
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Enabling a Living Software Development Process
with Process Patterns

Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas
Rausch, Wolfgang Schwerin

TUM-I0310
Juli 03

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-07-I0310-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�
2003

Druck: Institut für Informatik der
Technischen Universität München

 1

Enabling a Living Software Development
Process with Process Patterns

Michael Gnatz, Frank Marschall, Gerhard Popp,
Andreas Rausch, Wolfgang Schwerin

Institut für Informatik
Technische Universität München

Boltzmannstraße 3
85748 Garching, Germany

(gnatzm|marschal|popp|rausch|schwerin)@in.tum.de

Abstract: Today’s software development projects are confronted with a frequently
changing environment like rapidly altering business domains and processes, a fast tech-
nology evolution and a great variety of evolving methods and development processes.
Therefore highly flexible and adaptable software development processes are required,
which allow projects to react on changes quickly and to adopt existing development
methods to comply with the projects’ actual needs. Such a process, which allows static
and dynamic tailoring and evolutionary improvements, is called a living software devel-
opment process. This article introduces a common process framework for the living
software development process based on the concepts of process patterns and work arte-
facts. The proposed framework enables software engineers to define, evolve and apply a
flexible development process with respect to the daily needs of their software develop-
ment project. A running example guides the reader through the article.

Keywords: Software Development Process, Process Modelling, Process Tailoring,
Process Improvement, Process Patterns

 2

 3

CONTENTS

1 INTRODUCTION 5

2 THE LIVING SOFTWARE DEVELOPMENT PROCESS APPLIED 7

3 PROCESS MODELS AND META-MODELS 10

4 A META-MODEL FOR SOFTWARE DEVELOPMENT PROCESSES 12

5 THE META-MODEL IN DETAIL 14

5.1 The Work Artefact Package 14

5.2 The Process Artefact Package 17

5.3 The Context Package 20

6 RELATED WORK 23

7 CONCLUSION 24

ACKNOWLEDGMENTS 25

REFERENCES 26

APENDIX 28

 4

 5

1 Introduction

Software engineering focuses on producing high quality software products in a given time and
money budget. Empirical studies and research results have shown that applying a well defined,
organization-wide, standardized software development process has profound influence on the
magic triangle of time, costs, and quality. The CHAOS Ten software project success factor
number eight is “formal project management methodology”, which results in steps and proce-
dures the project team can reproduce and reuse (Standish 2001). Following a standardized,
repeatable development process increases software quality and makes the software develop-
ment more predictable and economic (Cugola 1998).

However, industrial software producers work in a highly dynamic market: Organizational
and structural aspects of projects and customers alter, customer requirements have an inevita-
ble tendency to change, and new technologies have to be adopted. To produce competitively
high quality products you have to manage the change. This implies that you must be able to
quickly adapt your development processes with respect to upcoming changes (Weinberg
1997).

For example, assume a perfect customer providing a well elaborated requirements docu-
ment for your project – developing an insurance policy management system. During analysis
and design phase it turns out that the management of the insurance company had a clear un-
derstanding of the system functionality, which was harmonized with the in-house accounting
clerks but not with the independent insurance policy brokers selling and maintaining the insur-
ance policies of the company’s customers. To develop a high quality and accepted system you
have to involve these additional stakeholders into requirements analysis. In this case it might
be advantageous to change the development process. All design and analyse activities are
stopped. A new requirements elicitation phase involving all system’s stakeholder based on a
rapid prototyping approach is started.

As one can see, a software development process must not constrain a project leader and
his software engineers to follow a predefined sequence of activities, contrariwise it should
provide support and space for their creative tasks. Therefore it must be highly flexible and, in
addition, adaptable with respect to the frequent changes of system’s requirements and the
environment in which it is applied.

Existing process models, like the V-Model (Dröschel 1999) or the Rational Unified Proc-
ess (Kruchten 2000), contain the concept of static tailoring to allow more flexibility. This
concept comprises the selection of process building blocks at the beginning of a software de-
velopment project. Dynamic tailoring on the other hand supports the reassembly during the
project, not only at the beginning. Thus, it can manage the change more successfully.

Hence, an organization-wide standardized development process model is needed that pro-
vides approved and established process building blocks as a toolkit for enabling static as well
as dynamic tailoring. Such a standard development process should include

• a well defined process model outline comprising building blocks a project can start
working with, and

• process (re-)configuration techniques allowing the project manager to react to unpre-
dictable changes of the project’s environment.

 6

Furthermore, a development process requires permanent rectification. Process engineers have
to add new process building blocks, as well as improve or delete existing ones. A standard
software development process must also be able to incorporate the assets and benefits of ex-
isting process models as well as the specific process knowledge of a certain company. It must
offer

• a platform for a learning organization and for recording the evolution steps of a com-
pany’s software development processes.

Thus, different techniques of existing development processes, such as the Objectory Process
(Jackobson 1992), the Unified Software Development Process (Jacobson 1999), the Catalysis
Approach (D’Souza 1998), the V-Model 97 (Dröschel 1999), or eXtreme Programming
(Beck 1999), could be integrated into an organization-wide standardized development proc-
ess.

This article presents a process meta-model that builds an infrastructure, providing the
right balance between flexibility and control in process models. We introduce our vision of a
living software development process, which allows us to perform evolutionary process im-
provement together with static and dynamic tailoring of process models.

In Section 2 we introduce the different roles that are involved when applying the living
software development process, namely the process engineer, the project leader and the soft-
ware engineer. In Section 3 we draw the big picture of process models and meta-models. We
give an overview of our proposed process meta-model, which provides basic notions and con-
cepts for the living process in Section 4. The detailed descriptions of the process meta-
model’s elements are presented in the subsequent Section 5. Related work and a short conclu-
sion are given in Section 0 and 7 at the end of this article.

 7

2 The Living Software Development Process Applied

Developing and maintaining software is a challenging task. Thus, a well-defined software en-
gineering process promises guidance for the whole project team. A living software develop-
ment process comprises a set of predefined building blocks for software processes, which
serve as an organization-wide standardized process model outline adaptable to various project
situations. Additionally, it offers the ability to incorporate new process knowledge. Therefore,
a living software development process has to support three different kinds of adaptation,
namely static tailoring, dynamic tailoring and evolutionary process improvement. In this
section we introduce these kinds of process adaptation. We discuss the according roles per-
forming these adaptations as shown in Figure 1, namely the project leader, the software engi-
neer, and the process engineer.

The project leader is responsible for selection and tailoring of a suitable development
process that fits to the specific needs of his project. The process knowledge cabinet provides
the set of organization’s approved and standardized work artefact descriptions, i.e. descrip-
tions of all kinds of documents that are produced or needed throughout the development
process. Further it provides a set of process artefact descriptions, i.e. descriptions of devel-
opment activities and guidelines to perform these activities. Thus the process knowledge cabi-
net contains the building blocks that form the organization’s standardized process model.

When setting up a project the project leader can use these building blocks. Thereby, the
project leader defines what the expected results (the work artefacts) of the project will be and
how the project team will create these work artefacts following the guidelines provided by
process artefact descriptions. As depicted in Figure 1 every process artefact description con-
tains the definition of the set of work artefacts, which are a prerequisite for the application
(initial work artefacts) as well as the set of work artefacts created or modified during the
execution of the process artefact (the result work artefacts). For example, a process artefact
description that explains how to find test cases might require a “Use Case Document” as ini-
tial work artefact and create a “Test Case Document” as a result work artefact.

The activity of composing an individual process for a new project at the beginning of the
project is called static tailoring. Whenever the project’s environment or requirements change,
the project leader has to reconsider the assembled development process. This may result in a
reconfiguration of the process, although the project is already running and some results may
have been created. Enabling such a dynamic tailoring is one the most important features of a
living process. It enables the project leader to take unplanned and incalculable changes of the
project environment into account. For instance, the project leader has the ability to choose
among several alternative strategies for performing a certain development activity. Thus, the
project team may be guided by some coarse-grained process artefact descriptions while details
of the development process complying with the actual project situation can still be adopted.

Imagine a project that starts up with some kind of waterfall process and later on it is dis-
covered that external forces or changing customer requirements caused such big changes that
the chosen process is not practicable any more. In our living process the execution of a certain
process artefact does not depend on the successful execution of any preceding process arte-
facts but only on the existence of the necessary work artefacts in the appropriate state.

 8

Architectural Alternatives

Description

Architectural Alternatives

Description

work artefact
descriptions

work artefacts

evolutionary process
improvement

process engineer

initial

result

process artefacts

static /dynamic
tailoring

process knowledge cabinet

process artefact
descriptions

software engineer

project leader

Architectural Alternatives

Description

Architectural Alternatives

Description

Figure 1: The living software development process

 9

Thus, a project team is not obliged to follow the waterfall process gradually up to the
end. Instead it can reconfigure the entire process by selecting an appropriate course grained
process artefact like the spiral model (Boehm, 1986) for example and enter the new process at
the stage determined by the state of the work artefacts produced so far.

Once the project leader has defined the development process, the software engineers ap-
ply this process. They follow the scheduled flow of development activities represented by the
selected process artefact descriptions. For each application of a process artefact description
the software engineer requires a set of initial work artefacts and produces several result work
artefacts as shown in Figure 1. Consequently an organization’s best practices are documented
as process artefact descriptions.

The experiences gained by the software engineers as well as the project leaders’ are valu-
able feedback for the process engineer. He is concerned with the definition and maintenance
of the entire process model represented in the process knowledge cabinet. The living software
development process model facilitates a continuous improvement of an organization’s stan-
dard development process. We call this practice evolutionary process improvement.

The task of maintaining a process knowledge cabinet is one of the most critical ones for
the long-term success of an organization. A process engineer has to ensure that adding,
changing or removing process elements does verifiably improve the process. Therefore two
major criteria have to be considered: First it has to be ensured that a new or modified process
fragment does bring benefit in a certain situation. Secondly the process engineer has to clas-
sify the new artefact in a way that a project leader does apply it only in situations where it is
appropriate.

The first issue is usually ensured by the fact that changes of the process model generally
result from feedback that software engineers provide. Since the software engineers are the
people that actually apply the process fragments, their experience is the most valuable. Further
a project leader might likewise provide feedback on process artefacts by measuring their effi-
ciency using well-defined metrics and evaluation techniques. Such software process quality
metrics are not in the focus of this work, but there exist a huge number of publications and
approaches to measure the efficiency of a development process. Examples for process quality
measurement approaches can be found in (Rout 1998) and (Schramke 2002).

The second issue of classifying process fragments is at least as important as the first one.
So introducing a brilliant new approach for testing information systems could be extremely
disadvantageous when it is applied in an inappropriate project context, like the development
of an embedded system. Therefore a process engineer has to provide a profile for every proc-
ess artefact that allows project leaders to compare their projects’ characteristics with the
given profile and thereby deduce weather the artefact is applicable in their situation or not.
The authors applied an approach where a project evaluation sheet is filled in by project lead-
ers. Further, every process fragment comes with a project evaluation profile that can be auto-
matically compared with the project evaluation to rate the process fragments applicability in
the given situation. The applied project evaluation, which is not a major topic of this paper, is
based on the work presented in (Schramke 2002) and (Wildemann 2001). Again the software
engineers’ experience is a valuable source of information for a process engineer to determine
sensible profiles for process fragments.

 10

3 Process Models and Meta-Models

According to (Finkenstein 1994) and (Conradi 1992) a software development process can be
divided into a production process performed by software engineers, comprising the develop-
ment and maintenance of work artefacts, and a meta process performed by process engineers,
that deals with the maintenance and evolution of the software development process itself.
Since we developed a language to express the concepts of this meta process, our proposed
model consists of three levels as illustrated in Figure 2. This layered model integrates the dif-
ferent views on the software development process according to the different roles identified in
the previous section.

We use this meta-model structure according to the guidelines provided by the Meta Ob-
ject Facility (MOF) specification (OMG, 1999). These levels are not levels of abstraction but
meta-layers. Every layer is described in terms of the language defined in the level above. The
top level layer is described using a common accepted language, like UML class diagrams
(OMG, 2001).

The lowest level, the instance level, captures the elements belonging to a concrete pro-
ject, such as an analysis document in a certain state or a currently applied waterfall process.
Software engineers operate on this level since they are concerned with concrete work arte-
facts and perform the required processes and activities.

The model level provides model elements to assemble a tailored and customized devel-
opment process. Therefore project leaders use their organization’s process knowledge cabinet

for example:
work artefact, process artefact, etc.

Meta-Model Level

Model Level

Instance Level

Process Meta-Model Elements

Process Model Elements

Process Elements

for example:
requirements document description,
waterfall lifecycle, etc.

for example:
certain use case document in state „under review“,
applied waterfall lifecycle in a concrete project, etc.

<<instance>>

<<instance>>

Figure 2: Overall model of the living software development process

 11

(see Figure 1), which is located on the model level. For example, the model level may contain
a description of the purpose and structure of an analysis document, a description of the water-
fall lifecycle model and a description of a method for testing. Thus, project leaders use the
model level to define how software engineers should perform their tasks and what kind of
work product instances have to be produced.

The meta-model level provides the basic notions and concepts of the living software de-
velopment process. It offers clear definitions for terms like „Work Artefact Description” or
“Process Artefact Description”. Process engineers use these notations and concepts to de-
scribe the elements of their organization’s process knowledge cabinet, which are located on
the model level. Thus process engineers use the meta-model level to specify a standardized
development process as required on level three of the Capability Maturity Model (CMM)
(Paulk, 1993).

 12

4 A Meta-Model for Software Development Processes

In this section we introduce the essential concepts and elements of the proposed meta-model,
imposing the structure and abilities of the underlying model and instance levels. According to
Figure 1 we distinguish between two types of process model artefacts: work artefacts and
process artefacts.

Work artefacts are all kinds of documents that are produced or needed throughout the
development process. An example of a work artefact is a system specification document. It
might itself be composed out of several other work artefacts, e.g. a set of use case documents
and test cases. A system specification can be considered as a first order work artefact. An-
other kind of work artefacts are relationships between themselves. For example a test case
specification may be related to a use case document proving the use cases’ correct implemen-
tation. To document a development process we have to describe all these different types of
development documents as well as their relationships using work artefact descriptions.

Process artefacts on the other hand are development tasks of any granularity which are
performed during software development to produce new or to modify existing work artefacts.
Usually existing work artefacts are needed to perform certain tasks. Testing is an example of a
process artefact that requires a component implementation and a test specification document
as input and generates a test report as output. Analogous to work artefacts, we describe proc-
ess artefacts in terms of process artefact descriptions.

Work Artefact
Description

Work Artefact

Work Artefact
Context Description

Work Artefact
Context Description

Element

1 1

* *
initial result

Context

Process Artefact
Description

Process Artefact

works on1 *

is of type *

1

Figure 3: Conceptual overview over the process meta-model

to which situation this Accordingly, process artefact descriptions and work artefact de-
scriptions are the key elements of the proposed meta-model. Figure 3 shows an UML class
diagram which captures an overview of the proposed meta-model. The Work Artefact pack-
age contains the class Work Artefact Description. An instance of this class represents a de-
scription or a template of a certain work artefact type.

Work artefacts can be seen as the static part of a development, whereas process artefacts
cover the dynamic aspects. The Process Artefact package in Figure 3 contains the class Proc-
ess Artefact Description. Process artefact descriptions define all types of process artefacts,
e.g. whole development processes, sub-processes or even atomic development activities. A
process artefact description explains how a process is applied.

Static and dynamic tailoring means (re-)composition of work and process artefacts.
Modularity and clear, well-defined interfaces between work and process artefacts are required
in order to support the two tailoring concepts. Therefore a process artefact’s interface must
state in which project situation this artefact is a suitable “next step” and step leads us.

 13

The Context package contains the concepts to define the required interfaces by relating
process artefacts with work artefacts. With the concept of context we can describe how a set
of work artefacts is affected by the application of a process artefact. Each process artefact
description refers to exactly one Work Artefact Context Description which relates an initial
context with a result context. A work artefact context description – context description for
short – determines which work artefacts are required, changed or produced when a given
process artefact is executed. For example, a process artefact description “Validate Use Cases”
might require work artefacts of the types “Use Case Document” and “Test Specification
Document” as input. The result of the application might be a new work artefact description
“Test Report”.

Context descriptions enable the project leader to reconfigure the development process by
choosing different process artefacts based on already elaborated work artefacts during project
execution. It is possible to capture complex context descriptions by modelling dependencies
between required, produced, and modified work artefacts. For instance, one can express
changes of the status of work artefacts or how newly created work artefacts of the result con-
text are related with work artefacts of the initial context.

 14

5 The Meta-Model in Detail

The process meta-model introduced in the previous section comprises three basic concepts -
process artefacts, work artefacts, and contexts. In the following sections we will have a closer
look into each package and refine our meta-model to a degree that enables us to apply the
proposed concepts.

As shown in Figure 4 we have specialized the rather general umbrella terms of Figure 3 into a
set of concrete meta-model elements and as you may have noticed the “is of type” association
has now been refined into concrete associations between classes that inherit from the abstract
classes with the original association.

Work Artefact
Description

Work Element
Description

Work Element
Association
Description

Work
Product

Description

Modeling
Concept

Description

Notation
Description

Contains

Is Modelled
By

Is Described
By

State
successor

*

*

incoming

outgoing

1*

* 1

Work Artefacts

0..1

1
start

0..1

0..1

Work Artefact
Context Description

Work Artefact
Context Description

Element

Work Element
Variable

Work Element
Association

Variable

incoming

outgoing

1 *

*1

1 1

* *
initial result

is of type

is of type

Context

Process
Artefact

Description

Activity
Description

Process
Pattern

Activity Transition

Guard

Process Artefacts

works on1 *

1 1

0,1 *
start end

in

out

1 *

*1 1

0,1

*
is of type

0,1

**
realizes

*

*

1

1

**

initial

result

Figure 4: The process meta-model in detail

5.1 The Work Artefact Package

Work Artefact Description is the most general concept of the Work Artefact package shown
in Figure 4. Based on this concept, process engineers should be able to describe the whole
product model of their organization’s software development process. Consequently, a process
engineer must be able to describe the work artefacts themselves and the relationships between
them. For those reasons we distinguish between two kinds of work artefact descriptions: The
Work Element Description represents the definition of product model elements and the Work
Element Association Description represents different kinds of associations that may exist
between work elements. This could be a hierarchical structure of the product model itself but
also other relationships like for instance logical dependencies between single work artefacts.

 15

Furthermore, we classify the work element descriptions into Work Product Description,
Modeling Concept Description and Notation Description. The work element association de-
scriptions between the different types of work artefact descriptions are categorized in Con-
tains, Is Modelled By, Is Described By, Derived From, or Successor. Note more
classifications may exist. They can be easily added by sub-classing as illustrated in Figure 4.

Work Product Descriptions record the purpose and appearance of work products, which
are the documents produced by a development project. Such a description may also contain
some examples and templates for the kind of document it specifies. An instance “Test Case
Specification Document” of a Work Product Description may for example determine the
structure and intent of test case specifications and provide an empty template for test case
specifications.

As shown in the instance diagram in Figure 5, a set of “Use Case Specification Docu-
ments”, which is again an instance of the class Work Product Description, may be the source
for a set of “Test Case Specification Documents”. This n-to-m relationship between “Use
Case Specification Documents” and “Test Case Specification Documents” is an instance of
the class Derived From. For instances of association classes we use the short notation in form
of association lines and an associated text referencing the class name of this instance (cf.
Figure 5).

Furthermore, an association of the type Successor indicates that a set of “Test Case
Specification Documents” may be ordered in a certain manner. A “Test Case Specification
Document” has to contain a “Test Input Document” and an “Expected Test Output Docu-
ment”, as shown with the association type Contains. The test case execution procedure itself
is determined in the “Test Driver Document”. For each test case execution a “Test Output
Document” and a “Test Result Document” are assigned to the “Test Case Specification
Document”. The “Test Result Document” contains a comparison between the “Expected Test
Output Document” and the produced “Test Output Document”.

Use Case Specification Document
: Work Product Description

Test Case Specification Document
: Work Product Description

Test Input Document
: Work Product Description

Test Output Document
: Work Product Description

Expected Test Output Document
: Work Product Description

Test Result Document
: Work Product Description

: C
ontains

*

*

*

0..1
1

0..1 0..1

* *

Test Driver Document
: Work Product Description

0..1

: D
erived F

rom

: S
uc

ce
ss

or

Figure 5: Sample product model definition for test specification

 16

For each work product description the process engineer can explicitly determine what
kind of modeling concepts may be used to describe an instance of this work product. As an
example, the work product “Test Input Document” shown in Figure 5 must contain a com-
plete start state description of the system under test. The work product “Expected Test Out-
put Document” contains a complete expected end state description of the system under test.
Finally, the work product “Test Output Document” contains a complete end state description
as a result of a system test execution. Hence, all three work products contain different infor-
mation, but the description of this information can be modeled using identical modeling con-
cepts.

As shown in Figure 6, these three work products can be modeled by either using the
modeling concept “Object Instance Modeling” or using the modeling concept “Entity/Relation
Instance Modeling”. For each modeling concept we can further determine the notations one
may use. The modeling concept “Object Instance Modeling”, for example, may be described
using the notation “UML Instance Diagram”. The modeling concept “Entity/Relation Instance
Modeling” may be described using the notation “Table Instance” or again the notation “UML
Instance Diagram”. Hence, different work product descriptions can make use of the same
modeling concepts and in some situations different modeling concepts can even make use of
the same notations (cf. Figure 6).

Test Input Document
: Work Product Description

E/R Instance Modelling
: Modelling Concept

Object Instance Modelling
: Modelling Concept

Table Instance
: Notation

UML Instance Diagram
: Notation

Test Output Document
: Work Product Description

Expected Test Output Document
: Work Product Description

: Is Modelled By

: Is Modelled By

: I
s

D
es

cr
ib

ed
 B

y
: Is Described By

: Is Described By
Figure 6: Example with different modeling concepts and notations for test input descriptions

As shown in Figure 4 every work product description comprises a State. This is the initial
state the work product has when it is created. The state of a work product instance may
change by the application of process artefacts. The association successor indicates that for
every state a set of reachable successor states may exist. Thus we use a non-deterministic
finite automate that determines the lifecycle of the work product instances in terms of their
possible states, like shown in Figure 7.

Test Driver Document
: Work Product Description

under work : State under review : State released : State

start

successor

successor successor

successor

Figure 7: Example of a state model associated to test case specifications

 17

In this example the work product description “Test Driver Document” determines that
every test case specification initially has the state “under work”. There is one possible succes-
sor state “under review” that can be reached when the specification is reviewed. If the specifi-
cation passes the review its state alters to “released”, otherwise it is set to “under work”
again. Whenever a released specification is changed, its state is set to “under work” again
until it has passed another review process.

To sum up, the meta-model in Figure 4 provides all the necessary building blocks to en-
tirely describe a product model for a development process. Having a clearly defined product
model is an essential prerequisite for the integration of different process artefacts during static
and dynamic tailoring as we will see in the following sections.

5.2 The Process Artefact Package

A software development process and the corresponding activities are described in terms of the
Process Artefact package (cf. Figure 4). We distinguish between two types of process artefact
descriptions, namely Process Patterns and Activity Descriptions.

Instances of Process Patterns describe fragments of a software development process and,
to be particular, they describe the causal ordering of single Activities. To assure software
quality, for example, a regression capable test suite for the software system under develop-
ment might be a good idea. Therefore a software engineer has to create test case specifica-
tions following the appropriate product model definition in Figure 5. For each test case he has
to specify the test input and the expected test output. All these specifications must contain the
complete status of the system under test. In the case of a business information system, the
status is given through the data in the corresponding database.

In Figure 8 (a) we see an example of a process fragment for the incremental automatic
creation of test input and expected output data in form of an UML activity diagram. The basic
idea is to use the produced test output data as input for a subsequent test (cf. Bonfig, 2000).

In the example it is assumed that one has already specified a sequence of “Test Case
Specification Documents”, where each test case can consume its predecessors output as test
input data. The process starts with performing the activity “Perform Test Driver” that obvi-
ously produces a work artefact “Test Output Document” (cf. Figure 5). This test output de-
scription has to be validated manually and either a discovered bug has to be fixed (“Fix
Bugs”) or the test output data is recorded in an “Expected Test Output Document”. If a suc-
cessor for the test case exists, the “Expected Test Output Document” serves as “Test Input
Document” for this test, otherwise the application of the process fragment is completed and a
complete regression ready test suite is available.

In Figure 8 (b) this process is described in terms of our meta-model with the process pat-
tern “Create Incremental Test Suite”. As defined in Figure 4 a process pattern comprises a
number of Activities that are to be executed during its application. The sequential ordering of
these activities is expressed by connecting them with Transitions. Alternative paths can be
specified by annotating Transitions with Guards expressing certain conditions. Like the guard
in Figure 8 (b), which specifies that the Activity “Record Expected Test Output” will only be
executed if the result of the Activity “Validate Test Output” is “Test OK”?

 18

[Test OK] [Test NOK]

[More Test Cases] [Testing Complete]

Perform Test Driver
: Activity

Create Incremental Test Suite
: Process Pattern

Validate Test Output
: Activity

Fix Bugs
: Activity

Record Expected Test
Output : Activity

Record test Input For
Next Test : Activity

Finished
: Activity

start

end

Test OK
: Transition & Guard

Test NOK
: Transition & Guard

More Test Cases
: Transition & Guard

Testing Complete
: Transition & Guard

(a) (b)

: Transition

Legend:

Perform Test Driver

Validate Test Output

Record Expected
Test Output

Record Test Input
For Next Test

Fix Bugs

: Transition : Transition

: Transition

: Guard

: Transition

Figure 8: A sample process fragment

Please note that Figure 8 (b) only depicts instances of the Activity class from our meta-
model. Instances of Transition and Guard are shown as association instances to keep the dia-
gram readable. Since the meta-model in Figure 4 allows us to specify multiple transitions that
lead in and out of an activity, forks and joins can also be expressed. However, UML activity
diagrams are a good and sufficiently powerful notation to graphically depict the flow of activi-
ties within a process pattern.

Such an activity diagram is usually part of a process pattern’s description. It depicts all
activities that have to be performed and their causal dependencies. In addition a process pat-
tern contains a textual description for every activity that explains the process step in detail.
Whenever a process engineer does not want to determine how a certain Activity, like testing,
is performed but wants to ensure that it is performed, he might refer to an Activity Descrip-
tion “Testing” instead of providing a textual description of the activity. In this case a project
leader is free to choose an appropriate process pattern that realizes the activity description to
be executed within the project (cf. Figure 4).

Thus, Activity Description serves as a placeholder or common term for an activity that is
well-known by all users of the knowledge base. It determines only what kind of activity has to
be performed. The description of how an activity is performed is defined as a process pattern.

In Figure 9 an example for a so called pattern activity map is given to illustrate the rela-
tions among process patterns and activity descriptions. Corresponding to Figure 4 Activity
Descriptions are realized by one or more Process Patterns, while Process Patterns may exe-
cute an arbitrary set of Activity Descriptions. This executes relation is determined by the is of
type relation of the Activities, which are contained in the Process Pattern (cf. Figure 4). Those
Activities can be applied by performing any Process Pattern realizing the Activity Descrip-
tion.

 19

In this example the realizes association between the process pattern “Incremental Test
Suite Creation” and the activity description “Create Regression Test Suite” determines that
this pattern can be used to fulfill the corresponding activity. Of course there may exist alterna-
tive patterns to create regression test suites, e.g. “Legacy System Inspection” that uses exist-
ing legacy software to generate valid test data.

This kind of indirection may seem confusing at the first glance. However, it provides a
very powerful and flexible mechanism. Wherever there is more than one alternative method to
achieve a certain development goal one can now set an activity description as a place holder
to tell a developer that he may choose among a set of alternative practices. This allows a pro-
ject leader to use coarse grained patterns at the beginning of a project to sketch a rough proc-
ess outline. Later on a project team may choose among more detailed patterns to perform
smaller tasks adequately to the actual situation.

So far we have not stated when a process pattern may realize an activity description
without violating consistency constraints. For example, we would expect from every pattern
that realizes the activity description “Incremental Test Suite Creation” that it does produce a
set of “Test Input Documents”.

Furthermore we would like to provide guidelines when a certain process artefact is appli-
cable in a running project and when not. Applying a certain pattern always has benefits and
drawbacks. A detailed discussion of the problem domain, the context and the pros and cons in
the consequences part of a process pattern are essential elements of a pattern. For that rea-
sons a process pattern comprises a set of attributes that are not shown in Figure 4.

These attributes define a common template for process patterns that intentionally has
similarities to the templates used to describe patterns in (Gamma, 1994) or (Buschmann,
1996). The basic elements of such a pattern template are shown in the appendix in Section 0.
A process pattern description based on this template provides the needed information for less
experienced project leaders to elaborate the best possible development process for their pro-
ject by static and dynamic process tailoring of the process knowledge cabinet (cf. Section 2).

Create Regression Test Suite
: Activity Description

Incremental Test Suite Creation
: Process Pattern

Legacy System Inspection
: Process Pattern

Equivalence Class Analysis
: Process Pattern

Validate Test Output
: Activity Description

Fix Bugs
: Activity Description

executesexecutes

realizesrealizesrealizes

realizes realizes

.

Perform Test Driver
: Activity Description

executes

Figure 9: A pattern activity map sample

 20

5.3 The Context Package

While process artefact descriptions define how development tasks are performed, work arte-
fact descriptions determine the structure of the work product model that is modified by per-
forming these development tasks. The Context package in Figure 4 provides a clear and
expressive interface between these two concepts organizing their complex dependencies.

Consider the product model definition for test specifications in Figure 5 and the corre-
sponding process pattern “Incremental Test Suite Creation” in Figure 8. We assume that three
of these work products have already been created in a fictitious development project. As
shown in Figure 10 the test case specification document with the name “TestCase1003 mass-
data import” has been elaborated containing the two documents “TestData1003.xml” and
“TestDriver1003.java”. These work products are instances of the corresponding classes of the
work product model defined on the model level (see also Figure 5).

As discussed in the previous section, the execution of a process pattern’s activity may re-
quire necessary work products as input. To perform the first activity description “Perform
Test Driver” of the sample process pattern (cf. Figure 8), for example, we have to ensure that
instances of the work element descriptions “Test Case Specification Document”, “Test Input
Document”, and “Test Driver Document” exist. Furthermore, we have to make sure that
these instances are associated forming a consistent test case specification document. Hence,
the documents for the test case specification shown in Figure 10 on the instance level as well
as in Figure 11 (a) provide the required work products to perform the activity description
“Perform Test Driver”.

Executing this activity description will cause an update of the overall development prod-
ucts and produce some new work products. Figure 11 (b) indicates the new or modified work
products as shaded gray boxes. Further, newly created work product associations are depicted
by dashed lines: The work product “TestOutput1003_20020814.log” has been created while
performing the test driver. This work product has been associated to the document “Test-

Test Case Specification Document
: Work Element Description

TestCase1003 mass-data import
: Test Case Specification Document

Test Input Document
: Work Element Description

Test Driver Document
: Work Element Description

TestData1003.xml
: Test Input Document

TestDriver1003.java
: Test Driver Document

model
level

instance
level

<<instance>> <<instance>> <<instance>>
<<instance>>

<<instance>>

: Contains

: Contains

Figure 10: Sample test case specification in a fictitious development project

 21

Case1003 mass-data import” that servers as folder for all work products related to the corre-
sponding test case. Hence the folder document itself has also been marked as modified.

To sum up, necessary input work products have to be available to perform an activity de-
scription contained in a process pattern or to execute a process pattern itself. After perform-
ing an activity description or a process pattern, work products have been created and
modified. To provide a clear and precise interface between work artefacts and process arte-
facts the proposed process meta-model must be capable of describing required input and pro-
duced output work products. The union of required input and produced output is the Work
Artefact Context Description (cf. Figure 4). It describes the prerequisites and the effect of
activity description and process pattern application. The prerequisites are contained in the
initial subset of the class Work Artefact Context Description Element. The effects are con-
tained in the result subset.

The inherited classes Work Element Variable and Work Element Association Variable are
the essential elements to describe initial and result work artefact sets. These variables allow
defining a product model pattern that consists of typed place holders. This pattern may match
a concrete product model of a development project or not and thereby indicate if the corre-
sponding process artefacts can be applied on the product model of this development project.

Figure 12 shows the initial work artefact context description of the discussed activity
“Perform Test Driver” based on work element variables. Three work element variables with
the corresponding work element association variables are shown with bold lines on the right
side. Each variable is typed, i.e. it is related to the corresponding work element description or
work element association description pictured with bold lines on the left side of Figure 12.

Based on this work artifact context description it can be decided if the activity “Perform
Test Driver” can be performed on the products of a concrete development project. As an ex-
ample, the product model shown on the instance level of Figure 10 matches the work artefact
context description in Figure 12: first, each variable in the context specification can be bound
to a corresponding work product with the same type and, secondly, the structure of these
work products matches to the structure of the context description. Hence, the activity is ap-
plicable on this product model instance. Additionally, every work variable may further con-

TestCase1003_mass-data import
: Test Case Specification Document

TestDriver1003.java
: Test Driver Document

TestCase1003_mass-data import
: Test Case Specification Document

TestData1003.xml
: Test Input Document

TestDriver1003.java
: Test Driver Document

TestOutput1003_20020814.log
: Test Output Document

(a) (b)

: Contains

: Contains

TestData1003.xml
: Test Input Document

: Contains

: Contains

: Contains

Figure 11: Work artefacts before and after the application of an activity

 22

strain the application of activities and process patterns by specifying the initial and result state
of the required work elements (cf. Figure 4).

In summary, the concept of work artefact context descriptions is one of the major advan-
tages of the proposed meta-model in comparison to existing process meta-models. It allows
us to explicitly determine if a process artefact is applicable and what its effects on the work
product model are. Moreover, it specifies whether a process pattern is capable to realize an
activity description or not. A process pattern can only realize an activity description if the
pattern’s initial work artefact context description is a subset of the activity description’s initial
work artefact context description and the pattern’s result work artefact context forms a su-
perset of the activity description’s work artefact context.

Figure 12: Sample product model specification for the activity "Perform Test Driver"

 23

6 Related Work

Our approach is based on the concept of process patterns (Bergner 1998a, Bergner 1998b), as
its basic idea of integrating different process fragments obviously seems to correlate with the
requirements of a living software development process.

Important contributions in the area of patterns, as for example process and organizational
patterns, have also been made by Ambler, Coplien and Cockburn (Ambler 1998, Ambler
1999, Coplien 1994, Cockburn 1997). These approaches are lacking a formally defined proc-
ess meta-model enabling dynamic reconfiguration of the process and providing a common
language for process engineers for process improvements.

Our approach differs from existing process models, such as the Objectory Process
(Jackobson 1992), the Unified Software Development Process (Jacobson 1999), the Catalysis
Approach (D’Souza 1998), the V-Model 97 (Dröschel 1999), or eXtreme Programming
(Beck 1999), as process patterns are modular building blocks. This enables a process model
based on process patterns to be scalable, adaptable, changeable and extensible as required by
the living software development process.

Recent approaches like the Software Process Engineering Meta-Model (SPEM 2002) are
trying to provide a vehicle to process engineers for establishing a living process by defining a
UML-based meta-model. As compared to our work, SPEM is suffering from several deficien-
cies. Alternative paths in the process model can’t be modelled explicitly on different
granularities as for example life-cycle or phase. Thus SPEM is sufficient to model exactly one
process, which seems to be conflicting with the idea of continuous process improvement. Fur-
thermore regarding work product descriptions, SPEM is lacking the concept of states and
contexts which are defined over work products and associations between them.

 24

7 Conclusion

Following a standardized, repeatable development process increases software quality and
makes the software development more predictable and economic. Additionally, to survive in
today’s highly dynamic markets a development process must be highly flexible and adaptable
with respect to the frequent changes of system’s requirements and the environment in which it
is applied.

While existing process models do support static tailoring there is usually no support for
dynamic tailoring, the procedure of adopting and reconfiguring a development process while
it is actually running. In order to overcome the methodical lack and to support static and dy-
namic tailoring, similar to software systems, modularity and clear, well-defined interfaces be-
tween work and process artefacts are required. Therefore the presented meta-model provides
the concept of work artefact context descriptions, a mechanism to define clear interfaces be-
tween work and process artefacts.

Furthermore, the presented approach supports evolutionary process improvement of an
organization’s process knowledge cabinet. The concept of alternative process patterns that
realize development activities promotes this feature in a very comfortable way. Without
changing any existing process artefact of our knowledge cabinet we can seamlessly integrate
new process patterns. When needed we can also refine existing process patterns by introduc-
ing new development activity descriptions for existing activities to allow additional alternative
sub-processes.

However, further work is still necessary. We need to provide methodical guidelines for
process engineers when a process should be changed and how much. Process engineers can
integrate new process patterns into our current process cabinet. Dynamic tailoring enables
project leaders to immediately use new process patterns. If the new process pattern hasn’t
showed the desired success, you can roll-back your modifications and keep on going with the
original development process. This enables us to test small improvement steps minimizing the
risk of introducing new processes. Thereby we can define how much we will change in the
process cabinet, and as important benefit, the old process parts still exist in the cabinet.

Moreover methodical guidance for the development and the application of the presented
pattern based approach is still needed. Finding the correct granularity and the correct level of
abstraction for processes and work artefact descriptions is one of the most important tasks for
software process engineers that build up and maintain an organization-wide process knowl-
edge repository according to the presented meta-model. Further developers need advice in
choosing the right process fragments during development and in producing appropriate work
artefacts. Since these issues are already addressed by our process meta-model, such a me-
thodical guidance for the user is rather simple to realize. The authors are currently applying
the concepts of the living software development process and are developing a methodology
for pattern-based software process engineering based on these experiences.

Finally, a proper tool infrastructure is a prerequisite to gain maximal profit from the flexi-
bility the concept of the living software development process offers. Such a tool must support
process engineers defining and maintaining his organization’s standardized process knowledge
cabinet. It serves as a knowledge repository for development processes and it allows browsing
and managing product models and processes. A tool support is especially helpful to ensure

 25

consistency among the artefacts. The tool LiSa (LiSa 2002) is a prototypical realization of
such a process knowledge repository. Beyond allowing the definition of process models ac-
cording to the meta-model with a comfortable, web-based interface, the tool can also serve as
an access point for projects to their organization’s process knowledge base. A user may
browse through the different artefact descriptions or search for descriptions that meet the
criterions of his project.

The next step towards supporting the living software development process is a tool,
which provides tool support for project leaders and their developers. For instance the proto-
type tool APE (APE 2002) does not manage process element descriptions but their instances,
namely work artefacts in a project. The process definitions that were created with LiSa are
used to instantiate work products of the correct type and to ensure a process execution ac-
cording to the steps defined in the process knowledge repository by offering alternative meth-
ods for mastering upcoming tasks. In order to guide software engineers in their daily work,
APE is currently developed as an integrated part of the Eclipse integrated development envi-
ronment (Eclipse 2002).

All these parts together, a well-defined process meta-model, a comprehensive tool sup-
port and the methodical guidance, finally enable the vision of a living software development
process that is sufficiently flexible and well-documented to serve as an organization’s growing
process knowledge base.

Acknowledgments

We are grateful to Klaus Bergner and Carsten Tauss for their valuable reviews of this article,
to Manfred Broy and Alexander Ziegler for interesting discussions and comments, and to
Inga.Küffer for finally polishing the article.

 26

References

Ambler S. 1998. Process Patterns: Building Large-Scale Systems Using Object Technology.
Cambridge University Press.

Ambler S. 1999. More Process Patterns: Delivering Large-Scale Systems Using Object Tech-
nology. Cambridge University Press.

APE Software Technik Praktikum 2002. APE – Applied Patterns Environment. 2002.
http://www4.informatik.tu-muenchen.de/~ape.

Beck K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.

Bergner K., Rausch A., Sihling M. and Vilbig A. 1998. A Componentware Development
Methodology based on Process Patterns. Proceedings of the 5th Annual Conference on the
Pattern Languages of Programs.

Bergner K., Rausch A., Sihling M. and Vilbig A. 1998. A Componentware Methodology
based on Process Patterns. Technical Report TUM-I9823, Technische Universität München.

Boehm. B. 1986. A Spiral Model of Software Development and Enhancement. ACM Sigsoft
Software Engineering Notes, Vol. 11, No. 4.

Bonfig T., Frömming R., Rausch A. 2000. GOAL - Eine Testinfrastuktur für unternehmens-
weite Anwendungen. OBJEKTspektrum 4/2000.

Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M. 1996. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. John Wiley & Sons.

Cockburn A. 1997. Survivng Object-Oriented Projects. Addison-Wesley, 1997.

Conradi R., Fernström C., Fuggetta A. and Snowdon R. 1992. Towards a Reference Frame-
work for Process Concepts. In Lecture Notes in Computer Science 635, Software Process
Technology. Proceedings of the second European Workshop EWSPT’92, Trondheim, Nor-
way, September 1992, pp. 3-20, J.C. Derniame (Ed.), Springer Verlag.

Coplien J. 1994. A development process generative pattern language. In PLoP ’94 Confer-
ence on Pattern Language of Programming, 1994.

Cugola, G. and C. Ghezzi. 1998. Software Processes: a Retrospective and a Path to the Fu-
ture. In Software Process - Improvement and Practice, 4, 101-123.

Derniame J.-C., Ali Kaba B. and Wastell D. (eds.). 1999. Software Process, Principles, Meth-
odology, and Technology. Lecture Notes in Computer Science 1500, Springer.

Dröschel, W. and Wiemers M. 1999. Das V-Modell 97. Oldenburg.

D'Souza D., Wills A. 1998. Objects, Components, and Frameworks With Uml: The Catalysis
Approach. Addison Wesley Publishing Company.

Eclipse – The Eclipse Project. 2002. http://www.eclipse.org

Finkelstein A., Kramer J. and Nuseibeh B. 1994. Software Process Modeling and Technology.
Research Studies Press Ltd, JohnWiley & Sons Inc.

Gamma E., Helm R., Johnson R. and Vlissides J. 1994. Design Patterns – Elements of Re-
usalbe Object Oriented Software. Addison Wesley.

 27

Gnatz M., Marschall F., Popp G., Rausch A. and Schwerin W. 2001. Towards a Living Soft-
ware Development Process Bases on Process Patterns. In Lecture Notes in Computer Science
2077, 8th European Workshop on Software Process Technology EWSPT, Witten, Germany.
pp. 182-202. Ambriola V. (Ed.). Springer.

Henderson-Sellers, B. 1996. The need for process. In Object Currents – The monthly On-
Line Magazine, December,
http://www.sigs.com/publications/docs/oc/9612/oc9612.sellers.html.

Jacobson I. 1992. Object-Oriented Software Engineering: A Use Case Driven Approach. Ad-
dison Wesley Publishing Company.

Jacobson I., Booch G., and Rumbaugh J. 1999. The Unified Software Development Process.
Addison Wesley Publishing Company.

Kruchten P. 2000. The Rational Unified Process, An Introduction, Second Edition. Addison
Wesley Longman Inc.

LiSa - A Living Software Development Process Support Tool. 2002.
http://processpatterns.informatik.tu-muenchen.de

Object Management Group (OMG). 1999. Meta Object Facility (MOF) Specification.
http://www.omg.org, document number: 99-06-05.pdf.

Object Management Group (OMG). 2001. Unified Modeling Language (UML).
http://www.omg.org, document number: 01-09-67.pdf

Paulk M., Curtis B., Chrissis M.-B. and Weber C. 1993. Capability Maturity Model for Soft-
ware, Version 1.1. Software Engineering Institute, CMU/SEI-93-TR-24, DTIC Number
ADA263403.

Rout T. (Editor). 1998. ISO/IEC DTR 15504 (SPICE): Information Technology – Software
Process Assessment

Royce W. 1970. Managing the Development of Large Software Systems: Concepts and Tech-
niques. In WESCON Technical Papers, Western Electronic Show and Convention, Los
Angeles, Aug. 25-28, number 14. Reprinted in Proceedings of the Ninth International Confer-
ence on Software Engineering, Pittsburgh, PA, USA, ACM Press, 1989, pp. 328-338.

Schramke A. 2002. Situationsgerechte organisatorische Gestaltung von Softwareprojekten als
Basis für eine erfolgreiche Projektdurchführung. Ph. D. Thesis at the Technische Universität
München.

Software Process Engineering Metamodel (SPEM), Version 1.0 . Object Management Group
(OMG). http://www.omg.org/technology/documents/formal/spem.htm. 2002.

Standish Group International, Inc. 2001. Collaborating on Project Success. Software Magazi-
ne, February/March 2001. Wiesner Publishing. 2001.

Weinberg M. Gerald. 1997. Quality Software Management: Anticipating Change (Vol 4).
Dorset House.

Wildemann, H. 2001. Wandlungsfähige Netzwerkstrukturen als moderne Organisationsform:
Anpassungsfähige Systemarchitekturen als Basis flexibler und wandlungsfähiger inner- und
überbetrieblicher Auftragsabwicklungsprozesse. In: Industrie Management, May 2001.

 28

Apendix

The following process pattern template serves as one possibility to document process patterns
according to the proposed process meta-model.

Name: Name of the software development process pattern.

Also Known As: Other names for the pattern, if any are known.

Author: The names of the authors of the pattern.

Intent: A concise summary of the pattern’s intention and rationale.

Problem: The development issue or problem the pattern addresses, including a discussion of
the associated forces. If possible, a scenario or a real world example is provided demonstrat-
ing the existence of the problem and the need for the pattern.

Context: The situation or state of a development project in which the process pattern may be
applicable. The context comprises according to our meta-model the state of the required work
artefact structure to apply the pattern – i.e. the initial and result state of the work artefact
structure. Furthermore also external circumstances, influences and specific applicability pro-
moters have to be considered here.

Solution: The suggested development process artefact including the development activities
within the process pattern. The proposed solution may be described using textual as well as
graphical description techniques.

Consequences: The benefits the pattern provides, and any potential liabilities.

Known Uses: Known uses of the pattern in development projects. These application exam-
ples illustrate the acceptance and usefulness of the pattern, and may provide practical guide-
lines, hints and techniques useful to apply the pattern, but also mention counter-examples and
failures.

See Also: References to patterns that solve similar problems and to patterns that help us re-
fine the pattern we are describing. Not pattern-based sources may also be referenced.

