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Abstract

An experimental study of the feasibility and accuracy of the acyclicity approach in-
troduced in [16] for the inference of business relationships among autonomous systems
(ASes) is provided. We investigate the maximum acyclic type-of-relationship problem: on
a given set of AS paths, find a maximum-cardinality subset which allows an acyclic and
valley-free orientation. Inapproximability and NP-hardness results for this problem are
presented and a heuristic is designed. The heuristic is experimentally compared to most
of the state-of-the-art algorithms on a reliable data set. It turns out that the proposed
heuristic produces the least number of misclassified customer-to-provider relationships
among the tested algorithms. Moreover, it is flexible in handling pre-knowledge in the
sense that already a small amount of correct relationships is enough to produce a high-
quality relationship classification. Furthermore, the reliable data set is used to validate
the acyclicity assumptions. The findings demonstrate that acyclicity notions should be
an integral part of models of AS relationships.

1 Introduction

Interrelationship analysis of autonomous systems (ASes) has recently attracted much attention
in both theoretical and practical research on Internet inter-domain routing with BGP (see,
e.g., [9, 23, 22, 8, 5, 16, 7]). This interest is motivated by insights how routing stability and
quality in Internet is influenced not only by physical connections between ASes but heavily by
their business relationships. As business contracts are subject to privacy, computational tools
and techniques are required to infer close-to-reality relationship classifications from publicly
available resources such as WHOIS databases, the Internet Routing Registry [17], or BGP
beacons (e.g., [21, 25]).

A useful approach is the interpretation of observable BGP routes. Techniques based on
this approach usually work as follows: collect a set of AS paths from BGP routers, obtain
an AS-level connectivity graph (the AS graph) by merging all AS paths, and label the AS
graph with business relations such that all—actually, as many as possible—collected AS paths
are valley-free. Valley-freeness is a characteristic property of AS paths based on economic
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rationality, which in a simplified version says that, in the direction of traffic, a customer-to-
provider link should never follow a provider-to-customer link. The implementations ranges from
purely combinatorial (e.g., [5, 16]) to purely heuristical one’s (e.g., [9, 23, 27]). Though there
has been some criticism of unrealistic classifications [8], the empirical findings are encouraging
for further developments.

In [16], acyclicity has been added to valley-freeness as another structural condition of AS
graph labelings. The rationale for acyclicity is that it is unlikely the case that an AS A is a
provider of an AS B, AS B is a provider of an AS C, and AS C is a provider of AS A. It
has turned out that finding labelings which are both valley-free on the path set and acyclic
in the AS graph is easy, even if we want to respect explicit pre-knowledge (following the so-
called partialness-to-entireness methodology [27]). However, this theoretical feasibility and
plausibility of the acyclicity approach to AS relationship inference has not been supported with
empirical evidence in [16]. In this paper, we close this gap.

1.1 Contributions of the Paper

We contribute to an experimental analysis of the acyclic type-of-relationship problems in three
ways.

First, we operationalize acyclicity. In [16], algorithms have been presented to test whether
all paths of a given path set allow acyclic and valley-free orientations. In practice, collected
path sets are expected to fail this test. Thus, these algorithms are of theoretical interest only.
We consider the problem to find acyclic orientations which maximize the number of valley-free
paths. We provide lower bounds on the approximability of this problem (which implies the
NP-hardness as well) and we design a fast heuristic, which is refered to as AHeu, for finding
acyclic orientations which are valley-free on a large part of a given path set.

Second, we validate the acyclicity assumptions from [16]. In doing so, one issue is obtaining
a reliable data set. We report on several techniques employed. The graph we receive from the
reliable data set when only using customer-to-provider relationship is acylic. Including peer-to-
peer relationships is more problematic. It seems that we do not yet have the right understanding
how peer-to-peer relationships affect the graph-theoretical structure of BGP routes and the AS
graph.

Third, we compare the inference quality of our heuristic to a set of standard algorithms
from the literature. On the reliable data set, AHeu produces the lowest number of misclassified
customer-to-provider edges among all algorithms tested (in numbers: approximately 0.3% of
all edges in the reliable data set are misclassified). We further test how the inference quality of
the algorithms depend on inital pre-knowledge. Here, it is observed that for AHeu the relative
number of misclassified customer-to-provider edges is nearly independent of the amount of
pre-knowledge. That is, already a small amouth of correct relationships is enough to infer a
high-quality classification among the ASes.

All in all, the findings of this paper indicate that AHeu is a feasible and flexible heuristic
with excellent inference quality (at least with respect to customer-to-provider relationships) and
that in general, acyclicity should be an integral part of any further accuracy improvements.
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1.2 Related Work

Several algorithms have been proposed to infer relationship types from AS paths. The first
attempt was made in [9] where the valley-free path model was introduced and a heuristic was
designed based on statistical properties of a given path set. This approach was pushed fur-
ther in [23, 27] to combine valley-free path labelings obtained from different observation points
and from sources other than AS paths. In [5] (and some precursor papers), a combinatorial ap-
proach is developped based on expressing valley-freeness of paths in terms of the 2SAT problem.
A combination of the 2SAT-based formulation of valley-freeness and the statistical properties
of path set in terms of mathematical programming has been proposed in [8, 7]. A detailed
description of the standard algorithms is given in Section 3. The acyclicity approach to inter-
relationship analysis is from [16]. We explain it in detail in Subsection 2.3 (formal definitions
of acyclicity) and Section 4 (algorithmic ideas) where we devise our heuristic algorithm. Com-
putational techniques not based on AS path interpretation have been proposed and discussed
in, e.g., [22, 27, 6, 7]. Some of them are used in this paper to obtain a reliable data set. We
mention them if we discuss our methods.

1.3 Organization of the Paper

The rest of the paper is organized as follows: Section 2 contains a description of an abstract
model of BGP setting our context. It also contains a formal introduction to the valley-free
path model and the acyclicity assumptions. In Section 3 existing algorithms for solving the
interrelationship inference problems are discussed. In Section 4 we introduce the maximum
acyclic type-of-relationship problem, prove some (in)approximability results, and describe a
heuristic approach to solve it. Section 5 explains how we obtained our data sets for experimental
tests. In Section 6 we present data for validating the acyclicity assumptions. Finally, in Section
7 we present and discuss our experimental findings. We conclude with a summary and open
problems.

2 Preliminaries

We briefly describe a simple, abstract model of inter-domain routing in the Internet using BGP
(see, e.g., [26, 20, 11, 9]).

2.1 The Selective Export Rule

The elementary entities in our Internet world are IP adresses, i.e., bit strings of prescribed
length. An autonomous system (AS) is a connected group of one or more IP prefixes (i.e.,
blocks of contiguous IP adresses) run by one or more network operators which has a single
and clearly defined routing policy [12]. An AS aims at providing global reachability for its IP
adresses. To achieve this goal, ASes having common physical connections exchange routing
informations as governed by their own local routing policies. BGP is the de facto standard
protocol to manage data traffic between ASes for inter-domain routing as well as for route
propagation.
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AS v exports to

own routes
customer routes
provider routes
peer routes

provider customer peer sibling

Yes Yes Yes Yes
Yes Yes Yes Yes
No Yes No Yes
No Yes No Yes

Figure 1: The Selective Export Rule.

Reachability in the Internet depends on (physical) connectivity and contractual relation-
ships between ASes. The most fundamental binary business relationships are customer-to-
provider—where the provider sells routes to the customer—, peer-to-peer—where the involved
ASes provide special routes to their customers but no transit for each other—, and sibling-
to-sibling—where both ASes belong to the same administrative domain. Evidently, sibling-to-
sibling relations are transitive. More peculiar relationships appear in the real world (see, e.g.,
[9]). We restrict ourselves to the three mentioned types of relationships.

More specifically, let V be a set of AS numbers. For any v ∈ V , let N(v) ⊆ V denote the
set of its neighbor ASes, i.e., all numbers of ASes sharing a physical connection with v. The
undirected graph G = (V, E) where E = { {u, v} | v ∈ N(u) } is called a connectivity graph (at
the AS level) or simply AS graph. Let v ∈ V be any AS. According to the business relationship
we divide the neighbors of v into the sets Cust(v) of all customers of v, Prov(v) of all providers
of v, Sibl(v) of all siblings of v, and Peer(v) of all peering partners of v. Some of the sets may
be empty. We let Sibl(v) contain v as well. Let R(v) denote the set of all currently active
AS paths in the BGP routing table of v, i.e., all AS paths that have been announced from
neighboring ASes at a certain time and never been withdrawn. Assumed that there are no
misconfigurations of BGP, all AS paths in R(v) are loopless and not including v. Here, we say
that an AS path is loopless whenever between two sibling ASes on the path, no non-sibling AS
is passed. Based on the neighborhood classification, we further divide R(v) into four categories.
A loopless AS path (u1, . . . , ur) ∈ R(v) is

a customer route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Cust(v),
a provider route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Prov(v),

a peer route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Peer(v),
an own route of v ⇐⇒def for all 1 ≤ i ≤ r, ui ∈ Sibl(v).

Now, typically (at least, recommendably), ASes set up their export policies according to the
Selective Export Rule [1, 13, 9] as described in Figure 1. In our simplified model, the receiving
AS gets from an AS those (locally preferred) routes destined for it and prolongated with the
number of the sending AS as the new leftmost AS number in the path.

2.2 The Valley-Free Path Model

Valley-freeness is a graph-theoretical consequence of the Selective Export Rule. Let G = (V, E)
be an undirected (simple) graph. We assume that (u, v) ∈ E ⇔ (v, u) ∈ E. A (mixed)
orientation ϕ of G is a mapping from E to T where T denotes a set of possible edge-types. For
instance, a directed graph is a graph oriented with type set T = {←,→}. We consider type
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sets having the following edge-types and interpretations:

→ indicating a customer-to-provider relationship
← indicating a provider-to-customer relationship
−− indicating a peer-to-peer relationship
↔ indicating a sibling-to-sibling relationship

Throughout this paper, we only consider orientations ϕ that are consistent with respect to →.
That is, for all (u, v) ∈ E if ϕ(u, v) =← then ϕ(v, u) =→ and if ϕ(u, v) =→ then ϕ(v, u) =←.
Thus, if we allow → as a possible edge type, then we immediately allow ← as a possible edge
type as well. Instead of ϕ(u, v) =→ for an edge (u, v) ∈ E we also write u→ v.

We extend ϕ from edges to walks homomorphically. Let (v0, v1, . . . , vm) be any walk in
a graph G. Then ϕ(v0, v1, . . . , vm) is defined to be ϕ(v0, v1)ϕ(v1, v2) . . . ϕ(vm−1, vm), i.e., in
our setting generally, a word in {←,→,−−,↔}∗. We will typically use regular expressions
to describe walk types given an orientation. An important property of orientations is valley-
freeness, which we state here in terms of regular patterns of paths.

Definition 1 ([9]). Let G be any graph, and let ϕ(G) be an orientation of G. A loopless path
(v0, . . . , vm) is said to be valley-free in ϕ(G) if and only if ϕ(v0, . . . , vm) belongs to

{→,↔}∗{←,↔}∗ ∪ {→,↔}∗ −−{←,↔}∗.

The valley-freeness of paths abstracts the condition that autonomous systems never route
data from one of their providers to another of their providers because instead of earning money,
they would have to pay twice for these data streams.

Theorem 2 ([9]). Let G = (V, E) be an AS graph. Let P be any subset of AS paths of all BGP
routing tables, i.e., P ⊆

⋃
v∈V R(v). If all ASes export their routes according to the Selective

Export Rule, then there exists an orientation of P such that all AS paths in P are valley-free.

2.3 The Acyclicity Assumptions

Following [16], we summarize reasonable acyclicity structures within a connectivity graph, i.e.,
patterns of oriented cycles which are forbidden to be contained in the graph. An oriented cycle
(in its simplest form) can be interpreted as someone being its own provider and customer.

The following formal definition of an oriented cycle has been proposed in [16].

Definition 3 ([16]). Let G be any graph, and let ϕ(G) be an orientation of G. Let C be any
minimal cycle of G, i.e., a cycle that does not contain a vertex twice. C is said to be an oriented
cycle of ϕ(G) if and only if ϕ(C) belongs to

{−−,↔}∗ → {→,−−,↔}∗ ∪ {−−,↔}∗ ← {←,−−,↔}∗ ∪ ↔∗ −− ↔∗ .

The minimality of cycles is required since we exactly count occurrences of peer-to-peer edges
in oriented cycles.

To exemplify the definition, Figure 2 shows the 16 non-isomorphic triads of the 64 possible
orientations of a complete graph on three vertices. Half of them are oriented cycles according
to Definition 3 and half of them are not.
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Figure 2: Non-isomorphic triads. All triads in the upper row are forbidden and all triads in
the lower row are allowed.

Note that in the case that ϕ does not exhaust the full type set {→,−−,↔}, the patterns of
oriented cycles simplifiy. For instance, if the type set is {→}, then we obtain that a minimal
cycle C is an oriented cycle if and only if ϕ(C) belongs to →∗ or ←∗ which is the usual
understanding of a cycle. As a second example, if the type set is {↔,−−}, then a minimal cycle
C is an oriented cycle if and only if ϕ(C) belongs to ↔∗ −− ↔∗.

The plausibility of Definition 3 is based on the following size rules (see, e.g., [10, 9, 18, 23,
16]):

1. If AS u is a customer of AS v, then AS u has much smaller size (i.e., number of routers)
than AS v.

2. If AS u is a peering partner of AS v, then AS u and AS v are roughly of the same size.
Here, the binary relation roughly the same size is considered to be transitive.

3. If AS u and AS v are siblings, then they count as one AS, i.e., we assume that the size of
u is determined by its own number of routers and the number of routers of all its sibling
ASes.

As the definition above is logically implied by these rules, objections to the definition should
be traced back to objections to some of these rules.

We call an orientation acyclic if it contains no oriented cycles. Testing whether an orienta-
tion is acyclic can be done fastly by standard techniques (see, e.g., [4, 16]).

3 Existing Inference Algorithms

The problem of inferring business relationships from AS paths has been studied before. More
precisely given a (multi)set of AS paths (which imply an AS graph) we try to find a classification
of the edges of the AS graph, such that as many paths as possible are valley-free. Following we
will present some of the algorithms for solving this problem.

3.1 Gao’s Heuristic

The inference of relationships classified into customer-to-provider, peer-to-peer, and sibling-to-
sibling links was originally formulated in [9]. This paper also gives the first heuristic for the
problem, based on two assumptions:
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1. For a pair of ASes which are connected, always the larger one is the provider for the
smaller one. (This is the first size rule from Subection 2.3.)

2. The size of an autonomous system is proportional to its degree in the AS graph.

The algorithm operates in three phases. At first the AS graph is constructed from the set of
AS paths by inserting an edge for each pair of ASes adjacent on any path. This graph is also
used to calculate the degree of an autonomous system. The second phase finds for each path
the AS with maximum degree (the top provider) and records for each edge on the path the
direction towards the top provider as preferred. Finally the third phase iterated over all edges
of the AS graph and compares how often each of both possible directions was preferred. If the
vote is clear, the edge is oriented as customer-to-provider in the implied direction, in case of
a tie a sibling-to-sibling edge is inferred. The decision whether the vote is clear is based on a
threshold L which is recommended to be set to 1 (for details consult [9]).

3.2 A Simple Approximation Algorithm

In [5] a simple approximation algorithm based on a random orientation of the AS graph is pre-
sented. The idea is to orient each edge either as customer-to-provider or provider-to-customer
(with probability 1/2). Then a path of length ` is valley-free with probability `+1

2` , as there
are only ` + 1 valley-free configurations out of 2` possible orientations. Thus if the length of
the input paths can be bounded by `, it is expected that a fraction of `+1

2` of all given paths is
valley-free. Using conditional probabilities this algorithm is derandomized yielding the desired
approximation algorithm with approximation factor `+1

2` . We will refer to this algorithm as
APX. The mentioned approach can be improved by means of semidefinite programming (SDP)
as described in the paper.

3.3 2SAT-based DPP* Heuristic

Another heuristic approach based on the 2SAT problem is also given in [5]. They start with an
arbitrary orientation of all edges of the AS graph as either customer-to-provider or provider-
to-customer. To each edge a boolean variable is assigned which is true if this edge should be
reversed and false otherwise. The crucial observation is that valley-freeness can be checked
for locally by inspecting edge pairs adjacent in an AS path. For a single pair of edges there
is exactly one situation which is forbidden (both edges pointing away from each other). If an
orientation is found where this forbidden situation is avoided for all edge pairs, all AS paths
are automatically valley-free. These forbidden edge configurations are formulated as a boolean
expression over the edge variables introduced before. As only two edges are involved in each
forbidden pattern, the conjunction of all these expressions yields a 2SAT instance which can be
solved in linear time. From this 2SAT solution the orientation for the AS graph is easily found
by flipping all edges whose variables are true.

The algorithm just described can answer the question whether it is possible to find an
orientation making all paths valley-free. To get an algorithm for maximizing the number of
valid paths, above algorithm is applied on a set of AS paths. If it finds a suitable orientation,
all paths are valey-free. Otherwise the set of “blocking” variables (and thus edges) is calculated
(this information is easily available from the way the 2SAT problem is solved). From these edges
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the one contained in the least number of paths is selected and all paths containing this edge are
removed. With this reduced path set the procedure is restarted until finally an orientation for
which all remaining paths are valid is found. It should be pointed out that using suitable data
structures the described process can be performed incrementally without having to reconstruct
the 2SAT instance in each iteration.

After this first phase the heuristic tries to reinsert the removed paths. In [5] two methods
for this are mentioned. The first one (called DPP) simply adds each single path and tests if
there is still a valley-free orientation. If not, the path is rejected again. The second method
(DPP*) considers each edge not yet oriented and counts how many of the removed paths would
benefit from each of the possible orientations of this edge. Then the edge is oriented according
to the majority of these “votes”. As this second approach is reported to be both faster and
better in terms of the number of valley-free paths we only use DPP* here.

3.4 Handling Pre-knowledge

In this paper we also explore the influence of previous knowledge on the quality of the induced
relationships. As none of the mentioned algorithms has support for this kind of information,
we are using a simple preprocessing algorithms in conjunction with them when calculating
inference results for given pre-knowledge. This algorithm calculates a partial orientation of the
AS graph and a set of remaining AS paths. The final result is then obtained by applying one
of the presented inference algorithm on the remaining paths and merging the orientations from
the inference algorithm with those from the preprocessor.

Algorithm 1: Preprocessing algorithm for handling pre-knowledge

Input: AS path set P , set of known customer-to-provider edges E
Output: A reduced set of AS paths usable to infer the edges which could not be

inferred from E
P ′ := P , P := ∅1

while P 6= P ′ do2

P := P ′, P ′ := ∅3

foreach path p ∈ P do4

let p = p1, p2, . . . , pn5

up := max{i | pi−1 → pi is in E} ∪ {0}6

down := min{i | pi ← pi+1 is in E} ∪ {n}7

if up > down then8

drop this path, as it cannot be valley-free for E9

else10

for i := 2 to up−1 do11

insert edge pi−1 → pi into E unless edge pi−1 ← pi exists12

for i := down +1 to n− 1 do13

insert edge pi ← pi+1 into E unless edge pi → pi+1 exists14

if up < down then insert path pup, . . . , pdown into P ′
15

return P16
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Our simple algorithm only handles customer-to-provider edges in the pre-knowledge. It
exploits the fact that a single edge on an AS path fixes the orientation of many other edges
on this path. These edges are added to the pool of known edges. We repeat this step for all
paths until we gain no new information. The details are outlined in Algorithm 1. Two kinds of
errors can occur during the application of the algorithm which both indicate errors in the data
(partially from BGP misconfigurations). On the one hand a path might be not orientable valley-
free with respect to the already known orientations, on the other hand newly found orientations
can be in conflict with the existing knowledge. We implemented no advanced correction scheme
for these situations but simply react with discarding the new conflicting information.

4 A Heuristic Algorithm for the Maximum Acyclic Type-

of-Relationship Problem

An algorithm for finding an acyclic and valley-free orientation of an AS graph for a given path
set is presented in [16]. If there is no such orientation the algorithm reports this. We will show
how to modify this algorithm to find an acyclic orientation which is valley-free for a large part
of the AS paths followed by some improvements to the basic scheme. Formally, we consider the
following optimization problem (see [3] for notation):

Problem: Maximum Acyclic ToR
Input: AS path set P (with possibly multiple occurrences of paths)
Solution: A subset P ′ ⊆ P allowing an acyclic and valley-free orientation
Measure: The cardinality ‖P ′‖ of the subset P ′

Later it will be more convenient (in particular, for algorithms) to have also the AS graph
induced by P as part of the input. The goal is to design algorithms that find a solution on a
given P with the cardinality as high as possible.

4.1 Approximation Guarantees

We start by analyzing the existence of feasible algorithms for Maximum Acyclic ToR having
provable approximation guarantees.

On the negative side, we rule out the existence of polynomial-time approximation schemes,
unless P = NP. A polynomial-time approximation scheme (for a maximization problem) is
an algorithm which computes in time polynomial in the size of the instance (x, ε), ε ≤ 1, a
solution which is within a factor ε of the optimal solution for the input x (see, e.g., [3]). We
feel that the achievable approximation quality is much poorer than stated here but we do not
have a proof for this.

Technically, we prove that Maximum Acyclic ToR is hard for the class APX. APX is
the class of optimization problems admitting algorithms with a constant approximation ratio
(see, e.g., [3]).

Theorem 4. Maximum Acyclic ToR is APX-hard.
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Proof. Maximum Acyclic Subgraph is the problem to compute, on a given directed graph
G = (V, E), a maximum-cardinality edge subset E ′ ⊆ E such that (V, E ′) is acyclic. It is known
that Maximum Acyclic Subgraph can be approximated with in a factor 1

2
of the optimum

but does not admit a polynomial-time approximation scheme, i.e., it is APX-complete [19]. We
describe an L-reduction from Maximum Acyclic Subgraph to Maximum Acyclic ToR
(see, e.g., [3] for a definition of L-reductions). Given a directed graph G = (V, E) (without
loops) let f be the function defined by

f(G) =def

{
(u, v, (u, v)−, (u, v)+), (u, v, (u, v)+, (u, v)−)

∣∣ (u, v) ∈ E
}
.

Here, (u, v)− and (u, v)+ are new vertices which are associated with the directed edge (u, v)
(and thus are different to vertices (v, u)− and (v, u)+ if the edge (v, u) also belongs to E) and
which are not contained in V . Note that each acyclic and valley-free orientation of a path
set containing both paths (u, v, (u, v)−, (u, v)+) and (u, v, (u, v)+, (u, v)−) orients u towards v.
Therefore, if G is acyclic then f(G) allows an acyclic and valley-free orientation. For any path
set P ⊆ f(G) define the corresponding edge set g(G, P ) by

g(G, P ) =def

{
(u, v) ∈ E

∣∣ (u, v, (u, v)−, (u, v)+) ∈ P and (u, v, (u, v)+, (u, v)−) ∈ P
}

Clearly, f and g are computable in polynomial time. Note that ‖f(G)‖ = 2‖E‖ and ‖g(G, P )‖ ≥
‖P‖ − ‖E‖. Let E∗ be an optimal solution for G = (V, E) and let P ∗ be an optimal solution
for f(G). Then, we easily obtain that

‖P ∗‖ ≤ ‖f(G)‖ = 2‖E‖ ≤ 4‖E∗‖.

For the latter note that for each G = (V, E) there is always an acyclic subgraph having at least
1
2
‖E‖ edges [19]. On the other hand, since (V, E∗) is acyclic, there is a topological ordering

π : V → {1, . . . , ‖V ‖} for (V, E∗), i.e., π is bijective and satisfies that if (u, v) ∈ E∗ then
π(u) < π(v). Moreover, since E∗ is maximal, for each (u, v) ∈ E \ E∗ we have π(u) > π(v).
Thus, if we reverse all edges (u, v) ∈ E \E∗, then we obtain an acyclic graph witnessed by the
same topological ordering π. So, the path set

P (E∗) =def f(G) \
{

(u, v, (u, v)−, (u, v)+)
∣∣ (u, v) ∈ E \ E∗ }

allows an acyclic and valley-free orientation. Hence, we conclude that ‖P ∗‖ ≥ ‖P (E∗)‖ =
‖E∗‖+ ‖E‖. Thus, the following bound on the absolute error holds:

‖E∗‖ − ‖g(G, P )‖ ≤ ‖P ∗‖ − ‖E‖ − (‖P‖ − ‖E‖) = ‖P ∗‖ − ‖P‖

Consequently, Maximum Acyclic Subgraph L-reduces to Maximum Acyclic ToR via
(f, g, 4, 1). Since Maximum Acyclic Subgraph belongs to APX, we obtain the APX-hardness
of Maximum Acyclic ToR (see [3, Lemma 8.2]).

The decision version of Maximum Acyclic ToR consists of all instances (P, k) such that
P is a (multi)set of AS paths containing a subset P ′ ⊆ P which has at least k paths and which
allows an acylic and valley-free orientation.

Corollary 5. The decision version of Maximum Acyclic ToR is NP-complete.
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Proof. The containment in NP is obvious. The hardness follows by reduction from the deci-
sion version of Maximum Acyclic Subgraph. The decision version of Maximum Acyclic
Subgraph consists of all pairs (G, k) such that G = (V, E) is a directed graph containing an
acyclic subgraph with at least k edges. This problem is known to be NP-complete [14]. For
the reduction we use the function f from the proof of Theorem 4 and prove the following:
Let G = (V, E) be a directed graph with m edges. The pair (G, k) belongs to the decision
version of Maximum Acyclic Subgraph if and only if the pair (f(G), k +m) belongs to the
decision version of Maximum Acyclic ToR. For the direction from left to right let E ′ ⊆ E
be an edge set such that ‖E ′‖ ≥ k and (V, E ′) is acyclic. Define P (E ′) as in the proof of
Theorem 4. Then, by the same arguments as there, we obtain that P (E ′) has an acyclic and
valley-free orientation and ‖P (E ′)‖ = k + m. For the direction from right to left let P ⊆ f(G)
be a path set such that ‖P‖ ≥ k + m and P has an acyclic and valley-free orientation. De-
fine E ′ =def g(G, P ) for the same g as in the proof of Theorem 4. We conclude that (V, E ′)
is acyclic and ‖E ′‖ ≥ ‖P‖ − m ≥ k. This proves the NP-hardness of the decision version of
Maximum Acyclic ToR.

On the positive side, we do not know any non-trivial bound on the approximation quality
of Maximum Acyclic ToR. However, if we restrict the allowed path lengths, then we obtain
a constant approximation ratio. Let Maximum Acyclic ToRk denote the problem to find,
given a set of paths of length at most k, a maximum-cardinality subset which allows an acyclic
and valley-free orientation.

Theorem 6. For each k ∈ N+, the problem Maximum Acyclic ToRk can be approximated
within a factor of 2k

(k+1)!
of the optimum in polynomial time.

Proof. The proof is by induction over k. For the base of induction, suppose k = 1. Obviously,
each path set consisting of paths of length one, i.e., edges, allows an acyclic and valley-free
orientation. So, the optimum can be achieved which implies an approximation ratio 1. As to
the induction step, let k > 1. Suppose we are given a path set P . For a vertex v ∈ V (P ), let
βP (v) denote the number of paths of P such that v is located at the boundary and let µP (v)
denote the number of paths of P such that v is located in the middle. Let P (v) ⊆ P be the
set of all paths containing the vertex v. By the pigeon-hole principle, there is always a vertex
v ∈ V (P ) such that βP (v) ≥ 2

k−1
· µP (v). Fix such a vertex v0. Iteratively find such vertices in

the path set P \ P (v0). Finally, this produces a sequence of vertices v0, v1, . . . , vr such that

1. P =
⋃r

i=0 Pi, where P0 =def P (v0) and for 1 ≤ i ≤ r, Pi =def (P \
⋃i−1

j=0 Pj) ∩ P (vi), and

2. for all 0 ≤ i ≤ r it holds that βPi
(vi) ≥ 2

k−1
· µPi

(vi).

Let P ′
i be the set of paths obtained from the path set Pi as follows: remove completely all paths

with vi in the middle. In the remaining paths of Pi remove the vertex vi from the path (which is
a boundary vertex). Clearly, the paths of P ′

i have length at most k− 1. Define P ′ =def

⋃r
i=0 P ′

i

by multiset union. That is, the multiplicity of a path p ∈ P ′ corresponds to the number of vi’s
such that p ∈ Pi. Then, P ′ consists of paths of length at most k − 1 and can be computed in
polynomial time. Moreover, we obtain

‖P‖ =
r∑

i=0

‖Pi‖ =
r∑

i=0

βPi
(vi) + µPi

(vi) ≤
(

k − 1

2
+ 1

)
·

r∑
i=0

βPi
(vi) =

k + 1

2
· ‖P ′‖.
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By induction hypothesis, there is an algorithm outputting a path set L′ ⊆ P ′ such that L′

allows an acyclic and valley-free orientation and ‖L′‖ ≥ 2k−1

k!
· ‖P ′‖. We easily obtain from L′

a path set L by attaching the vertices vi back to the corresponding paths and orienting the
edges from vi towards the middle, i.e., L =def {(vi, u0, . . . , u`) ∈ P |(u0, . . . , u`) ∈ L′} where we
assume that each path occurs with maximum multiplicity prescribed by P . It is easily seen
that if we fix any acyclic and valley-free orientation of L′, then this orientation of L is acyclic
and valley-free. Furthermore,

‖L‖ ≥ ‖L′‖ ≥ 2k−1

k!
· ‖P ′‖ ≥ 2k−1

k!
· 2

k + 1
· ‖P‖ =

2k

(k + 1)!
· ‖P‖.

This proves the theorem.

Observe that the proof of the theorem shows that each set of paths of length at most k
contains at least a 2k

(k+1)!
fraction which allows an acyclic and valley-free orientation. Unfortu-

nately, these fractions decrease very quickly as path length increases, e.g., for path length 2 the
fraction is 2

3
≈ 66.7%, for length 3 it is 1

3
≈ 33.3%, for length 4 it is 2

15
≈ 13.3%, and for length

5 it is already 2
45
≈ 4.4%.

4.2 The Basic Heuristic

We turn to algorithms without proven approximation guarantees.
The algorithm from [16] for testing whether a path set allows acyclic and valley-free orien-

tations is based on the observation that a leaf AS (i.e., one that itself has no customers) cannot
be in the middle of any AS path (a fact which is also used in the proof of Theorem 6. We will
describe it combined with the extension for discarding an interfering path, but before digging
into the details we should fix some notation.

During its execution the algorithm will remove ASes which have been finished. To avoid
having to change all the paths, we manage a set R of removed nodes. Given such a set, a node
v in a path p is called inner node of p relative to R if it is surrounded in p by nodes u and w
with u, w /∈ R. A node not in R that is not an inner node for all paths of the paths set is called
free.

In the algorithm (details in Algorithm 2) we count for each node v in count(v) the number of
paths for which v is an inner node. The set F of free nodes is then easily initialized by all nodes
with count = 0. The main loop (lines 9–28) can be separated into two phases. The first phase
(lines 10–18) is taken from the algorithm in [16]. While there is a free node u in F we interpret
it as a leaf AS and thus orient the edges to its neighbors (not yet in R) as customer-to-provider.
As it is removed afterwards (i.e., put into R) we adjust the count variables accordingly to find
nodes which are now freed. If we can remove all ASes this way (R = V ) we know that the
orientation is valley-free and acyclic, as the nodes have been removed in topologically sorted
order (each node had indegree 0 when it was removed).

If the first phase ran out of free nodes before all ASes could be removed, we need to create
additional free nodes by discarding paths (starting from line 21). As we want to discard as
little paths as possible, we select a node v which is an inner node for the minimal number of
paths (as indicated by count(v)). By removing all those paths, v becomes a free node and we
continue with the first phase.
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Algorithm 2: Heuristic for Maximum Acyclic ToR

Input: AS path set P , AS graph G = (V, E) for P
Output: A set N of discarded paths and an orientation of G with customer-to-provider

edges such that the orientation is acyclic and valley-free for all paths in P \N
foreach v ∈ V do count(v) := 01

foreach p ∈ P do2

foreach inner node v of p relative to ∅ do3

count(v) := count(v) + 14

F := ∅, R := ∅, N := ∅5

foreach v ∈ V with count(v) = 0 do6

F := F ∪ {v}7

done := false8

while ¬ done do9

while F 6= ∅ do10

remove vertex u from F11

foreach v ∈ V \R with {u, v} ∈ E do12

orient {u, v} as customer-to-provider13

foreach p ∈ P containing u and v as neighbors do14

if v is an inner node of p relative to R then15

count(v) := count(v)− 116

if count(v) = 0 then F := F ∪ {v}17

R := R ∪ {u}18

if R = V then19

done := true20

else21

v := argminu∈V \R count(u)22

foreach path p ∈ P with v ∈ p do23

if v is an inner node of p relative to R then24

N := N ∪ {p}25

foreach inner node u of p relative to R do26

count(u) := count(u)− 127

if count(u) = 0 then F := F ∪ {u}28

return N29
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We want to point out that the algorithm can easily be modified to work for a weighted path
set, where the goal consists of minimizing the overall weight of the dropped path. The count(v)
variables then would not store the number of path for which v is an inner node, but the overall
weight of those paths. All steps updating count(v) are adjusted accordingly for this.

4.3 Handling Pre-knowledge

If we already have partial information on the AS relationships we would like to incorporate
this knowledge thereby improving the results of the algorithm. In [16] the influence of pre-
knowledge on the complexity of testing whether an acyclic and valley-free orientation consistent
with the pre-knowledge exists is discussed and an extension for the acyclic inference algorithm
for handling known customer-to-provider edges is presented. As our heuristic is a modification
of the algorithm given there, we can easily transfer this extension.

The idea is to introduce for each known customer-to-provider edge u → v a new path
(u, v,⊥), where ⊥ is an artificial AS with count(⊥) = ∞. So the only way to make v a free
node is to remove u which includes the introduction of an edge u→ v as desired. Of course these
new AS paths need not be constructed explicitly, but can be handled implicitly by modifying
the heuristic above.

As the heuristic is allowed to drop paths hindering a consistent orientation, interpreting
known edges as paths also allows dropping these edges in case of a conflict. Often however the
explicit pre-knowledge is trusted more than the set of AS paths. For this case we can increase
the weight of the (virtual) paths introduced in this step. In our implementation all AS paths
are weighted with 1 and all paths originating from known edges are assigned the same weight
W . Thus a customer-to-provider edge may only be discarded, if we can “save” at least W AS
paths instead.

4.4 Readding

After finding an AS path set which can be oriented valley-free, the DPP* heuristic from [5]
enters a second phase where edges which had to be dropped before are readded to the path set
if possible. Two approaches for this are considered there. One is the voting process already
described in Subsection 3.3, the other one is for each single path to add it to the path set and
only keep it if a valley-free orientation is still possible.

As the readding stage reduces the number of invalid path by some extent we adapted this
method for our heuristic. Unfortunately the simple and fast voting strategy will not work for
our case as it does not necessarily preserve the global acyclicity. The alternative approach of
adding paths one by one and retesting orientability does work but is quite expensive if the
number of dropped paths is high (as already observed by [5]). Therefore we adjusted readding
as follows.

The first run of the heuristic returns a set N of discarded paths, from which we can determine
the set of orientable paths P . We decide on the number k > 1 of additional runs we are willing
to spend and partition N arbitrarily into k sets N1, . . . , Nk. For each such set Ni we then run
the heuristic above for the path set P ∪ Ni and again receive a set of discarded paths N ′. If
|N ′| < |Ni| we could reduce the number of dropped paths and use P := (P ∪Ni) \N ′ from now
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on, otherwise we stick with the original P . As we treat edges from the pre-knowledge as AS
paths as described before, this strategy will work for readding those discarded edges as well.

5 Obtaining Real-World Data

To run the inference algorithms we need valid AS paths used in the Internet. Additionally we
are interested in at least partial information on the business relationships between autonomous
systems, to both verify our inference results as well as using them as previous knowledge
for the inference algorithms. Unfortunately there is no single exhaustive source listing those
relationships, so we have to use other publicly available information and try to extract them
from it. We will discuss the sources and methods used to retrieve the data used herein in the
following subsections. All data was collected on 3/31/2006. In case of multiple data samples
for this day (as offered by some archives) the latest one available for the day was used.

5.1 AS Paths

We extracted AS paths from the routing tables available through the route collectors from RIPE
RIS [21] and the Route Views project [25]. Both sites operate several BGP beacons, modified
BGP routers which exchange routing information via peering sessions with other routers but do
not participate in actual routing (i.e., they announce no routes). Both sites provide an archive
with the routing tables of these beacons from which AS paths can be extracted. We used the
last routing table available for 3/31/2006 from each beacon available (for RIPE RIS these are
rrc00 to rrc07, and rrc10 to rrc15, for RouteViews these are RouteViews2, EQIX, ISC, KIXP,
LINX, and WIDE).

The second source for AS paths are the public route servers listed at [15]. We established
a telnet session and obtained their routing tables using the show ip bgp command. Due to
technical issues (time-outs, etc.) not all of them could be collected. The routing tables used
are listed in Figure 3.

By design the AS paths used in BGP contain no cycles (i.e., duplicate AS numbers on
the same path). The only exception is prepending where the same AS appears multiple times
at consecutive positions. As prepending is only relevant for routing decisions but not for the
inference algorithms discussed here, we preprocessed the paths by discarding all but the first
AS from a sequence of identical AS numbers. Even after this preprocessing there are still
paths containing cycles or ASes from the private range (AS64512 to AS65534), probably due
to configuration errors. Such paths were completely removed from the data pool.

Finally we normalized the path set to include only those paths that were not already implied
by other AS paths. More formally, an AS path is dropped if itself or the reversed path is a
substring (including identity) of another AS path in the data pool. Using the source presented
above and the preprocessing and normalization procedure we received a set of 2002714 AS
paths with an average path length of 3.44.

5.2 RPSL Information from WHOIS

Our primary data source for relationships are the WHOIS databases which besides other
information contain structured records for autonomous systems (aut-num). A list of avail-
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AS553 (BelWue)
AS852 (Telus - East Coast)
AS852 (Telus - West Coast)
AS3257 (Tiscali)
AS3561 (Savvis Communications)
AS3741 (Internet Solutions)
AS4323 (Time Warner Telecom)
AS5388 (Planet Online)
AS5511 (Opentransit)
AS6539 (GT Group Telecom)
AS6648 (Bayantel Inc.)
AS6667 (Eunet Finland)
AS6730 (Sunrise)
AS6939 (Hurricane Electric)
AS7474 (Optus Route Server Australia)
AS7911 (Wiltel)
AS8220 (Colt Internet)
AS9132 (Broadnet Mediascape Communications AG)
AS12312 (Tiscali Germany)
AS13645 (Host.net)
AS15290 (Allstream - East)
AS15290 (Allstream - West)

Figure 3: The routing tables extracted from routers listed at [15]
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aut-num: AS123

import: from AS456 accept ANY

export: to AS456 announce AS456

aut-num: AS456

import: from AS123 accept AS123

export: to AS123 announce ANY

Figure 4: A simplified WHOIS record

able databases can be found at [17]. We decided to use the databases from APNIC, ARIN,
LEVEL3, RADB, RIPE, and VERIO. Other approaches for extracting business relationships
from WHIOS data are described in [6, 22]. As we are only interested in a set of relationships
to test our inference results with and not in a complete view of the Internet, we use a simpler
approach which is motivated by those mentioned before and described next.

The most valuable information in these aut-num records are the import and export rules
which encode the routing policy of the autonomous system using RPSL (Routing Policy Speci-
fication Language [2]). As RPSL is a very rich language (the Bison grammar given in [2] covers
8 pages) we do not try to understand all of it but discard all rules not of the most primitive
format which is the number of the AS these rules apply to, followed by a list of autonomous
systems (possibly including as-sets), routes to which are imported respectively exported. To
indicate the lack of filtering the list can be replaced by the ANY keyword. An example of such
rules is given in Figure 4. As most rules are using this simple format, we are not losing to
much information. To get rid of conflicting entries, all records appearing in multiple databases
are skipped. Additionally we discard all records not modified since 1/1/2005 to get rid of
unmaintained entries.

When processing the record of some AS A we check each AS B for which both import and
export policies have been parsed. These policies can be roughly categorized into unfiltered (if
ANY is used) and filtered (if a list of AS numbers follows). The only rules used in the valley-free
path model are to export anything or to export only own and customer routes. These map nicely
with our filtered and unfiltered policies, so having both the import and export rules between A
and B we can directly infer one of the four relationship types of the valley-free path model. In
the example given in Figure 4 AS123 exports only own routes to AS123 but imports everything
from it, so the export is filtered while the import is unfiltered. Thus we conclude AS456 to
be a provider of AS123. If both were filtered, we would infer a peer-to-peer relationship, and
unfiltered import and export indicate sibling-to-sibling relationship. However as we do not
expect ISPs to document internal routing policies in public registries, such sibling-to-sibling
links are considered configuration errors (or documentation inconsistencies) and discarded.

As the information in the WHOIS tables is usually provided voluntarily and often outdated,
we can not expect the results from this approach to be absolutely correct. Siganos and Faloutsos
[22] estimate the correctness of their refined approach to be higher than 83% due to errors in
the WHOIS tables. On the other hand they are analyzing more complicated rules and try to
get a more complete picture of the Internet relationships than we do here. As we only need
partial information and may drop everything not fitting with our assumptions we expect to
have more accurate results.
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aut-num: AS8437

as-name: UTA-AS

· · ·
remarks: Communities tagged on inbound routes

remarks: ====================================

remarks:

remarks: 8437:1000 Customer Routes

remarks: 8437:1004 Peering Routes

Figure 5: Example for documenting communities in the aut-num record

One step towards improving the quality of the extracted relationship information is exploit-
ing the symmetry of the import and export rules. In Figure 4 we concluded from the record for
AS123 that AS456 is a provider for it. From the record for AS456 we can see AS123 to be its
customer which is consistent with this information. Ideally for each pair of ASes we have two
characterizations of their relationships. If they are consistent (both peer-to-peer or customer-
to-provider with provider-to-customer) our trust in this information increases, otherwise we
discard the information for this AS pair. As many autonomous systems do not disclose their
routing policy, we often only find one characterization for a relationship. We keep this infor-
mation separate and use it for testing the robustness of the inference algorithms on erroneous
data.

From the WHOIS databases listed above, we extracted 4438 edges which are confirmed twice
by the RPSL statements and 33828 that were only encountered once. Because the inference
algorithms only find relationships for AS pairs adjacent on at least one path, we removed
all AS pairs from above edge sets not neighbored on any path. After this cleaning process
there are 964 customer-to-provider and 598 peer-to-peer relationships in the first set and 6564
customer-to-provider and 3988 peer-to-peer edges in the second set.

5.3 Using BGP Communities

In [27] a different approach for extracting relationships using the BGP communities attribute
(introduced in [24]) is described. BGP communities are arbitrary numbers that are tagged to
routes and can be used in routing decisions. To make these numbers unique, the AS number of
the AS which added the community is included in the community number. Besides influencing
other routing parameters (such as local-pref and prepending) communities are often used to
document the origin of a route including whether they were received from a provider or from a
peer. Unfortunately there is no general agreement on the usage of community numbers, so their
meaning depends on the originating AS. Furthermore there is no unique way of documenting
them, however some ISPs are using the remarks entries in the WHOIS aut-num records for
this purpose (an example is given in Figure 5).

As the contents of the remarks section are not standardized it is complicated to automat-
ically extract the meaning of documented communities, so we performed this step manually.
Although harvesting the entire WHOIS databases for this information by hand is nearly impos-
sible, limiting this search to remark lines containing an additional colon and one of the phrases
peer, customer, provider, uplink, upstream makes this a manageable task.
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Now if we are given an AS path tagged with a community from our list, we can infer the
relationship for one AS pair. For example let the path be AS1 AS2 AS8437 AS3 AS4 and the
communities contain 8437:1000 then we know that AS8437 received the path AS3 AS4 from its
customer AS3, so we can infer a customer-to-provider edge. With a list of known communities
extracted from all WHOIS databases above, we used this approach on all the routing tables
collected from RIPE RIS and Route Views. The routing tables obtained using show ip bgp

cannot be used as they lack information about communities. Although many communities are
discarded by routers on the path, enough of them are in the routing tables to allow us finding
1882 distinct customer-to-provider and 1495 peer-to-peer edges. Due to the method used, they
are automatically on an AS path.

5.4 Sibling Relationships

The approaches presented so far find no sibling-to-sibling edges, as ISPs only document their
external routing behavior. To get around this we assume that all autonomous systems belonging
to the same organization are siblings of each other, which is a sensible assumption under
economic aspects. Further we expect a company to have the same contact persons for all its
autonomous systems, so aut-num records having different entries in one of the mnt-by, admin-c,
tech-c fields are considered not to be siblings. From the remaining pairs of “sibling candidates”
we only keep those sharing a long common prefix or suffix in the name or the description of the
ASes. This gives a set of potential sibling clusters which are then manually verified in a final
step.

It turns out that using only the information from WHOIS we sometimes cannot decide
whether two autonomous systems are siblings or if one is a customer AS which is only maintained
by its provider. As only small ASes at the border of the Internet are likely to delegate their
administration, and introducing a wrong sibling-to-sibling relationship in this case does not do
too much harm, we decide for keeping the sibling-to-sibling edge when in doubt. This way we
obtain 5301 sibling-to-sibling edges from 360 sibling cliques.

Contrary to the customer-to-provider and peer-to-peer edges the sibling-to-sibling edges are
not used to validate the results of the algorithms but rather to preprocess the input data by
replacing each AS number with a representative sibling in all paths and edges.

5.5 Summary of Data Used

We want to summarize the data used for the experiments presented later. For each experiment
we used the complete AS path set as described before. The edges are separated into two sets,
which we call the reliable set and the full set respectively. In the reliable set there are the
customer-to-provider and peer-to-peer edges obtained from BGP communities and those ap-
pearing twice in the RPSL extracted edges. We expect this set to contain only little errors. The
full set consists of the reliable set and additionally all edges appearing only once in the RPSL
edges. This set is especially useful for testing the algorithms with uncertain preknowledge, as
probably 5 to 20 percent of the information contained there is incorrect.

As a preprocessing step for each experiment we used the sibling edges obtained before
to replace all sibling ASes with a single AS. This slightly influences the numbers reported
before, as some paths and edges had to be dropped due to being malformed after this step.
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AS paths 2002680 paths (average length 3.43)
containing 21862 ASes and inducing 56922 AS pairs

reliable edge set 2739 customer-to-provider edges
2000 peer-to-peer edges

full edge set 8850 customer-to-provider edges
5434 peer-to-peer edges

Figure 6: The data used for the experiments after all preprocessing steps (path normalization,
dropping unused edges, replacing siblings)

Additionally inconsistent edges (e.g., a peer-to-peer and customer-to-provider relationship for
the same edge) were removed. The details for the final path and edge sets ultimately used as
input and reference for the algorithms are shown in Figure 6.

6 Validating the Acyclicity Assumptions

Using the data from the previous section we intend to compare our acyclicity model to the
real Internet. Therefore we build graphs from the edges collected and check if they are acyclic
according to our formulation.

The graphs we receive when only using customer-to-provider relationships are acyclic both
for the reliable and the full data set. However including peer-to-peer edges into these graphs
creates cycles in both cases. To get an impression of how much acyclicity is violated we tested
every triangle in the graphs whether it was a directed circle or not. For the reliable edge set
the graph contains 2826 triangles from which 253 (9%) induce a directed cycle. In full edge set
there are 18621 triangles, 2427 (13%) of them cyclic.

We take these results as an indication that indeed the overall structure of AS relationships is
acyclic but our model of acyclicity is still imprecise when it comes to peer-to-peer relationships.
This is probably mostly due to assuming the relation “roughly of the same size” to be transitive
when interpreting peer-to-peer edges.

7 Experimental Findings

To compare our acyclic inference heuristic (to which we refer as AHeu here) to existing algo-
rithms we executed all of them on the path set from Section 5 and compared the resulting
edge classification to the reliable and full edge set described there. We are interested in both
the number of paths which are not oriented correctly (i.e., are not valley-free) and the number
of customer-to-provider edges that were not inferred as such. As none of the algorithms used
is capable of identifying peer-to-peer relationships we do not compare the inferred results to
our known peer-to-peer edges. An exception is Gao’s algorithm as it introduces sibling-to-
sibling edges which we do not want to include in the inferred results, thus paths containing a
sibling-to-sibling edge are counted as invalid as well.

The detailed results of our experiments is shown in Figure 7. As seen our heuristic has
the lowest number of invalid paths as well as the least number of errors when compared to
the reference data. Additionally it is exemplified how using the readding strategy we can
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Algorithm Invalid paths Misclassified c-to-p Misclassified c-to-p
for reliable edge set for full edges set

Gao 27.366% 1.387% 6.814%
(249 not valley-free) (4 as p-to-c) (484 as p-to-c)
(547811 with s-to-s edge) (34 as s-to-s) (119 as s-to-s)

APX 4.483% 5.330% 9.458%
(89775 not valley-free) (146 as p-to-c) (837 as p-to-c)

DPP* 0.519% 0.913% 6.915%
(10391 not valley-free) (25 as p-to-c) (612 as p-to-c)

AHeu (W = 10) 0.483% 0.292% 5.073%
(9666 not valley-free) (8 as p-to-c) (449 as p-to-c)

AHeu (W = 10) 0.413% 0.329% 5.469%
readd(k = 10) (8278 not valley-free) (9 as p-to-c) (484 as p-to-c)

Figure 7: Results for inferring only customer-to-provider relationships

lower the number of invalid paths even more but at the cost of reliability of the resulting edge
classifications.

Another aspect we are interested in is the behavior of these algorithms when having initial
pre-knowledge of some of the edges. Therefore we repeated the experiment described before but
provided the algorithms with a certain fraction of the edges used for comparison later. As the
choice of edges provided to the algorithm has some influence on its results we averaged all results
over 5 random permutations of the edge set. Additionally the same permutations were used
for all of the algorithms. Our heuristic is the only one explicitly supporting pre-knowledge,
so we used the preprocessing described in Section 3.4 to augment the remaining algorithms
accordingly. This should be kept in mind when comparing the results as thus our heuristic is
the only one capable of “trading” edge errors (i.e., violated pre-knowledge) for violated paths.

An impression on how much of the classification is already implied by the pre-knowledge
Figure 8 shows the number of edges fixed by our preprocessing step when using the reliable
data set. Obviously a small number of known edges already determines a rather large part of
the final classification while on the other hand increasing the pre-knowledge seems to have little
influence. On the other hand providing additional knowledge might even lead to inconsistencies
as is shown by Figure 9 which lists the number of conflicts occurring during the preprocessing
phase.

As stated before we are interested both in the number of misclassified edges and the number
of invalid paths. These numbers are given in Figures 10 resp. 11 using the reliable edge set
both as pre-knowledge and for comparison. According to these plots the performance of our
heuristic is hardly influenced by the amount of pre-knowledge available which we take as an
indication for the high quality of the inferred results.

We provide the analogous plots for the full data set in the appendix. They show the same
trend with the difference of a higher number of overall errors due to the inexact data in this set.
Figure 14 illustrates nicely how our heuristic keeps giving good results even in the presence of
(partially) invalid pre-knowledge while the other algorithms (due to the inflexible preprocessing
step) have to trust this knowledge at the cost of a huge number of invalid paths.
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Figure 8: Number of edges implicitly fixed by pre-knowledge (reliable edge set, average over 5
random permutations of the edge set)
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Figure 9: Number of errors encountered during inferring edges from pre-knowledge (reliable
edge set, average over 5 random permutations of the edge set)
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Figure 10: Number of edges misclassified by the algorithms for different amounts of pre-
knowledge (reliable edge set, average over 5 random permutations of the edge set)
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Figure 11: Number of invalid paths for the orientation obtained from the algorithms for different
amounts of pre-knowledge (reliable edge set, average over 5 random permutations of the edge
set)
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8 Conclusion

We studied the acyclicity approach to AS relationship inference introduced in [16] from an ex-
perimental point of view. On the one side, we presented both theoretical and practical evidence
that this approach is feasible and, in large parts, accurate. The described, heuristic algorithm
AHeu turned out to be easily implementable, fast, and flexible with respect to incorporat-
ing initial pre-knowledge. On a reliable data set, it outperformed most of the state-of-the-art
algorithms proposed in the literature. Moreover, the acyclicity of all customer-to-provider rela-
tionships with in the reliable data set could be confirmed. These findings suggest to integrate
acyclicity notions in detailed models of AS relationships.

On the other side, we have learned that acyclicity with respect to peer-to-peer relationships
is not yet fully captured. The underlying assumption that the roughly-the-same-size relation
is transitive seems too much a simplification. We consider finding a more accurate problem
formulation involving acyclicity and peer-to-peer relationships as the main open issue of this
paper.

Acknowledgement. We thank Wolfgang Mühlbauer for helpful discussions.

References
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Figure 12: Number of edges implicitly fixed by pre-knowledge (full edge set, average over 5
random permutations of the edge set)
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Figure 13: Number of errors encountered during inferring edges from pre-knowledge (full edge
set, average over 5 random permutations of the edge set)
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Figure 14: Number of edges misclassified by the algorithms for different amounts of pre-
knowledge (full edge set, average over 5 random permutations of the edge set)
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Figure 15: Number of invalid paths for the orientation obtained from the algorithms for different
amounts of pre-knowledge (full edge set, average over 5 random permutations of the edge set)
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