation and test case generation to totally separate models.

The first (upper left) refers to using the same model for code generation and
test case generation. The second (upper right) describes the automatic extraction
of a model from code. The third (lower left) means manually creating a model

Model-Based Testing 41

Fig. 3. Scenarios of model-based testing (assembled based on [1])

from requirements and specification. The second and third approach both refer
to creating a test model after the system was build. The fourth (lower right)
approach is concerned with creating two distinct models, one for code generation
and one for test generation.

When using the same model for code generation and test generation, there is
no redundancy between the intended and actual behavior as both are encoded
in the same model. As a result, the code is somehow tested against itself and
would conform to all tests if two constraints hold: the code generation worked
fine and environment assumptions made in the model are not violated.
These two constraints are the only things that can be tested when using a com-
mon model. Nevertheless, this can be also helpful because it explicitly verifies
the assumptions made in the model and would find inadequate ones. One tool
that aims at this scenario is Embedded Tester1. It is capable of automatically
generating test cases for Matlab/Simulink models. It checks for consistency be-
tween all relevant development stages and their models (Model in the loop (MIL),
Software in the loop (SIL) and Processor in the loop (PIL)). In Simulink, each
of these models is automatically translated into the next more concrete model.
Embedded Tester is then used to verify environment assumptions made in the
more abstract model (performance for example) and the generation mechanism
itself.
1 See http://www.osc-es.de/index.php?idcat=17

42 Philip Preissing

Another point to consider is that if the model for test generation is so complete
that one can generate code out of it, it is in most cases so complex that there is
no difference between model-based testing and directly testing the SUT.

The second scenario is concerned with automatically extracting a model from
code after the system was built manually based only on some specification. This
leads to the same problem of not having any redundancy between intended and
actual behavior. What can be tested using this approach is again only whether
extraction of the model and the necessary abstraction work correctly.

The third scenario is the first that generally provides the required redun-
dancy since the model is manually created based only on the specification and
requirements. This makes it possible to automatically assign verdicts, i.e. decide
whether the test passes or fails, thereby verifying the code.
In this approach, it is also possible that the activities of creating the specifica-
tion and building the system are not performed by the same organization as it
is often the case for example in automative industry.

Finally, the scenario that uses two distinct models for code generation and
test generation is clearly the one with the highest effort required. But this could
pay off since it combines both the advantages of model-based testing and model-
based development. In this scenario, it has to be assured that the two models
are different from each other. This requires at least that they are created by
seperate people.

Blackbox and Whitebox Models
Models can furthermore be differentiated in blackbox and whitebox. Blackbox

means in this context that the underlying structure of the SUT is not known
and has to be explored during testing. Only the state the system is currently in,
is visible. When in contrast considering whitebox models, the structure of the
system is known completely. Note the difference to blackbox or whitebox testing.
Model-based testing is generally blackbox testing as it tests against requirements,
even though one might argue that it sometimes employes structural information
about the software.

When comparing both, whitebox models have some obvious advantages. Be-
cause the whole model is known, paths through the model can be planned in
advance. This allows the use of more sophisticated algorithms and also to make a
statement about coverage. The downside is that a tool that generates test cases
out of a whitebox model has to understand the semantics of the declarative
modeling language.

Blackbox models however are not limited to declarative languages like state
machines or UML. Their only constraint is that their actions have to be exe-
cutable. This makes it possible to use familiar programming languages with all
their features as a modeling language. Thus, blackbox models are often easier to
write and for a tool to execute.

This paper focuses on whitebox models, since they currently are the more
popular approach.

Model-Based Testing 43

Models applicable in test case generation
A classic model for model-based testing is a finite state machine (FSM). A

FSM consists of states, transitions between them, and actions that are performed
at a given moment. It is called finite because its set of states is finite. FSMs are
generally well-suited for model-based testing, because the model trace generation
can be reduced to well-known and established graph-traversal algorithms like
random walk or chinese postman (all transitions are visited as soon as possible).

But the downside of FSMs is that the model gets very large for a real system.
Because of this problem of state space explosion, model-based testing switched
largely to extended finite state machines (EFSM). An EFSM allows state
variables that form the data state. Additionally, it facilitates the use of guards
and actions on transitions (cf. Figure 4). If the guards are fulfilled, the transition
can fire, thereby bringing the machine in the next state and setting the variables
accordingly. The advantage of an EFSM is that is has a small number of visible
states but a large number of invisible states that are defined through the state
variables. This is a kind of new abstraction layer that is put on simple FSMs.
Through these additions, an EFSM is in most cases smaller than an FSM while
allowing a more expressive model, especially when a real system is modeled. This
makes EFSMs better-suited for test generation.

Fig. 4. A simple extended finite state machine (EFSM). Triggers a and b with cor-
responding guards. When for example transition a is fired and the guard is true, the
local variable l1 is incremented by 3.

[8] provides more theoretical background of EFSMs and shows how func-
tional vectors can be automatically generated out of them. These can then be
used for test generation.

A State chart [9] is also an extension of an FSM targeted especially at
reactive systems. It features hierarchies and concurrency. States can be expanded
into lower-level state charts, which again add new levels of abstraction. This
improves understandability and reduces the state space. A rather unique feature
is that state charts can be explicitly modeled to be executed in parallel which
is hardly possible using (E)FSMs. A state chart features optionally also triggers
(a signal or event that fires a transition), guards (a boolean condition that when
false prevents the transition from being fired) and actions (what is performed if
the transition is fired). State charts may be more understandable than FSMs,
but are not trivial to work with.

44 Philip Preissing

State charts were also adopted in the Unified Modeling Language (UML)2

where they are called state machines. They also feature parallelism and hierar-
chies. Transitions are also described using triggers, guards and actions. The main
benefit of using UML state machines instead of state charts or EFSMs, is its in-
tegration with other model artifacts, e.g. a class diagram. Operations that were
defined in a class diagram are available as triggers in a state machine. Com-
mercial tool support may also be better for UML. Actions are usually described
using the Object Constraint Language (OCL).
A subset of UML useful for model-based testing, called UML-MBT, is presented
in [10]. UML-MBT is based on three diagrams: class diagrams (model points
of control and observation of the SUT), object diagrams (define test data) and
state machines (model dynamic behavior). It is complemented by a subset of
OCL that is used for transition actions and postconditions.

Labelled transition systems (LTS) [11] are similar to finite state ma-
chines, with the exception that neither their state space nor their number of
transitions has to be finite. Labelled referes to the fact that their transitions
have a label that has some meaning depending on the semantics of the concrete
model. One prominent example in this context is the Input Output Transition
System (IOTS) [12], which is the basis of several model-based testing tools.

State based or pre/post notations model a system as a collection of
variables that represent the internal state of the system, and operations that
modify them. Operations are usually defined not using programming languages
but a set of pre and post conditions. Examples of these languages are B and Z.

There are many other modeling languages applicable for model-based testing.
This includes Markov chains that allow statistical testing, decision tables/trees,
grammars, and message sequence charts (MSCs).

Choosing a model
As there is no silver bullet model that fits all purposes, choosing a model is

a trade-off between different properties. The first criteria is the system under
test. The domain of this system may eliminate some models and favor others
up-front. For example, if the system is dealing with accepting inputs following a
particular structure, grammars may be a better choice over finite state machines.
If parallelism is needed, state charts may be the best choice.

Other points to consider are skills, audience and tools. People creating and
maintaining these models must be experienced enough to do this in reasonable
time and accuracy. Tool support that helps during this tasks must be available
and has to be evaluated. Important is also the audience of the models: do they
have to be understandable only by an automatic test generator or also by the
stakeholders on the customer side?

Organizational issues are also to be considered. For example, it may be rel-
evant at which phase in the development cycle the models are created. In an
earlier stage they may be more abstract than in a later stage. The development
process, for example waterfall versus iterative approaches, is also relevant here.
2 A notation by the Object Management Group. http://www.omg.org

Model-Based Testing 45

2.3 Test Specifications

In most model-based testing scenarios, a rather large, or even infinite3, set of
tests can possibly be generated. This set of test cases is often too large to be
useful. Consider for example an embedded system that has to be reset after each
test, which can take up to one minute. Clearly, not the whole test case set of
maybe 3000 possible tests can be applied to that system as it would take days.
Another problem is more general: tests that fail have to be interpreted by test
engineers to find the cause. Even though model-based testing provides integrated
traceability up to the requirements (cf. section 2.1), this can be a tedious task
when confronted with a huge number of tests.

Test specifications offer the solution to this dilemma. They act as a selection
criterion on the set of test cases, that is they “filter out” interesting test cases
according to a predefined criteria. As with models, there is no best criteria; it
has to be determined by a test engineer based on the actual situation.

[3] differentiates six categories of test specifications:

1. Structural Model Coverage Criteria exploit the structure of the model,
e.g. the nodes and edges in a transition-based model or pre and post-conditions
in state-based models. This means that test cases are generated according
to a structural criterion and that test cases are selected if they increase the
overall coverage of this criterion.
For transition-based models, there exists a variety of graph coverage criteria,
e.g. all nodes or all paths. Additionally, control flow and data flow coverage
criteria have been adapted from white-box testing.
Control flow coverage is based on the notion of condition and decision. A
condition is a boolean expression and a decision is a point in the specification
where control flow can take different paths, e.g. an IF-THEN-ELSE construct
in a programming language. Upon these terms, different coverage criteria
have been defined: decision coverage requires that each possible outcome of
every decision is produced at least once. condition coverage is the equivalent
for conditions. But both of them have weaknesses, because each alone does
not cover all possible decisions and conditions. To overcome these deficiency,
decision condition coverage was defined that requires that each possible out-
come of every condition in each decision is produced at least once and that
each possible outcome of each decision is produced at least once. Decision
condition coverage is for example applied in [13].
Data flow coverage focuses on the way values are assigned to variables and
how these assignments influence the further execution. Thus, they require
test cases from a variable assignment to the point where this variable is used.
One data flow coverage criterion is all definitions coverage which requires
that all defined variables are tested once. A stronger criterion is all uses
criterion that requires that all variables are tested in all their uses. But this
does not cover that all possible paths to reach a variable use are tested. This
is ensured by the all definitions uses paths coverage.

3 Infinite sets of test cases can among others be caused by loops in the model.

46 Philip Preissing

A detailed view on control and data flow coverage criteria is out of scope of
this paper. Please refer to [14] for more information.

2. Data Coverage Criteria aim at choosing few test values from a large
possible input data set. This can be done by splitting the set into equivalence
classes, so that hopefully all data in one class is equivalent in terms of failure
detection. It is then possible to test only one representative of each class.
This approach is often accompanied by boundary analysis, which means
testing the data at the border of each class.

3. Requirements-Based Coverage Criteria is applicable if model elements
can directly be related to requirements. It is also possible to use so called
scenarios, which specify an expected usage of the system under test. This
can for example be concrete instances of UML Use Cases. Test generation
can then be restricted to the specified scenario thereby reducing the number
of test cases.

4. Ad-hoc Test Case Specification. A test engineer can use explicit test
case specifications to control the test case generation. These specifications
can be written in the same language as the model (but they do not have to
as long as they are formal) and can then restrict the paths in the model that
should be tested or can focus the test generation on critical parts. Those
parts could for example be heavily used, safety-critical or single points of
failure.

5. Random and Stochastic Criteria are mostly applicable to environment
models. They result from analysis of user behavior and system usage and
can then be used to apply usage patterns to the SUT. The simplest case is
that all system functions have equal probabilities, which results in random
selection of test cases. However, when there are functions that are more
frequently used or are more critical, they should be tested more thoroughly.

6. Fault-based Criteria measure the test case’s ability to detect faults in
the software. The most common approach are mutation tests that change
something in the implementation of the SUT and test if the generated test
cases find these intentional errors.

Coverage criteria can also be useful to judge the adequacy of the selected
test cases, e.g. to reason whether testing is complete. Thus, it is important to
measure coverage between the test suite and the model/specification even if the
test specification is not based on coverage.

Empirical Evidence
A summary of empirical evaluations comparing structural coverage-based test-

ing with random testing is presented in [14]. According to these results there is
no evidence that coverage-based testing performs significantly better than the
much cheaper random testing. Random testing is also more likely to gain a higher
overall coverage. The main advantage of coverage-based approaches is that they
explore the SUT more systematically thereby finding more specific faults like for
example bad treatment of bounds. The authors suggest the combination of ran-
dom and coverage-based testing so that on the one hand coverage-based testing

Model-Based Testing 47

finds specific faults while random testing on the other hand provides confidence
about reliability.

However, another evaluation [15] that compared coverage-based testing with
random testing shows different results. For the experiment, a total of 24 er-
rors were intentionally applied to a moderate-size software system in advance.
Then, different test suites were generated and compared in terms of failure-
detection. The authors describe that random testing found only 62.5%, whereas
the coverage-based approach found up to 83.3%.

2.4 Test Generation

The problem of test case generation boils down to finding test cases that match
the predefined test specifications. How test cases are generated depends again
heavily on the modeling language used. Theorem proving can be used to generate
test cases from formal specifications in pre/post notation, e.g. B or Z. Finite
state machines can be analyzed by model checking or graph algorithms. Another
technique that could be used is symbolic execution which can be applied to
different kinds of models.

Theorem Proving
The basic idea of using theorem proving is that the input data can be partitioned

into a smaller number of equivalence classes, so that (hopefully) data from the
same class causes the same error or no error in the case of success. This property
is called a uniformity hypothesis. Each equivalence class refers to one test case.
These equivalence classes are obtained by trying to construct a formal proof for
the model.

Unfortunately, theorem provers, especially in real application scenarios, are
often only semi-automatic, because they have to be guided by a user. This makes
it very time-consuming and expensive. However, there may be some quality
requirements that can only be reasonably met via this costly procedure.

As the exact procedure of test case generation via theorem proving requires
some knowledge about the specification language and is quite complex, the reader
is referred to [16], which describes how test cases can be generated out of Z spec-
ifications. Prolog can also be used as a specification language thereby exploiting
the integrated theorem proving capabilities.

One might argue, that if a formal proof is found that the model is correct,
why should one construct additional test cases? On the other hand, if testing is
unavoidable, why should one construct a formal proof in the first place? Besides
the fact that proving the model’s correctness does not necessarily make a state-
ment about the SUT’s correctness, the answer is that theorem provers perform
a detailed analysis of the input domain in order to construct their proofs. The
structure of the proof thus reflects the set of equivalence classes that fullfil the
uniformity hypothesis, implicitly. Test cases can then be extracted out of the
proof and applied to the SUT.

48 Philip Preissing

Model Checking
In model checking, the problem of test case generation is reduced to finding wit-

nesses or counter-examples to a set of temporal logic formulas. These temporal
logic formulas can be understood as coverage criteria, i.e. test case specifications.
This allows to find a set of witnesses or counter-examples fully automated in a
model that represent a set of test case specifications. The resulting execution
traces (either the correct ones or the incorrect ones) can then be applied to the
SUT.

Using model checking has the main advantage that all test generation logic
is encapsulated in model checkers. Thus, the test engineers can fully focus on
creating the model and test specifications in temporal logic. Model checking is
also a quite mature technology that has been applied very often and successfully
over the recent years.

The main downside is that model checking has problems when faced with
state space explosion. It then becomes very slow and thus impossible to use.
Therefore, attempts have been made to combine model checking and theorem
proving to overcome the deficiencies of each other [17].

Graph Algorithms
For transition-based models, such as (extended) finite state machines, there ex-

ist a couple of graph algorithms that can be applied to the problem of test case
generation. These algorithms traverse the graph that is defined by the FSM’s
states and transitions and thereby obtain model traces. Examples of these algo-
rithms are: random walk, chinese postman and all transition pairs.

The random walk of length N is the simplest algorithm. It goes through
the graph at random with a maximal number of steps N . Thus, it generates
model traces of length N , but these traces can involve loops and testing some
transition repeatedly while not at all including others. As mentioned earlier while
discussing the coverage criteria, randomness in model-based testing may perform
astonishingly well. Usage models can also be taken into account in the random
walk algorithm simply by giving transitions with higher usage profile a higher
probability, so that the algorithm more often follows these transitions.

Chinese postman [18] is a more sophisticated algorithm that covers all tran-
sitions in a minimal amount of time. It tries to avoid duplicate transitions.

Fig. 5. All transition-pairs test generation algorithm.

Model-Based Testing 49

All transition-pairs means that for each input transition to a state all tran-
sition outputs are followed. Figure 5 illustrates the algorithm. Both inputs i1
and i2 follow to each output o1, o2 and o3. Offutt and Abdurazik [19] discuss
different test generation techniques for UML-based specifications including all
transition-pairs. They also offer a small empirical evaluation where transition-
pairs performs better than a manually created test suite with 100% statement
coverage.

Symbolic execution
Symbolic execution is similar to the informal technique that a test engineer

applies a number of input values to the SUT and then compares the output to
the expected output. The main difference is that in symbolic execution symbols
instead of concrete values are applied, e.g. an x that represents the whole input
domain of integer values.

The main goal of symbolic execution is then to explore the possible execution
paths of the SUT and probably find errors in it. As a by-product test cases can
be generated, because it is then known, which input values can force the SUT
through particular control paths.

Lucio and Samer [16] describe approaches that first involve transforming
the abstract model into a constraint logic programming (CLP) language. This
program is then symbolically executed to find interesting model traces. Theorem
proving is used as support for state space exploration. One symbolic trace then
represents many concrete traces. This is why it has to be instantiated with
concrete values before being applied to the SUT. This CLP approach is applied
in the tool AutoFocus, which is described in Section 4.

2.5 Test Execution

The test execution can be differentiated into online and offline. Online means
that each test is run directly after it has been generated. The model is tested
on the fly. Offline refers to first generating all tests and then running them in a
seperate step and maybe in a different environment.

Offline tests have the advantage that they can be run many times after they
have been generated once, whereas online tests are regenerated every time. How-
ever, online tests have advantages at testing non-deterministic systems, because
they can directly react to the system’s responses.

2.6 Testing Non-Functional Requirements

It is important to note that model-based testing is not only useful for testing
functional requirements. Non-functional requirements can also be verified.
Some of the requirements could be added to the model itself. This includes timing
information, e.g. for real-time systems, which could be annotated to transitions.
Other non-functional requirements can be tested through special test specifica-
tions. This way, it is for example possible to generate special stress test suites

50 Philip Preissing

which would include a high number of test cases, which could be executed in
parallel, testing the most important functionalities of the system.

Before they can be tested, non-functional requirements have to be collected
and specified formally. Refer for example to pages 1ff. for an overview of this
topic.

However, testing non-functional requirements is not in the current main-
stream of model-based testing and research is still in progress.

2.7 Example

Consider the following small example of a drink vending machine. The machine
takes coins of values 50 and 100. One drink costs 200 coins. When the necessary
amount is placed into the machine, additional coins should not be accepted. At
any point, the user is able to press the return button to abort the operation and
get back their money.

Fig. 6. FSM of the drink vending machine.

Figure 6 depicts the finite state machine of the drink vending machine. Out
of this state machine, now a test suite could be generated using simple graph
traversal. The model traces of a random test suite with a maximum length of 10
could for example look similar to this:

1. (0, insert(50), 50)
2. (50, insert(100), 150)
3. (150, insert(100), 150)
4. (150, insert(100), 150)
5. (150, returnButton, 0)
6. (0, returnButton, 0)
7. (0, insert(100), 100)
8. (100, insert(50), 150)
9. (150, insert(50), 200)
10. (200, returnButton, 0)

Model-Based Testing 51

The transition coverage of this test suite would be 9
16 or 56%. Due to random

testing, the transition (150, insert(100), 150) gets executed twice in a row.
A coverage-based approach would try to minimize these duplications and select
the transitions that increase the overall coverage. In this case, it would have for
example chosen the transition (150, insert(50), 200) instead. The transition
(200, getDrink, 0) and therefore the SUT’s operation getDrink() remains
totally untested.

The generated model traces are then applied to a test execution framework,
that is connected to the SUT via an individually developed test driver. The
framework invokes the according operations on the SUT (insert(x), getDrink()
and returnButton()) and observes its behavior. It tests as long as either an er-
ror is found or the test suite is completed successfully.

3 Case Studies and Empirical Evaluation

This section focuses on the practical relevance of model-based testing. It presents
several case studies that are described in the literature, with focus on industrial
applications, and discusses empirical data helping to evaluate the technique’s
practical performance.

Based on their analysis of eight different case studies in the fields of proces-
sors, protocols and smart card testing, Prenninger et al. [20] conclude with the
following observations:

1. The use of model-based testing is motivated by the complexity of today’s sys-
tems. It is getting very hard to validate system’s against their requirements
using traditional (manual) approaches.

2. All case studies follow a common abstract process4. This has the advantage
that the process is systematic, repeatable and measurable.

3. Model-based testing starts to be broadly applied in the domain of processor
verification. The existence and wide-spread use of VHDL and alike languages
providing well-defined abstraction levels, allows partial automation of the
test model creation process.

In their conclusion, Prenninger et al. also criticize the lack of rigorous assess-
ments including cost/benefit relationships when comparing model-based testing
with traditional testing techniques and other quality assurance techniques. By
now there exist many reports about the practical use of model-based testing,
but there are few studies that really measure model-based against random or
manual testing. One evalution that focuses on these questions, was conducted
in [13] and will be described in the following.

The authors used the case study of an automotive infotainment network
controller to evaluate different testing techniques in terms of error detection,
model coverage and implementation coverage. In particular they compared test
suites that were automatically generated and those that were manually created.

4 The process is identical to the one described in this paper, mainly in section 2.

52 Philip Preissing

In both cases it was differentiated between using a model for test generation and
not using a model. Additionally, the relation between explicit functional test
selection criteria and pure random test selection was evaluated. In total, seven
different test suites were created, which are depicted in Table 1.

Suite Automation model TC specs Comment

A manual yes yes

B auto yes yes

C auto yes no random creation with model

D auto no n/a random creation without model

E manual no n/a only requirement MSCs

F manual no n/a additional MSCs

G manual no n/a traditional techniques

Table 1. Different test suites used in [13]

Based on informal message sequence charts (MSC) that were included in the
requirement specification, the network controller was modeled in the AutoFocus
CASE tool using EFSMs. In test suite F , additional MSCs were created while
clarifying the requirements. For the automated test case generation, the model
was then transferred into a constraint logic programming (CLP) language and
the test specifications were added. This CLP was then executed, thereby enu-
merating all traces of the model5. In addition to the number and type of detected
errors, the condition/decision (C/D) coverage both between testcases ↔ model
and testcases ↔ implementation was measured.

Figure 7 shows some of the empirical data that was collected. It can be seen
that the use of models significantly increases the number of detected require-
ment errors. However, the number of detected programming errors seems not
to depend on the use of a model. Pure random tests (C and D) detect fewer
errors than all other test suites. Different test suites detect different errors while
no suite detects all errors. This suggests that the combination of different ap-
proaches is promising.
Concerning coverage, it can be infered that model and implementation coverage
correlate moderately. Implementation coverage cannot exceed a level of 75% due
to abstractions applied to the model. Coverage and error detection overall corre-
late positively. However, there is no evidence that greater coverage leads to more
detected errors. This questions the validity of using coverage as test selection or
adequacy criterion.
With the same number of tests, handcrafted and automated model-based tests
found an equal number of errors. A sixfold increase in the number of generated
tests found an additional 11% of errors.

5 Actually, the CLP was symbolically executed for test cases with a maximum length
of 25. Technologies of test case generation were described earlier in Section 2.4

Model-Based Testing 53

Fig. 7. Detected errors and coverages of the different test suites (from [13])

The high number of remaining errors in the MSC-based requirement documents
suggests that they should be complemented by the model itself.

Note that the authors of the case study do not make an explicit statement
about the economics of model-based testing and its automation, i.e. whether the
additional modeling time pays off in the end. This is related to the concept of
Return On Investment (ROI), which is popular in the business world. Giombetti
(pages 65ff.) gives an overview on how to measure cost/benefit of software quality
assurance.

Another case study reports about a model-based testing tool called Spec Ex-
plorer [21] that was developed at Microsoft Research. According to the authors,
the tool is used on a daily basis by about 100 testers. In a comparison between
testing with Spec Explorer and testing traditionally, Spec Explorer helped to
discover 10 times more errors than the traditional approach while costs for mod-
eling and for traditional test automation were roughly the same. Especially, deep
system-level bugs were better found by the model-based testing tool. Unfortu-
nately, the study does not go into greater detail clarifying its claims.

A case study that was already briefly mentioned above, was conducted in [19].
It is about a small experiment that the authors conducted in order to evaluate the
usefullness of a tool they developed, which is able to automatically generate test
case out of UML state charts. For this purpose, they compared three different
scenarios: automatic test generation with full predicate coverage (a coverage
method that takes the predicates on transitions into account and is similar to
condition/decision coverage), automatic generation using all transition pairs,
and manual creation by a test engineer. For each technique, one test suite was
created and applied to a moderate-size software product that had been seeded
with errors in advance. Their results state that full predicate coverage found all
25 errors, followed by transition pairs which found 18/25 and thus performed

54 Philip Preissing

significantly better than the manual test suite with 100% statement coverage
that found 16/25 failures.

A recent study [22] was aimed at giving an overview of the empirical evidence
concerning model-based testing. It categorizes 85 papers according to modeling
language and type of evidence, e.g. speculation, experience, experiment, etc. A
special focus was also on the use of UML as modeling language. Only 7 studies
were describing actual experimental results - the vast majority (72%) was only
speculation or included an example without giving evaluation criteria on which
a comparison would be possible. The experiments were conducted on either toy
systems or small applications up to 6500 LOC. In most cases, engineers applied
intentional defects to the system and tried to find them by testing. The results
show that 100% of defects can be found using a large test case set. But also small
test sets have a good coverage (about 70-90%). The tradeoff between larger and
smaller sets, e.g. in terms of runtime and memory footprints, is still not very
well researched. All these results conclude that there is still no strong evidence
about the practical usefulness of model-based testing regarding complexity, cost,
effort, and required skill.

4 Tool Support

This section aims at examining if and how much the preceding theoretical foun-
dations have found their way into practice. Model-based testing, especially when
automatic generation of test cases is included in the definition, is not possible
without appropriate testing tools. In this section, some tools that are available
are presented briefly trying to give an overview and to establish the connection
to the preceeding chapters. Due to commercial restrictions this was not always
possible. Then, a practical example using one tool is described to give the reader
an insight in how model-based testing is done in practice today.

4.1 Tool Descriptions

This section does not claim completeness but rather aims at giving a small
overview. For a more complete review of model-based testing tools, please refer
for example to [23].

AutoFocus
AutoFocus [24] is a tool developed at the Technical University of Munich6

targeted at the graphical modeling and development of distributed systems. The
core element of AutoFocus models are components that can be connected via
typed ports. These networks of components are depicted by system structure
diagrams (SSD). SSDs can be hierarchical, i.e. components can be decomposed in
other communicating sub-components. While these diagrams describe the static
structure of the software system,EFSMs are used to specify the dynamic behavior
6 See http://autofocus.in.tum.de

Model-Based Testing 55

of each component. AutoFocus components are time-synchronous, which means
that a global clock is used and all components act simultaneously. Thus, an
AutoFocus model is essentially a set of time-synchronous EFSMs communicating
over typed channels.

In addition to the model, test specifications and the SUT itself are needed.
Test specifications can either be functional, structural or stochastic. The test
generation process is very similar to the one described in Section 2.4. The model
is first transformed into a CLP program, which is enriched with the test spec-
ification. The predicates of low-level components K in the program are of the
form

stepK(SK , i, o, DK) ⇐ guard(i,DK) ∧ assgmt(o,DK)

This means that if the guard is true, the transition with input i from SK to
DK can be fired thereby outputting o and modifying the component’s data state
according to the assignment. The predicates for higher-level components, i.e.
components that are composed of other components, can be translated recur-
sively.
Then, the program is symbolically executed to find the possible model traces.
As a further optimization, states are not visited multiple times. Before they can
be applied to the SUT, the resulting symbolic traces have to instantiated. This
can happen either by random or by limit analysis.

Further details on the test generation procedure as well as a case study can
be found in [6].

AGEDIS
The AGEDIS7 (automated generation and execution of test suites for dis-

tributed component-based software) project [25] was a cooperation between sev-
eral industrial and academic research groups under leadership of IBM funded by
the European Commission that ended in 2004.

First, an open architecture was defined that allows for flexible and inter-
changeable use of concrete components. Existing tools from different research
groups can be adapted to the interfaces defined and make use of the AGEDIS
infrastructure.

The AGEDIS architecture is depicted in Figure 8. It defines the following
six interfaces between the different components, while the first three are user
interfaces and the last three are internal interfaces:

– Behavioural modeling language. AGEDIS uses AML, which is a profile
of the UML, as modeling language. However, because of the flexible archi-
tecture, support for other modeling languages is claimed to be also possible.
Class diagrams describe the structure of the SUT while state machines are
used to model the behavior of each class. Actions are described using Ver-
imag’s language IF. Stereotypes define the interface between the SUT and
its environment. Additionally, an object diagram describes the initial state
of the system.

7 See http://www.agedis.de

56 Philip Preissing

Fig. 8. The AGEDIS architecture (from [25])

– Test Generation Directives are similar to Test Specifications. They in-
struct the test generator how to generate test cases. The directives can be
modeled as MSCs or system-level state diagrams. Since they are often not
easy to create, AGEDIS provides a set of predefined directives including
random generation, state coverage and transition coverage.

– Test Execution Directives instruct the test execution where and how to
execute the tests. They provide a mapping between the abstract datatypes
of the model and the real datatypes of the SUT. It additionally contains
configuration values for the test execution (host information for distributed
systems, delays, timeouts, etc.). The test execution directives are described
in XML.

– Model Execution Interface. This interface is responsible for the encoding
of the behavioral specification, which consists of classes, objects, and state
machines. Again, IF is used to do so.

– Abstract Test Suite and Execution Trace. Both abstract test suite and
test suite traces are described using the same XML schema, which again
allows for interoperability. A suite consists of one or more test cases and
traces and a description of the SUT model. One test case contains a set of
test steps which in turn may consist of stimuli, observations, and directions
for continuation to the next step of for reaching a verdict. Several actions
may take place in one step, either in parallel or sequential.
Test cases can be parameterized so that one test case can be run multiple
times with different parameters. Also, one test case can invoke other test
cases as sub-steps.

Modeling in AGEDIS is possible using the Objecteering UML Editor with
an AML profile. AGEDIS also features a simulator for the constructed IF model
that shows how the model reacts to specified inputs. This should enable the user
to see their model in action and understand it more fully.

Model-Based Testing 57

Test generation requires translating the model to a labeled transition system
(LTS). This LTS is traversed from the initial state to a state marked in the test
generation directives as “Accept”, i.e. a state that reaches an accept verdict,
and a set of test cases is extracted. The algorithm is based on the TGV engine,
which is derived from model checking, and further described in [26].

A test execution framework named Spider was also developed. It provides
platform and language independent utilities for test case execution, logging and
tracing of distributed systems. Spider is able work with SUTs written in C, C++
and Java. It takes care of the distribution of objects and controls the whole test
run. It generates stimuli, makes observations, compares them to the indented
behavior, and writes the executed traces in an XML format for further analysis.

The test analysis framework consists of two tools: a coverage analyzer and
a defect analyzer. The coverage analyzer is able to generate test purposes that
instruct the test generator to generate test cases that cover missing values or
sequences in the model. The defect analyzer clusters the traces that lead to the
same fault and tries to generate a single trace out of them. This should ease the
manual analysis when there are many repeated occurences of the same fault.

Several case studies to evaluate the AGEDIS tools were also published [27].
The case studies showed mixed results. While the industrial testers were pleased
with the test execution framework and the overall interoperability of the AGEDIS
tools, they were critical with the modeling language and the test generator. The
used UML state machines were not always seen natural. The use of the IF lan-
guage was criticized and the AGEDIS authors admit that they probably should
have used OCL or a subset of Java instead. The test generator seemed not to be
scalable enough for large industrial applications.

AGEDIS is available free of charge for academic purposes. The small german
company imbus AG8 was charged with developing commercial applications of
the project.

ModelJUnit
ModelJUnit9 is a very simple open source tool developed by Mark Utting at

the University of Waikato. As the name intends it aims at extending JUnit with
model-based testing capabilities.

Models for ModelJUnit are (E)FSMs that are written as Java classes. It is
possible to generate tests for these models using various test generation algo-
rithms (mainly based on graph traversal) and measure coverage figures.
The following listing shows a simple FSM expressed in ModelJUnit.

public class FSM implements FsmModel {
private int s t a t e = 0 ; // 0 . . 1
public FSM() { s t a t e = 0 ; }
public St r ing ge tSta t e () { return St r ing . valueOf (s t a t e) ; }
public void r e s e t (boolean t e s t i n g) { s t a t e = 0 ; }

8 See http://www.imbus.de
9 See http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/

58 Philip Preissing

public boolean action0Guard () { return s t a t e == 1 ; }
public @Action void ac t i on0 () { s t a t e = 0 ; }

public boolean action1Guard () { return s t a t e == 0 ; }
public @Action void ac t i on1 () { s t a t e = 1 ; }

public boolean actionNoneGuard () { return s t a t e != 1 ; }
public @Action void actionNone () { /∗ l e a v e s t a t e the same . ∗/ }

}

The java class is equal to the graphical notation depicted in Figure 9.

Fig. 9. Above FSM in graphical notation.

The model class does also act as the test driver that connects the model to the
SUT. The methods annotated as @Action typically include code to call the SUT
and check if the results conform to the expected results.

The approach of using a blackbox model has the downside that the test
generator can only build up the model at runtime by checking which guards are
true, but has no knowledge about the internal structure of the model. When there
are guards that are rarely true, it is difficult to obtain the whole model. Another
liability is that the communication with the SUT is handled internally without
explicit modeling. This leads to limitations in the test generation algorithm and
the coverage measures. Additional information on ModelJUnit can be found
in [2].

Conformiq Qtronic
Qtronic [28] is a commercial tool developed by Conformiq Software10. A Qtronic

model consists of up to three parts:

– Textual source files written in the modeling language QML, which is
a superset of Java that describes data types, constants, classes and meth-
ods. The additions to Java include macros, nondeterministic programming,
guards and requirements traceability.

– UML Statecharts that model the dynamic behavior of the classes.
– UML Class diagrams to declare classes and their relationships

10 See http://www.conformiq.com

Model-Based Testing 59

The graphical models (Statecharts and class diagrams) can be created in various
commercial UML tools or in the Qtronic Modeler, but are completely optional.
All behavior and static structure of the system can also be described directly in
the textual source files.

The interfaces to the SUT are expressed as a collection of ports. The test
driver that connects model and SUT and handles abstraction/concretization is
called test harness. Unfortunately, details about the test generation algorithms
are not disclosed to the public. It is only stated that they “employ a combination
of advanced technologies [...] (including e.g. symbolic execution)” [28].

As test specifications, Qtronic features a number of criteria, including require-
ments coverage (requirements are annotated in the model), transition coverage
and all paths coverage. QTronic aims at constructing a minimal test suite that
conforms to the test specifications to ease test execution and later debugging
activities.

It is also possible to include timing information in the test cases, i.e. timings
for messages sent to the SUT and received from it.

Qtronic is available as a 30-day trial version. In the next section, a practial
model-based testing example is given using Qtronic.

4.2 An Example

The same example of a drink vending machine is used that was already described
in Section 2.7. First, a model of the system is created. This is done in combination
of a textual description in QML and a graphical using UML state machines.
Figure 10 shows an excerpt of the state machine in Qtronic Modeler.

Fig. 10. Excerpt of the state machine in Qtronic Modeler.

60 Philip Preissing

private void proc e s s In s e r tCo in (int value)
i f (va lue == 50 && balance == 200 | |

value == 100 && balance == 150) {
// ignore

} else {
balance += value ;

}
CurrentBalance curBal ;
curBal . ba lance = balance ;
userOut . send (curBal) ;
requirement ”Coins can be i n s e r t e d ” ;

}

At the beginning it is checked whether additional coins are still valid or can
be ignored because a balance of 200 would be exceeded. Then a message is sent
to the environment that contains the current balance. The last line denotes that
the requirement named “coins can be inserted” is realized in this method. This
is useful for traceability reasons.

When the model is finished, the Qtronic tool is able to generate test cases
out of it. Figure 11 shows an excerpt of one generated test case that is visualized
as an MSC.

Fig. 11. Excerpt of one test case generated by Qtronic.

The MSC shows the communication between environment and SUT including
the content of the messages. In total, a number of 52 test cases were created in 22
seconds that yield an overall transition coverage of 100%. Test case can also be
generated into several executable formats, so that they can directly be executed
without further manual actions necessary.

Model-Based Testing 61

Qtronic also supports the online execution of test cases while they are created.
For this purpose, an adapter has to be created that mediates between the Tester
and the SUT. For the sake of simplicity, this is not described in this section.

While Qtronic features an easy-to-use graphical user interface that may also
be usable by project managers or other people not so concerned with technical
things, testing with it is still not trivial. The model (and SUT adapter) creation
is the crucial part in the workflow. Learning the QML notation requires some
effort and the documentation is lacking some important points.

4.3 Choosing a Tool

As with models, there is no tool that can be used uniformly for all testing pur-
poses. The choice of a tool depends heavily on the domain of the software system
under test, e.g. whether it is an embedded system or an enterprise information
system. Additionally, skills and experience of the test engineers have to be con-
sidered since the presented tools use different modeling languages as well as test
generation routines. Prices and licensing might be another consideration.

Some comparisons of model-based testing tools have already been conducted.
Please refer to [23] for a summary and for hints to the original literature.

5 Conclusion and Outlook

This paper gave an overview of model-based testing in theory and practice. It
started with explaining the theoretical foundations behind the technique. Since
there is not the one model-based testing process, possible variations in the dif-
ferent steps were also discussed. This included the different modeling languages
applicable, different test generation algorithms and test specifications includ-
ing some empirical evidence. The fact that there are multiple valid approaches,
which may all perform well at a specific project, makes clear that good test
engineers are still needed. Only their scope shifts from manually designing test
cases to finding the best modeling language and choosing the test generation
algorithm including the best test specifications for the concrete software system
and project.

In the next section the practical relevance of model-based testing was exam-
ined. Several case studies and experiments that aimed at evaluating the tech-
nique were presented. The results of the studies was sometimes contradictory:
some studies were rather sceptic, while others were very positive. All in all, more
research, especially cost/benefit and complexity related studies, are needed.

Section 4 gave an overview of academic as well as commercial tools for model-
based testing. It was tried to establish the connection to theory where possible.
The section concluded with a practical example that gave an insight how prac-
tical tools are used today. It showed that model-based testing is still no push-
button technology, since creating appropriate models is far from being trivial
even for such a small example system.

62 Philip Preissing

Despite about 30 years of research, the high number of publications on the
topic and a number of existing tools, model-based testing is still no completely
established technique in today’s software projects. It has to be questioned criti-
cally why this is not the case. Today, mostly small and medium size embedded
systems or even only the critical parts of it, are tested model-based. Model-
based testing for large systems, like e.g. enterprise information systems, is still
a research topic. It might be that the technique is still too complex to apply,
especially in larger projects. The theoretical foundations are difficult and have
to be hidden as far as possible from the user without limiting his abilities. The
contradicting and incomplete results from case studies might be another hinder-
ing point as there are only few companies that are willing to experiment in their
important projects. And last, companies may not see the benefit of creating yet
another model when their traditional testing approach seems to work, too.

But, since software systems become more and more complex, the need for
model-based testing might increase over time, since creating and analyzing test
cases manually then becomes too complex, error-prone and time-consuming.
With software becoming more ubiquitous, the role of software quality becomes
even more important. When model driven development is further applied in
companies this might strengthen the role of models in the development process
and in the heads of the responsibles, and thereby act as a catalyzer for model-
based testing. However, it has to be considered that model driven development
is also in competition with model-based testing. If a company creates a model of
their system, they are, because of the necessary model redundancy, only able to
either generate code or test cases out of it. In the case of code generation, model-
based testing can only be used to verify the code generation mechanism itself
and the environment assumptions made. In practice, especially in embedded
systems development, this scenario is quite common, where model-based testing
is only used to check the automated translation between the different abstraction
stages, e.g. software in the loop and hardware in the loop. An alternative would
be to only create test models for the most critical parts of the SUT.

Having considered this, it is still very interesting how model-based testing
will develop in future. All in all, chances are high that the attractive attributes of
model-based testing, like being repeatable, coping with changing requirements,
conserving knowledge, and last but not least the benefits of the mere modeling
activity, are put into wider practical use.

References

1. Pretschner, A., Phillips, J.: Methodological issues in model-based testing. Lecture
notes in computer science 3472 (2005) 281–291

2. Utting, M., Legeard, B.: Practical model-based testing. Morgan Kaufmann (2007)

3. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing.
Department of Computer Science, The University of Waikato, New Zealand, Tech.
Rep (2006)

4. Stachowiak, H.: Allgemeine Modelltheorie. Springer Wien (1973)

Model-Based Testing 63

5. Ludewig, J.: Models in software engineering–an introduction. Software and Sys-
tems Modeling 2(1) (2003) 5–14

6. Philipps, J., Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S., Scholl, K.:
Model-based test case generation for smart cards. Electronic Notes in Theoretical
Computer Science 80 (2003) 170–184

7. Prenninger, W., Pretschner, A.: Abstractions for model-based testing. Electronic
Notes in Theoretical Computer Science 116 (2005) 59–71

8. Cheng, K., Krishnakumar, A.: Automatic functional test generation using the
extended finite state machine model. Proceedings of the 30th international on
Design automation conference (1993) 86–91

9. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3) (1987) 231–274

10. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting, M.: A
subset of precise uml for model-based testing. In: A-MOST ’07: Proceedings of the
3rd international workshop on Advances in model-based testing, New York, NY,
USA, ACM (2007) 95–104

11. Keller, R.: Formal verification of parallel programs. Communications of the ACM
19(7) (1976) 371–384

12. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software - Concepts and Tools 17(3) (1996) 103–120

13. Pretschner, A., Prenninger, W., Wagner, S., Kuehnel, C., Baumgartner, M.,
Sostawa, B., Zoelch, R., Stauner, T.: One evaluation of model-based testing and
its automation. In: ICSE ’05: Proceedings of the 27th international conference on
Software engineering, New York, NY, USA, ACM (2005) 392–401

14. Gaston, C., Seifert, D.: Evaluating coverage based testing. Lecture notes in com-
puter science 3472 (2005) 293–322

15. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-
based specifications. Software Testing Verification and Reliability 13(1) (2003)
25–53

16. Lucio, L., Samer, M.: Technology of test-case generation. Lecture notes in computer
science 3472 (2005) 323–354

17. Rajan, S., Shankar, N., Srivas, M.: An integration of model-checking with auto-
mated proof checking. Computer-Aided Verification 95 (1995) 84–97

18. Thimbleby, H.: The directed Chinese Postman Problem. Software Practice and
Experience 33(11) (2003) 1081–1096

19. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. Proc. Second
International Conference on the Unified Modeling Language (1999) 76

20. Prenninger, W., El-Ramly, M., Horstmann, M.: Case studies. Lecture notes in
computer science 3472 (2005) 439–461

21. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Testing concurrent object-oriented systems with spec explorer. Formal Meth-
ods 3582 (2005) 542–547

22. Neto, A., Subramanyan, R., Vieira, M., Travassos, G., Shull, F.: Improving Ev-
idence about Software Technologies: A Look at Model-Based Testing. Software,
IEEE 25(3) (2008) 10–13

23. Belinfante, A., Frantzen, L., Schallhart, C.: Tools for test case generation. Lecture
notes in computer science 3472 (2005) 391–438

24. Huber, F., Schatz, B., Einert, G.: Consistent Graphical Specification of Distributed
Systems. Industrial Applications and Strengthened Foundations of Formal Meth-
ods, LNCS 1313 (1997)

64 Philip Preissing

25. Hartman, A., Nagin, K.: Model driven testing-AGEDIS architecture interfaces and
tools. In: Proc. 1st European Conference on Model Driven Software Engineering.
(2004) 1–11

26. Jeron, T., Morel, P.: Test generation derived from model-checking. Computer
Aided Verification 99 (1999) 108–122

27. Craggs, I., Sardis, M., Heuillard, T.: AGEDIS Case Studies: Model-Based Test-
ing in Industry. In: Proc. 1st European Conference on Model Driven Software
Engineering. (2004)

28. Conformiq: Conformiq qtronic semantics and algo-
rithms. Technical whitepaper, Conformiq Software,
http://www.conformiq.com/downloads/ConformiqQtronicSemanticsAndAlgorithms.pdf
(4 2008)

Cost/Benefit-Aspects of Software Quality
Assurance

Marc Giombetti

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
giombett@in.tum.de

Abstract. Along with the ever more apparent importance and critical-
ity of software systems for modern societies, arises the urgent need to
deal efficiently with the quality assurance of these systems. Even though
the necessity of investments into software quality should not be un-
derestimated, it seems economically unwise to invest seemingly random
amounts of money into quality assurance. The precise prediction of the
costs and benefits of various software quality assurance techniques within
a particular project allows for economically sound decision-making.
This paper presents the cost estimation models COCOMO, its successor
COCOMO II and COUALMO, which is a quality estimation model and
has been derived from COCOMO II. Furthermore an analytical idealized
model of defect detection techniques is presented. It provides a range of
metrics: the return on investment rate (ROI) of software quality assur-
ance for example. The method of ROI calculation is exemplified in this
paper.
In conclusion an overview on the debate concerning quality and cost
ascertaining in general will be given. Although today there are a number
of techniques to verify the cost-effectiveness of quality assurance, the
results are thus far often unsatisfactory. Since all known models make
heavy use of empirically gained data, it is very important to question
their results judiciously and avoid misreadings.

1 Introduction

The usage of software is pervasive in our society and software has taken a central
role in our daily business and private life. Software is used in planes, trains, cars,
banking systems aso., and therefore the software’s quality plays a crucial role.
The quality is important for the acceptance of the software by the user and thus
is a key factor to the success of the software product.

Software systems are expensive products because their construction involves a
lot of skilled people. Companies which develop software often spend excessive
amounts of money to get an high quality software, which overcomes the firms
actual quality needs. On the other hand some companies do not take quality as-
surance seriously enough or do not spent enough money, or do not use the right

66 Marc Giombetti

techniques for the quality assurance of their software production. It has often
been seen that companies let an immature software skip over to field production.
A possible software failure may then lead to millions of breakdown costs, loss of
reputation, loss of market shares or even injure people. Thus, it is important to
find the right balance between quality and quality assurance costs. The avail-
able budget should be invested pareto-optimally into the right quality assurance
techniques to get the appropriate quality given a certain budget.

This work focuses on the main questions of how software quality assurance can
be applied economically. It will give an insight into software quality cost, its cal-
culation and present some models which enable the selection of the appropriate
amount of specific quality assurance techniques to find the best solution for the
investment in quality assurance effort. An idealized model of defect-detection
techniques will be presented and this model can be used as starting point to
calculate different metrics as return on investment.

1.1 Software quality

With respect to software system quality, it is not always possible to achieve the
”best quality”, but the intension is to create a software system having the right
quality for a given purpose.

As a matter of fact, it is important for each software development project
to define its specific meaning of software quality during the planing phase. On
the one hand the quality of a software is adequate if all the functional require-
ments are met. On the other hand the softwares quality is also defined over
non-functional requirements as reliability, usability, efficiency, maintainability
and portability. This set of characteristics is defined in the international stan-
dard for the evaluation of software product quality ISO/IEC 9126-1:2001 [1]. For
each characteristic there exists a set of sub-characteristics which all contribute
to the software quality to some extend. A more detailed description of the ISO
9126 can be found in the pages 1ff.

As example one could look at the availability of software. For an office applica-
tion, an availability of 99,9%, which corresponds to an average downtime of 8,76
hours/year, is fairly appropriate. In respect to availability this office applica-
tion is of high quality. Contrary to this, a power plant control software, having
the same availability of 99,9% which stands for an average downtime of 8,76
hours/year too, is definately not acceptable. An unsafe failure might result in
a disaster, polluting the environment and possibly injuring people. This shows
that it is not enough only to consider a certain metric of a quality characteris-
tic, but that it is important to see the application environment of the software
too. Additionally it is important to look at financial issues. Quality assurance is
costly and the expenses to be made to achieve the right quality are of interest
to the project management and the customer. It is necessary to estimate and
measure software quality costs.

Cost/Benefit-Aspects of Software Quality Assurance 67

1.2 Software quality costs

We have introduced different types of software quality characteristics and men-
tioned that it is not always possible to achieve the best quality, but that it is
important to get the right quality for a certain software. The reason why the
achievement of the ”best” software quality is not possible, is mainly a financial
issue. The higher the software’s quality, the higher the quality assurance costs.
Unfortunately the relation between the software quality improvement and the
quality assurance investment effort is not linear. Todays software engineers and
project managers are more and more aware of the software costs incurring over
the entire software lifecycle. It is of paramount importance to find the right trade
off between the software development quality assurance costs and the possible
costs which arise when the software fails at the client. This is the only way of
veraciously handling all the costs of a software system.

In the last three decades, there has been a lot of scientific work on finding
relationships between quality and cost of quality. Quality costs are the costs
associated with preventing, finding and correcting defective work [2]. The Cost
of Quality approach is such a technique. Mainly it is an accounting technique
that is useful to enable the understanding of the economic trade-offs involved
in delivering good-quality software. Commonly used in manufacturing, its adap-
tation to software offers the promise of preventing poor quality [3]. But which
relationships exist between quality and cost of quality?

According to J.M. Juran and F.M. Grynas Juran’s Quality Control Handbook
[4] as well as P. Crosbys book Quality Is Free [5], the cost of quality can be
subdivided into two categories: Conformance and nonconformance costs. Figure
1 gives an overview on the quality and how it relates to different types of costs.

Fig. 1. Overview over the costs related to quality [4] - Extension of S. Wagner [2]

Conformance costs, also known as control costs, can be partitioned into pre-
vention costs and appraisal costs. Prevention costs include money spend on qual-
ity assurance, so that the software meets its quality requirements. Prevention

68 Marc Giombetti

costs for example are tasks like training, code and requirements reviews, tool
costs and quality audits. All these quality assurance activities prevent the in-
jection of various types of faults. The appraisal costs emerge from activities like
developing test cases, reviews, test data and executing the test cases. Setup and
execution costs are the most common appraisal costs. Setup costs cover all ini-
tial costs for configuring the development environment, acquiring licenses for
test tools, aso. The execution costs cover all the costs which arise during the
actual test-runs, review meetings aso. The execution costs are mainly personnel
costs.

Nonconformance costs, also known as failure of control costs, emerge when
the software does not meet the defined quality requirements. Nonconformance
costs exist in two forms: Internal failure costs and external failure costs. The
first type contains all the costs that arise due to a misfunction of the software
during development and before the final delivery to the customer. The second
type contains the costs that result from a failure of the software at the customer.
After the establishment of a test process the internal failure costs increase and
at the same time the external failure costs go down. There is an interdependency
between both types of costs.

The nonconformance costs contain fault removal and effect costs. The fault
removal costs are linked to the internal failure, as well as the external failure
costs. This means that removal costs arise if a failure is detected internally as
well as if the software fails at the customer. The last important type of costs
are the effect costs. Effect costs arise when the software fails externally. They
include all the costs that are caused by the software failing at the customer.
Failure costs are not part of the effect costs. Examples for effect costs are loss
of sales because of reputation, law costs, loss adjustment payments aso. [2]

Up to now we have seen which types of quality costs exist and we will proceed
by taking a look at how quality and software costs in general, can be estimated.

2 Quality and cost estimation

Cost estimation models are not new to the software industry, and today there
exists a whole set of cost estimation models. Cost estimation is important be-
cause it removes some of the uncertainty in respect to the required expenditures.
The objective is to make the best possible estimation of the costs, given a set of
project factors and the skills of the development team. On the one hand com-
panies need good cost estimates to be competitive in the market and to win call
for bids. On the other hand it is important for them not to underestimate costs,
because if they offer projects for a fixed price, they will narrow profits or even
lose money. One of the first software cost estimation models has been developed
by Barry Boehm in the 1970s. In his book Software Engineering Economics [6]
Boehm presents the COnstructive COst MOdel (COCOMO).

Quality estimation is a bit more complex and requires more advanced mod-
els. Whereas costs can be measured, it is more difficult to measure quality. The

Cost/Benefit-Aspects of Software Quality Assurance 69

COnstructive QUALity MOdel COQUALMO is an extension to COCOMO and
aims at determinating the software quality. Because the quality of a software
product is directly related to the number of residual defects in the software,
COCOMO takes the approach of predicting the quality of the software by esti-
mating the the number of residual defects per/KDSI (Thousand of Source Lines
of Code).

2.1 COCOMO & COCOMO II

In the following we introduce COCOMO as well as COCOMO II and provide
some information on these techniques because they constitute the basis for CO-
QUALMO. COQUALMO is a software quality estimation model and this work
will mainly focus on this technique as an example for a quality estimation model.
COQUALMO will be presented in detail in Section 2.2.

The main feature of COCOMO is to predict the required effort for a soft-
ware project. Boehm developed COCOMO empirically by running a study of
63 software development projects and statistically analyzing their their project
characteristics, people skills, performance and invested effort. The output of the
COCOMO model is an effort prediction for the software development expressed
in months. Because the main software development cost driver is the developer
activity and the resulting personnel costs, one can assume that cost and effort
are nearly the same.

To predict the effort the following equation is used:

EFFORT = a · (KDSI)b

The constants a and b vary according to the type of project. KDSI is a measure
to determine the software size, namely the Kilo Delivered Source Instructions.
COCOMO distinguishes between three different development modes to enable
more accurate predictions:

– Organic: Projects are small and similar to previous projects and are devel-
oped in a stable and familiar environment.

– Semi-detached: Between organic and embedded mode.
– Embedded: Projects have tight an inflexible requirements and constraints

and require a lot of innovation.

Table 1 contains the effort equations for the different development modes. As
intuitively expected: with increasing complexity of the project, the parameters
a and b increase and thus the required effort increases too.

We have now seen COCOMO in its most basic form: the basic model. There
also exists an intermediate model and a detailed model which use an effort ad-
justment factor (EAF) which is multiplied with the effort calculation to get more
accurate results. The EAF is the product of 15 cost factors subdivided into four
categories: platform costs, product costs, personnel cost and project costs. In the
intermediate model the following equation is used to determine the effort:

EFFORT = a · EAF · (KDSI)b

70 Marc Giombetti

Development mode: organic EFFORT = 2.4 · (KDSI)1.05

semi-detached EFFORT = 3.0 · (KDSI)1.12

embedded EFFORT = 3.6 · (KDSI)1.20

Table 1. COCOMO effort equations for different development modes.

We will not go into further detail on how to use COCOMO, because the first
version is outdated and a lot of improvements have been made meanwhile. The
interested reader may refer to Software Engineering Economics [6] for additional
information on the first version of COCOMO.

The second version of COCOMO was developed in the 1990s and is mainly an
adjustment of the first version to the modern development lifecycles and to the
new techniques in software development. COCOMO II has been calibrated using
a broader set of empirically collected project data, and in contrast to COCOMO
additionally focuses on issues as:

– Non-sequential and rapid-development process models.
– Reuse driven approaches involving COTS packages, reengineering, applica-

tion composition and application generation capabilities.
– Object oriented approaches supported by distributed middleware.
– Software process maturity effects and process-driven quality estimation.

Furthermore, COCOMO II now contains a set of new cost drivers. These
cost drivers are subdivided into four categories: platform, product personnel
and project cost drivers. Table 2 contains a list of these cost drivers, which are
important and will be used as defect introduction drivers in COQUALMO in
Section 2.2.

Both COCOMO and COCOMO II models make use of empirically collected
data and are only as good as the accuracy of this data. The quality of the em-
pirical data used to calibrate the model has a direct influence on the quality
of the estimation outcome of the model. Estimations by definition tend to be
subjective and should always be looked upon with the necessary skepticism. For
example the constants a and b are not fixed by the model, but every software
company should adjust them based on the experience they gain from their daily
software projects. To make the models as useful as possible, as much data as
possible should be collected from projects and used to refine the model. A good
way to store and learn from daily project data, is the application of the Experi-
ence Factory approach proposed by Basili, Caldiera and Rombach [8].

COCOMO as well as COCOMO II do not make predictions on the quality of
the software, neither which quality assurance techniques should be used to get
the right quality at optimized costs. Quality is directly related to the number of
defects which reside in the software. Intuitively, the more defects there are in the
software, the poorer quality is. Therefore it is of interest to have a model which

Cost/Benefit-Aspects of Software Quality Assurance 71

Category Cost driver

Platform

Required Software Reliability (RELY)
Data Base Size (DATA)
Required Reusability (RUSE)
Documentation Match to Life-Cycle Needs (DOCU)
Product Complexity (CPLX)

Product
Execution Time Constraint (TIME)
Main Storage Constraint (STOR)
Platform Volatility (PVOL)

Personnel

Analyst Capability (ACAP)
Programmer Capability (PCAP)
Applications Experience (AEXP)
Platform Experience (PEXP)
Language and Tool Experience (LTEX)
Personnel Continuity (PCON)

Project

Use of Software Tools (TOOL)
Multisite Development (SITE)
Required Development Schedule (SCED)
Disciplined Methods (DISC)
Precedentedness (PREC)
Architecture/Risk Resolution (RESL)
Team Cohesion (TEAM)
Process Maturity (PMAT)

Table 2. COCOMO II cost drivers [7].

quantifies the number of defects that get into the software as well as the number
of defects that are removed from the software. COQUALMO is one instance of
such a model and will be presented in the following:

2.2 COQUALMO

The COnstructive QUALity MOdel COQUALMO is an extension to the CO-
COMO II model. It determines the rates at which software requirements, design,
and code defects are introduced into a software as a function of calibrated base-
line rates, modified by multipliers determined from the projects COCOMO II
product, platform, people and project attribute ratings [9]. It enables ’what-if’
analyzes that demonstrate the impact of various defect removal techniques and
the effects of these attributes on software quality. It additionally provides insights
into determining shipment time, assessment of payoffs for quality investments
and understanding of interactions amongst quality strategies. Additionally it
relates cost, schedule and quality of software. These characteristics are highly
correlated factors in software development and form three sides of the same tri-
angle. Beyond a certain (the ”Quality is Free” point [5]), it is difficult to increase
the quality without increasing either the cost or schedule or both for the software

72 Marc Giombetti

under development [7].

With the development of COQUALMO Boehm aimed at facilitating the finding
of a balance between cost, schedule and quality. Additionally to COCOMO II,
COQUALMO is also based on the The Software Defect Introduction and Re-
moval Model. The idea behind this model is that defects conceptually flow into
a holding tank through various defect source pipes. Basically this means that
the defects made during the requirements analysis, the design, the coding aso.,
flow through the defect source pipes into the software. On the other side there
are also defect removal pipes through which the defects removed by quality as-
surance activities (a.e. testing) conceptually flow out of the software again. In
the following the Defect Introduction Model and the Defect Removal Model will
be presented and the relations which exist between COCOMO and COCOMO
II will be outlined.

Defect Introduction Model: In COQUALMO, defects are classified based on
the origin they result from. There exist requirements defects, design defects and
code defects. The purpose of the Defect Introduction (DI) model is to determine
the number of non-trivial requirements design and coding defects introduced
into the software during development. As input to the DI model an estimation
of the software size is necessary. This estimation may be thousand source lines
of code (KDSI) and/or function points. Furthermore COQUALMO requires 21
(Disciplined Methods DISC is left out) of the 22 multiplicative DI-drivers of CO-
COMO II (see Table 2) as input data. The usage of the COCOMO II drivers not
only makes the integration of COCOMO II into COQUALMO straight forward,
but also simplifies the data collection activity and the model calibration which
have already been setup for COCOMO II.

There exist three categories of severity of defects: critical, high and medium.
To actually calculate the total number of defects introduced into the software
the following formula is used:

Number of defects introduced =
3∑

j=1

Aj(Size)Bj ∗
21∏

i=1

(DI driver)ij

where j identifies the three artifact types (requirements, design, code) and A is a
multiplicative constant which is determined experimentally. Size is the project
size in KDSI or FP. B is initially set to 1 and accounts for economics of scale.
Further details on the calibration of the model and the usage of parameter B can
be found in Modeling Software Defect Introduction and Removal: COQUALMO
[7]. Now that we can quantify the defects that get into the software, we look at
the model of how they get out again.

Cost/Benefit-Aspects of Software Quality Assurance 73

Defect Removal Model: The Defect Removal (DR) model is a post-processor
to the DI model. The concept main feature of DR model is to estimate the num-
ber of defects removed from the software by certain quality assurance activities.

These activities include three profiles: Automated Analysis, People Reviews
and Execution Testing and Tools. Each of these profiles has different levels of in-
creasing defect removal effectiveness from very low to very high. Table 3 contains
the necessary defect removal investment and the rating scales for the mentioned
profiles. The rating scales are the rows of the matrix whereas the activity profiles
form the columns. The table then imposes what has to be done in each profile
to achieve a certain rating level of quality. Additionally to every level of each of
these profile, Defect Removal Fractions (DRF) are associated. These fractions
are numerical estimates and have been determined by experts in a two-round
Delphi estimation session. The interested reader can find information on the
Delphi estimation process in [10].

Rating Automated analysis Peer reviews Execution testing and tools

Very low Simple compiler syntax checking No peer review No testing

Low Basic compiler capabilities Ad hoc informal walkthroughs Ad hoc testing and debugging

Nominal Compiler extension Basic re-
quirements and design consis-
tency

Well-defined sequence of prepara-
tion, review, and minimal follow-up

Basic test, test data management, prob-
lem tracking support; Test criteria based on
checklists

High Intermediate-level module and
inter-module; Simple require-
ments and design

Formal review roles with well-trained
participants, basic checklists, and
follow-up

Well-defined test sequence tailored to or-
ganization; Basic test-coverage tools and
test support system; Basic test process
management

Very high More elaborate requirements
and design; Basic distributed-
processing and temporal analy-
sis, model checking and symbolic
execution

Basic review checklists and root-
cause analysis; Formal follow-up us-
ing historical data on inspection rate,
preparation rate, and fault density

More advanced test tools, test data prepa-
ration, basic test oracle support, distributed
monitoring and analysis, and assertion check-
ing; Metrics-based test process management

Extra high Formalized specification and ver-
ification; Advanced distributed
processing

Formal review roles and procedures;
Extensive review checklists and root-
cause analysis. Continuous review-
process improvement; Statistical pro-
cess control

Highly advanced tools for test oracles, dis-
tributed monitoring and analysis, and asser-
tion checking; Integration of automated anal-
ysis and test tools; Model-based test process
management

Table 3. Defect-removal investment rating scales for COQUALMO [11].

As input the COQUALMO DR model requires the number of non-trivial re-
quirement, design and coding defects introduced (= the output of the DI model).
Furthermore the defect removal profile levels as well as the software size esti-
mation are mandatory input parameters for the DR model. The model outputs
the number of residual defects per KDSI (or per Function Point). The follow-

74 Marc Giombetti

ing example should give you a better feeling for the measure. Figure 2 shows a
chart of the COQUALMO estimated delivered defect densities for the different
defect removal rating categories. The chart is based on values of a calibrated
baseline which have been rounded slightly to simplify the handling and to avoid
an overfitting of the model. The rounded data contains 10 requirements defects,
20 design defects and 30 code defects for the Very low removal rating. One can
see that for a Very low defect removal rating, 60 delivered defects are left in
the software. If more effort is spent and a Very high rating level is achieved, the
delivered defect density is reduced to 1,6 delivered defects per KDSI.

Fig. 2. Estimated delivered defect densities using COQUALMO [11]

The quality assurance team and the developers are mainly interested in the
number of defects which reside in the software. The residual defects metric is
important from a technical as well as a financial point of view, because every
defect leading to a fault at the customer also leads to effect costs. The number
of residual defects in artifact j is:

DResEst,j = Cj ∗DIEst,j

∏
i

(1−DRFij)

where Cj is a calibration constant, DIEst,j is the estimated number of defects
of artifact type j introduced and i can take the values from 1 to 3 according
to the type of DR profile (automated analysis, people reviews, execution testing
and tools). The last variable DRFij is the Defect Removal Function for defect
removal profile i and artifact type j. In the following we will highlight how
COCOMO and COQUALMO are related.

Relationship between COCOMO II and COQUALMO: COQUALMO is
integrated into COCOMO II and cannot be used without it. Figure 3 shows the

Cost/Benefit-Aspects of Software Quality Assurance 75

DI model and the DR model which are integrated into an existing COCOMO II
cost, effort and schedule estimation. The dotted lines are the inputs and outputs
of COCOMO II. Apart from the software size estimation and the platform,
project, product and personnel attributes, the defect removal profile levels are
necessary to predict the number of non-trivial residual requirements, design and
code defects.

Because of this tight coupling between COCOMO II and COQUALMO, I
think that a project manager should use COQUALMO for a software project if
COCOMO II estimates already exists. The effort to implement COQUALMO
is worth it, when considering the payoff a project can get from applying CO-
QUALMO. Nevertheless there are also some drawbacks in the usage of CO-
COMO and COQUALMO. One big disadvantage of COCOMO is that is uses
the Size (in KDSI) to calculate the effort. Because effort calculations are usually
done in a very early project stage, when there is often not enough information to
estimate the Size of the complete product. Also the weighting of the cost factors
is not easy at this early point.

Fig. 3. The Cost/Schedule/Quality Model: COQUALMO Integrated with COCOMO
II [7]

Additionally the data which is collected using COQUALMO can again be
used to improve the estimates of the different sizing parameters of COQUALMO
and COCOMO II. Furthermore this data is the foundation of further investiga-
tions on software quality and cost. Section 2.4 illustrates an example on how
return on investment calculations for software projects can be accomplished.
The ROI calculations are one example of a metric which can be based on the
analytical model of defect-detection techniques which will be presented in the
following.

76 Marc Giombetti

2.3 An analytical model of defect-detection techniques

The following analytical model of defect-detection techniques has been developed
by Stefan Wagner as part of his PhD-thesis on Cost-Optimisation of Analytical
Software Quality Assurance [12]. There are a few similar models, but this model
was picked, because it clearly highlights the different cost components, precisely
models the relations and is well documented. The model is a refinement and
extension of the model by Collofello and Woodfield [13] which uses fewer input
factors. It is a general model which can be used to analyze various types of
quality assurance techniques. For example it can be used to analyze different
types of testing or static analysis techniques to see which are most effective for a
certain project. The model is a cost-based ideal model of quality economics and
it doesn’t focus on the use of the model in practice, but it is rather theoretical
and mirrors the actual relationships as faithfully as possible.

Components: In the following we shall introduce the main components of the
model, which is subdivided into three parts. All components are dependent on
the spent effort t as global parameter.

– Direct costs d(t), are costs which can be directly measured during the usage
of a technique.

– Future costs f(t), are the costs in the field which really incurred.
– Revenues / saved costs r(t), are the costs in the field which could have

emerged but which have been saved because failures were avoided due to
quality assurance.

The model determines the expected values of these components, denoted by E.
Before the introduction of the computation formulas, we will outline the model
assumptions, to see which criteria have to be met to apply the model.

Assumptions: Because the model is an ideal model, the assumptions require
an idealized environment:

– The found faults are perfectly removed. - This means that each fault which
is found is removed and no new faults are introduced during the removal
process.

– The amount or duration of a technique can be freely varied. - This is needed
because there is a notion of time effort in the model to express for how long
and with how many people a technique has been applied.

It is clear that in practice these assumptions cannot hold most of the time, but
they are meant to clearly simplify the model.

Difficulty: The model requires a further notation for the characterization of
quality assurance techniques. The difficulty of an application of technique A to
find a specific fault i is denoted by θA(i). In a mathematical sense, this is the

Cost/Benefit-Aspects of Software Quality Assurance 77

probability that technique A does not defect default i. Furthermore we introduce
tA which is the length of the technique application A. The length is the effort
(a.e. measured in staff days) that was spent for the application of a technique.

In the later formulas, the expression 1−θA(i, tA) is the probability that a fault
is at least detected once by technique A. Furthermore the model requires the
concept of defect classes which regroups several defects according to the type of
document they are contained in. For every defect there exists a document class
(e.g. requirements defects or code defects), too. This subdivision in classes is
important because some type of defect removal activity is only applicable to a
certain type of defects. For example, it generally doesn’t make sense to apply a
formal verification technique to find requirements defects.

Defect propagation: Defect propagation is another important aspect which
has to be taken into consideration. For the defects occurring during development,
we know that they are not (always) independent of each other. One of the ex-
isting dependencies is the propagation of defects over the different phases of the
software development process. The different phases are not considered, but the
model rather takes the different artifact types and documents into consideration.

One defect in a certain artifact can lead to no, one or more defects in later
documents. Figure 4 illustrates how defects may propagate over documents.
In this example requirements defects lead to several design defects and a test
specification defect. The design defects again propagate to code defects which
can entail further test specification defects.

Fig. 4. Defect propagation over documents [12].

For each document type c, Ic is the set of defects in c and the total set of
defects is I =

⋃
Ic. Additionally each defect has a set of predecessor defects

named Ri, which may be the empty set. The usage of predecessors is important,
because a defect can only be present in one artifact if none of the predecessors
has already found it.

Model components: In the following the formulas for the expected values of
the direct costs, the future costs and the revenues are given. Later the formulas

78 Marc Giombetti

for the combination of the different techniques will be given too. For the sake
of simplicity, the defect propagation is not taken into consideration in the fol-
lowing equations. Nevertheless the defect propagation was introduced previously
because it plays a main role in practice as well as in the ideal model. Presenting
the defect propagation issue would go beyond the scope of this paper, therefore
we will only introduce the simple equations. Details on the model can be found
in [12].

Direct costs: The direct costs are those costs that can be directly measured from
the application of a defect-detection technique. To determine the expected value
for the direct costs E[dA(tA)] the following formula is used:

E[dA(tA)] = uA + eA(tA) +
∑

i

(1− θa(i, tA))vA(i) (1)

where uA are the setup costs, eA(tA) are the execution costs, vA(i) are the
fault removal costs of the technique A and 1 − θA(i, tA) is the probability that
a fault is at least detected once by technique A.

Future costs: The future costs are the costs which emerge in case some defects
are not found. As introduced in Section 1.2, these costs can be subdivided into
fault removal costs in the field vF (i) and failure effect costs cF (i). The equation
to determine the expected value of future costs E[fA(tA)] is the following:

E[fA(tA)] =
∑

i

πiθA(i, tA)(vF (i) + cF (i)) (2)

where
πi = P (fault i is activated by randomly selected input and is detected and fixed).

Revenues: Revenues are saved future costs. The cost categories are the same
as for the future costs, but now we are looking at the defects that we find instead
of the ones we miss. The equation to determine the expected value of revenues
E[rA(tA)] is the following:

E[rA(tA)] =
∑

i

πi(1− θA(i, tA))(vF (i) + cF (i)) (3)

Combination: up to now we have seen the equations for the different types of
expected costs, which were always defined for one technique of quality assurance.
Nevertheless, more than one technique to find defects is used in practice. The
reason for this is that different techniques find different defects. The model takes
this into consideration and allows the combination of different techniques. To
formalize this, the model defines X as the ordered set of the applied defect
detection techniques. To get the total direct costs, you have to sum over all

Cost/Benefit-Aspects of Software Quality Assurance 79

technique applications X. Then we use Formula 1 and extend it that not only
the probability that the technique finds the fault is taken into account, but also
that the predecessor techniques have not found the fault. The predecessor defects
Ri have to be taken into consideration too. To improve readability, we use

Θ(x, i) =
∏
y<x

θy(i, ty)
∏

j∈Ri

θy(j, ty)

 (4)

as the probability that a fault and its predecessors have not been found by
previous (before x) applications of defect detection techniques. Then for each
technique y that is applied before x, the difficulty for the fault i and all its
predecessors in the set Ri is multiplied. The following formula is then used to
determine the expected value of the combined direct costs dX of a sequence of
defect-detection technique applications X:

E[dX(tX)] =
∑
x∈X

[
ux + ex(tx) +

∑
i

((1− θx(i, tx))Θ(x, i))vx(i)

]
(5)

In the same way we can introduce the formula for the expected value of the
revenues of several technique applications X:

E[rX(tX)] =
∑
x∈X

∑
i

[(πi(1− θx(i, tx))Θ(x, i))(vF (i) + cF (i))] (6)

Here we consider the faults that actually occur, and that are detected by a
technique. Additionally neither itself not its predecessors have been detected by
previously applied techniques.

The expected value of the total future costs are the costs of each fault with
the probability that the fault actually occurs and that all the techniques and
the predecessors failed in detecting it. It can be determined using the following
formula:

E[fX(tX)] =
∑

i

πi

∏
x∈X

θx(i, tx)
∏
y<x

∏
j inRi

θy(j, ty)︸ ︷︷ ︸
Θ′ (x,i)

(vF (i) + cF (i))

 (7)

where Θ
′
(x, i) is similar to Formula 4 but only describes the product of the

difficulties of detecting the predecessors of i. In this case the probability if the
predecessor has actually detected the fault is not necessary.

With the definition of the model components, it is now possible to calculate
some economical metrics of the software quality assurance process.

Return On Investment: The return on investment ROI is a well known
metric from economics. In economics the ROI is commonly defined as the gain

80 Marc Giombetti

divided by the used capital. In this case the rate of return for a specific defect-
detection technique is of interest. We can calculate the ROI as follows:

ROI =
profit

total cost
=

rx − dx − fx

dx + fx
(8)

The profit is equal to the revenue minus the direct and future costs. The total
cost is the sum of the direct and the future cost.

Return on investment can be an assessment of whether the investment in a
specific defect-detection technique is justified by the quality improvement and
the resulting cost reduction over the entire lifecycle. It sometimes even makes
sense to have a negative ROI, when there is a very high risk to human life or the
environment, or when there are important customer relationships which should
not be jeopardised. It is even possible to express factors like loss of human life
or the loss of a customer as costs. However this costs are often very difficult to
quantify and in some cases legal issues may prevent this. It seems ethically not
correct to express the loss of a human life because of a defect in a safety critical
software system as effect costs. Nevertheless, theoretically there is no hindrance
why it should not be possible to include such injury effort costs into the total
costs of a software.

2.4 Example for a return on software quality investment calculation

In this section an example of how ROI calculations can be made in practice will
be given. This example is part of the The ROI of Software Dependability - The
iDAVE Model article by Barry Boehm et al. [9] and has been slightly adapted for
this paper. The example focuses on two completely different software systems:
The order-processing system of a mountain bike manufacturer and the NASA
Planetary Rover. The intention is to determine the ROI of quality investments in
availability for both system. Both systems have high availability requirements,
but the project characteristics and the breakdown costs are completely differ-
ent. In case of unavailability of the order-processing system, the mountain bike
manufacturer will not be able to sell mountain bikes during the downtime. The
unavailability of the NASA Planetary Rover would imply the end of its mission
on a foreign planet, because it wouldn’t be able to transmit it status to earth,
neither be controllable from the command center anymore.

Return on investment calculations using iDAVE: The ROI analysis of
this example is made using the Information Dependability Attribute Value Es-
timation (iDAVE) model. The iDAVE model is strongly related to COCOMO
II and is a derivative of COQUALMO. We will not present the intricacies of
this model, but we will focus on a practical example which does not require de-
tailed knowledge on the iDAVE model. ”The iDAVE dependability ROI analysis
begins by analyzing the effect of increasing dependability investments from the
nominal business levels to the next higher levels of investment in analysis tool
support, peer-reviews practices and test thoroughness” [9]. The different levels of

Cost/Benefit-Aspects of Software Quality Assurance 81

investment are the same as the defect removal levels in COQUALMO (see Table
3). The effects of investments are coupled to the RELY attribute, which is the
COCOMO II reliability attribute (see Table 2). In the example the ROI calcu-
lations of the order-processing system will be done first, and the calculations for
the NASA Planetary Rover will follow in the second part.

Mountain bikes order-processing system: The RELY rating scale for both
the mountain bikes system includes the Nominal, High, Very high and Extra high
ratings. For each project and the respective ranking levels the availability which
is defined as:

Availability =
Mean Time Between Failure

Mean Time Between Failure + Mean Time To Repair

is determined. The values of the Mean Time Between Failure and the Mean
Time To Repair have been estimated by business domain experts. Table 4 gives
the complete dataset for this example including the rating scales, availability
calculations, financial values and the resulting return on investment rates.

Project RELY
rating

MTBF
(hrs.)

MTTR
(hrs.)

Availability Loss
(M$)

Increased
value (M$)

Cost
(M$)

Change
(M$)

ROI

Mountain bikes Nominal 300 3 0,9901 5,31 0 3,45 0 -
order- High 10K 3 0,9997 0,16 5,15 3,79 0,344 14,0

processing Very High 300K 3 0,99999 0,005 0,155 4,34 0,55 -0,72
system Extra High 1M 3 1 0 0,005 5,38 1,04 -1,0

NASA High 10K 150 0,9852 4,44 0 22 0 -
Planetary Very High 300K 150 0,9995 0,15 4,29 25,2 3,2 0,32

Rover Extra High 1M 150 0,99985 0,045 0,105 31,2 6 -0,98

Table 4. Values for the ROI calculation example [9].

For the order-processing system availability will be used as a proxy for de-
pendability. Then it can be assumed that a one percent increase in downtime is
equivalent to a one percent loss in sales. The total expected loss value for a given
availability are now used to calculate the Increased Value for changing from one
rating level to the next higher one. In the case of the order-processing system
an improvement from Nominal to High RELY rating (from availability 0.9901
to 0, 9997) leads to an Increased Value (rounded values) of:

0, 01 · (531M$)− 0, 0003 · (531M$) =
5, 31M$− 160K$ = 5.15M$

where 531M$ is the arithmetic mean of the sales per year (the possible loss).
With this, the dependability ROI calculation leads to:

ROI =
Profit
Cost

=
Benefits− Cost

Cost
=

5, 15− 0, 344
0, 344

= 14, 0

82 Marc Giombetti

A related result is that the additional dependability investments have relatively
little payoff, because the company can only save 5, 31 − 5, 15 = 0, 16M$ by
increasing the availability.

The results of this analysis initially were discussed with business experts of
the mountain bike order-processing quality assurance team who pointed out that
a negative ROI that resulted from the improvement of a High to a Very High
RELY level would not let their interest in improvements disappear. As when
the needs in availability are fulfilled, there emerge other important motivators.
Reducing security risks is an example for a possible motivator. This explains
why negative ROIs are no reason to stop quality assurance investments.

NASA Planetary Rover: The NASA Planetary Rover has higher needs to
availability as the order-processing system, and thus at least requires a High
RELY rating level. The values for the Mean Time Between Failure are equal to
those of the order-processing system, but the Mean Time to Repair increases.
According to the engineers at NASA, it roughly takes a week or 150 hours to
diagnose a problem, prepare the recovery and test its validity. The main require-
ment of the Rover is survivability. In short terms, survivability means that the
Rover always has to keep enough power and communication capacity to transmit
its status to earth. In this example availability is used as a proxy for survivabil-
ity, because it is more straightforward to analyze. For the ROI calculation in
this study, the total price of the mission (300M$) has to be known. The missions
software costs account for 20M$, which is 7 percent of the entire mission cost.
The software costs have been determined for the Nominal COCOMO II software
RELY rating. Same as for the order-processing system one percent decrease in
availability leads to a one percent of loss on the mission value of 300M$.

The dependability ROI analysis is yet again used to measure the effect of
increasing the RELY rating to the next higher level. The transition from a High
to a Very high RELY rating level corresponds to a cost increase from 22M$
to 25,2M$ and an increase in availability from 10K to 300K hours (see Table
4). The transition from a Very High to Extra High RELY rating is a special
case because it exceeds the normal COCOMO II cost rating scale. It requires
the extended COCOMO II RELY range. The required investment to fulfill this
improvement is 6M$ and the added dependability will result in a negative payoff
(ROI = -0,98). Nevertheless the NASA responsible pointed out that a negative
ROI is acceptable for them too, because it reduces the risk of mission failure,
loss of reputation or even harm to human life.

Example Summary: To sum up, Figure 5 compares the ROI analysis results
of the mountain bike order-processing system and the NASA Planetary Rover.
The chart summarizes Table 4 and points out how the return on investment
rates change, while improving from one to the next higher level of reliability. It
is clear that different projects have different break even points for the ROI rates.
To conclude, there unfortunately is no recipe in when to stop quality assurance
investments.

Cost/Benefit-Aspects of Software Quality Assurance 83

Fig. 5. Comparison of the ROI analysis for the mountain bike order-processing and
the NASA’s Planetary Rover [9].

3 Reflections on Cost-Effectiveness and Quality

In the following section I will make some deliberations on cost effectiveness and
the quality of the presented models, as well as on the quality of the software
product outcomes. This section reflects my personal opinion on those subjects.
The first thing to be treated is the quality of the model calibration:

3.1 Model calibration

The different models that have been presented all make heavy use of empirical
data. The problem with empirical data is that even though it might deliver good
results for most of the application domains, it doesnt have to be appropriate
for a specific domain. The model output directly depends on the quality of the
empirical calibration data. The empirical data might be project data, as well
as data collected from experts (expert opinion). There exist several statistical
techniques to determine the quality of empirical data. An example on checking
the validity of the calibration of models based on empirical data can be found
in Freimut et al. [14]. A detailed study on different model calibration techniques
was only mentioned for completeness reasons and would exceed the scope of this
paper.

Nevertheless it is interesting to take a look at other problems related to
the collection process and studies based on empirical data. One keyword in this
context is replicatability. As already mentioned, results which are achieved in one
specific software engineering domain, might be completely useless in another:

84 Marc Giombetti

To illustrate how difficult the collection of empirical data is, and to see that
even though the studies have been undertaken very precisely the results of two
studies are completely different, it is interesting to take a look at On the dif-
ficulty of replicating human subjects studies in software engineering [15]. Even
though this study is not about quality engineering, it shows how replications of
the same experiences under equivalent conditions can lead to different implica-
tions. I picked this example because it is striking, well documented an reveals
the difficulties of empirical software engineering and data collection.

The replication of results in software engineering is difficult, because it involves
a lot of people having personal characteristics and a lot of influence factors on
these people. In the original experience The Camel Has Two Humps undertaken
by S. Dehnadi and R. Bornat, they claimed to have developed a test, adminis-
tered before students were exposed to instructional programming material, that
is able to accurately predict which students would succeed in an introductionary
programming course and which would struggle. [16]. The authors of the paper
set their sights in very carefully replicating a well documented experience to
see if their results would agree or disagree with the original’s. In either case,
they would increase or decrease the confidence in the original hypothesis that
the camel has to humps, so as to say that there are only the very good and
very bad programmers, but no average programmers. Even though the replica-
tion was very precisely undertaken, the authors didn’t achieve the same results
as for the original experience. The authors tried to find out what could have
lead to the different results, and they conclude that there are so many human
and external factors, as that it is nearly impossible to replicate an experience
and obtain the same results. For this paper, the previous replication experience
shows that even though the model calibrations as well as the execution of the
quality estimates might have been done very carefully, the models nevertheless
may lead to untrustworthy results.

Same as for the model calibration, it is also interesting to reflect about
quality-engineering concerns:

3.2 Quality-Engineering concerns

The models that were presented in this work are good to estimate some aspects
of the software quality, which are easy to measure. Unfortunately most quality
attributes are not easily measurable. The models for example do not consider
the costs which result from a lack of maintainability or usability of the software.
For the availability of a software system the case is ”simple” because availability
is an absolute measure. There is a relationship between increasing the quality
assurance investments and the resulting availability increase which can be mea-
sured and validated.

Changeability: Software systems are subject to change. External influences
as changing regulations, laws or simply changed market conditions require adap-
tations to the software. It the software system is unmaintainable for any reason,

Cost/Benefit-Aspects of Software Quality Assurance 85

the emerging costs will be enormous, because the software has to be rewritten
from scratch. It might even be worse: the software cannot be rewritten because
the development would take far to long and exceed the companies budget. This
scenario would be a complete disaster for the company and it might be entangled
in lawsuits, because its software is involuntarily violating laws and regulations.
To continue, I would also like to point out another interesting aspect to software,
which is the Total Cost of Ownership in respect to quality.

Total Cost of Ownership: The presented models mainly took software as-
pects into consideration. Nevertheless the cost-effectiveness of a system also de-
pends on hardware costs. Additionally power consumption in data centers to ac-
tually run the software cannot be neglected. In times of Green IT and increasing
electricity fees, it is also important to include the power consumption by servers
and cooling into calculation. One quality attribute of software (running on a
server) could be its power consumption per hour. Therefore server-software is
of good quality if it can be virtualized, thus reducing the number of servers,
rack space, power consumption and costly management effort. This might sound
awkward at first, but this could play an important role in the years to come.

Usability: On an even higher level, companies aiming at reaching more accu-
rate ROI of software quality estimates should think about how many employees
have to work with the software each and every day, and how frustrating the
usage of the software might be. An effective, intuitive and easily usable software
is of paramount importance. For example if several dialogs take to long to load,
or are complicated to oversee, expensive working hours will be wasted for years
each and every day. It is not neglectable that enterprise systems are expensive
strategic investments, and thus will not seldom be used for a decade or even
longer. As a matter of fact, different generations of employees will have to work
with the software and will need to attend courses to learn how to handle it. The
education costs are inversely related to the usability of the software. It is clear
that if the software is to complex and cumbersome, the learning process slows
down and takes longer, thus reducing the effectiveness of employees.

In my opinion it is important that in the future there should be more research
and investigations to really capture all the influences software quality engineering
has, thus enabling more precise rate of return calculations for software quality
assurance.

4 Conclusion and outlook

The different cost estimation models presented in this work are the fundamental
to the process minimizing, the total cost of software quality. But it is not suffi-
cient that the software engineers are aware and know how to use such models.
In contrary it is important to have a management team which is smart enough

86 Marc Giombetti

to look at the cost of quality over the entire lifecycle of the software product. It
doesn’t make sense to release immature software, just to reduce the short time
expenses generated by quality assurance effort. The expenditure due to long
term external failure in the field, will surely exceed the amount of saved short-
term investments for quality assurance. Having an far-sighted and supportive
management is of great necessity, but it is not a wild-card for achieving satisfac-
tory return on software quality assurance investments. It is rather of paramount
importance to know how to effectively make use of the presented models and
always critically face the outcomes.

The presented models are a solid basis for companies to start their software
quality assurance investments, but they are no push-button techniques. Soft-
ware companies should always keep in mind the importance of the collection
and appraisal of empirical data. They should see their companies as mature
learning companies, and have robust experience factories where they save the
data generated during the development process of their software projects [8].
The quality of the data in the experience base is crucial, because nearly all cost
and quality estimation models make use of this data to predict cost and quality
of future projects.

Cost/Benefit-Aspects of Software Quality Assurance 87

References

1. ISO/IEC: ISO/IEC 9126-1:2001 Software engineering - Product quality - Part 1:
Quality model. International Standards Organization, Geneva, Switzerland (2001)

2. Wagner, S.: A model and sensitivity analysis of the quality economics of defect-
detection techniques. In: ISSTA ’06: Proceedings of the 2006 international sympo-
sium on Software testing and analysis, New York, NY, USA, ACM (2006) 73–84

3. Krasner, H.: Using the Cost of Quality Approach for Software. CrossTalk. The
Journal of Defense Software Engineering 11(11) (1998) 6–11

4. Juran, J., F.M., G.: Juran’s Quality Control Handbook. McGraw-Hill (1988)
5. Crosby, P.: Quality Is Free: The Art of Making Quality Certain. Mentor Books

(1980)
6. Boehm, B.: Software Engineering Economics. Prentice Hall PTR Upper Saddle

River, NJ, USA (1981)
7. Chulani, S., Boehm, B.: Modeling software defect introduction and removal: Co-

qualmo (1999)
8. Basili, V., Caldiera, G., Rombach, H.: Experience Factory. Encyclopedia of Soft-

ware Engineering 1 (1994) 469–476
9. Boehm, B., Huang, L., Jain, A., Madachy, R.: The roi of software dependability:

The idave model. Software, IEEE 21(3) (May-June 2004) 54–61
10. Stellman, A., Greene, J.: Applied Software Project Management. First edition edn.

O’Reilly Media (2005)
11. Huang, L., Boehm, B.: How Much Software Quality Investment Is Enough: A

Value-Based Approach. IEEE SOFTWARE (2006) 88–95
12. Wagner, S.: Cost-Optimisation of Analytical Software Quality Assurance. (2007)
13. Collofello, J., Woodfield, S.: Evaluating the effectiveness of reliability-assurance

techniques. Journal of Systems and Software 9(3) (1989) 191–195
14. Freimut, B., Briand, L., Vollei, F.: Determining inspection cost-effectiveness by

combining project data and expert opinion. Software Engineering, IEEE Transac-
tions on 31(12) (Dec. 2005) 1074–1092

15. Lung, J., Aranda, J., Easterbrook, S.M., Wilson, G.V.: On the difficulty of repli-
cating human subjects studies in software engineering (2008)

16. Dehnadi, S., Bornat, R.: The camel has two humps (working title). (2006)

Process Quality

Christina Katz

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
katz@in.tum.de

Abstract. In the past the quality of software was assured rather with a
focus on the product quality, while nowadays the correlation of product
quality and process quality carries more weight. This paper will give
a short introduction to the quality standard ISO 9000 and the process
improvement models CMMI and SPICE. Besides, a suitable method to
measure process improvement using function points will be introduced
and a discussion will show that improvement models are not yet perfect
and probably will never be, but they should be given a chance.

1 Introduction

In the past the quality of software was assured with a focus on product qual-
ity. The process planning was a part of the structural and analytical quality
assurance procedures.

In contrast to product quality, process quality describes the quality of the
production process rather than the quality of the actual product. Hence, process
quality is also related to development, production, management, organizational,
and supply processes. Especially in software engineering there exists a correlation
between process and software quality, which nowadays carries more weight. In
the majority of software companies a self-contained process quality assurance is
of particular importance.

In reference to software engineering process quality considers the software
development process and is generally assured through the use of process models.
A characterization and optimization of a company’s process is often carried out
using evaluation methods like CMMI or SPICE. In the paper on hand two process
improvement models, CMMI and SPICE, and the quality standard ISO 9000 will
be introduced and compared to each other. Besides that, a method to measure
process quality using the function points metric is presented. Finally, the process
improvement models are discussed.

2 Process Improvement Models and Quality Standards

Process improvement models provide useful frameworks for implementing and
developing best practices and enhanced capabilities. When a company wants to

Process Quality 89

improve its processes it is of avail to use a guiding model in order to be able to
establish a structured procedure. In the following the quality standard ISO 9000
and the two process improvement models CMMI and SPICE, which can serve
as a guiding framework, will be introduced.

2.1 ISO 9000 [1]

ISO 9000 is a family of standards for quality management systems and is main-
tained by ISO, the International Organization for Standardization, and admin-
istered by accreditation and certification bodies. The ISO 9000 family includes
the standards ISO 9000 Quality management systems - Fundamentals and vo-
cabulary, ISO 9001 Quality management systems - Requirements, and ISO 9004
Quality management systems - Guidelines for performance improvements. In the
last years, ISO 9000 has become the most spread quality management model,
since it can be set in in a wide range of businesses.

In this context ISO 9000 defines fundamentals, terms, and definitions for
quality management systems. ISO 9001 defines the requirements on a quality
management system, which have to be met when a company wants to provide
products certified by ISO. It describes exemplary the entire quality management
system and is a basis for Total Quality Management (TQM). ISO 9004 provides
guidelines, which consider the efficiency of a quality management system. How-
ever, it forms no basis for certification or for a contract, but rather constitutes
a management philosophy.

The standard ISO 9000 does not offer details about its application to specific
domains of expertise, but there exists ISO 90003, which is a guideline for the
software development industry. However, below the contents of ISO 9000 are
described, since ISO 90003 does not change the demands of ISO 9000. It rather
contains norms and guidelines to apply ISO 9000 to the development, delivery,
and maintenance of software which have a more informative than normative
character.

When following ISO 9000, a company or organization fulfills:

– the customer’s quality requirements
– applicable regulatory requirements
– enhancement of customer satisfaction
– achievement of continual improvement of its performance in pursuit of these

objectives

The quality management system standards of ISO 9000 are based upon eight
quality management principles, which can be used as a guiding framework by the
management. Those eight principles are defined in ISO 9000 Quality management
systems - Fundamentals and vocabulary, and in ISO 9004 Quality management
systems - Guidelines for performance improvements. The principles are:

Principle 1: Customer focus
Principle 2: Leadership
Principle 3: Involvement of people

90 Christina Katz

Principle 4: Process approach
Principle 5: System approach to management
Principle 6: Continual improvement
Principle 7: Factual approach to decision making
Principle 8: Mutually beneficial supplier relationships

Below follows a short description of every principle, the benefits derived from
their use and the actions that managers typically take in applying the principles
to improve their organizations’ performance.

Principle 1: Customer focus
Organizations depend on their customers and therefore should understand cur-
rent and future customer needs, should meet customer requirements and strive
to exceed customer expectations.

One key benefit of customer focus are increased revenues and market shares
since responses to market opportunities can be done fast and flexible. Addi-
tionally, it leads to enhanced customer satisfaction, because the organization’s
resources can be used in a more effective way, and improved customer loyalty,
which leads to repeating businesses.

Applying the principle of customer focus typically leads to researching and
understanding customer needs and expectations, where the objectives of the
organization then can be linked to. Those needs and expectations can be com-
municated throughout the organization, so that a customer relationship can be
set up and managed systematically. Additionally, the customer satisfaction can
be measured and actions can be planned based on the results. Finally, a bal-
anced approach between satisfying customers and other interested parties (such
as owners, employees, suppliers, financiers, local communities, or the society as
a whole) would be ensured.

Principle 2: Leadership
Leaders establish the unity of purpose and direction of the organization. They
should create and maintain the internal environment in which people can become
fully involved in achieving the organization’s objectives.

An important key benefit of the principle of leadership is the evaluation,
alignment, and implementation of the activities in an organization in a unified
way. People will understand the organization’s goals and objectives and hence, be
motivated towards them. Neither should the minimization of miscommunication
between the levels of an organization be underestimated.

Applying the principle of leadership typically leads to a deeper insight into
the needs of all interested parties including customers, owners, employees, sup-
pliers, financiers, local communities, and the society as a whole. Through leader-
ship a clear vision of the organization’s future can be established and challenging
goals and targets can be set. Additionally, it establishes trust and eliminates fear
in the organization, which then creates and sustains shared values, fairness and
ethical role models at all levels. People are provided with the required resources,
training, and freedom to act with responsibility and accountability while their
contributions are inspired, encouraged, and recognized.

Process Quality 91

Principle 3: Involvement of people
People at all levels are the essence of an organization and their full involvement
enables their abilities to be used for the organization’s benefit.

The key benefits of this principle are motivated, committed, and involved
people within the organization, which leads to innovation and creativity in fur-
thering the organization’s objectives. People are accountable for their own per-
formance and eager to participate in and contribute to continual improvement.

Applying the principle of involvement of people typically leads to people, who
are understanding the importance of their contribution and role in the organi-
zation. Those people identify constraints to their performance and accept the
ownership of problems and their responsibility for solving them. They evaluate
their performance against their personal goals and objectives and actively seek
opportunities to enhance their competence, knowledge, and experience. This en-
hancement typically results from knowledge and experience sharing as well as
from open discussions about problems and issues.

Principle 4: Process approach
A desired result is achieved more efficiently when activities and related resources
are managed as a process.

Key benefits of a process approach are lower costs and shorter cycle times
through effective use of resources as well as improved, consistent, and predictable
results. The organization’s improvement opportunities can be focused and pri-
oritized.

Applying the principle of process approach typically leads to a systematical
definition of necessary activities to obtain a desired result. The responsibility
and accountability for managing key activities can be established. Those key
activities within and between the functions of the organization then can be
identified, analyzed, and measured. If a focus lies on factors such as resources,
methods, and materials, the key activities of the organization will be improved.
Additionally, the risks, consequences, and impacts of activities on customers,
suppliers, and other interested parties can be evaluated.

Principle 5: System approach to management
Identifying, understanding, and managing interrelated processes as a system
contributes to the organization’s effectiveness, and efficiency in achieving its
objectives.

With this principle, key benefits include the integration and alignment of the
processes that will best achieve the desired results and the ability to focus effort
on those key processes. Additionally, it provides confidence to interested parties
as to the consistency, effectiveness and efficiency of the organization.

Applying the principle of system approach to management typically leads to
a structured system to achieve the organization’s objectives in the most effective
and efficient way. The interdependencies between the processes of the system
are understood and structured approaches that harmonize and integrate pro-
cesses are achieved. To achieve common objectives and thereby reducing cross-
functional barriers, a better understanding of the roles and responsibilities is
provided. The organizational capabilities are understood and hence, resource

92 Christina Katz

constraints prior to action are established. Specific activities within a system
are targeted and defined and the system is continually improved through mea-
surement and evaluation.

Principle 6: Continual improvement
Continual improvement of the organization’s overall performance should be a
permanent objective of the organization.

Key benefits of continual improvement are performance advantages through
improved organizational capabilities as well as flexibility to react quickly to
opportunities. The improvement activities at all levels are aligned to an organi-
zation’s strategic intent.

Applying the principle of continual improvement typically leads to a consis-
tent organization-wide approach to continual improvement of the organization’s
performance. People are provided with training in the methods and tools of
continual improvement and continual improvement of products, processes, and
systems is made an objective for every individual in the organization. Goals are
established to guide and measure continual improvement, which is recognized
and acknowledged.

Principle 7: Factual approach to decision making
Effective decisions are based on the analysis of data and information.

Key benefits are informed decisions and an increased ability to demonstrate
the effectiveness of past decisions through references to factual records. Addi-
tionally, the ability to review, challenge, and change opinions and decisions is
increased.

Applying the principle of factual approach to decision making typically leads
to accurate and reliable data, which can be accessed by those who need it. This
data is analyzed using valid methods and decision making and action-taking is
based on factual analysis, balanced with experience and intuition.

Principle 8: Mutually beneficial supplier relationships
If an organization and its suppliers are interdependent a mutually beneficial
relationship enhances the ability for both partners to create value.

A key benefit of this principle is an increased ability to create value for both
parties and an optimization of costs and resources for the organization. Market
changes or customer needs and expectations can be met in a flexible and fast
way.

Applying the principle of mutually beneficial supplier relationships typically
leads to established relationships that balance short-term gains with long-term
considerations. Key suppliers can be identified and selected and expertise and
resources can be pooled with partners. A clear and open communication makes
information sharing possible and establishes future plans, joint development,
and improvement activities. Finally, improvements and achievements by suppli-
ers can be inspired, encouraged, and recognized.

There are many different ways of applying these quality management prin-
ciples. How the principles are implemented in particular companies depends on
the character of the organization and the specific challenges it faces. When suc-

Process Quality 93

cessfully establishing the ISO 9000 requirements, a company can be certified by
a third party certification centre. The certification is carried out by inspecting
the company’s quality management system processes in an audit.

2.2 CMMI (Capability Maturity Model Integration) [2]

The Capability Maturity Model Integration (CMMI) is a quality management
model for systems and software engineering and successor of the well known
CMM (Capability Maturity Model). The basis of CMMI is similar to the philos-
ophy of the quality standard family ISO 9000. Hence, CMMI focuses especially
on systems and software engineering, so it gives essential support in quality man-
agement for those areas. Additionally, CMMI supports continuous improvement,
since it concerns a level based model.

Both, CMM and CMMI were developed at the Software Engineering Insti-
tute (SEI), Pittsburgh/USA, original on behalf of the American Department of
Defense, whose aim was to evaluate the quality of software suppliers. The basis
for ISO 9000 as well as for CMM and CMMI is the philosophy to improve re-
sults through the improvement of the work process. The main difference between
ISO 9000 and CMM respectively CMMI is the focus on systems and software
engineering and the level based model in CMMI, which follows the improve-
ment through five levels from maturity level 1: Initialized to maturity level 5:
Optimizing, while ISO 9000 only has the two levels fulfilled and not fulfilled.

Many companies already use CMM or CMMI to measure and improve their
own processes or the processes of their software suppliers, among others BMW,
Siemens, Bosch, E-Plus, EDS, and DB Systems. At the moment, many German
car manufacturers debate on obliging CMM(I) or the similar SPICE for software
engineering in the automobile sector.

2.2.1 The Five Maturity Levels of CMMI
In its level based representation, CMMI provides five maturity levels to identify
the quality of a software engineering processes in a company. Figure 1 gives an
overview of the maturity levels and their corresponding process characteristics.

Maturity Level 1: Initial
When a company’s processes are identified as maturity level 1 the processes are
carried out ad hoc or in a chaotic way. The processes are defined only little or
not at all and the success of a company’s project depends highly on the effort
and competence of individual employees, so called heroics. In those projects re-
lationships between disciplines are uncoordinated and the introduction of new
technology is risky.

Maturity Level 2: Managed
Maturity level 2 implies that a company has introduced essential management
processes which contain documented and stable estimating, planning, and com-
mitment of a project’s budget, time, and functionality. Problems in the project
are recognized and corrected as they occur. The success of a company’s project

94 Christina Katz

Fig. 1. The CMMI maturity levels

still depends on individual employees, but now a supporting management system
is available and the employees are trained. In those projects technology supports
are established, so that a stable software development is possible.

Maturity Level 3: Defined
In maturity level 3 the main emphasis shifts from individual projects to the en-
tirely organization and its management activities. Most of the requirements in
maturity level 3 aim at implementing a homogeneous process and engineering
management for the whole organization, while maturity level 2 focuses largely on
processes for individual projects. When an organization fulfills the requirements
for maturity level 3, any problems in the project are anticipated and prevented
or at least their impacts are minimized. Now the employees in the organization
work together as a team and training for the team members is planned and pro-
vided according to roles. When new technologies appear, they are evaluated on
a quantitative basis.

Maturity Level 4: Quantitatively managed
When an organization succeeded in implementing homogeneous processes, the
next step is an intensive use of metrics and measurements to achieve a better de-
cision basis for process improvement activities. In earlier maturity levels, metrics
are already used, but only on a project base. In maturity level 4 an organization
can extend the measurements on the entire organization to understand and sta-
bilize its processes in a quantitative way. Within each project a strong sense of
teamwork exists among the team members and sources of individual problems
are understood and eliminated.

Maturity Level 5: Optimizing
Maturity level 5, the highest level in the CMMI model, focuses on a continu-

Process Quality 95

ous improvement. Every employee is involved in the process improvement and a
strong sense of teamwork exists within the whole organization, not just within
individual projects. New technologies are evaluated to determine their effect on
quality and productivity and appropriate technologies are transferred into nor-
mal practice across the organization.

Except for level 1, each maturity level is decomposed into several key process
areas, that indicate where an organization should focus to improve its software
process. Table 1 shows the key process areas by maturity level. All key process
areas for a level must be satisfied and the processes institutionalized to achieve
a maturity level.

Table 1. The key process areas by maturity level

Maturity level Key process area

5 Optimizing Organizational Innovation and Deployment, Causal Analysis
and Resolution

4 Quantitatively managed Organizational Process Performance, Quantitative Project
Management

3 Defined Requirements Development, Technical Solution, Product In-
tegration, Verification, Validation, Organizational Process
Focus, Organizational Process Definition, Organizational
Training, Integrated Project Management, Risk Manage-
ment, Decision Analysis and Resolution

2 Managed Requirements Management, Project Planning, Project Mon-
itoring and Control, Supplier Agreement Management, Mea-
surement and Analysis, Process and Product Quality Assur-
ance, Configuration Management

1 Initial

One exemplary goal in the Process and Product Quality Assurance key prac-
tice is the specific goal to Objectively Evaluate Processes and Work Products.
Besides others, this goal includes the specific practice to Objectively Evaluate
Processes [2]:

SG 1 Objectively Evaluate Processes and Work Products
Adherence of the performed process and associated work products and
services to applicable process descriptions, standards, and procedures is
objectively evaluated.
SP 1.1 Objectively Evaluate Processes
Objectively evaluate the designated performed processes against the ap-
plicable process descriptions, standards, and procedures.
Objectivity in quality assurance evaluations is critical to the success of
the project. A description of the quality assurance reporting chain and
how it ensures objectivity should be defined.
Typical Work Products

96 Christina Katz

1. Evaluation reports
2. Noncompliance reports
3. Corrective actions

Subpractices
1. Promote an environment (created as part of project management)

that encourages employee participation in identifying and reporting
quality issues.

2. Establish and maintain clearly stated criteria for the evaluations.
The intent of this subpractice is to provide criteria, based on business
needs, such as the following:
– What will be evaluated
– When or how often a process will be evaluated
– How the evaluation will be conducted
– Who must be involved in the evaluation

3. Use the stated criteria to evaluate performed processes for adherence
to process descriptions, standards, and procedures.

4. Identify each noncompliance found during the evaluation.
5. Identify lessons learned that could improve processes for future prod-

ucts and services.

CMMI is a well defined and structured method to measure the maturity
level of a company’s processes. By means of an appraisal it can be ascertained
at which maturity level a company is situated and how the software processes
can be further improved. The SEI has defined a special appraisal method for
CMMI, SCAMPI (Standard CMMI Assessment Method for Process Improve-
ment), which is the successor of the former method CBA-IPI (CMM-Based
Appraisal for Internal Process Improvement) and has higher formal require-
ments [3]. A detailed introduction of the assessment method would go beyond
the scope of this paper.

2.3 SPICE (Software Process Improvement and Capability
dEtermination

Since 1993 ISO develops the process improvement model SPICE, which is pub-
lished under ISO 15504. The intent of this model is to provide an extensive
framework to assess and improve software processes by integrating and unify-
ing approaches like ISO 9000 and CMMI. In some aspects SPICE follows the
content, structure, and notation of CMMI.

The main focus of SPICE are process assessments, which provide a basis
for both measuring the maturity level of processes as well as identifying modi-
fications to improve a process. SPICE can be used to assess a company’s own
software engineering or to assess other companies, e. g. in the course of a sup-
plier choice. However, the main focus is put on self assessment rather than on
certification.

Process Quality 97

2.3.1 The Structure of SPICE
The reference model of SPICE considers two dimensions, the process dimension
and the dimension of maturity levels. The process dimension is used to identify
the completeness of processes, the dimension of maturity levels to determine
their performance.

The process dimension
In the process dimension every process is assigned to one of five categories, which
are distinguished in the following:

– The Customer-Supplier process category describes processes, which directly
affect the customer. These are processes like software acquisition, customer
service, or software delivery.

– The Engineering process category covers processes, which are used to define,
design, implement, or maintain software products.

– The Support process category describes processes, which support other pro-
cesses within a project, e. g. documentation, configuration management, or
quality assurance.

– The Management process category includes processes, which are necessary to
plan, control, or manage software projects. These are processes like project
management, quality management, risk management, or supplier manage-
ment.

– The Organization process category covers processes, which make it possible
to define and achieve business objectives, e. g. by process definitions and
improvements or human resource management.

Overall, 29 processes are defined and every process is assigned to one of those
five process categories. Each process itself is described by base practices, which
define the activities to achieve the particular process intention.

An exemplary base practice in the Management process category is the Man-
age quality process, which includes the following practices [4]:

PRO.5 Manage quality
The purpose of the Manage quality process is to manage the quality of
the project’s products and services to ensure the resulting products and
services satisfy the customer.
Managing quality involves identifying the required quality characteristics
of the projects products, working to achieve this quality, and demonstrat-
ing that this quality was achieved.
Inputs are the customer requirements and selected elements of the soft-
ware project plans (see process PRO.2). Outputs should be integrated
into the software project plans.
Note: There is another process with a similar name, ”Perform quality
assurance” SUP.3. Process PRO.5 focuses on identifying what needs to
be done to build quality into the products and establishing management
controls to ensure this gets done; whereas SUP.3 focuses more on an
audit and review approach and on ensuring compliance.

98 Christina Katz

PRO.5.1 Establish quality goals. Based on the customer’s requirements
for quality, establish quality goals for various checkpoints within the
project’s software life cycle (e.g. at the end of each phase).
PRO.5.2 Define quality metrics. Define metrics that measure the results
of project activities to help assess whether the relevant quality goals have
been achieved.
PRO.5.3 Identify quality activities. For each quality goal, identify ac-
tivities which will help achieve that quality goal and integrate these
activities into the software life cycle model.
PRO.5.4 Perform quality activities. Perform the identified quality ac-
tivities.
PRO.5.5 Assess quality. At the identified checkpoints within the project’s
software life cycle, apply the defined quality metrics to assess whether
the relevant quality goals have been achieved.
PRO.5.6 Take corrective action. When quality goals are not achieved,
take corrective action.
Note: The corrective action can involve fixing the product generated by
a particular project activity or changing the planned set of activities in
order to better achieve the quality goals or both.

The dimension of maturity levels
SPICE distinguishes, similar to the five maturity levels in CMMI, six maturity
levels, which can be used to assess the completeness and performance of pro-
cesses in a company. In addition to the five maturity levels in CMMI, SPICE
has a supplemental maturity level 1, which is especially meaningful for smaller
organizations [5]. In each case, the next higher maturity level indicates sugges-
tions for the process improvement.

Fig. 2. The SPICE maturity levels

Process Quality 99

The performance of the 29 processes described in the process dimension is
assessed by the nine process attributes in the dimension of maturity levels. Every
process attribute represents a measurable characteristic of the process and is
rated in a four-stage scale:

N Not achieved
P Partially achieved
L Largely achieved
F Fully achieved

Every process attribute is assigned to one maturity level and the process maturity
level is calculated from the process attribute assessments. To achieve a maturity
level, all process attributes of the concerning maturity level have to be at least
largely achieved, and all process attributes of the subjacent maturity levels have
to be fully achieved. Figure 2 gives an overview of the process attributes assigned
to the respective maturity levels.

2.4 Comparison of the Introduced Models

ISO 9000, CMMI, and SPICE all have the same fundamental idea and the re-
quirements of CMMI can be mapped to those of ISO 9000 (a table is available at
the SEI [6]). However, in contrast to ISO 9000, CMMI and SPICE are especially
designed for the software engineering process. ISO 9000 covers the organization
as a whole, while CMMI and SPICE restrict to concrete process areas and prac-
tices. Additionally, an assessment according to ISO 9000 does not lead to some
maturity level of the kind of CMMI or SPICE.

Both methods, CMMI (with the newer assessment method SCAMPI) and
SPICE, use a standardized list of questions. However, in a SPICE questionnaire
four possible answers for an assessment question are possible, not achieved, par-
tially achieved, largely achieved, and fully achieved, while at CMMI there exists
no differentiation, the result is determined only by yes/no answers. Since SPICE
is an ISO norm it is more common in Europe than in the USA. SPICE forms,
for instance, a de facto standard for the assessment of suppliers in the German
automobile sector.

CMMI includes actual directives how to improve a process, while SPICE
does not carry along any directives and hence, does not force a specific order for
the process improvements. Rather, the catalog of measures is derived from the
experiences of the accompanied consultancy according to the outcomes of the
assessments. Typically, a company begins the improvement in those areas which
show major deficits.

As already mentioned the two methods also differ in the complexity of the
assessments: CMMI requires that at least one employer of the company is famil-
iar with the method. On the other hand, SPICE does not demand an adequate
education. Resultant, CMMI has a deeper view at the analysis, the pending
improvements, and the organizational aspects. Therefore, a company should fig-
ure out if this depth is necessary when deciding about a suitable assessment

100 Christina Katz

method or if the resulting effort is not adequate for the benefit. For most small
to medium-sized companies, SPICE is sufficient to gain selective process im-
provements.

3 How to Measure Process Quality [7]

Since CMMI has been developed by the Software Engineering Institute (SEI) in
1984, it has often been stated that companies which use and improve defined
software development processes can produce software of a higher quality.

Unfortunately, there have not yet been made many examinations if those
assertions are true or how the increased software quality could be measured.
To fill this lack with information Caspers Jones has examined project data be-
tween 1984 and 2002 together with colleagues at Software Productivity Research
(SPR) [7]. Using questionnaires Jones and his colleagues have appraised data
from more than 10,000 software projects at all five levels of the SEI capability
maturity model (CMM) for gathering both qualitative and quantitative infor-
mation. Additionally, many projects were examined which do not use the SEI
CMM.

Most examined companies followed a six-stage process improvement program,
which is typically initiated by a formal process assessment and a baseline:

Stage 0: Software Process Assessment, Baseline, and Benchmark
Stage 1: Focus on Management Technologies
Stage 2: Focus on Software Processes and Methodologies
Stage 3: Focus on New Tools and Approaches
Stage 4: Focus on Infrastructure and Specialization
Stage 5: Focus on Reusability
Stage 6: Focus on Industry Leadership

These six stages can serve as a structure to guide through a process im-
provement process. Note that the assessment itself is not a real part of the
improvement, so it is outside the six numbered improvement stages. An impor-
tant aspect and not to forget is that every company or project is different and
hence, the six stages have to be adapted to the particular working environment.

In the following this approach will serve as an example how process quality
improvement can be measured using the function points metric. We will focus
on the assessment, baseline, and benchmark, since a discussion of the six stages
would go beyond the scope of this study and would be similar to the introduction
of the maturity levels in CMMI or SPICE.

3.1 Stage 0: Software Process Assessment, Baseline, and Benchmark

It is important to point out once more that this stage is outside the six process
improvement phases. Neither an assessment nor a baseline itself do improve a
tithe of the process, but anyhow, many companies forget this point and tend to

Process Quality 101

stop doing anything after an initial assessment is carried out and a baseline is
determined.

Every process improvement should begin with a formal assessment of the
current process and the establishment of a quantitative baseline of current pro-
ductivity and quality levels. The assessment helps to identify the strengths and
weaknesses of the process associated with software and is often carried out by
consulting groups. The baseline provides a basis for productivity, schedules,
costs, quality, and user satisfaction in order to benchmark the future improve-
ment progress. As described in this chapter, function points are often used for
baseline data collection, since they cover a wide range of activities. Besides com-
paring collected data from the baseline with data from a future point, it can
also be considered to compare a company with another company in the same
business sector. Third-party consulting groups often have large collections of
software data from many companies and industries.

3.2 A Short Discussion of Function Point Metrics

Since this chapter will deal with process quality measurements using function
point metrics, a short discussion of function point metrics may be useful. Func-
tion point metrics were developed by A. J. Albrecht and colleagues at IBM in
the mid 1970s. A function point is defined as an end-user business function, such
as a query for an input. Basic function points are categorized into five groups of
external attributes: inputs, outputs, inquiries, logical files, and interfaces. Since
the counting rules for function points are complex, precise counting of function
points is normally carried out by specialists who have passed a certain certifi-
cation, conferred by the International Function Point User Group organization
(IFPUG).

Compared to the well-known software metric lines of code (LOC), function
points offer some significant advantages for baselines and benchmarks. An im-
portant difference to state is that function points can be achieved before the
coding starts, while LOC metrics can only be used once the project is ready and
have not been useful for measuring the volume of specifications, the contribu-
tions of project management, or the defects found in requirements and design
documents. Further more, LOC do not represent the same in different program-
ming languages. Indeed, for some programming languages such as Visual Basic,
there are no effective LOC counting rules. Subsidiary, there exist conversion ta-
bles, which allow to convert function points to LOC. However, since there is
no reliable relation between function points and lines of code, every conversion
produces a certain fuzziness. Since function point metrics are so powerful and
can measure all software activities from the requirements engineering over the
coding to testing and management they have become a de facto standard for
software baselines and benchmarks.

102 Christina Katz

3.3 Measuring Process Improvements at Activity Levels

In this section we will compare the baseline of a hypothetical project of 1,000
function points (roughly 125,000 C source statements) at SEI CMM maturity
level 1 and level 3. The software application of the project is a systems software,
written in C. The work hours per month in the project add up to 132 and the
burdened average monthly salary is $7,500.

Activity Work Hours
per FP

Staff Effort
(Person
Months)

Schedule
(Calendar
Months)

Costs by
Activity

Percent
of Costs

Requirements 1.20 2.00 9.09 4.55 $68,182 4%

Design 2.93 3.33 22.22 6.67 $166,667 11%

Design reviews 0.38 4.00 2.86 0.71 $21,429 1%

Coding 7.76 6.67 58.82 8.82 $441,176 29%

Code inspections 0.53 8.00 4.00 0.50 $30,000 2%

Testing 8.25 6.67 62.50 9.38 $468,750 31%

Quality Assurance 1.32 1.00 10.00 10.00 $75,000 5%

Documentation 1.10 1.00 8.33 8.33 $62,500 4%

Management 3.57 1.00 27.03 27.03 $202,703 13%

Totals 27.04 6.33 204.85 32.35 $1,536,406 100%

FP per month 4.88

LOC per month 610

Cost per FP $1,536.41

Cost per LOC $12.29
Table 2. Example of Activity-Based Cost Analysis for SEI CMM Level 1

Table 2 illustrates the project for a typical company at CMM Level 1. As
already stated in chapter 1 level 1 organizations are not very sophisticated in
software development techniques and thus, often have missed schedules, cost
overruns, and software products of poor quality. Noticeable is the characteristic
that level 1 organizations spend most time and budget in testing the software
system, because they usually have excessive defect levels and do not carry out
defect prevention or pretest reviews and inspections.

In contrast, table 3 illustrates the same software project for a level 3 company.
As already illustrated in table 1, the development from CMMI maturity level
1 to level 3 results in implementing techniques like verification and validation.
Therefore, testing has eased significantly in both time and budget, because those
methods for defect prevention, pretest design reviews, and code inspections are
established now.

Although those comparisons seem to be universally valid statements, it has
to be pointed out, that it is difficult to gain objective and meaningful statistics,
especially because the pictured projects are only fictive ones. Thus, every com-
pany should establish its own data using its own assessment and baseline studies
instead of counting too much on reports like the presented.

Process Quality 103

Activity Work Hours
per FP

Staff Effort
(Person
Months)

Schedule
(Calendar
Months)

Costs by
Activity

Percent
of Costs

Requirements 1.06 2.00 8.00 4.00 $60,000 5%

Design 2.64 3.33 20.00 6.00 $150,000 12%

Design reviews 0.88 4.00 6.67 1.67 $50,000 4%

Coding 6.00 6.67 45.45 6.82 $340,909 28%

Code inspections 1.06 8.00 8.00 1.00 $60,000 5%

Testing 3.30 6.67 25.00 3.75 $187,500 15%

Quality Assurance 2.20 1.00 16.67 16.67 $125,000 10%

Documentation 1.10 1.00 8.33 8.33 $62,500 5%

Management 3.30 1.00 25.00 25.00 $187,500 15%

Totals 21.53 6.33 163.12 25.76 $1,223,409 100%

FP per month 6.13

LOC per month 766

Cost per FP $1,223.41

Cost per LOC $9.79
Table 3. Example of Activity-Based Cost Analysis for SEI CMM Level 3

Table 4. Side-by-side comparison of activity-based costs

Activity SEI CMM
Level 1

SEI CMM
Level 3

Variance in
Costs

Variance Per-
cent

Requirements $68,182 $60,000 -$8,182 -12.00%

Design $166,667 $150,000 -$16,667 -10.00%

Design reviews $21,429 $50,000 $28,571 133.33%

Coding $441,176 $340,909 -$100,267 -22.73%

Code inspections $30,000 $60,000 $30,000 100%

Testing $468,750 $187,500 -$281,250 -60.00%

Quality Assurance $75,000 $125,000 $50,000 66.67%

Documentation $62,500 $62,500 $0 0.00%

Management $202,703 $187,500 -$15,203 -7.50%

Totals $1,536,406 $1,223,409 -$312,997 -20.37%

Cost per FP $1,536.41 $1,223.41 -$313.00 -20.73%

Cost per LOC $12.29 $9.97 -$2.50 -20.73%

104 Christina Katz

A look on table 4, which illustrates the side-by-side analysis of the costs,
shows that an overall cost reduction of 20% has been achieved by the process
improvement from level 1 to level 3. As anticipated, most of the savings occur
during the testing phase. However, the costs for code inspections are higher at
level 3 than at level 1 and some costs, like those for user documentation, kept
the same in both scenarios.

Level Potential
Defects

Removal
Efficiency

Delivered
Defects

Defects per
Function
Point

Defects per
KLOC

SEL Level 1 6150 85.01% 922 0.92 7.38

SEI Level 3 3500 95.34% 163 0.16 1.30
Table 5. SEI CMM Level 1 and Level 3 Defect Differences

Besides those project budget differences Jones and his colleagues also took a
look at the quality of the resulting software products. The improvement of both
defect prevention and defect removal approaches in level 3 companies guides to a
significant reduction in delivered defects and hence, to the ability to use shorter
and more cost-effective development cycles, which factor defect prevention into
the software development. To gain an overview of the differences in defect po-
tentials, defect removal efficiency levels, and delivered defects, table 5 compares
the defect difference of the level 1 company with the level 3 company. Here,
potential defects means effects which are likely to be encountered from the start
of requirements analysis through at least one year of customer use.

4 Discussion of the Quality Management Models

A process assessment with a resulting maturity level systematically indicates
strengths and weaknesses in a company’s processes and identifies possibilities for
improvements. Additionally, it is important to have a general framework for the
assessment of software processes so that a company has a chance to compare itself
with other companies in the same business area. However, process improvement
models do not only have strengths but also weaknesses. Hence, this chapter deals
with problems with CMMI and SPICE.

One of the main objections to process improvement models is that many
models, e. g. CMMI, solely concentrate on the process as the main factor in soft-
ware development, leaving out people and technology. Thus, instituting CMMI,
whether in maturity level 1 or 5, is no guarantee that a software process will
succeed or, more bluntly, that the quality of the developed software will increase,
if the process is promoted over all other issues. Especially coding software, one
main activity in software engineering, is not considered in a really extensive way
in all three presented methods. Furthermore, a too strict focus on the process
holds the risk to work more on the process than on the software itself.

Process Quality 105

One point, regarded to all existing process improvement models, is the fact
that an organization can tend to ”slip back” to their previous methods of doing
business after achieving their rating. So an organization can solely implement
the model to achieve the aspired maturity level, e. g. if it wants to win a federal
government contract, which requires a specific maturity level. Needless to say,
that those organizations sell themselves short by paying money and effort to
achieve the level but not taking the full advantage of the improvement. To gather
long-term process improvement the organization’s culture must change to a more
open-minded in order to be able to decide whether it is useful to change processes
or not.

One last issue is the fact that the amount of process improvement models
is increasing more and more. Besides the three well known models presented
in this article there exist quite a number of other, more or less similar models,
e. g. Bootstrap, SPIRE, TickIT, or Trillium. Hence, choosing the most suitable
approach for a company’s software process is difficult.

5 Summary

The paper on hand gave a short introduction to the process quality standard
ISO 9000 and the two process improvement models CMMI and SPICE. Besides,
a method to measure process improvement using the function points metric was
introduced. A subsequent discussion of process improvement models showed that
especially the two younger improvement models CMMI and SPICE lack some
important aspects of process improvement. Thus, neither in ISO 9000 nor in
CMMI or SPICE the improvement considers coding, which is however a core
activity in software engineering.

Nevertheless, implementing CMMI or SPICE can significantly raise the prob-
ability of success in a software process. Every company has to find a suitable
model to meet its own demands and the effort put in the process improvement
has to be adequate to the project size and complexity.

References

1. ISO 9000 and ISO 14000 Website http://www.iso.org/iso/iso catalogue/

management standards/iso 9000 iso 14000.htm; visited in April 2008.
2. CMMI Product Team, S.E.I.: Cmmi for development. Technical Report 1.2,

Carnegie Mellon University, Software Engineering Institute (2006)
3. Kneuper, R.: CMMI. Verbesserung von Softwareprozessen mit Capibility Maturity

Model Integration, 2. Auflage. dpunkt.verlag (2006)
4. SPICE Project: Software process assessment - part 2 : A model for process man-

agement. Technical Report 1.00, SPICE Project (1995)
5. Balzert, H.: Lehrbuch der Software Technik. Spektrum Akademischer Verlag (1998)
6. Mutafelija, B., Stromberg, H.: Iso 9001:2000 - cmmi v1.1 mappings. Technical

report, Carnegie Mellon Software Engineering Institute (2003)
7. Kan, S.H.: Metrics and Models in Software Quality Engineering, Second Edition.

Addison Wesley (2002)

106 Christina Katz

8. Carnegie Mellon University, S.E.I.: The Capability Maturity Model: Guidelines for
Improving the Software Process. Addison Wesley (1995)

9. Bollinger, T.B., McGowan, C.: A critical look at software capability evaluations.
IEEE Software 8(4) (1991)

Sustainable Change in Organizations

Stefan Puchner

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
puchner@in.tum.de

Abstract. Software quality is not just a matter of introducing tools
and frameworks. It is about changing the behavior of developers in or-
der to produce software of better quality. A tool cannot just “switch on”
software quality; all it can do is to support developers in the behavior de-
manded from them. Change management is necessary to really “change”
behavior.

1 Introduction

In a lot of businesses today, software makes up for a considerable amount of costs.
That is not only due to development or deployment of new software, but also
due to operation and maintenance of existing systems. That is especially true for
very large systems, which cause an enormous investment by the time introduced
and can therefore not be replaced very easily. They are running up to several
decades but the requirements and the environment are constantly changing. As
a result, the system needs to be changed constantly during its runtime (often
referred to as maintenance). That usually causes much higher investments than
the initial development and deployment of the system. If the software is of low
quality, it is even harder to maintain and will consequently increase the cost
more than necessary. The same is true for other cost drivers, like operation. A
non-scalable algorithm in a crucial IT-system of a growing company might not
show at the time of the introduction of the system. However, after some time,
when the firm has grown bigger and the IT-system has to handle multiple times
as many operations, this algorithm might become a costly bottleneck for the
company’s operations.

However, many companies are not successfully dealing with quality issues yet.
This might be due to missing methodology knowledge regarding software qual-
ity or due to the challenges an organization has to overcome when implementing
such methodologies. Implementing new methodologies means to alter established
approaches and work habits. Because changing employees’ work habits does not
seem to be a big challenge, many companies underestimate this issue and con-
sequently fail to change. In management literature the process of altering orga-
nizations is called change management. It is not the same as what is referred
to as change management in a product development context. Latter describes
how changes in a product or product concept are managed, whereas change

108 Stefan Puchner

management as discussed in this paper is about changing an organization it-
self. Popular examples for such changes are process reengineering, restructuring,
cultural changes, as well as quality management. [1]

Software quality is not just a matter of introducing tools and frameworks.
It is about changing the behavior of developers in order to produce software of
better quality. A tool cannot just “switch on” software quality; all it can do is
to support developers in the behavior they should adapt to. So when software
quality should be improved, the challenge is not so much which tools to choose.
More important are challenges like making developers aware of the necessity
to change their behavior, or empowering developers to be able to live the new
behavior and processes demanded from them.

There are many cases in literature where companies failed in changing them-
selves, although the reason for the change and the change itself were not gen-
erally viewed as controversial. An example regarding software quality can easily
be constructed:

Let’s consider a company introducing the tool Checkstyle at the repository
level to improve software quality (http://checkstyle.sourceforge.net). A
week before Checkstyle is activated, the administrator of the repository servers
sends out an e-mail saying that developers will get daily automatically generated
messages as long as the code they checked in does not match common coding
conventions. What will be the results of such an approach? Developers will start
to feel insecure, because they might not know what this change will mean for
them, for their daily behavior. Questions like the following arise: What are those
coding standards exactly? Will the group leader be serious about violations of
those standards? Will it take more time to do the same work when following
those standards? Which consequences will I suffer when violating those stan-
dards? Furthermore, the employees might not really know whom to talk to and
ask questions regarding this change. The group leader was not informed except
through the very same e-mail and does not know more than anyone else. The
administrator sending the mail does not know the implications for the develop-
ers either, he was just installing the tool and sending the mail because he was
obliged to. Last but not least, the way the company did software development
for many years worked just fine for the employees. Consequently, they don’t
see the necessity for coding standards and therefore the rational of introducing
Checkstyle. Developers will get angry about management for all the trouble they
caused without a reason.

Research about this phenomenon of important changes failing in realization
was conducted as early as 1947, when [2] developed a very basic model for
organizational change. Lewin suggest a 3-phase model of ’unfreezing’, ’moving’,
and ’freezing’ group standards. Newer literature like [3], [4], and [5] suggests more
sophisticated approaches on how to deal with change in nowadays companies,
influenced by increasing competition.

Sustainable Change in Organizations 109

2 Suggested Approach

This report is mainly based on findings of general change management literature.
After summarizing the relevant findings in each section, they are applied to an
imaginary example case about introducing software quality into a company.

The steps this paper suggests in order for organizations to introduce software
quality efforts are the following:

– Convince Stakeholders by Establishing a Sense of Urgency
– Create a Guiding Coalition
– Communicate Change
– Establish Short-term Wins
– Make Change Permanent

This paper will refer to different groups in companies. Going down the hierarchy
those groups will be called: upper management (CEO, CTO, board of direc-
tors, etc.), middle management, group leaders, and developers (programmers,
architects, etc.).

3 Convince Stakeholders by Establishing a Sense of
Urgency

Going through a change means additional effort for everyone in the organization.
If there is no sense of urgency among employees, most of them will not be willing
to make that effort, because they don’t see a rational for the change. They don’t
want to change a - in their mind - running system, but rather keep their behavior
’frozen’.

Consequently, the first step when introducing change in an organization
should always be getting all stakeholders to buy-in the urgency of the situa-
tion. [2] refers to this phase as ’unfreezing’ group standards. According to [1]
over 50% of companies fail in this phase. Even if change leaders are aware of the
fact that a sense of urgency has to be established actively, they might “think
that the people are, for the most part, pretty smart, so all you have to do is give
them the facts about poor product quality, sliding financial results, or lack of
productivity growth.” [4] However, [5] states that facts alone will in most cases
not cause enough sense of urgency. Not only the mind, but also the feelings of
employees have to be addressed in order to effectively raise urgency. Many firms
fail in this phase, because change leaders “underestimate how hard it can be to
drive people out of their comfort zones.” [1]

3.1 Actions Driving Urgency

[4] suggests rather drastic actions to raise the urgency level. In the field of
introducing software quality, this would be setting time goals for software modi-
fication to a level, which makes it impossible to achieve them without improving

110 Stefan Puchner

software quality seriously. Another rather drastic action to increase the sense of
urgency could be comparing the software quality metrics generated by different
departments.

In contrast to this approach, [5] describes actions, which rather touch the
emotional side of people, in order to make them aware of the necessity of change.
He emphasizes on his finding that “people change what they do[,] less because
they are given analysis that shifts their thinking than because they are shown
a truth that influences their feelings.” According to [5] “making a business case
[is] not inherently bad. But when you find [data and thinking] at the beginning
of successful large-scale change, they are aimed at supporting a more powerful
method - one based on helping people to see a truth, feel differently, and then
act with more urgency.” Therefore, [5] suggest addressing feelings by giving
concrete, dramatic, and surprising information and examples. Depending on the
situation, giving a point of view, which is different from the one of the audience
has, can help. This could be customer opinions for instance. On the same line, [6]
encourages convincing stakeholders about software quality projects by giving
examples like code snippets, in between facts.

3.2 Different stakeholders have different pains

A change leader has to be aware that different stakeholders have different pains
and may therefore have to be addressed differently in order to create a sense
of urgency to them. To address every stakeholder’s specific, sensible areas, the
first thing to do is to identify the stakeholders. This is followed by an analysis
of which aspects of the change is most crucial for every individual stakeholder.
Based on this information, activities of how to raise urgency in the individual
stakeholders can be derived.

3.3 Example

Let’s consider a software quality project that wants to reengineer the company’s
main product, an ERP system. A competitor is about to gain more and more
market share, because its ERP software is outperforming the company’s product
in various aspects. The goal of the project would be more efficient usage of
hardware resources, higher reliability, and faster handling of change requests.

To establish urgency in a “data and thinking” kind of way, the methodologies
presented in [6] can be used. That includes measuring the software quality of
the ERP system in different ways, estimating what reengineering the product
will cost, and estimating the continuous cost savings the improved quality will
generate. This will create a solid business case for improving software quality of
the ERP system.

Approaches to raise urgency, which rely more on the feelings of employees
and that are individually aimed on stakeholders, could be the following.

– For upper management a negative vision of what is likely to happen to
the company, if it continues without increased software quality, might be

Sustainable Change in Organizations 111

convincing. An example of such a negative vision is, a competitor, who is
outperforming the company’s product in every aspect (efficiency, reliability,
fast changes), which will lead to a rapid drop in the company’s market share.

– The following approach can be used if developers feel the urgency of soft-
ware quality, but management or group leaders do not. Management would
urge developers to deliver changes and features in the least possible time,
instead of focusing on software quality. To convince management, a video
of a developer doing changes on code could be shown. Because of multiple
cloning of code the developer has to do the same change several times. This
means tedious and error prone full-text-searches. Such a scenario will hope-
fully shock management, and therefore increase the sense of urgency about
the software quality issue.

– To raise urgency in developers, a video showing a worried customer could
be shown to them. In the video the customer complains about too many
bugs and the slow change process. In addition, the customer describes what
went wrong in the customer’s operative business, just because of the ERP
system not working properly. [5] points out, that employees often think they
do everything right and know everything better than the customer. Such an
ignorant attitude comes from years of success of a product. In this situation,
facts and data are likely to be ignored. The approach of not presenting plain
data but touching emotions is according to [5] more effective in changing the
sense of urgency in an employee.

How far a sense of urgency should be established in users and customers depends
on how much they are directly affected by the change process itself. In many cases
it might not be the best way to make customers aware of hard times a company
is going to face during the change effort. Using customers to increase the sense
of urgency in the own organization, however, can have enormous positive impact
as well.

3.4 Comments on Consulting

If acting as an outside consultant to the company, which is undergoing a change,
the initial step before convincing stakeholders is to sell the consulting project,
of course. Before a sense of urgency is to be established on a broad basis, the
paying client in the firm needs to be convinced of the necessity of higher software
quality in his organization, first. This will usually be one of the stakeholders
named above and the activities to convince this stakeholder are the same, no
matter if before or after landing the project.

Regarding consulting in change efforts, [7] drives attention to being aware
of clients delegating the change in a company on consultants too much (in the
context of business process reengineering). For a successful change, management
needs to transform its own management styles or priorities as well. A completely
’outsourced’ change management will hardly be successful.

112 Stefan Puchner

4 Create a Guiding Coalition

Once the sense of urgency for the change project is apparent to the organization,
a team that is actually leading the change needs to be formed [4]. Common
mistakes are making the CEO the one and only responsible person, having a
too small team, or a team with too little power. Many change projects are
too complex in order to be handled by a very small team or even one person.
Furthermore, changes in organizations often take years. If the members of the
guiding team are not powerful enough, this will result in a rather bad standing
in times of high resistance against the change.

4.1 Characters on the team

According to [4] the people with the following characteristics need to be a part
of the guiding team:

– Position power: In order to make the team capable of acting during all times,
rather powerful people should be part of it.

– Broad expertise: All expertise needed during the project should be available
in the team, to enable understanding of issues and right decisions in a timely
manner.

– Credibility: It is crucial to have people on the team, which can effectively
communicate the decisions and plans of the team to employees.

– Management: Management skills are needed to make plans on how to progress
and to keep track of the progress in the end.

– Leadership: While managers are controlling the change process, leaders are
driving it. They are important for creating visions and giving direction.

When creating the guiding coalition it is also important to think of who will
potentially be resisting the change if not in the team, and who will need to be
on the team in order to reach crucial groups.

4.2 Teamwork is crucial

For the guiding coalition to work effectively, they have to work together smoothly
and appear as a unit to the outside. Typical no-goes for teamwork are people
not really supporting the change, managers with big egos, or people creating
mistrust in the team. Teambuilding events help to familiarize the team members
with each other’s working and communication style. Even more important, these
events help to establish a common goal. The role of the common goal is extremely
important. Every team member has to have a common understanding of where
the change is supposed to go and how the change should take place. If that is
not the case the team members will either work in different directions or will
have to consult each other much too often, resulting in low efficiency.

Sustainable Change in Organizations 113

4.3 Example

Referring to the reengineering example used before, the following thoughts should
be kept in mind when a guiding coalition is built.

– Expertise in software quality as well as in the ERP market will be needed in
order to make the right decisions in a timely manner. But also group leaders
who know most about the actual work environment and processes in the
company are important expertise holders. If there is not enough expertise in
software quality reengineering, it might also be bought externally, in form of
hired consultants.

– Higher and middle management is often not very credible to most employ-
ees; group leaders might be the better choice for credible communication.
Developers might rather listen to group leaders when talking about new
conventions on how to name variables than to the CFO.

Once a guiding coalition is established and it has figured out the actions of
how to go through the change, the next challenge is to communicate the change
actions successfully.

5 Communicate Change

Achieving software quality means changing the way software is developed and
therefore it means changing how developers do their job. Changing the way, in
which developers act, is a matter of communication. The third step, after estab-
lishing a sense of urgency and creating the guiding coalition, is to communicate
what employees should actually do differently.

5.1 Don’t rely on middle management

A very common mistake, which [3] emphasizes on, is to rely on middle man-
agement to implement change. The individuals in management have different
interest. Some of them might be more interested in “quick and dirty” solutions,
because they want to finish their project on time rather than having a high qual-
ity. High quality might not pay of before the software is modified again, when
the manager has already moved on.

A second reason [3] names, is that there is no real incentive for middle man-
agement to communicate the change. Rather than giving precise instructions
what to change and initiating qualification programs, middle management will
just tell group leaders and developers to produce quality. That way, middle man-
agement could push the responsibility down, once low quality shows, because it
was actually the developer that did something wrong, not middle management.
In fact this is even worse than not communicating the quality requirements at
all. This behavior will create insecurity and cast rumors about what developers
are supposed to change, and what will happen if they don’t change.

114 Stefan Puchner

[4]argues that middle management usually lacks leadership qualification and
culture and is rather experienced in handling bureaucracy. According to him
change is 70 to 90 percent leadership and only 10 to 30 percent middle manage-
ment. However, most managers are only able to manage and not to lead .He even
says middle management is usually focused and arrogant, because of the past
success they experienced in the company. This will cause them to resist change
out of false self-confidence.

5.2 Communicate to group leader directly

Observations of various sources teach that resistance to change is often a result
of subjective evaluation of change [8]. Therefore, it is important that developers
get the message of the change right. Specific and precise work instructions will
lead to a change, blurred and unspecific information dripping through middle
management will not. Furthermore, direct communication to group leaders will
allow incorporating feedback directly. Group leaders know the work environment
and the developers best; therefore they can give the most valuable feedback the
plans of the guiding coalition.

So why not communicate to developers directly in the first place? [3] justi-
fies communicating to group leader instead of frontline employees with limited
motivation and capabilities to receive instructions from up high. A group leader,
however, knows how to communicate to individuals in his ’troop’ much better.
At that point, we should keep in mind, when [3] writes about frontline employ-
ees, he thinks of very low skilled work force. For example he writes about how
workers would not find France on a map or that a majority of Americans has
not read a single book after graduating from high school (chapter 17, page 160).
So when we talk about software developers, who are likely to be higher edu-
cated employees than [3] assumes, we really should consider communicating to
employees directly as well.

However, [3] gives two reasons why not communicating to frontline employees
directly makes sense anyway. First, a reason for big companies is scalability. If
the guiding coalition would have to communicate with 50,000 individuals, they
will be very busy with just doing that. Having a layer of multipliers in-between to
cascade the communication, will reduce the effort enormously. But does it have
to be group leaders then? [3] recommends communicating to employees through
the most trusted source, which is usually group leaders. Consultants come from
outside; the heterogeneity of corporate cultures might not help for developers
accepting instructions. If the organization has a more complicated corporate
structure than assumed here (e.g. project oriented), network analysis could be
a helpful way to identify opinion leaders, who might be a good disseminator for
the change.

Second, communicating through group leaders will empower them and there-
fore help them establish change. In the end, the group leader is the contact per-
son and the controlling person for the developers. If employees get important
information from their group leader, rather than messages from management or

Sustainable Change in Organizations 115

a company newsletter, this will foster the group leader’s authority. Eventually,
authority of a controlling person will empower this person to establish change.

[4] writes in this context of empowering employees and making their interests
the ones of the company, rather than the ones of their superior middle-level
managers, who might rather resist the change. The point, however, is not to give
power, but rather to remove obstacles [5]. With empowering employees, to get
them the information they need and build their self-confidence, employees will
be enabled to support the change in their area with whatever behavior is needed
to do so.

Talking to supervisors does not mean to ignore management. Superiors, who
seriously disempower their subordinates, should be “retooled” by giving them
new jobs that clearly show the need for change [5].

5.3 Communicating a Vision

While [3] suggests not communicating anything, but precise plans and instruc-
tions on how to make the change, [4] wants the guiding coalition to create a
vision and to communicate this vision first.

[3], on the one hand, argues against such texts like vision statements. Vision
statements are by definition not very specific. According to [3], that causes em-
ployees to get confused and have an insecure feeling about what will be expected
from them and what will happen to them as a consequence. Feeling insecure will
rather make employees resistant to change than supportive.

[4], on the other hand, describes the positive impact a vision can have as a
guideline for the whole company. A vision can be the rational basis for decisions
and a strong argument against prevailing practices. Furthermore, it might enable
much more efficient coordination. Ideally, with a common vision, everybody is
heading in the same direction without having to have endless discussions. Here
again, the vision needs to serve the interests of all stakeholders. In order to
not confuse employees with the vision, but rather showing them a direction, [5]
suggest preparing an extensive Q&A collection as backup for the presenters of
the vision. So questions can be answered precisely, shortly, and convincing. That
helps reducing insecurity and creating buy-in.

However, [4] also argues that an “ineffective vision is worse than no vision”.
When deciding to go with a vision statement and communicate it, one should
know exactly that he got the vision right.

5.4 Example

Let’s assume a company wants to adopt the tool Checkstyle to improve software
quality. In order to communicate the change to group leaders or developers
directly, seminars should be administered. That way, developers get first hand
information about how their environment will change (e.g. on the repository
level) and how they are supposed to change their behavior. At the same time, the
conductors of the seminar will be able to collect direct feedback from developers.

116 Stefan Puchner

Furthermore, the planned support for developers should be discussed. That
could be technical mechanisms, like an IDE plug-in that immediately warns
about style violations, but it could also be an internal hotline to answer questions
about the changes.

6 Establish Short-term Wins

As [9] suggest, change is usually disruptive to a business, because it takes some
time until new habits are fully learned and adopted. Even if the change was
communicated properly, a company will be performing lower for a while after
implementing the change. That means a lot of effort on the one hand, but no
or worse outcome until the learning curve reaches a certain level on the other
hand. Such a situation is likely to foster resistance against the change. To weaken
resistance, it is a good strategy to plan for short-term wins.

The roles of short-terms wins in a change project are according to [4]:

– Success evidence to justify the effort and to show that the transformation is
going somewhere

– Rewards for employees working hard on the change
– Feedback to fine-tune change strategies
– Arguments against change resisters
– Opportunities to build momentum a make more employees support the

change
– Means of pressure to keep sense of urgency

The last point is especially important. After the momentum of the first urging
actions and announcements about the change fade, organizations tend to fall in
the ’frozen’ mode again. To not let this happen, making employees responsible
for reaching short-term goals will make a difference. Furthermore, it will also
ensure that the steps necessary for the change are executed timely and the
transformation progresses.

It is essential to really ’plan’ on short-term wins, instead of just hoping that
wins will be visible at some point [4]. First, the stakeholders who should be
convinced of the change with the help of a short-term win are to be identi-
fied. Second, the short-term win should be planned so that it will address those
stakeholders’ issues.

In order for short-term wins to be effective there are three criteria, one should
plan short-term wins on. First, short-term wins need to be visible for many people
and not just executives. Second, short-term wins need to be unambiguous, so
that they cannot be turned down by any arguments. Third, short-term wins need
to be clearly related to the change effort [4].

6.1 Example

Let’s consider our reengineering example again. Improving the software quality
of the ERP system will include, among others, refactoring identifiers, changing

Sustainable Change in Organizations 117

the architecture, and merging redundant code. These changes will, in the begin-
ning, lower the performance in day-to-day work, because of the effort invested in
improving the code quality. It will take some time until these efforts are depreci-
ated. Second, day-to-day work itself will be less efficient, because developers have
to re-familiarize themselves with the improved system. It will take some time
until the learning curve surpasses the performance level from the pre-change era.
All this will make it easy for people resisting the change, to argue against it and
endanger the software quality project.

In order to not let that happen the restructuring should take place in small
steps, enabling short-term wins. To gain a short-term win, only the most relevant
quality problems should be concentrated on first, in order to fix them as fast as
possible. Most relevant problem does not necessarily mean generating the highest
savings, but rather relevant in terms of convincing stakeholders. Let’s suppose
developers need to be convinced of the necessity of the change, and developers are
constantly suffering under changing cloned code. A good candidate for a short-
term win would be removing cloned code from the ERP system. Developers will
feel the advantages of the improved code quickly and will be less likely to resist
further improvements.

6.2 Comments on Consulting

When acting as a consultant to a company undertaking the transformation effort,
short-term wins might also play the role of an initial project. The decision makers
might not fully buy-in the advantages of software quality or not fully trust
the consulting company to succeed in increasing performance through software
quality, right from the beginning. In that case a short-term win project can
help the consulting firm to convince decision makers and get bigger follow-up
projects, which lead the company through a full-scale transformation.

7 Make Change Permanent

Now, that software quality was successfully implemented the question remains,
whether the quality will be kept up in the future or whether it will degrade
again. Under day-to-day pressure developers are in danger of switching back
to “quick and dirty”-mode and managers might even foster this by demanding
short development times.

7.1 Performance Metrics

The mechanism [3] suggests, in order to make the changed behavior of employees
permanent, is performance metrics. His opinion that “employee allegiance is
directed not to the company but to the location where they work” cannot be
denied completely, but should be relativized considering his assumptions about
workforce education.

118 Stefan Puchner

However, if a company wants to reach high quality software, it makes sense
that quality is also a parameter for measuring the performance of a developer,
instead of just plain development time. To not corrupt this incentive by conflict-
ing interests of middle management (like time pressure to finish project), quality
need not only to be part of a developer’s performance measure but also up the
hierarchy. That way middle management will also have short-term interests in
good quality software, they start supporting developers improving software qual-
ity, and become accountable for software quality.

For quality performance measures to work, developers first need to under-
stand that the quality of their software is measured. Next, the performance
measure needs to be communicated to them in a way they can relate to it. Intu-
itively understandable metrics such as “Percentage of Duplicated Code” should
be preferred. However, some metrics are inherently not intuitively understand-
able, like manual inspections of samples. In this cases school grades can serve
as a simple performance measure. Whatever measure is used, to make it easier
for developers to accept the measurement, the estimation of the system quality
should be reliable, objective, and sound. [6]

Important to note about performance measures is, that they are not a tool
to convince people of a change, but to stabilize a change already in progress. If
performance measures contradict a change effort, people will spend more thought
on impeding the change in order to improve their metrics than on changing their
behavior.

7.2 Involve more employees in change effort

After the first short-term wins are reached, the transformation should gain more
and more support and more people getting involved in it. Therefore, bigger and
more tedious transformation actions can be tackled. However, that means that
the guiding coalition will not be able to control all transformation efforts in
detail, any more.

That is, what [4] calls “leadership from senior management” and “project
management and leadership from below”. This involves following task for the
guiding coalition:

– Maintaining a clear and shared understanding of where the transformation
should lead to and how to get there

– Keep the urgency level up

For the latter point it is extremely helpful to not do “happy talk” like “we
made the change” on annual executive meetings, in corporate newspapers, or
elsewhere. The message should rather be, “we are on the right track but still
have a long way to go”. [4] emphasizes that making the changed environment
the way the company does thinks, i.e. anchoring it in the culture, will in some
cases take five or even ten years. It is not before then, that the organization will
automatically stay ’transformed’. Before that point is reached, the wheel will
automatically turn backwards if let go.

Sustainable Change in Organizations 119

For middle management and group leaders “project management and lead-
ership from below” means to also lead and manage sub-projects of the transfor-
mation. [4] makes clear that in order for this to work, the organization needs
employees capable of leading. However, a common problem in transformation
efforts is a lack of leadership in lower ranks of the hierarchy. [4] suggests system-
atical building of leadership in companies by flatter and leaner structures, broad
based empowerment of employees, and a culture supporting more risk-taking.

7.3 Promotion and appointment of new employees

To firmly anchor the change [4] further suggests, paying attention to promotion
and employment criteria. Having those set up to support the transformation,
will make employees support the change in the long run, and will bring new
employees into the company if their attitudes match the ones needed to support
a changing company. New employee orientations can further improve the positive
effect of new employees on the change culture [5].

8 Conclusion

This paper described how change management helps organizations to make the
change towards software quality. The steps suggested are the following:

– Convince Stakeholders by Establishing a Sense of Urgency
– Create a Guiding Coalition
– Communicate Change
– Establish Short-term Wins
– Make Change Permanent

Software quality is not just a matter of introducing tools and frameworks. It
is about changing the way software is developed. A tool cannot produce soft-
ware quality; it can only support developers in a behavior that results in better
software quality. In order to change employees’ behavior, change management is
crucial.

9 Further Topics

This report covered the organizational aspects of change management. When
really introducing a change to an organization, a more detailed level needs to
be considered as well. The exact wording that should be used or how group
dynamics can help or impede to realize the change, are important questions that
rather touch sociology and psychology research. “People change what they do
less because they are given analysis that shifts their thinking than because they
are shown a truth that influences their feelings” [5].

120 Stefan Puchner

References

1. Kotter, J.: Leading change: why transformation efforts fail. Harvard Business
Review (1995) 59–67

2. Lewin, K.: Frontiers in group dynamics: Concept, method and reality in social
science; social equilibria and social change. Human Relations 1(1) (1947) 5

3. Larkin, T., Larkin, S.: Communicating Change: How to Win Employee Support for
New Business Directions. McGraw-Hill (1994)

4. Kotter, J.: Leading Change. Harvard Business School Press (1996)
5. Kotter, J., Cohen, D.: The Heart of Change: Real-Life Stories of How People Change

Their Organizations. Harvard Business School Press (2002)
6. Mas y Parareda, B., Streit, J.: Software quality modelling put into practice. Tech-

nische Universität München, Technical Report TUM-I0811 (2008) Workshop-Band
Software-Qualitätsmodellierung und -bewertung (SQMB ’08).

7. Kiely, T.: Managing change: why reengineering projects fail. Harvard Business
Review 73(2) (1995) 15

8. Bungard, W., Fleischer, J., Nohr, H., Spath, D., Zahn, E.: Customer knowledge man-
agement: Erste ergebnisse des projektes customer knowledge management - integra-
tion und nutzung von kundenwissen zur steigerung der innovationskraft. Stuttgart:
IRB-Verlag (2003)

9. Covington, J.: Eight steps to sustainable change. Industrial Management-Chicago
Then Atlanta (2002) 8–11

