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Abstract

The concept of Ubiquitous Computing, also called Ubicomp for brevity, describes
a new paradigm on the usage of computer based systems, which is – in com-
parison to the usage of conventional computers – characterized by an enhanced
degree of user centering, thus enabling users to benefit from computer usage
and support in as many situations as possible. The computer as an apparent
tool thereby steps into the background while the actual needs and wishes of
the current user step into the foreground. As usability plays the major role in
Ubicomp, accomplishing user needs must be done automatically, i.e. without
capturing a user’s attention.

Despite many years of research, designing successful applications for Ubicomp
is still a complex and error prone task. This is because most work only concen-
trates on technical implementation of context awareness as an enabling technol-
ogy for realizing ubiquitous systems. But apparently, adapting to satisfy user
needs in varying environments will also require an extension of traditional de-
sign methods and processes. We therefore propose a methodological approach to
adaptation design. The proposed methodology explicitly handles the notion of
context dependent system flexibility that is needed in many models and meth-
ods used for adaptive system design. This iterative approach enables system
designers to invent systems that are context aware and change their behavior
appropriately to a user’s intentions – independent from designing individual
components or services.

As a proof of concept this methodical approach was evaluated by means of two
long-term case studies: within one case study an industrial hospital setting ex-
posing certain self healing skills was developed while the other setting concerns
a Context Aware Task Scheduler (Cats), which aims at assisting business users
by optimally arranging their daily schedules. For that purpose, the Cats inter
alia makes context depending decisions and adapts relevant system functional-
ities according to the current usage situation, e.g. by automatically shifting to
silent notification when the user is currently attending a conference.
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1 Introduction

One of the main aspects that differentiates ubiquitous systems from conven-
tional computer based systems is their ability to automatically identify user
needs. This implies that for certain system functions no direct or conscious
interactions by means of menu dialogs or command interpreters are necessary
for communicating the actual situation and associated needs, respectively. This
ability includes particularly the identification of situational user needs [1, 2],
which are merely valid in specific user situations such as driving a car. Context
adaptation in this context can be understood as an explicit handling of situ-
ational user needs and hence enables system usage in situations where most
other existing computer systems are useless, e.g. in situations where the user
can not or does not want to use an explicit command interface. To do so, context
adaptive systems need to be aware of their context and use it to differentiate
between certain situations. A context adaptive messaging service for instance
should recognize that the user is currently driving a car (context) and in con-
sequence read an important incoming email to the user, instead of displaying
it on the on-board panel (adaptation). When on the other hand the driver is
currently navigating within a highly frequented metropolis like New York for
the first time, trying desperately to follow the suggested directions, the system
better delays an incoming message until later for not distracting the user from
his current tasks.

Fundamental research in this area has been done in constructing frameworks
and prototypes concerning adaptive systems [3, 4, 5]. The important process of
systematically designing context as well as context adaptive system behavior
itself however is typically neglected [6]. Although first works on dealing with
adaptation and context-awareness by means of process support, such as the
method for personal and contextual requirements (PC-RE) by Sutcliffle et al.
[2] or the scenario based approach proposed by Kolos-Mazuryk et al. [7], have
been introduced, there is still a lack of integrated processes, supporting the
development of context adaptive applications in Ubiquitous Computing. In ad-
dition a merely intuitive yet unsystematic modeling of context adaptation often
causes ubiquitous applications to fall into the trap of unwanted behavior (UB)[8]
(i.e. assumptions in the environment or user model become wrong, which leads
to unexpected or unwanted system behavior). Therefore the legendary vision of
Mark Weiser [9] still fails to become reality.

In our point of view this shortcoming should be addressed by systematic engi-
neering approaches. The methodology proposed in this paper results from over
seven years research experience in the field ubiquitous and mobile computing
that has its main focus on the engineering of context and adaptation behavior.
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2 Ch. 1: Introduction

In this paper we give a brief overview of the core steps of the suggested method-
ology (section 3). These steps ease the process of complex context construction,
the elaboration of arbitrary user needs, the specification of adaptation decision
logics, and their realization and deployment within an adaptation framework.
For better understanding of the basics, a recent version of this framework (build-
ing on top of a service oriented reconfigurable component architecture) is briefly
introduced together with some common sense definitions in section 2. Further-
more in section 4 we present the first results of a long term case study that
is about an autonomous task scheduler (the Context Aware Task Scheduler)
negotiating and arranging the user’s tasks appropriately. This example is not
really considered brand new (e.g. [10] or [11]), some might even argue that it
is quite boring due to the great number of existing implementations concerning
the same purpose. However it makes up a perfect example because there are
so many case studies to compare against and, honestly, we never saw one that
really worked in real life. One could suspect that the reason for this shortcoming
is that this challenge cannot be solved at all and trying to make such a system
work is tedious and futile after all. Yet this case study mainly served the pur-
pose of evaluating and extending the methodology; hence choosing the worst
case scenario seemed a good idea to us. However the proposed methodology of
course is also appropriate for designing and implementing arbitrary (and easier
to accomplish) ubiquitous systems. For further evaluations, we currently apply
the proposed methodology in two industrial case studies, both in a hospital
setting.



2 Foundations

After motivating the need for an extended methodology for designing ubiquitous
systems and before presenting a detailed explanation of that design methodol-
ogy in section 3, some important concepts on the topic are introduced in the
following. Unfortunately we experienced that related terms concerning concepts
like ubiquitous, pervasive, ambient or mobile computing – to name just a few –
considered in previous literature often suffer from being used for very different
concepts. We do not attempt to abandon the heap of definitions currently in
usage – a concise summary of related terms after all can be found in [4]; but we
introduce some generic definitions which are mandatory for the understanding
of this paper in order to provide a common understanding of considered terms.

2.1 Related terms

As stated previously the notion of Ubiquitous Computing is very central to
this paper, as we aim at providing a successful approach towards the design of
ubiquitous applications. We adopt a definition for Ubicomp, which is generic
enough for covering the essence of previous definitions we found so far.

Definition

☞ Ubiquitous Computing denotes the direct or indirect usage of computer
based applications in as many situations (e.g. locations, time, activities) of
a user as possible.

We use the term indirect usage to denote that one or more system inputs com-
prise contextual information gathered from the system environment by means
of sensors, as opposed to user inputs which are entered directly. The above def-
inition focuses on the usability of functions. A functionality is usable, if the
necessary hard- and software is available (availability), it furthermore satisfies
the current user needs (applicability) and the user can operate the functionality
according to his current activity (operability). The thesis of Schmidt [5] clearly
indicates that Ubiquitous Computing always means computing in a certain con-
text, which directly leads to the definition of an equally central concept.

Definition

☞ Context is the sufficiently exact characterization of a situation by means
of information that is both perceivable by the system and relevant for the
adaptation of the system.

3



4 Ch. 2: Foundations

Perhaps we should emphasize that our notion of context, unlike most typical
definitions which merely comprise external information perceivable from the
system environment, needs to be understood in a broader sense: we use context
as a generic container for arbitrary information concerning the user, her oper-
ational environment or the inner state of an ubiquitous application. By means
of context we furthermore achieve a decoupling of communicating components
as illustrated in figure 2.1. This decoupling mechanisms enables a system de-
sign which facilitates communication between a priori unknown and unreliable
components, as they occur in mobile and highly dynamic networks. Context
elements thereby handle the communication by buffering the exchanged infor-
mation, thus enabling their discovery at runtime as well as any desired manip-
ulation of the buffered information between it’s generation and usage.

Source Application
Input

Application
Input

Information
Input

?
Context

Communication
(loose coupling)

Simple
Communication
(tight coupling)

Fig. 2.1: Decoupling of components by means of context

The elicitation of context (characterizing the current usage situation) by means
of sensors is indeed the essential precondition for building ubiquitous sys-
tems. Because without adequate sensors which observe the behavior and activ-
ities of a user and her corresponding environment, the whole human-machine-
communication must be accomplished via direct user input/output by means
of traditional user interfaces (e.g. menus, command interpreters etc.). However,
an exclusive and direct user interaction is impractical for many usage situa-
tions in everyday life (e.g. when driving a car). Hence a promising approach for
enhancing the system usage to situations, in which most conventional applica-
tions remain idle due to their limited interaction possibilities, is to adapt the
system behavior (e.g. change the current input/output mode or applying inputs
on behalf of the user that are derived or deduced from sensor inputs) in order
to reflect the current usage situation and associated (situational) user needs.
The following definition embraces this approach. For the purpose of this paper,
the definition of context adaptation is sufficiently exact. However, it does not
provide a criterion for definitely delimiting systems which are context adaptive
from those who are not. We are currently working on a formal definition of
context adaptive systems to overcome this shortcoming.

Definition

☞ Context adaptation is an automated adjustment of the observable behavior
or the inner state of the system according to a context.

Automated in this context means, that the adaptation itself is accomplished
without user interaction. To emphasize this: it seems obvious that context adap-
tivity contributes very little without being executed automated. The reason for



2.2 Calibrateable context adaptation model 5

this observation is, that beside being able to recognize and evaluate different
usage situations, ubiquitous systems in addition need to make the appropriate
adaptation decisions on their own in order to satisfy the usability requirements
mentioned above, i.e. to enable a system usage in as many situations as possi-
ble. If for example a driver is currently unable to read an incoming message on
the on board display due to a critical traffic situation, he will neither be able
to navigate through a user menu in order to find the function responsible for
activating the speech output; the system is supposed to activate this function
by itself – automated. The adaptation process thereby typically involves the
following three steps, which are illustrated in figure 2.2 as well.

1. Sensors collect relevant information (concerning a current situation) from
the operational environment and store these in decoupled context.

2. Interpreters then recognize a situation based on the current context state
and, if necessary, calculate an appropriate adaptation decision regarding
this situation.

3. Actuators execute the calculated adaptation which mostly results in a
changed (reconfigured) system behavior to satisfy current user needs.

Context 
information

1
. S

te
p

Real world
(situation)

Adaptation 
decision

2. Step
Change in 
behavior

3. Step

Acquisition of
information

Situation
identification

Application

Feedback via 
technical system

Fig. 2.2: Sub-processes within a context adaptation

In case the adapted system behavior differs from the expectations of the user,
i.e. the context adaptation failed to satisfy the actual user needs and exposed
unwanted behavior as described in [8], a compensation mechanism called cali-
bration is proposed in [4], which allows users to effectively intervene the adap-
tation process by adapting the context adaptation itself. The particular services
involved in the adaptation process described above are all elements of a well
founded formal specification technique named calibrateable context adaptation
model, shortly K-Model or adaptation model, which is introduced in the follow-
ing section. A detailed description of the calibration mechanism can be found
in section 2.3.

2.2 Calibrateable context adaptation model

Several architectures and fewer modeling techniques have been evolved for de-
signing context adaptive systems, whereby a couple of selected approaches are
shortly summarized in [3] together with their associated pros and cons. The
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general idea of our modeling approach is to provide system designers with a
clear and structured notation for explicitly representing the context adaptive
system behavior, which can be communicated to end users. The principle of
this notation is to make both the modular structure and the workflow of the
adaptation subsystem explicit in such a way that reasoning about the modeled
system behavior is facilitated. This approach so to say brings up the decision
logic, which in case of conventional systems remains unalterable inside a black-
box component, thus effectively written in stone. In contrast we recommend to
express the adaptive system behavior by means of adaptation models or shortly
K-Models, which are formally founded on the component-oriented Focus the-
ory introduced in [12].

The development of the proposed modeling technique and it’s corresponding
implementation on the basis of a framework (section 2.4) is motivated by an
observation that was made over and over deploying ubiquitous systems within
real world environments: despite of running perfectly under laboratory condi-
tions, these prototypes usually exposed some kind of unexpected behavior when
deployed in the wild, even though the underlying specification was accurately
implemented. Hence this phenomenon can not be reduced to classical implemen-
tation defects. Since no established notion concerning this observation exists, we
simply call it Unwanted Behavior or shortly UB [8]. The reasons for Unwanted
Behavior can on the one side originate from insufficient Requirements Engineer-
ing (RE), in which certain user needs and usage situations are overlooked. On
the other side does even the most sophisticated RE process ultimately result in
a requirements specification, which is an abstraction based on static assumption
made at some stage in the development process. However this inherently static
abstraction is consequently subject to the Frame Problem [13] known from AI.
In either case does the system model generated at design time not comply with
the mental model, the user is currently associating with the considered system.
In consequence a system behavior is exposed, which differs at least for certain
usage situations from what the user would expect. Since the Frame Problem is
still an open – and eventually unsolvable – issue, we propose the K-Model and
it’s runtime calibration as an efficient mechanism for circumventing this issue.

The K-Model uses only four basic elements for describing an arbitrary complex
and adaptive system behavior. These elements structure all possible services
of the adaptation subsystem into the four service types sensors, interpreters,
actuators and context elements, which exhibit a type-specific behavior on their
own. Currently two representation forms for documenting K-Models exist:

• For the purpose of designing and communicating adaptation models, a
graphical notation augmented by different annotations and abstraction
techniques was invented, which enhance the readability of adaptation
models.

• A machine-readable representation in form of a platform independent
XML file was chosen for implementing adaptation models via the Cawar
framework (section 2.4).
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The four basic service types of an adaptation model are described in the fol-
lowing sections.

Sensors
Sensors are responsible for retrieving relevant information from inside and
outside the system. They accomplish this task by writing sensed infor-
mation to dedicated context elements, which in turn act as information
buffers. Sensors within an adaptation model qualify to model physical sen-
sors like thermometers, movement and light sensors as well as internal or
external software entities that enter information into the system’s context
(e.g. a remote web service) or even human beings, since terminal inputs
may also be treated as perceivable context information.

Context elements
Context elements act as buffers for storing arbitrary information. In addi-
tion they decouple the three further service types (sensor, interpreter and
actuator), since a direct communication without context is not allowed for
any of these service types. Depending on the adjacent service types and
their associated semantics, a context element may represent measured
context data (written by a sensor), combined and interpreted informa-
tion (arranged by an interpreter) as well as resulting adaptation decisions
which are gathered and implemented by an actuator (see figure 2.3).

Interpreters
Interpreters are the information processing entities within an adaptation
model. They both gather input in the form of context elements and store
the processed information to context elements. The way how interpreters
transform their gathered input relies on the underlying logic the certain
interpreter exposes and may embrace a simple data forwarding as well
as an arbitrary complex interpretation logic (e.g. rule engine, neuronal
network). Interpreters aquire the decision making within the adaptation
subsystem and hence may expose certain learning capabilities.

Actuators
Finally actuators are responsible for implementing a calculated context
adaptation by triggering the control components within the core system
or the environment, which in turn change the system behavior according
to the resulting adaptation decision. The context representing this adap-
tation decision is usually derived from perceivable sensor data, which is
appropriately composed by interpreters as described above. For better dif-
ferentiation the context elements coupled with actuators are also called
adaptation context.

The overall process of context adaptation by means of a K-Model containing
the just described service types is illustrated in figure 2.3. The typical activ-
ities involved in the adaptation process thereby correspond to these already
depicted in figure 2.2, namely the acquisition of context (step 1), the situation
identification (step 2) and the application of the adaptation decision (step 3).
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Actuator

Context
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Interpreter
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Adaptation 
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Context
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Sensor
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Fig. 2.3: Context adaptation by means of an adaptation model

As previously stated, these four elements suffice to represent an arbitrary adap-
tive system behavior. In order to achieve a better structuring of the model,
which is easier to read and maintain, it is often beneficial to annotate certain
elements like context and interpreters. The context space is thereby separated
into a) sensor context denoting any information that directly originates from
a sensor, b) situation context containing all information necessary in order to
identify the current usage situation on basis of sensor context and c) adaptation
context which ultimately comprise the decision about the required adaptation.

Designated interpreters are analogously annotated as situation adaptors, which
typically combine context information (sensor and situation context) in order
to identify a sufficiently exact abstraction of the current usage situation. Adap-
tation actions are another annotation possibility, which helps to model the
situational requirements occurring in a certain usage situation – represented
by a situation adaptor. As opposed to a situation adaptor, an adaptation ac-
tion is a rather abstract modeling concept (i.e. placeholder) which needs to be
refined by one or more basic elements (e.g. a single context element or an inter-
pretation chain), as soon as the exact model representation for this situational
requirement is at hand.

It should already be mentioned, that all elements contained in a K-Model are
solely services; in order to use a contained service, it previously needs to be
bound to a actual component fulfilling this service. For maximum software
flexibility this service-component coupling may be delayed until runtime, af-
ter appropriate components fulfilling the specified services are discovered. This
proceeding is of particular importance when employing external resources only
available in certain usage situations: consider an external monitor (environment
component), which is detected by the ubiquitous system hosted on a Pocket PC
when entering the room. This monitor is bound to a specified display service for
the duration the Pocket PC resides within this room. By the time the user – who
is carrying the Pocket PC – is leaving the room, the monitor gets out of range;
hence the display service falls back upon it’s default display of the Pocket PC.
By exchanging the currently available components (reconfiguration), the system



2.3 Calibration 9

adapts itself to provide the most appropriate resources currently available, thus
enabling a usage in as many situations as possible.

The following definition outlines the main characteristics of a K-Model. An
activator represents a special actuator, which inter alia identifies and binds
components to specified services.

Definition

☞ A K-Model is a model of a calibrateable context adaption containing an
activator that acts on a set of sensors, interpreters, actuators and context
elements [4].

2.3 Calibration

Ubiquitous systems are prone to a phenomenon called Unwanted Behavior (UB)
[8]. This phenomenon denotes situations, in which the observed system behav-
ior differs from what the user would expect. The reason for this phenomenon
is a divergence between the system model (which represents the mental model
of the system designer) and the current mental model of the user. Such diver-
gences may be caused by an insufficient Requirements Engineering or a more
substantial problem called frame problem [13]. In any case does the ubiquitous
application, when exposing UB, not serve the current user needs and in a best
case is useless; at worst it may react obstructive or even harmful. To circum-
vent this problem, which was over and over observed when deploying ubiquitous
systems in the wild, a concept called calibration is introduced. It enables an ex-
plicit adjustment of the systems adaptation behavior in case UB occurs; it does
however not try to solve the frame problem in general. But since the frame
problem seems to have no solution, calibration is an effective way to deal with
UB.

The fundamental idea of the calibration concept is to create an explicit model
of the adaptive system behavior, e.g. by means of the K-Model. This explicit
modeling indeed is the basis for making the adaptive system behavior itself
accessible to another adaptation, namely the calibration. As deficiencies in the
model can not be recognized from within the model, a higher instance is needed
for reasoning about the system model, i.e. for deciding if the model accomplishes
what it is supposed to do. This higher instance can in turn be another system
as well. Consequently the system representing this higher instance will be prone
to UB as well. In order to break this chain, the last instance for reasoning about
a considered system model always has to be a user.

Calibration can be used to correct system behavior both after an UB already
occurred and in cases an upcoming UB can be predicted due to knowledge
about the adaptive behavior and upcoming situations. To achieve a total system
reconfiguration by means of calibration, the system model must also comprise
a self-description of all contained services, as in the case of K-Models. We refer
to [4] for a detailed description of the calibration mechanism.
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2.4 The CAWAR framework in a nutshell

The Cawar framework is a generic approach to support all kinds of adapta-
tion in reconfigurable systems. Selected aspects of this framework, which are
necessary for the understanding of how context adaptation models are techni-
cally realized, are outlined in the following sections. For a detailed conceptually
introduction of the framework we refer to [14], whereas a description of it’s
technical realization can be found in [15].

2.4.1 Framework overview

In this section a short overview about the overall Cawar (Context aware
architectures) framework is given, while the two subsequent sections discuss
certain framework concepts in more detail. The framework principally consists
of the following elements:

1. A set of components comprising the technical implementation of typical
infrastructure functionality, i.e. context storage, discovery, etc.

2. A set of low level interfaces (API), that provide the most generic ab-
straction of context management, i.e. sensors produce context, actuators
consume context, etc.

3. A reference architecture that suggests a basic generic pattern of how a
context adaptive system can be designed in a completely reconfigurable
way – formally context adaptation can be understand as a self reconfig-
uring filter [4]. Following that pattern, any implementation of a context
adaptive application can serve as a framework for bootstrapping any other
context adaptive application.

Components, interfaces and architecture together form a basic framework for
context awareness and adaptive applications. To develop a certain application,
the framework merely must be fed with the desired system behavior in form of
an adaptation model, whereby the principles for designing adaptation models
are described in section 3. Furthermore the components fulfilling the respective
application services must be made available to the framework. However provided
a proper discovery mechanism such components can be detected and bound at
runtime.

The framework initialization is conducted by a designated actuator component
named model activator, which expects a list of all required services (logical
service descriptions) and a list of (currently) available components (technical
realizations or references) from the context itself. Such a description is e.g.
given by a XML file representing the adaptation behavior of the considered
system, i.e. the K-Model. This model has to be previously read by a special
sensor and written into an appropriate context element. The context comprising
the K-Model can be further processed – allowing for self introspection and
self adaptation – before it is ultimately deployed by the model activator. The
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latter finally reorganizes the services (sensors, interpreters, etc.) as well as their
corresponding component bindings (if available), thus reconfiguring the system
in order to technically implement the K-Model.

Sensor

Interpreter

ActuatorContext

0..1

-outcontext *

0..1
-outcontext

*

{OR}

-listener

*

-incontext*

-incontext

*

-listener

*

ContextAdaptationMetaModel

1

*
1

*

1

*

1

*

Fig. 2.4: Meta model describing the principle structure of the K-Model

The underlying meta model of any K-Model, which describes the principle com-
position of it’s logical service architecture – so to speak it’s grammar – is il-
lustrated in figure 2.4. A concrete K-Model, containing the particular services
which constitute the adaptive behavior of a considered application, is indeed an
instance of the depicted meta model, which can be read by the model activator
for initializing the context adaptive system as mentioned above.

2.4.2 Syntactical and semantical types

As previously mentioned are all services contained in a K-Model specified by
a logical service description. Each description thereby contains a syntactical
(syType) and semantical (smType) description of the service they provide. Both
types are used to match a suitable technical component that could implement
the specified service. In other words do syType and smType specify which com-
ponents the service could possibly route messages to.

SyType describes any higher level protocol the service implementing compo-
nent should understand using the standardized low level interfaces of sensors,
interpreters, actuators and context elements, including at least the data format
accepted. Moreover it could contain any other technical information needed to
reduce the number of matching components e.g. QoS parameters, billing in-
formation etc. SyType should contain information needed by the activator to
contact and bind possible candidates or it contains even the reference to a single
component instance ensuring that only one specific component will match the
description.
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SmType in contrast describes the meaning or usage intention of a certain com-
ponent instance besides its technical characteristics. Usually this can be used
to distinguish between several instances of technical identical components. For
example there could be several identical temperature sensors or terminals con-
nected to a single system. However they can have different meanings regarding
to the context like outside temperature, inside temperature, kitchen terminal
or entrance terminal. A syntactical description is insufficient in this case since
it could match more than one component instance. In order for the activator
to distinguish which component instance should be bound to e.g. a sensor that
delivers an “outside temperature” a smType can be used. One of the available
sensors needs to have been marked with a meaning of “outside temperature” as
well. Note that semantical marking is specific to the application scenario and
hence part of the context and one of the main tasks of calibration.

It should be mentioned that the real “meaning” (smType) of a component is
only generated by observation in a larger correlation with other entities and
can not be grounded in a symbolic description of the component instance alone.
An indication of this fact would be a component instance that, though it has
a constant behavior can have different meanings in two different observation
contexts. For example the same camera instance that shows the entrance of
a building additionally could show for one observer a certain street segment
while for a third observer it shows the weather conditions, the water level of the
nearby river and so on. Another example would be a temperature sensor on the
outside of a package. It can mean the outside temperature (compared to the
packages inside temperature) but also at the same time could have a meaning
of inside temperature for the owner of a storage house the package is currently
stored in.

2.4.3 Application subsystem

A context adaptive system built with the Cawar framework typically consists
of three subsystems: a) the adaptation subsystem embracing all parts that are
responsible for adaptive behavior and which are subject to the frame prob-
lem b) the system environment including all service fulfilling components which
are not permanently available due to resource restrictions and c) the applica-
tion subsystem comprising a single system bootstrapper (System Seed) with all
components vital to the running system. Each application usually has its own
System Seed that can be installed and uninstalled separately. A System Seed
Package typically includes:

1. A boot sensor,

2. An optional boot actuator and

3. The applications core system.

Usually the application core system initialized by the System Seed contains only
a boot sensor specification and an administration component implementing that



2.4 The CAWAR framework in a nutshell 13

boot sensor. The administration component, usually a GUI, connects to the ap-
plication origin server and from there downloads or updates a K-model XML
file for the application and any necessary core system components that run in
the domain of the application. These core system components are necessary for
providing a required minimal functionality of the system. This may include at
least the necessary framework components as well as a default context server,
which handles the initial service communication by storing the messages to (per-
sistent) context elements. Following the principles in section 2.4.1, this minimal
functionality can of course be extended on the fly, in case the corresponding
resources for fulfilling additional services becoming available.



3 Methodology for developing context
adaptive systems

The development of context aware ubiquitous applications for realistic scenar-
ios is today, fifteen years after the announcement of the vision of ubiquity by
Mark Weiser [9], extremely difficult and, if at all, only prototypically possible.
Development tools and methods are still in an early stage [6]. This is above all a
consequence of the fact that these applications are very complex, e.g. regarding
aspects such as multi-functionality, distribution and situational context. The
development as well as the deployment of context adaptive systems is further-
more often associated with very specific challenges as changing environmental
conditions and Unwanted Behavior [8].

The methodology proposed in this section considers these challenges and
thereby states an iterative design methodology, starting with the design of ade-
quate scenarios and closing with the final design of the adaptive system behavior
of the considered application.

The overall methodology for designing adaptation models is structured into
eight individual design steps, which in conjunction guide the engineering of
the adaptation behavior of a context adaptive system. The particular design
activities thereby chronologically build upon each other, so that certain results
of previous activities are required by succeeding activities. However it is possible,
and of course also recommended, to iterate through each individual phase if
required. Figure 3.1 illustrates the particular steps of the proposed methodology.

It should be mentioned that the activities proposed in the methodology are not
mandatory. But, since the proposition is based on several experiences gained
from previous application development, we strongly recommend them. A brief
description of the steps illustrated in figure 3.1 is given in the following sections.

One should also note, that the proposed steps are not intended to be a complete
software engineering process or method. Instead these steps are merely express-
ing the differences in an idealized overall development process between context
adaptive and non-adaptive systems. Thus it should be easy to integrate them in
a customized version of any specific development method, creating an instance
that is specially tailored for the development of context adaptive (parts of a)
system. Furthermore, the methods described in this paper only focus on (late)
requirements engineering related tasks and their transition into early design
phases. Hence they are only the first step towards a bigger methodology for
adaptation design in Ubiquitous Computing.

14
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Design I

Design II

Implementation, Tests

Step 1: Scenario design

Decision for or against ubiquity

Step 3: First design of adaptation model

Step 2: Scenario and goal driven RE

Step 4: Adaptation model refinement

Step 5: Paper Prototyping

Step 6: Implementation of system core I

Step 7: Revision of adaptation model

Step 8: Implementation of system core II
...

Fig. 3.1: The overall Cawar design methodology

3.1 Step 1: Scenario design

At the beginning of any product development, one first of all needs to identify
the required characteristics of the artifact under consideration. This is even more
the case when developing software, since the value of software products heavily
depend on their ability to satisfy the needs of their intended target group, e.g.
users, administrators, etc. One obvious possibility for collecting user needs is to
document the system usage in form of textual scenario descriptions. To facilitate
the communication between all stakeholders such scenario descriptions should
be formulated in a way, which is understandable both for end users and system
designers.

Scenarios are typically used to clarify the purpose of the system and are situ-
ated at the very beginning of the design process, sometimes even in the course
of marketing research. For systems operating in changing environments, such
scenario descriptions should ideally contain first indications of relevant usage
situations. The identification of situations is necessary for constructing an ap-
propriate model of the usage context, which builds the basis for later adap-
tation decisions and therefore influences the entire system behavior. The fact,
that the knowledge of domain experts is indispensable for designing adequate
scenario models [16] should not be underestimated while designing scenarios. In
the case that domain experts however are not at hand, some simple heuristics
are proposed in section 3.1.2, which nevertheless should guarantee a somewhat
systematically proceeding.
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3.1.1 Term explanation

The notion of scenarios discussed in this paper is not equivalent to UML sce-
narios, since the latter are in fact instances of use cases, which already contain
information about the aspired solution. We employ scenarios in a broader sense
in order to express our first ideas of how the system under consideration will
eventually be used. Thus in contrast to UML, we also allow scenarios, that do
not directly aim at providing a certain solution.

A scenario in our understanding represents a concrete example for the usage
of a considered system, whereas this system could be a virtual or an already
existing one. It always has a fixed setting, which is explicitly introduced prior
to the scenario description. Furthermore, every scenario is attended by at least
one actor, i.e. a person, system, etc., which is trying to accomplish a task or
reach a certain goal, respectively.

As already mentioned, the creation of scenario descriptions is a rather informal
task, which ideally should be underpinned by the knowledge of domain experts
and accomplished in close collaboration with the user. The following section
discusses some details of the actual proceeding of designing scenarios.

3.1.2 Designing scenarios

We found that surprisingly few papers have concentrated on the topic of sce-
nario design by now. Moreover it seems to be generally accepted, that creativity
and domain knowledge are indispensable preconditions for designing adequate
scenarios. We are trying by no means to belittle the contribution, which both
creativity and domain knowledge obviously have on the design of appropri-
ate scenarios as well as system specifications in general. And for sure no de-
sign methodology can impart the knowledge required for designing scenarios
in arbitrary application domains. However, we recommend some generic design
principles in the following, which have proven to be useful for systematically
creating suitable scenario descriptions for ubiquitous systems.

• It is important to respect the constraints for scenarios mentioned earlier.

– Scenarios are settled in a well defined context which is introduced at
first.

– At least one actor is attending the scenario, trying to solve a certain
problem.

– Scenarios describe a process composed by a set of actions and either
describe normal situations or exceptional circumstances.

• From the multitude of all possible interactions between a certain actor
and the system, fist of all those interactions are selected, which contribute
to the most important functionalities of the considered system. This set
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comprises especially those interactions relevant for the intended target
group, i.e. users, administrators etc.

• One challenge when designing scenarios is to cover as many relevant usage
situations as possible within a limited set of scenario descriptions. Conse-
quently, descriptions of redundant functionality should be avoided in any
case.

• Scenario design typically states an iterative process, in which each iter-
ation results in a more elaborated set of scenario descriptions, until the
latter is finally accepted by all involved stakeholders. Following questions
may contribute the refinement of existing and the identification of addi-
tional scenarios.

– Are all relevant functions covered by the current scenarios?

– Are all user needs reflected by the current scenarios?

– Is the context of a scenario described sufficiently accurate?

• If scenarios are written in plain text, it is helpful to structure existing
scenarios into individual sections. Each section thereby concentrates on
at most one system function or user need.

In case experts with a deeper understanding of the considered problem domain
are at hand, some additional methods can be applied in order to collect the
necessary information for subsequent analysis and design activities. Depending
on the corresponding activities for collecting these information, the methods
are divided into prompting techniques, observation techniques and creativity
methods. We outline an exemplary method for each category below:

Prompting techniques

One challenge of all prompting techniques is to prompt the right people with
the right questions. Interviews, questionnaires and checklists or the so called
On-Site-Customer [17] are typical methods contained in this category group.
A discussion concerning different prompting techniques alone, as analyzed in
[18], is far beyond the scope of this paper. Instead we exemplary present some
basic principles of such techniques by means of direct questions, which are asked
throughout almost any interview.

Direct questions are thereby used to eliminate ambiguities, which may be con-
tained in informal scenario description. Beside selecting a representative group
of users for being questioned about the considered system, the order in which the
certain questions appear is crucial for an appropriate outcome of the interviews.
A simple concept for prompting the questions in order of their importance is
to use a decision trees as depicted in figure 3.2. By means of direct questions
the decision tree is traversed from the root illustrating the first vague idea to a
certain leave containing one possible solution for the considered problem. The
traversal thereby constrains the set of possible solution with every question. For
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that reason a wrong decision due to an inaccurate question at the beginning
of the tree leads to a solution, which is far away from what the interviewee
actually wants.

root

leave

...

...

...

Fig. 3.2: Decision tree with one possible solution variant

The decision tree should be created in close collaboration with the interviewee,
which iteratively reviews the current tree concerning the accordance with his
own mental model. This again should minimize the occurrence of ambiguities,
which may result from inaccurate formulations during the interview. Following
questions may serve for giving the interview the intended direction and help
to identify the general objectives, a certain user is trying to achieve with the
system. The questions are thereby formulated from the viewpoint of a user:

• For what does users employ the system?

• Which aspects are important during system usage?

• How does the system ease their life?

It should be mentioned that interviews alone are not sufficient for resolving
all ambiguities which typically occur during system analysis [19]. Interviews
always should be combined with complementary techniques such as observations
shortly discussed subsequently.

Observation techniques

Due to the fact that users usually have problems with expressing what they
actually want, it is a good idea to circumvent this communication difficulties
by observing them while doing their duty. Contextual enquiry is a proceeding
typically applied in the context of usability testing, which helps to gain a better
understanding of the user, his workplace and operational environment as well
as her typical tasks, problems and preferences [20]. A contextual enquiry session
is always held in the familiar environment of the observed user, whereby one or
several persons observe the user in typical usage situations of the considered sys-
tem. The observations are documented and analyzed afterwards. This document
in turn can be used for the creation of further scenario descriptions. Contextual
enquiry is of course constrained to the analysis of already deployed systems to
be augmented or replaced, respectively. However this proceeding cannot be ap-
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plied to gather information about fictive systems and preliminary prototypes.
In such cases the following methods may reveal the desired information.

Creativity methods

Creativity methods as Brainstorming or Mind Mapping [21]are used for system-
atically collecting ideas and for enhancing the creativity of the involved persons.
We exemplary outline the concept of Mind Mapping, whereas an overview and
a detailed description of several creativity techniques can be found in [22]. The
idea behind Mind Mapping is to annotate examined artifacts in a structured
graphical manner, which also illustrates the relations between individual ideas,
thus facilitating the learning process of human beings. Mind Mapping thereby
regards the circumstances, that humans actually both think and learn in a non-
linear way, i.e. triggered by perceivable keywords, new associations and struc-
tures are permanently evoked within the brain. The concept moreover unbur-
dens users of handling empty phrases, so that the concentration on associative
keywords is facilitated. The graphical notation furthermore eases the exposi-
tion of “mental gaps”, i.e. immature reasonings that need additional reflections.
Within a Mind Map such a gap attracts the user’s attention the same way as a
table containing an empty row catches someone’s eye.

3.1.3 Conditions for ubiquity

As soon as an initial set of scenarios, which reflects the usage of the considered
application, has been designed and was accepted by all involved stakeholders,
a decision concerning a ubiquitous realization should be discussed on basis of
this scenario set.

Figure 3.3 illustrates a simple checklist that is applied in order to determine
whether a ubiquitous realization of the application is recommendable or not.
Since a ubiquitous realization is associated with additional expenses, the deci-
sion should be carefully considered. In case this decision cannot be determined
on basis of the previous domain knowledge, this step also can be delayed until
the requirements engineering has been completed (step 2 in the overall design
process), which ideally results in a complete and non-divergent set of situational
requirements sufficient for unambiguously resolving the ubiquity decision.

If this decision reveals no need for ubiquity, the further system design can be
continued with any conventional software engineering process. Otherwise step
2 will be applied afterwards, namely a scenario and goal driven requirements
engineering. The accomplishment of this first step should result in “adequate
scenarios” describing the usage of the considered system.

From this description the first step in the Cawar methodology does not seem to
differ much from classical scenario based requirements engineering approaches.
However it should be pointed out, that the main difference is not just finding
enough scenarios that reflect all system requirements as complete as possible.
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Is the application 
used in different 
locations or from 
different devices?

Does the application 
provide a large set of 
functions, whereby 

always a small 
subset is employed 

concurrently?

Will external resources 
be employed, whose 
availabilty cannot be 
guaranteed by the 
application itself? 

Are the hardware 
resources strongly 

limited?

Does the application 
require a high degree 

of automation?

Should the application 
be used during other 
activities of the user , 
i.e. are the interaction 
capabilities of the user 

limited?

Is a large amount of 
information presented 

to the user?

Should it be possible to 
upgrade the application 

by an arbitrary set of 
functions? 

ubiquitous

not ubiquitous

no yes

no

no

no

no

no

yes

yes

yes

no

no

yes

yes

Fig. 3.3: Decision for or against ubiquity and hence explicit adaptivity

Instead, this first step is concerned with finding a set of scenarios, that is as
complete as possible regarding all conceivable situations, the system could exist
in. Furthermore, these situation scenarios are often reused as a direct input
for the later system model. Consequently they are not discarded, after the
corresponding requirements have been derived from them.

3.1.4 Reflection and outcome

Boehm [23] concluded that 54% of all errors ever detected in software projects
studied at TRW were in fact detected after the coding and unit testing activi-
ties. 45% of these errors were attributable to requirements and design activities,
whereby only 9% were attributable to coding activities [24]. Such inquiries in
our opinion reveal the need for a methodical and iterative approach towards the
analysis of complex software systems, combined with an early integration of user
feedback and additional tool support. However, we experienced that currently
no methodology exists, which guides the systematical design of adequate usage
scenarios without delegating the crucial parts to domain experts. Despite this
circumstance, we tried to present some useful concepts together with generic
heuristics, which provide a reasonably accurate process concerning the design
of scenarios – even in the absence of domain experts.
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The outcome of the activities described in step 1 is a sufficiently complex sce-
nario description of the application under consideration. In most cases this step
also reveals the decision, whether a ubiquitous realization of the application is
recommended and hence an explicit handling of context adaptation is necessary.

3.2 Step 2: Scenario-based requirements engineering

On basis of scenarios derived from the previous step, a textual-based require-
ments elicitation is conducted subsequently. The main purpose of this elicitation
is to derive an adequate set of requirements, which accurately reflects the in-
tended system behavior and is as consistent and complete as possible. In case
of ubiquitous and context adaptive systems, that are likely to be employed
within highly dynamic environments characterized by changing conditions and
corresponding user needs, it is indispensable to collect as many information as
possible regarding the individual situations, in which the identified requirements
occur. As defined in section 2.1, such perceivable information are referred to as
context.

The universe of requirements and perceivable context information makes up the
main content of the requirements specification, which describes the intended
behavior of the considered system and states the basis for later system models
as well as their corresponding realizations. This specification often inheres the
status of a binding contract, in which both principal and system developer agree
upon the specifics of the system under construction.

In literature many approaches can be found, which deal with the accomplish-
ment and the (partial) automation of requirement elicitation. However, most
approaches focus on the application of very specific techniques, which are not
adequate for all types of considered applications and projects. Other models
are formally founded but are extraordinary complex, thus making them only
feasible for system aspects that are highly safety critical. This observation of
course strengthens the assumption, that currently no “one size fits all” method
exists. In order to take remedial action for the domain of Ubiquitous Comput-
ing, we consequently extract some generic and promising concepts of previous
approaches, that can easily be integrated into the recommended Cawar devel-
opment process for ubiquitous applications. Again it should be mentioned, that
the presented concepts are merely recommendations: the choice for one or two
concepts certainly depends on personal preferences as well as project specifics
and hence is ultimately delegated to system analysts.

3.2.1 Linguistic analysis

According to [25], an analyst must use every possible information source avail-
able, in order to define conceptual models of the problem domain and to deduce
requirements, respectively. These information sources may inter alia comprise
very large documents written in natural language. In contrast to techniques
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regarding the interactive elicitation of requirements, the analysis of complex
textual documents has been mainly disregarded by now. Analysis concepts and
tools as described in [26] and [27], are in particular motivated by providing
support for RE-analysis of large textual documents.

Among such tools supporting the identification of requirements, the probabilis-
tic tools (probabilistic NLP - Natural Language Processing) have proven to be
more robust than simple rule based approaches. Instead of trying to understand
the analyzed documents, these tools rather try to extract interesting attributes
contained within the documents. Thus on basis of often recurring keywords
as shall, must, should or will, the document is augmented by semantical tags,
which enable a categorization of captured text passages according to domain
specific categories like telecommunication, finance, etc.

Perhaps it should be emphasized at this point, that even if such analysis tools
support analysts in extracting relevant information from given documents, they
cannot accurately deduce the requirements implied by the underlying docu-
ments on their own. The requirements extracted by these tools indeed will
always remain incomplete and never form a precise snapshot of the actually in-
volved system requirements [27]. This circumstance implies, that the ascertained
information is strongly limited by the quality of the underlying source docu-
ments. In consequence, the following sections provide some recommendations
for the manual elicitation of requirements, which can be applied complementary
to automatic tools in order to enhance the quality of the gathered requirements.

3.2.2 Heuristics

Beside a deeper understanding of the application domain, the heuristics outlined
in the following can help to identify the requirements as well as the associated
conditions under which these requirements are valid, i.e. their situation context.
We assume that the heuristics are applied to textual scenario descriptions as
they result from the previous step 1 in the design methodology. This is how-
ever not a real limitation, since at least all informal models can be equally
expressed by means of textual descriptions. As mentioned earlier the quality of
the analyzed documents thereby plays a major role, since we assume that the
heuristics can only reveal those requirements, which were previously committed
to paper. Implicit assumptions contained in such documents obviously cannot
be captured by simple text analyses. We recommend the following heuristics for
the identification of requirements and their associated context:

• Since a certain scenario always involves at least one acting person (see
section 3.1), all systems and persons interacting with the considered sys-
tem should be identified as possible actors, which are annotated as nouns
and typically participate in certain actions.

• Actions are the essence of a requirement and describe the desired system
behavior. They are indicated by means of predicates, which are responsible
for the statement of an analyzed sentence. Typical examples taken from
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the case study described in section 4 are actions like display, remind, enter,
delete, record etc.

• In the case of ubiquitous and context adaptive systems, actions are usually
taking place within a certain context, which characterizes the accurate
conditions or circumstances of the considered action. Some exemplary
keywords that indicate a contained context information within a sentence
are during, as, in, on, because etc.

• The objects involved in a certain action may expose indications for arti-
facts like data or components, which in turn are relevant for an identified
requirement and are subject to a certain action, respectively.

• Attributes as well as adjectives in the context of actions and objects typi-
cally indicate, how a considered action should be accomplished. Moreover
they may relate to additional context information, which must be consid-
ered in the resulting K-Model of the system as described in section 2.2.
The quality of an identified action is an example for such a context infor-
mation. Attributes as well as adjectives can alternatively be specified in
form of non-functional requirements, if this seems more intuitive.

3.2.3 Requirements elicitation

As soon as the first requirements and their associated context information were
identified, they should be documented in a structured and concise manner. The
gathered requirements are technically often quite unspecific and therefore can-
not directly be implemented by developers. These rather abstract requirements
are also referred to as goals. In the context of goal driven requirements engi-
neering the concept of goals can be defined as follows:

A goal is defined as something, that a stakeholder hopes to achieve
in the future.

The concept of goals thereby has several advantages: while on the one hand
goals help to identify further requirements as described in [28], they on the
other hand justify the existence of certain requirements, in that a requirement
is necessary for accomplishing an associated and more abstract parent goal.
Hence a considered set of requirements is complete, as soon as the fulfillment
of each individual requirement also implies the fulfillment of a superior goal
[29]. In addition, goals are more stable than requirements due to their higher
degree of abstraction [30]. To emphasize this one can say, that requirements are
related to goals the same way as programs are related to design specifications:
requirements namely realize their underlying goals.

3.2.4 Linking requirements and scenarios

For the purpose of documenting a gathered set of goals/requirements, RE ap-
proaches like Crews [31] inter alia recommend to link goals/requirements with
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scenarios. This enables an easy lookup in order to find all goals/requirements
which were deduced from a certain scenario. Hence every goal/requirement is
attached with a justification in form of the associated scenario description. The
concept of requirement chunks (RC) thereby provides a concise notation for
representing the linked goal/requirement-scenario pairs. A certain requirement
chunk always consists of a concrete goal or requirement and the associated
scenario extract, from which the goal or requirement was elicited.

As already mentioned in previous sections, the requirement concerning a context
adaptive system usually relate to a certain context which characterizes the
conditions or situations, under which the requirement is valid. In order to reflect
this circumstance, the concept of requirement chunks is consequently augmented
by an additional context information. Hence every individual chunk consists of
a goal or requirement, the associated context in which the former is valid as
well as the scenario description, both goal/requirement and context are deduced
from. Table 3.1 illustrates such an exemplary requirement chunk taken from the
case study of the context aware task scheduler Cats.

G1: The user wants
to be notified silently
about incoming mes-
sages.

C1: The user is cur-
rently attending a
meeting.

S1: While Jeff is cur-
rently attending his 8
o’clock meeting, the
scheduler reminds him
silently of a consecu-
tively appointment in
order to not disturb
the participants of the
ongoing meeting.

Tab. 3.1: Augmented requirement chunk containing a situation depending goal

3.2.5 Elaboration of goals

As soon as an initial set of goals and contexts have been extracted from the
scenario descriptions, the identified goals can be refined by means of a sim-
ple notation. Goal refinement graphs represent an intuitive graphical notation
proposed in [32], which inter alia help to systematically deduce technical re-
quirements from a set of abstract goals. An exemplary goal refinement graph
originating from the domain of a train control system modeled in [32] is illus-
trated in figure 3.4.

The overall process of constructing a goal refinement graph can be outlined
as follows: at first the identified goals are denoted with a concise and mean-
ingful name, which summarizes the essence of a depicted goal. Subsequently
a goal hierarchy is elaborated by means of the graph: abstract goals are sys-
tematically refined into subgoals, which are necessary in order to achieve their
parent goal. As indicated in figure 3.4, the refinement is driven by asking how
a certain goal can be achieved by more concrete subgoals (top-down approach).
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Achieve
PassengersTransportation

Achieve
RapidTransportation

Maintain
SafeTransportation

Achieve
TrainProgress

Avoid
Delays

Avoid
TrainOnSameBlock
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DoorsClosedBetStat

X

...why? how?

Fig. 3.4: Goal refinement graph concerning a train control system

This refinement process is iterated, until the resulting goals are accurate and
concrete enough for being technically implemented. These goals form the leaves
of the goal refinement graph and are referred to as requirements. In case such
a requirement cannot be accomplished by means of a software component, it is
called an assumption.

On the other hand do questions investigating why a certain goal was identified,
result in the identification of additional goals, which provide the reasoning for
the considered goal (bottom up approach). A parent goal may be linked with
it’s individual sub goals via logical OR or AND relations. An AND-relation
thereby indicates, that all sub goals must contribute to the fulfillment of the
parent goal, whereas an OR-relation only requires the fulfillment of at least one
sub goal. As the two requirements AvoidDelays and AvoidTrainOnSameBlock
in figure 3.4 indicate, may conflicting goals be identified and annotated while
elaborating a goal refinement graph. Depending on the implications imposed
by two conflicting goals, the conflict should be resolved subsequently, e.g. by
elaborating another goal refinement, which results in a consistent set of require-
ments.

The Language Kaos [33] [30] provides the possibility of formalizing the as-
sumptions and requirements within a goal graph by means of a temporal logic.
Such formalizations are of course associated with additional expenses and there-
fore should be carefully considered from an economical point of view. However,
when dealing with safety critical requirements, it might be mandatory or at
least beneficial to formalize the requirements, in order to use automated model
checkers which may reveal the presence of conflicting requirements. In case con-
flicting requirements are identified, several possibilities might be considered for
resolving them: an alternative refinement of the graph may for instance result
in another consistent set of goals. Another possibility is to avoid constraints
or other external circumstances that are responsible for the conflict. In some
cases it might be necessary to weaken conflicting requirements or to completely
remove them, respectively. Other strategies for resolving conflicts can be found
in [33].
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3.2.6 Reflection and outcome

This section outlined several methods for eliciting requirements from differ-
ent information sources in the context of the considered application. It was
mentioned several times, that the knowledge of domain experts is essential for
accomplishing a successful requirements analysis. Beside a deeper understand-
ing of the application domain, the introduced heuristics can be applied in order
to guide the analysis in a systematical way for both domain experts and non-
experts.

The notion of goals as used in goal oriented approaches has proven to be very
practical for the identification, elicitation, elaboration and validation of system
requirements. However it should be mentioned, that scenario based and goal
oriented approaches are only one possibility among many others, we recommend
for methodically gathering the requirements of a system under construction. It
again pretty much depends on the personal experiences and preferences, which
approach to choose for an individual case.

As a result of this design step a sufficient number of requirements should be
identified together with their corresponding validity conditions represented as
context. Due to the notion of requirement chunks and goal refinement graphs,
these requirements are already documented in a concise and structured way,
which enables the tracing back to underlying analysis documents as the scenario
descriptions resulting from step 1. On basis of these requirements and contexts
an initial context adaptation model is subsequently designed, which explicitly
describes the adaptive behavior of the system under construction. Since the
Cawar methodology represents an iterative approach towards the design of
context adaptive systems, the requirements elicited at this stage do not have to
be complete. A further elaboration of the requirements namely is conducted by
means of an adaptation model in step 4 of the design process.

3.3 Step 3: First adaptation model

Starting from a set of requirements and associated context data, an initial adap-
tation model of the considered system can be constructed. Using the require-
ment chunks introduced in the previous section facilitates the process, although
it is not mandatory to document requirements in this way. The purpose of this
activity is to express the identified requirements by means of the modeling tech-
nique described in section 2.2, i.e. by means of the K-Model. In the following
we recommend a couple of design rules, which help to express the textually
documented requirements by means of the four service types sensors, context
elements, interpreters and actuators.

As soon as the first services of the initial K-Model are identified, there are in
principle three slightly different ways, how an initial K-Model can be further
elaborated. Which way to use in the individual case thereby mainly depends
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on the designer’s point of view as well as already existing components whose
services should be considered in the adaptation model.

3.3.1 Transformation of requirements

It was argued in section 2.3, that it is strongly recommended to explicitly model
those parts of the system behavior, that are likely to change during the appli-
cation life cycle and hence are prone to Unwanted Behavior and the frame
problem, respectively. In order to circumvent this issue, the services exposing
the affected behavior are transparently specified by means of a calibrateable
context adaptation model. Due to its technical realization on the basis of the
Cawar framework, this K-Model can be modified (calibrated) on demand, in
case UB is recognized.

A question typically arising from the described circumstances is, how an adap-
tation model revealing the intended system behavior can be systematically con-
structed. As each adaptation model consists of only four basic service types
(sensors, interpreters, context elements and actuators), the requirement chunks
resulting from previous design steps somehow have to be translated into such
an appropriate model representation. The challenge of this translation mainly
consists of expressing the requirements and context data in the light of a possi-
bly unfamiliar modeling technique. Beside a good portion of sure instinct, the
following heuristics should facilitate a systematical approach towards the design
of adaption models. We thereby illustrate the general proceeding by means of
a simple example and assume that the requirement chunk depicted in table 3.2
should be systematically translated into an initial K-Model extract.

Requirement Context Scenario
R1: Sit-
uation
dependant
notification
of users.

C1: 1. User attends
meeting
2. Notification matures
3. User is able to explic-
itly interact with the
system.

Sc1: User John is currently
attending a meeting while the
cancellation of a subsequent
appointment is announced.
Because this information is rated
as important for John, the system
employs the vibration alarm for
notifying him silently in order to
not disturb other participants.

Tab. 3.2: Requirement chunk as starting point for constructing a K-Model
extract

3.3.2 Heuristics

The following rules help to identify the initial elements of a K-Model and are
beneficial for transforming an existing requirements catalogue:
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• Validity conditions which are contained in the second column of the re-
quirement chunk are initially expressed by means of interpretations. To
clarify that an interpretation represents an identified usage situation of
the system, it is annotated as a situation adaptor (circle). At first an iden-
tified situation is merely specified by additional comments (see figure 3.5).

The user is 
attending a meeting

The system received a 
message concerning the 

cancellation of a subsequent 
appointment. The user should 
be notified immediately about 

the altered schedule.
The interaction possibilities of the 
user allow an exclusive interaction 
with the system, i.e. the user can 

read the incoming message.

Situation 1

Fig. 3.5: Identifying and commenting situations

• A requirement is initially expressed by an adaptation action (rounded
rectangle), which is connected with the corresponding situation adaptor
symbolizing the validity conditions of the considered requirement. The
adaptation action thereby respectively represents an objective or nominal
condition, which should be implemented by an appropriate actuator. The
underlying rationale for this modeling approach is to express the following
causal dependency: if the situation depicted by the situation adaptor
occurs, then execute the requirement described by the adaptation action.
To clarify the purpose of an identified adaptation action, it also can be
annotated by explanatory comments (omitted in figure 3.6).
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the altered schedule.
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user allow an exclusive interaction 
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Notify silently

Fig. 3.6: Relating situations and actions

• In case a requirement chunk exposes certain information, which are rele-
vant for achieving the considered requirement and are somehow measur-
able or can be derived from measurable information, then this information
should be formulated as context (parallelogram). The second column of
a certain requirement chunk as well as the comments concerning the sit-
uations depicted in an adaptation model are good candidates for such
context information, which are appropriately integrated into the model as
shown in figure 3.7.

3.3.3 Missing design patterns

Needless to say that beside the mentioned heuristics also a deeper understanding
of the expressive power of the considered modeling technique is advantageous
when designing adaptation models. The design of K-Models reveals a couple of
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Situation 1

Notify silently
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Fig. 3.7: Identifying and integrating context information

similarities to the design of object oriented models: with increasing modeling
experience designers will possibly detect an elegant solution for often recurring
problems, which are ideally documented in form of design patterns [34]. Since
the formulation of design patterns usually requires an empirically relevant de-
gree of experience with the considered modeling techniques, no design patterns
have been invented so far, which truly facilitates the design of context adaptive
systems. Exceptions are some specific templates concerning technical adapta-
tion actions and premature patterns for expressing technically oriented concepts
for monitoring and redundancy on basis of adaptation models.

With respect to the lack of mature patterns we therefore recommend a trial and
error approach for designing adaptation models. Due to their simple structure
and the loose coupling between involved services, different design alternatives
can easily be established and modified within a certain K-Model. The calibra-
tion mechanism also contributes to and eases the handling of the fluid nature
of adaptation models, in that it allows for their modification at runtime in or-
der to adapt the system behavior to changing and unforeseen user needs and
environmental conditions1. Accordingly one can say that K-Models are not at
all written in stone and can be arbitrary modified and discarded without great
effort.

3.3.4 Preliminary design

As soon as the first elements of the K-Model are written down, these initial
model fragments can easily be extended and elaborated by applying some sim-
ple rules. At this stage in the design, the previous model is usually still full
of gaps. We therefore recommend three approaches in order to fill these gaps
and to enlarge the model fragments to a coherent adaptation model. These ap-
proaches are based on different points of view concerning the modeled system
behavior and mainly differ in the specific model extract, which states the start-
ing point for further model enlargements. Hence it depends on the premises of
the considered system and the preferences of the designer which approach to
focus on in the individual case.

1In fact the modular composition of system behavior by means of decoupled services which
already may be available at design time suggests and supports a rapid prototyping of
K-Models [35]
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Situation-oriented approach

This approach starts from the individual situations which form the validity con-
ditions of the identified system requirements. Accordingly, all situations which
are relevant with respect to the usage of the system are first of all expressed
by means of special interpreters called situation adaptors. Among the three ap-
proaches, the situation-oriented is probably the most intuitive one, since the
notion of situations used in adaptation models abstract from technical details
and corresponds to the commonly used notion of situations.

Starting from an individual situation there are again two possibilities to expand
the adaptation model. The first one explores all information that are required for
characterizing a depicted situation, i.e. how these information can be measured
via sensors or derived from measurable information via interpreters, respec-
tively. We assume that measurable information comprise physically measurable
information as temperature and speed as well as measurable information in the
broader sense, i.e. inputs made by users or other systems over direct or indi-
rect input channels (keyboard, microphone, infrared sensor, etc.). This strategy
enlarges the adaptation model towards the set of sensors and their subsequent
sensor context, respectively.

Alternatively one can initially examine, how the application should behave in
a certain situation, i.e. which requirements the application typically needs to
fulfill in this situation. The realization of a situation dependent requirement is
first of all expressed by an action, which the application triggers whenever the
considered situation occurs. This strategy results in an elaboration of the model
towards the actuators and their precursory adaptation context.

Sensor-oriented approach

This approach mainly focuses on examining all information, which can be mea-
sured by actual components of the system core and the environment, respec-
tively. In contrast to the situation-oriented approach discussed in the previous
section, this strategy is rather technically oriented and is concerned with iden-
tifying the actual information sources available. As available sensors are the
starting point for this approach, it is especially useful in case the system or
it’s environment already provides a relative fixed set of sensors (as e.g. in a
car). Thus designers are typically concerned with the question of how to use
the information gathered by sensors for specifying the intended behavior of the
overall system.

Another advantage of the sensor-oriented approach is, that the model is enlarged
according to the flow of data within the model and the process of context
adaptation described in figure 2.2, which mainly consists of the three steps (a)
information acquisition, (b) situation identification and (c) implementation of
adaptation decision.

Consequently the individual steps within this approach are the following:
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1. Identify all available sensors for gathering the information relevant for the
context adaptation. The context contained in the requirements catalogue
should indicate which sensors to integrate.

2. Connect a context element which each sensor, which decouples the sensor
from other services in the model. This decoupling via buffers helps to avoid
data loss in case of unreliable and error-prone sensors and facilitates their
transparent exchange.

3. Combine the gathered sensor context appropriately by means of inter-
preters, which help to identify certain usage situations and drive the in-
ference of adaptation decision, respectively2. The design of an adequate
decision logic by means of interpreter networks is probably the most chal-
lenging aspect of the modeling process.

4. Once a certain usage situation as well as the associated requirements are
identified by the decision logic developed in step 3, these requirements are
realized by means of actuators, which propagate the system reaction or
the calculated adaptation decision to the executing system components.
This decision mostly results in a changed (observable) system behavior in
consequence of a context triggered data manipulation or a system recon-
figuration.

Adaptation-context-oriented approach

This third approach assumes that the intended adaptations of the system behav-
ior are at least partially known in advance. In other words, this approach is suit-
able in case a future state or objective, which specifies the situation-dependent
behavior of the system is already known. Those adaptations may result from
changed user needs or a changed resource availableness, which must be handled
in order to fulfill certain (non-) functional requirements. Such a requirement
is expressed in form of an adaptation context, which contains the necessary
information for the upcoming adaptation of the system. The requirement is
afterwards read by an actuator, which actually implements the contained adap-
tation decision by interacting with the system core or the environment. Since
the necessary decisions concerning a certain adaptation may be of a very tech-
nical nature – especially if the adaptation aims at adhering some functionality
in cases of component failure – this again states a rather technical approach.

If the information concerning the necessary adaptation is presently rather un-
specific in terms of technical aspects, it is also possible to express the adaptation
decision by means of an adaptation action, which will be refined later on in the
iterative development process.

2This correlates to an abstraction of information
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Recommendations

Independent of the individual approaches we recommend developing a K-Model
along a coherent thread, whereas a thread is meant to be a chain of certain
elements in the adaptation model, which according to the three steps of the
adaptation process (fig. 2.3) realize a certain functionality of the system under
construction. This practice facilitates the concentration on a certain aspect
of the overall system behavior and encourages the creation of modular and
coherent K-Models.

Whenever some aspects of the system behavior have already been modeled as
thread fragments, it is often advantageous to use a combination of the previous
described approaches. One decides for each individual thread, how to enlarge
its margins according to the three approaches (see fig. 3.8). How to fill the
remaining gaps with intermediate context in order to connect the individual
threads is discussed in later sections.

Three approaches for extending an adaptation model

??

??

adaptation context oriented

??

situation oriented

??

??

sensor context oriented

Approach 1

Approach 3

Approach 2

Fig. 3.8: Three approaches for extending an adaptation model

3.3.5 Reflection and outcome

The integration of requirements in a first preliminary version of the K-Model
is usually one of the most challenging steps in the development process, since a
good portion of experience in designing adequate adaptation models is crucial
for this activity. Generic rules for assisting unexperienced designers are difficult
to define, while most requirements and usage situations are application specific.
Design patterns as described in [34] would help to overcome this issue. However,
such patterns can hardly consolidate without being used and validated in a
variety of system development projects. At the moment only four case studies
were designed using this approach.

Due to the comfortable graphical notation of the K-Model consisting of only
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four service types, such models are easy to create and revise. The outcome of
this step is a first preliminary K-Model. This model needs by no means to be
complete and may also contain adaptation actions and situation adaptors. Both
elements enable a more comfortable modeling of the system, since also vague
information of the analysis, which are not specified in detail by now, can be
integrated into the model. Both elements however have to be refined later on.

3.4 Step 4: Context requirements engineering

After step 3 an initial adaptation model is available, which usually does not yet
cover all aspects of the considered system behavior. Hence the purpose of this
step is to fill in the missing elements, thus completing the adaptation model by
preferably expressing all requirements and context data identified in the require-
ments specification. The graphical notation of K-Models facilitates the exposure
of gaps previously hidden within the textual requirements specification.

The refinement and elaboration activities described in the following are in prin-
ciple applied to all elements contained in an adaptation model. However, iso-
lated or unconnected elements which represent the “open ends” of a depicted
adaptation thread are of particular interest within this step.

Situation adaptors
?

?

?

?

?

The following questions are useful for identifying further requirements concern-
ing situation adaptors:

• Which information is necessary for identifying a pictured situation in an
unambiguously manner?

• Are there any further requirements/actions/needs that apply to this sit-
uation?

• Is it possible to further decompose the associated requirements?

• Do any of the associated requirements occur in further depicted situa-
tions?

• Do the existing situations cover all relevant usage situations, or are there
distinguishable situations not considered so far?

• Is the correlation between the contexts used for a situation detection and
the requirements applying to this situation comprehensible? If not, addi-
tional interpretation chains should be appended, which make the consid-
ered adaptation thread more readable.
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Intermediate context
???

The composition rules for adaptation models require sensors to write into ex-
actly one subsequent context element and actuators to read from at least one
context. Interpreters in turn read from at least one input context and write
to at least one output context. Thus, the sole existence of sensors, interpreters
and actuators already determines a good portion of the required contexts. The
remaining question is, how the necessary intermediate context can be method-
ically identified.

Intermediate context comprises all contexts that are not directly connected with
sensors, situation adaptors or actuators. It represents those contexts, that are
necessary for deriving an information relevant for the adaptation, which can-
not be expressed by means of sensor context, situation context and adaptation
context. Intermediate context is for example necessary for multiplexing the con-
texts measured by multiple sensor or for translating distinct units (km/h vs.
mph).

The following questions are useful for identifying further requirements concern-
ing a depicted context element:

• Can a depicted sensor context be directly used in order to reason about
an actual situation, or is additional information necessary?

• Is a sensor context appropriate for making an adaptation decision, or is
further information necessary?

• From which information is a depicted situation or adaptation context com-
posed of? How can this information be deduced from existing contexts?

Interpreters

?

? ?

?

?

The following questions are useful for identifying further requirements concern-
ing a depicted interpreter:

• Can a necessary information be supplied by an existing context element?
If not, does a combination of existing contexts provide the necessary in-
formation?

• How does a depicted sensor context contribute to an adaptation decision?

• Is it possible to enhance the readability of an adaptation model by ap-
pending further interpretation threads? If so, then enhance the model.

• Are several contexts relevant for making an adaptation decision? If so,
they should be bundled by an interpretation chain and delivered to the
responsible actuator afterwards.



3.4 Step 4: Context requirements engineering 35

It should be mentioned that the investigation for interpreters and the search
for intermediate contexts cannot be regarded as isolated activities: intermediate
context always results from interpretation of other contexts, while an additional
interpreter often produces or requires further intermediate contexts. With this
in mind, the considered activities rather complement each other.

Adaptation actions
? ? ?

Adaptation actions as well as situation adaptors are auxiliary concepts for fa-
cilitating an “intuitive” modeling of requirements and their associated validity
conditions in form of context. The intention of this notion is to express causal
relations of the system behavior in an understandable way. Such causal rela-
tions can be modeled by simple if–then-dependencies between a situation and its
corresponding action, thereby abstracting from technical details and modeling
constraints.

An adaptation action expresses the (possibly vague) notion of an action, which
should be triggered in case the associated situation occurs – one might say
a context triggered action. During the design process such adaptation actions
must be decomposed by means of the conventional model elements available for
adaptation models – in contrast to situation adaptors, which already represent
specific interpreters. Subsequent to the Prototyping accomplished in step 5, a K-
Model must not contain any adaptation actions. Otherwise this services may not
be implemented by means of the underlying Cawar framework. In the simplest
case, an adaptation action is transformed into a single context element, which
is directly read by an actuator implementing the specified action. If complex
actions need to be carried out, it may be necessary to substitute the adaptation
action by an additional interpretation chain.

The following questions are useful for both identifying further requirements con-
cerning a depicted adaptation action and indications for their possible transfor-
mations, respectively:

• Shall a depicted action also be triggered in further situations?

• Which steps are necessary for implementing the action? Should the action
be decomposed in a set of (smaller) sub-actions?

• Can an action be directly transformed into an adaptation context, or are
further interpretations necessary for this task?

3.4.1 Reflection and outcome

The activities described in the previous section help completing the initial K-
Model until most of the requirements are modeled, i.e. all identified system
functions are covered by the adaptation model. Some simple engineering rules
may contribute during this activity.
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Related work that also concentrates on the derivation of intermediate context
(cf. [36]), should be mentioned at this point. It is often assumed, that the neces-
sary context information for making an adaptation decision are already known,
i.e. the system’s future states and objectives are certain in advance. In order to
derive further necessary context, [36] recommends the usage of a modification
of the Activity Theory known from psychology. However, providing support for
determining the appropriate content of a context as well as the question of how
to combine different contexts in order to derive a desired information, remains
an open issue.

Application of metrics

There are in principle two metrics which enable an evaluation of an adaptation
model (cf. [4]). An evaluation by means of these metrics may expose some
fundamental deficiencies within the considered model. However, in order to
produce an expressive evaluation, the considered K-Model must satisfy certain
characteristics, which in some cases cannot be assumed a priori. The adaptation
metric for instance counts the number of situation adaptors within the model
for evaluating the system’s ability to adapt to different situations of usage. If
for any reason the designer deliberately renounces to use situation adaptors
within a certain model (design decision), the metric will certify a non-adaptive
model, even if the system may differentiate between several situations very
well. Similar constraints apply for the balancing metric, since it builds upon
the adaptation metric. We therefore recommend the usage of such metrics with
great care and preferably only after subsequent iterations of the design process,
when informations concerning the system models have consolidated.

What to model explicit?

An important question concerning the refinement of the K-Model is, which as-
pects of the system behavior should be explicitly modeled within the adaptation
model, and which aspects are encapsulated within the individual services of the
model. The obvious answer is, that every aspect which is subject to the frame
problem should be modeled explicitly. However, it depends on the designer, the
application domain and certain other external factors, which aspects are prone
to the frame problem. As a rule of thumb, every service that is prone to change
or reconfiguration requests, should be modeled explicitly. Similarly, every aspect
that is somehow related to personalization should be modeled explicitly. From
a technical point of view, every service that possibly can be realized by exter-
nal components not contained within the system core (e.g. the mobile device),
should also be explicitly modeled in the adaptation model.

The outcome of this step is a refinement/extension of the initial adaptation
model. At this stage of maturation, the K-Model should ideally cover all func-
tionalities of the desired system. However, there still might be some obscurities
about certain aspects of the system, technical realizations or even coherences
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of aspects. Such obscurities are treated in subsequent steps and iterations, thus
weaving new insights into the model.

3.5 Step 5: Prototyping

Prototyping is an appropriate concept for gaining new insights and early feed-
back concerning the system under construction. Prototypes may implement
certain aspects of a system in order to study different technologies, functional-
ities or even parts of the system model. Therefore, prototyping in combination
with software testing serves as an evaluation tool for interfaces (mainly user
interfaces) and for providing deeper insights concerning the usability of the
considered system. For instance, a prototype may be used to test, if the in-
put/output behavior of some component is correct or if an algorithm fulfills the
specified (non-)functional requirements.

In the case of context adaptive applications, one might also be interested in
studying the correlation of certain contexts, their relation to identified situa-
tions and their effects on the adaptations of the system. An appropriate pro-
totype may highly contribute to resolving obscurities within a K-Model. In the
following, we concentrate on two different variants of prototypes, namely paper
prototypes and executable prototypes, and discuss when to use which one.

3.5.1 Paper Prototyping

Paper prototypes are probably most cost-efficient and provide a good opportu-
nity to gain early feedback from users and other stakeholders. They are mainly
used for evaluating the usability concerns of (graphical) user interfaces. In ad-
dition to this conventional usage, Paper Prototyping (PP) may also contribute
to enhancing a considered adaptation model. A detailed description of paper
prototypes can be found in [37]. In the following, we sketch out those aspects
of PP, which are of particular interest when evaluating adaptation models.

Each service within the adaptation model must eventually be represented within
the paper prototype. In contrast to user interfaces considered in conventional
interactive systems, context adaptive systems also require an investigation of
the interfaces responsible for context acquisition, situation detection and de-
cision making known from the context adaptation process. A paper prototype
therefore consists of a set of the four basic elements (sensors, interpreters, con-
texts, actuators) realizing this context adaptation process. The characteristic
information of each element is thereby annotated on a single page of paper,
which has the following content:

Context elements
are information carriers within the system and inter alia characterize rel-
evant information gathered from the environment. Hence the content of
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each individual context element is most interesting for the paper proto-
type. This content is for example captured in terms of key-value pairs.

Interpreters
are information processing units. Besides their in- and outputs in form of
context, the underlying algorithms used for processing this information
is of particular interest. The associated rules or algorithms are typically
denoted as pseudo-code.

Sensors
are the data sources of each K-Model. Some sensors receive direct user
input, while others acquire environmental information (indirect inputs).
Because each sensor stores the received input into one subsequent sensor
context, sensors are not necessarily included within a paper prototype.
However, if required the sensors can be integrated as comments, annotat-
ing the corresponding sensor context.

Actuators
constitute the information sinks and executive elements within an adapta-
tion model. Analogous to interpreters, the underlying rules for deploying
the adaptation decisions are the most relevant aspects of actuators, which
are denoted in terms of pseudo-code.

The communication between associated elements in the adaptation model is
then optimized on the basis of this PP. This examination gains a particular
importance, if already existing components should be integrated in the adap-
tation model. In case a commercial component providing some sophisticated
functionality should be integrated in an adaptation model as an interpreter,
the associated elements of this interpreter should be optimized to match the
interface and constraints inherent to this component, to achieve an optimal
collaboration between the involved elements. Another advantage of Paper Pro-
totyping is, that it narrows the gap between design and realization of an adap-
tation model and supplies useful details for the subsequent implementation of
individual elements.

In the course of a Paper Prototyping session, several roles are defined for sim-
ulating the usage of the system under consideration. These rules are shortly
described in the following, whereby the context role is an extension of the role
model sketched out in [37]. This context reflects the (indirect) acquisition of
contextual information as opposed to direct user input.

User
The user interacts with a paper based version of the considered user inter-
face. She is guided by the moderator in order to carry out realistic tasks
with this paper mock-up. The tasks performed by the user should involve
critical system aspects, which decide on the acceptance of the system.

Computer
One of the system designers plays the role of the computer. The computer
thereby simulates the interface behavior as well as all other system aspects
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requiring a system reaction. However, she does not provide any assistance
concerning the accomplishment of the postulated tasks.

Moderator
The moderator has the function of guiding the user. She defines the user’s
tasks and provides assistance when necessary.

Developer
Developers observe the interactions between the user and the computer.
Their main task consists in making notes of observable problems and the
usability of the simulated system.

Context
The moderator or an additional person takes over the part of the system
context and simulates the indirect inputs concerning the current circum-
stances of the execution.

However, sometimes paper prototyping lacks the capability to properly repro-
duce certain dynamic aspects of context adaptive systems like their “automatic
intelligence”. More sophisticated methods such as Wizard of Oz based tech-
niques [38] perform better in some sense, but they also come at some cost.
There is some promising research going on in that area, which should be shortly
described in the following section.

3.5.2 Executable prototypes

Executable prototypes do in many aspects enable a more sophisticated evalu-
ation than purely paper based mock-ups. There currently exists a rapid pro-
totyping environment for the Cawar Methodology (Cawar Prototyping En-
vironment or shortly CPE [35]) which leverages the concept of context adap-
tation to evolve the same prototype over the different development phases –
from a scenario controlled slide show into a full blown interactive prototype
that could demonstrate the application on real devices. In other words, CPE
enables the development of a reconfigurable prototype, which better reflects
the actual needs and insights of the current development stage. Simulations are
replaced by actual components in a flexible and stepwise fashion as described
in the following.

In an initial version of the CPE prototype, all components like context sensors
and application actuators are mapped onto simulation components, that do not
really calculate, sense or act. At the first stage, this is equivalent to having a
tool that supports creating electronic paper prototypes. Most services are simu-
lations and map predefined stages in a scenario to drawn screen-shots of devices
with the expected output. This is particular useful, if during the development
phase real sensors and actuators are not available or too expensive for early
deployment.

In a next step, real decision making logic can be implemented to allow an in-
teractive evaluation of the system. Further steps can replace several simulated
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services with real implementations and devices up to the point where it is pos-
sible to make usability tests or run automatic sample scenarios in conjunction
with testing framework instrumentation on real hardware. Afterward we would,
step by step, replace the remaining simulation components by real ones while
simultaneously modifying the adaptation behavior, just as the current phase of
development would require. At first we would do this in order to evaluate ex-
isting and to identify new user requirements, respectively. Later, certain design
alternatives are evaluated against each other and finally all CPE instrumenta-
tion is removed, thus releasing the system as a final product. The CPE tool
thereby fully supports the K-Model including its adaptation and calibration
capabilities. During the whole process at any time a change of the adaptation
model is possible to better suite to new, changed or wrongly interpreted re-
quirements only requiring at least corresponding simulation components being
present to allow for evaluation of the changed model.

3.5.3 Application of prototypes

The decision concerning the appropriate prototype mainly depends on the cur-
rent stage in the development process and the purpose of the prototype itself.
In the early phases of the development cycle, when the system model typically
underlies frequent change, we recommend the usage of paper based mock-ups
describing the intended system behavior. In order to examine certain K-Model
services in more detail and to gain the first feedback, such mock-ups can eas-
ily be sketched and revised without great effort. Thus, paper prototypes are a
cost-efficient alternative for a simple presentation and evaluation of preliminary
system designs, respectively. However, paper mock-ups are often insufficient for
reasoning about alternative design decisions concerning performance or scala-
bility aspects of the considered system.

If on the other hand the adaptation model has reached a certain stage of matura-
tion, i.e. the model gradually becomes stable, designers are typically interested
in evaluating certain design decisions concerning architectural solutions, func-
tional behavior or the designed adaptation logic of the modeled system. In such
cases, it is usually a good idea to develop an initial executable prototype as
described for the Cawar Prototyping Environment. Such a prototype can be
iteratively extended, until the adaptation behavior is ready to be deployed in an
environment, where production stable versions of the service implementations
are available. This narrows the gap between system design and implementation,
leading to a seamless development and evaluation of context adaptive systems.

3.6 Step 6: Implementing the system core

Due to the development activities carried out in previous steps, a mature adap-
tation model reflecting all identified requirements and associated contexts is
available. The prototypes of step 5 are important indicators for the upcoming
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implementation of all services included in the K-Model. At first, a decision is
made, which of the specified services required by the adaptation model should
be realized by components within the system core, and which of them should
be moved to the system environment, respectively. Heuristics for guiding this
decision are given in the subsequent section.

However, the implementation of each individual component itself is accom-
plished by conventional concepts of software and systems engineering. The ac-
tual implementation is therefore beyond the scope of the Cawar methodology.
The only precondition the service fulfilling components must ensure, is to im-
plement the framework specific interfaces for sensors, contexts, interpreters or
actuators, respectively. In case the interface cannot be directly implemented
due to 3rd party software components, these components must be bound to the
framework via intermediary wrapper components (Adapter pattern see [34]) ful-
filling the interface imposed by the framework. A short discussion concerning
which services should explicitly appear within an adaptation model at all, and
which functional behavior should be implicitly encapsulated within a compo-
nent, respectively, is given in section 3.4.1.

Internal vs. external realization

An external implementation of a service (e.g. as a web service) should be pre-
ferred, if the corresponding functionality is not permanently required and more-
over directly accesses other external resources (e.g. network connectivity) which
can not be made available in any situation of usage and can not be decoupled
via context elements. Does the service in contrast only require the infrastruc-
ture provided by the core system, and its functionality is needed in almost every
situation, an internal implementation of that service should be considered.

Services that offer functionality in situation dependent quality and complexity
must be considered separately. For example a display service hosted at some
pocket PC. The context adaptive system provides this display service perma-
nently with a minimal quality dependent on the resolution of the pocket PC. As
soon as the user enters his office, the system discovers an appropriate monitor
with a higher resolution and automatically binds this monitor to the display
service. As this example illustrates, such services require a component within
the system core for permanently providing a required minimal functionality.
Components temporarily providing additional or enhanced functionality are
implemented externally, whereby the Cawar framework automatically handles
the context adaptation of the system by reconfiguring the involved services.
For enabling such reconfigurations, the framework infrastructure must be per-
manently available. Accordingly, it is implemented within the system core as
well.
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3.6.1 Reflection and outcome

The initial structuring of the overall system functionality into the system core
and its environment is mainly motivated by the lessons learned during the
prototyping accomplished in step 5. The decisions are based on the availability
of resources and the dependencies between functions. The implementation of
certain services may require the addition of further adaptations, resulting in an
extension of the adaptation model. This issue is discussed in more detail within
the subsequent step. Moreover, the core components implemented during this
step should be used for replacing the according simulation components within
the associated CPE prototype.

3.7 Step 7: Revision of adaptation design

To enhance the quality of the context adaptive system under construction, and
hence of the underlying adaptation model, the Cawar methodology requires a
certain degree of iterative development [39]. After all services contained in the
adaptation model have been implemented as internal or external components,
the model usually needs to be iteratively updated. The reason for this revision
is, that during the implementation of services often details concerning a better
modeling of certain adaptations become visible, which can be conducted in this
step. Such modifications result in a modified adaptation model, which in general
is augmented by additional, usually more technically oriented adaptations (e.g.
discovery of external components, optimizations, autonomic failure recovery
etc.). The resulting adaptation model furthermore provides the right stage of
maturation for additional evaluations concerning consistency and the appliance
of appropriate metrics, respectively. The outlined modifications are described
in more detail within the following sections.

3.7.1 Adding secondary adaptations

As already mentioned in section 3.6, the components of context adaptive sys-
tems may be realized within the system core or its environment, respectively.
Sometimes even services within the system core may depend on other services
which are realized externally. Such external service dependencies emerge, if a
certain service can not provide its functionality without the usage of an external
resource, e.g. an external device (printer, screen) that is installed at a certain
location within the system environment. Such an external resource in turn must
be bound to a corresponding service within the system. In case several alterna-
tives for the external resource are available, and moreover the selection of the
appropriate alternative is situation dependent (cost, location, quality etc.), the
decision concerning the resource selection should be explicitly modeled within
the adaptation model.
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Fig. 3.9: Secondary adaptation of the attending case study

An example for such a resource selection modeled by means of an adapta-
tion model is shown in figure 3.9. The example originates from the attending
case study of section 4 and can be summarized as follows. The interpreter
I/O-Selector decides on basis of certain situation dependent criteria (quality
criteria, cost criteria) and the currently available displays in the system envi-
ronment (I/O-Device), which device (i.e. component) to use for realizing the
I/O-Interface service. If no external displays are available, the standard display
of the pocket PC is used for realizing the I/O-Interface service.

Technically, the selection of appropriate components is achieved by modifying
a dedicated meta context element that is associated with the I/O-Interface ser-
vice. Such meta context elements are inherent features of all service types and
inter alia comprise syntactic (SyType) and semantic (SmType) service descrip-
tions, which are used for binding the service to appropriate service fulfilling
components. Possible components fulfilling the services of a K-Model are iden-
tified during a runtime discovery (e.g. UPnP, UDDI). In case such a component
matches with the description of a service contained in the K-Model, this com-
ponent is bound to the according service. The dashed line within figure 3.9 is a
shortcut for expressing that I/O-Selector is able to modify the service descrip-
tion (meta context) of I/O-Interface and thus affects I/O-Interface’s reconfig-
uration, i.e. which component should be bound to I/O-Interface. This shortcut
avoids representing meta contexts within graphical K-Models.

Marking secondary adaptations

The secondary adaptations added after the first implementation of the services
contained in the core system usually originate from technical oriented consid-
erations, resulting in technical context and associated services as depicted in
fig. 3.9. Heuristics for identifying such technical context can be found in [4]. If
such technical context and associated interpreters, sensors etc. appear within an
adaptation model, they should be explicitly marked as shown in fig. 3.10. These
markings indicate, that those services must be realized within the system core
in order to avoid further technical context, that would otherwise result from an
external realization of such services.
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Fig. 3.10: Markup of services involved in secondary adaptations

Further adaptations, consistency and metrics

In addition to the technical oriented adaptations described above, any enhance-
ments and modifications identified during the implementation of the core system
should be integrated into the adaptation model during this development step.
These modifications often base on new insights acquired during the core imple-
mentation. Sometimes, certain design decisions have to be revised after actually
checking them out within the running system.

This stage of the development process is also perfect for applying consistency
checks for the adaptation model as described in [4]. If not already done, the
adaptation model should now be stable enough for the application of metrics
as outlined in section 3.4.1 and introduced in [4]. If carefully applied, such
metrics help to analyze certain characteristics as the adaptivity potential of the
considered application. In the course of this step, the improvements resulting
from these analyses are integrated together with the modifications caused by
the emergence of technical context.

3.7.2 Reflection and outcome

The revision of the adaptation design aims at resolving external service depen-
dencies that potentially emerge from the technical implementation of the core
system. Additionally, necessary modifications identified in prototype analyses
as well as any other modifications to the adaptation model are incorporated
during this step. Further analyses of the adaptation model according to metrics
allow for revealing further inconsistencies or flaws.

The outcome of this step is a revised K-Model, which includes all secondary
adaptations that are necessary due to the implementation of services. The mark-
ing of services involved in secondary adaptations is an important input for the
subsequent step. In a second iteration, the remaining core system is revised and
implemented. Marked services thereby must be implemented in the core sys-
tem to avoid the emergence of further technical context and associated external
service dependencies, respectively.
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3.8 Step 8: Revision of system core

In this final step all new services of the modified adaptation model are imple-
mented as internal or external components. The required activities are analog
to that already described in step 6: (a) decision for internal or external realiza-
tion and (b) conventional implementation of components. The only exception
is, that all services involved in the technically oriented adaptations added in
previous step 7 should be realized internally. Otherwise an external implemen-
tation of these services can cause single points of failures, which derive from
possible external service dependencies.
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I/O device

cost 
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binding

external web service

Fig. 3.11: Situation dependent selection of a component is realized internally

Figure 3.11 illustrates the avoidance of further external service dependencies
when implementing the remaining services of the adaptation model. For all
services concerned with technical context, the decision for their service im-
plementation (internal vs. external) is anticipated. The depicted interpreter
I/O-Selector decides about which (external) component is bound to the I/O-
Interface service. If I/O-Selector itself is implemented by some external compo-
nent, in turn another service is necessary for deciding which external component
should be bound to the I/O-Selector service, which itself however is required
to make the same decision for the service I/O-Interface. In order to break this
chain of service dependencies, a service (like I/O-Selector) deciding about the
binding of another service to a possibly external resource, is not allowed to
be implemented by an external component itself. Hence I/O-Selector and any
other marked service must be implemented internally, i.e. permanently bound
to a component of the core system.

3.8.1 Reflection and outcome

The revision of the system core is the final step in the overall Cawar methodol-
ogy. This step produces implementations for all services contained in the adap-
tation model, which were chosen to be implemented within the system core.
Moreover, for all services to be externally realized, we assume the existence of
appropriate service fulfilling components. As a result of this step, an augmented
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prototype is available, in which all simulated components are replaced by actual
components of the core system and its environment, respectively.

3.9 A word on iterations

From a practical point of view, iterations within the development process are
a promising approach for refining and elaborating the system behavior. This
is even more true for context adaptive systems, which have to consider a large
number of different usage situations, users, functionalities and their relationship,
respectively. Therefore, the prototypes resulting from early iterations of the
development cycle usually differ from the users’ expectations. Consequently it
is often necessary, to reenter the development process in order to narrow the
gap between users’ expectations and the provided system functionality.

With this in mind, the Cawar methodology was designed as an iterative de-
velopment approach. Generally, Cawar recommends two coarse grained devel-
opment cycles (step 1 to 5 and step 6 to 8, see fig.3.1), whereby each individ-
ual step can be iterated as well. As soon as a new prototype results from the
activities until step 5, it typically occurs that new aspects are identified or cer-
tain deficiencies are revealed due to user feedback. At which stage to reenter
the development process in order to integrate the gained insights, mainly de-
pends on the type of user feedback during the prototyping. Sometimes system
functionalities are well considered, but their mapping onto usage situations is
inappropriate. In this case the adaptation model probably should be revised
within step 4. However, it may also occur that completely new usage scenarios
are identified. This would of course require a revision of the whole development
process, starting with the design of the new usage scenarios within step 1.

The second development cycle (step 6 to 8) assumes, that the intended system
behavior and the associated adaptation logic is relatively stable. It therefore
focuses on rather technical aspects concerned with the appropriate implemen-
tation of the adaptation design and the actual system functionality3. It is also
possible, that new aspects identified in the second loop induce a reentry into
the first loop – however this is not the average case.

3One might say primary system functionalities as opposed to the functionalities realizing the
context adaptation



4 Proof of concept

4.1 CATS – The Context Aware Task Scheduler

As mentioned in the introduction of this paper, a prototype system was devel-
oped for evaluating the theoretical concepts introduced in the previous sections.
The application described in the following is some kind of personal assistant
named Cats (Context Aware Task Scheduler), which uses different context
information for organizing the user’s daily schedules as helpful as possible. Ap-
pointments, events and other personal tasks of a user can thereby be imported
into the application context from different sources such as email, online cal-
endar or even public event repositories. The Cats furthermore provides some
basic functionality for managing this data. Several forms of adaptive notification
functionalities were implemented, which for instance inform about rearranged
or conflicting schedules and remind users of upcoming appointments. The type
of a notification is context aware, i.e. the application for instance realizes, if
the user is currently participating in a meeting and in consequence informs him
unobtrusively or not at all, if the notification is rated of low importance. Be-
sides the functionality of manually rearranging schedules or setting filter rules
concerning unwanted events gathered from public repositories, a mechanism for
the automatic rearrangement of timely overlapping events and appointments is
provided. In combination, these features save users a good portion of consis-
tency checks and enable a contemporary reaction to canceled or just announced
appointments.

4.2 Designing CATS by means of the CAWAR
methodology

The Cats was modeled using the Cawar methodology defined in section 3.
Starting with the design of a simplified usage scenario, which is restricted to
one functional aspect of the overall Cats system, the individual design activi-
ties proposed in this methodology as well as the corresponding work products
resulting from each activity are described on the basis of an illustrative example.

4.2.1 Scenario design

The overall process begins with the creation of textual documents, which de-
scribe the usage of the system as well as its intended behavior. The scenario
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extract below was identified during an early analysis phase of the case study
and covers a representative situation of how the prototype should work:

11:30 a.m. Mr. Williams is currently participating in an important conference.
Thanks to the wireless LAN connection in the conference room, his pocket PC
receives a message, indicating that the meeting announced for 5:00 p.m. on that
day was canceled. On basis of the registered schedules for today, the CATS client
assumes that Mr. Williams at the moment is attending a meeting. To avoid un-
necessary interruptions of participants, he is either notified silently in the form of a
textual message or notified delayed, in case the message is rated of low importance
for him. The CATS client afterwards automatically resets the canceled meeting and
furthermore informs Mr. Williams, that due to this new situation he is now able to
re-attend his weekly squash lesson for 6:30 p.m.

4.2.2 Extracting user goals, requirements and context

Once a sufficiently complex scenario of the considered system was constructed,
user needs as well as (situation-dependent) requirements should be extracted
on basis of this description. In case the desired information cannot be identified
immediately, since the scenario for example comprises several hidden assump-
tions, complementary modeling techniques like UML Use Cases can be useful
for revealing this hidden assumptions, hence making them explicit. Collecting
user goals thereby helps to identify the general objectives, users want to achieve
with the aid of the system. An analysis of the scenario extract depicted above
could for example reveal the following user goals:

• Missing of arbitrary dates should be avoided in either case

• Important appointments (e.g. meetings, theater) should not be inter-
rupted.

• Mr. Williams needs to react on unforeseen changes in his schedule in a
timely manner

User goals form another beneficial source for gathering requirements and more-
over provide a rationale for the latter, i.e. the elicitation of a certain requirement
can be justified, since it contributes to the completion of the corresponding and
more abstract user goal. Consequently, user goals are usually too abstract for
a direct derivation of implementation decisions. However, they are useful for
elaborating and completing the requirements catalogue of the considered sys-
tem. Picking up our Cats example, the requirements depicted in table 4.1 could
(amongst others) be derived from previous results.

We strongly recommend to document each identified requirement along with its
optional validity condition in terms of context as well as the underlying scenario
extract in form of a requirement chunk [40], which offers a concise description
for specifying requirements and facilitates the tracing between scenarios and
requirements.
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Requirement Context Scenario/Description

R1: Communicate
events, appoint-
ments, emails,
messages

n/a Events, appointments, emails and mis-
cellaneous messages as well as notifica-
tions should be communicated to the
user on demand.

R2: The user wants
to be notified unob-
trusively.

The user
is cur-
rently
attend-
ing a
meeting.

1. The client realizes a canceled ap-
pointment.
2. The client tries to determine the cur-
rent situation of usage.
3. Due to a current meeting rated as
important, the user is notified silently.

Tab. 4.1: Modeling Cats by means of requirement chunks

4.2.3 Construction of an adaptation model

As soon as an adequate collection of requirements and contextual data was
elicited, an initial K-Model can be constructed on basis of this collection. The
purpose is to express both requirements and context by means of the modeling
possibilities supported by adaptation models. The proceeding thereby can be
summarized as follows:

• Initially, the associated context of a discrete requirement can be expressed
in terms of a specific interpreter called situation adaptor (circle in fig. 4.1),
representing an identified usage situation. Textual comments are used for
specifying this situation.

• The requirement itself is symbolized as an action element (rounded rect-
angle in fig. 4.1), representing a nominal condition or target state, which
should be realized by a subsequent context adaptation. The association
between situations and actions thereby signals the following: if the par-
ticipating situation occurs, then the associated action is performed, thus
implementing the underlying requirement.

• All context information, which are necessary for unambiguously identi-
fying a pictured usage situation and furthermore can be measured or
somehow derived from measurable information, respectively, should be
modeled as context elements (parallelograms in fig. 4.1). Heuristics for
identifying the different types of context data (sensor, situation, adap-
tation, intermediate, technical) can be found in section 3.3, 3.4 and 3.7,
respectively.

Figure 4.1 illustrates one possible solution for expressing the identified require-
ment R2 described in the requirement chunk above by means of an exemplary
K-Model extract, consisting of three context elements, one situation adaptor
and one adaptation action. Once the first elements of an adaptation model were
identified, they can be augmented by means of the approaches drafted in fig. 3.8.
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Fig. 4.1: Constructing an initial K-Model

In case a depicted thread of elements cannot be augmented at the moment, since
for example the necessary information concerning this thread and its specific
function is not available by now, the next requirement chunk from the underly-
ing specification should be modeled and integrated into the present K-Model.
This step is repeated until all requirement chunks are expressed on the basis of
sensors, context, interpreters and actuators. As soon as the resulting K-Model
has reached a certain stage of maturation, a paper prototype of the model is de-
signed, which provides the right abstraction level for examining each individual
element as well as the collaboration of associated elements in more detail. We
refer to [41] for a detailed description of the individual development activities
as well as the entire modeling of the Cats prototype.



5 Conclusion and outlook

The generic process proposed in this paper enables the systematical design of
adaptive, context-aware applications in the emerging field of Ubiquitous Com-
puting. The process consists of eight fundamental steps, providing assistance for
relevant analysis and design activities. It concentrates on the elaboration and
specification of the adaptation behavior rather than discussing implementation
details. The activities result in the generation of an adaptation model of the
considered system, as well as useful implementation instructions for application
specific components. In conjunction with the underlying Cawar framework,
both adaptation model and the necessary components together form a com-
plete and executable adaptive system, whose transparent behavior can be easily
communicated to the user. Furthermore, based on the concept of calibration,
the adaptation behavior is moreover totally reconfigurable as demonstrated in
[4], and therefore can be adjusted anytime to fit changed circumstances, even
if these embrace a changed mental model of the user.

Further research efforts in this context are directed towards tool support for the
concise notation of graphical adaptation models, which particularly should sup-
port several techniques for defining model cuttings. Other considerations con-
cern an (semi-) automatic transformation between graphical adaptation models
and equivalent XML specifications, comparable to diagram based code gener-
ators provided by modern development environments. Except for some very
specific, technically oriented or domain dependent patterns, no explicit design
patterns have been previously proposed, which provide a reusable solution for
common design problems appearing in adaptation models. Generic design and
modeling guidelines for context adaptation and a concise requirements engineer-
ing methodology for the development of adaptive systems are still important
research topics. Further considerations regard the tracing between requirements
and adaptation models and the definition of metrics respectively, which allow
evaluations of arbitrary adaptation models on the basis of a few model charac-
teristics.
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