
T U M
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Abstract

Model-based testing relies on the use of behavior models to automatically gen-
erate sequences of inputs and expected outputs. These sequences can be used as
test cases to the end of both validating the model and also verifying an actual sys-
tem. In the automotive domain many systems are reactive and exhibit continuous
as well as discrete dynamics. This leads to an explosion of the model state space,
which makes automated test case generation difficult, and, because of impreci-
sions in the continuous parts, requires an adequate treatment of fuzziness both in
the dimensions of time and values. We report on experiments with model-based
testing in the automotive domain. Roughly, the idea is to use two separate models,
a discrete model as an abstract description of relevant scenarios, and a discrete-
continuous model to produce reference outputs for the actual system.

1 Introduction

Part of computer science folklore is that the earlier errors are detected, the cheaper is
their removal. In the automotive domain, correctness of the final product is deemed
to be especially important, as failure of devices can have lethal consequences, and—in
view of the difficulty of software upgrades for embedded controllers— incur enormous
cost when entire production lots have to be recalled because of incorrect behavior of
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some part of the system. In both cases, consequences for the reputation of the manu-
facturer may well be disastrous.

In the automotive and avionics industries there is a trend to use restricted modeling
languages like those found in common CASE tools. The aim of modeling languages
is to provide a more abstract, simpler view on a system which is easier to analyze—by
model walkthroughs or by means of simulations. In this way, validation of a system
w.r.t. to its requirements is more systematic and more efficient.

A validated model, however, is but the first step to a working system. In view of the
deficits (code size, execution speed, coding standard adherence, certifiability) of cur-
rent CASE tool code generators, it seems reasonable to use the model as a specification
for hand-written code.

However, it is arduous to check whether or not the system conforms to its specifica-
tion. The reason is that full conformance cannot be established because of the usually
infinite nature of the system’s state space. Instead, one needs to approximate this con-
formance. This means that a reasonably small set of finite test traces must be selected
that increases confidence in the system’s correctness. Unfortunately, there is no com-
monly accepted notion for what constitutes a “good” test case. In turn, this means that
for a given problem, test engineers have to rely on their intuition and experience to
build test suites of sufficient quality (the metrics for which, again, remains vague and
implicit). Hence, this process is bound to the ingenuity of single test engineers, it is
often irreproducible and not systematic.

Testers quickly discovered that coverage criteria are one means to define the quality
of a test suite. It also became clear that these criteria could also serve as test case
specifications. While coverage-based specifications are not adequate in themselves,
they turned out to be a useful complement to functional test case specifications.

As it turns out, the generation of test suites that satisfy a given coverage criterion
reduces to the problem of finding elements of the system’s state space (e.g., program
counters have to reach each possible statement, or each control state in a state machine
is to be reached). While in general this is difficult for general programming languages,
it is much easier for restricted modeling languages. In the automotive and avionics
domain embedded systems often exhibit a behavior that is both (event) discrete and
continuous, i.e., hybrid. Because of the high time resolution and the continuous val-
ues in hybrid systems, the search space (and the test sequences) are much larger and
automatic search becomes intractable.

In this paper, we report on a method for generating test cases from mixed discrete-
continuous models specified in Matlab Simulink/Stateflow.1 Roughly, the idea is to
use two models for test case generation. A discrete model describes common usage
scenarios and control phases of the system; it is on this model that test suites satisfying
coverage criteria are generated. After (application-specific) concretization of these test
sequences, they are fed into a mixed discrete-continuous model to obtain reference
outputs. Test execution then feeds the concretized inputs in the actual system, and
compares the system’s response with the reference outputs. Of course, this step must
allow for some tolerance both of the values and of the time points these values are

1Stateflow is the state machine tool in the MATLAB/Simulink product family [7]. MATLAB/Simulink
is widely used in industry for control system design.
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Figure 1: Models of the control logic and the controller with the physical dynamics

observed.

Contribution. This paper presents an approach to generating test cases—trajectories—
for hybrid systems in a structured and automatic manner. These test cases can be used
both for validating models and verifying the respective systems. The ideas are dis-
cussed along the lines of a case study, an automatic cruise control. We are not aware of
any published work that explicitly targets at generating test cases for mixed discrete-
continuous systems and that does not rely on pure time discretizations of the overall
system.

Outline. The remainder of the paper is organized as follows. In Sec. 2 the case study,
an automatic cruise control, is described together with its model. Sec. 3 develops the
general approach for testing of mixed discrete-continuous systems. Sec. 4 describes
test sequences for the ACC, and Sec. 5 concludes. Related work is cited in its context.

2 Automatic Cruise Control

In this section we briefly explain the automatic cruise control system (ACC) and our
model of it. The model is designed as a typical evaluation system for tests of mixed
discrete-continuous systems. The ACC is a driver assistance system that controls a
car’s speed and the distance to the car in front (if any). Thus, it extends classic cruise
control systems by also considering distance and not only speed.

The main requirements of the system are (1) to adjust the car’s speed to the desired
speed Vset, as set by the driver, if there is no slower car in front, and (2) to adjust
the distance between the car and a preceding car which is going with a speed less
than Vset to the set value for the distance, Dset. These adjustments have to made
in a manner which is comfortable for the car’s occupants. In particular this means
that sudden, strong accelerations and decelerations must be avoided. This comfort
requirement is highly important. It motivates that test cases which do not consider
continuous dynamics do not suffice for testing the system. This is because they can
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hardly reflect the magnitude of the car’s acceleration and its changes. At least in part,
the satisfaction of this requirement must be verified by real drivers.

The left side of Fig. 1 depicts the main control logic for the ACC system as a
Stateflow Statechart. Since the system is activated and deactivated by the driver, the
control logic has two top-level states ACCOff and ACCOn. Switching between these
states is controlled by input variable AccState. State ACCOn is refined into the substates
LaneEmpty and LaneOccupied. If there is another car (which we also refer to as the
predecessor in the following) in the own car’s driving lane, control is in LaneOccupied.
Otherwise, it is in LaneEmpty. The presence/absence of a predecessor is signaled by
input Object. If the lane is occupied the control logic distinguishes between three
situations. Either (1) the predecessor (speed vPred) is faster than the own desired speed
Vset (state VpredGRVset), or (2) the predecessor is much slower than the follower with
current speed vFol (state VrelLE0; vRel in the diagram denotes the current relative
speed vPred− vFol), or (3) the current relative speed is close to 0 or the predecessor is
faster than the follower but still slower than Vset (state VrelEq0).

In states LaneEmpty and VpredGRVset, the control logic implements a control law
for speed control. In states VrelEq0 and VrelLE0, distance control is used. This is
signaled by the output variable Mode which is used by the underlying Simulink model
containing the control laws. In state ACCOff the system does not influence the cars lat-
eral dynamics. The distinction between states VrelEq0 and VrelLE0 allows us to apply
a faster, less comfortable control law in emergency situations with a new slow prede-
cessor in front (not currently used). Note that switching between different control laws
is typical for mixed discrete-continuous systems. The right side of Fig. 1 depicts the
Simulink diagram containing the control logic (top left), the control laws for distance
and speed control (middle) and a model of the physical dynamics (right).

3 Hybrid System Tests

Discrete systems. Before we turn to mixed discrete-continuous systems, let us briefly
look at model-based test case generation for purely discrete systems. The general ap-
proach is sketched in Fig. 2; see [4] for details.

Figure 2: Testing for discrete systems

Assume that we are given a system to be tested (the “implementation”), and a model
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of those parts of the system behavior that we are interested in. We can then use the
model to find test sequences that satisfy formal test specifications or coverage criteria
over the model description. As described in [3], this step can be regarded as a search
problem in the computation tree of the model. The input part of the test cases is fed
into a model of the system in order to produce reference outputs. Then, during test
execution itself, the input part is adapted to the interface of the implementation. The
adapted inputs are fed into the implementation, and by comparing model and imple-
mentation outputs, a test verdict is formed. Obviously, the verdict finder must also
bridge the difference in interfaces and interface abstraction levels between model and
implementation.

Open-loop systems. The first idea that comes to mind when considering test cases
for mixed discrete-continuous systems is that of using a time discretization (roughly,
substituting differential by difference equations) and applying the procedure outlined
above. This approach is pursued in [5, 1]. It quickly turns out, however, that the test
sequences are too long and the search space is too large for systematic exploration,
a result both of the small steps (milliseconds) in the dimension of time and of the
continuous values. Discrete-event abstractions might appear as the natural solution to
the problem. These abstractions are too coarse, however, to be used for generating test
cases that are applied to an actual system.

Figure 3: Testing: Open-loop Hybrid Systems

For open-loop-controlled systems, we suggest a different approach (Fig. 3). Instead
of a single model of the system, which also serves for test case generation, we assume
that we are given both a mixed discrete-continuous model of the system and a purely
discrete abstraction of the model, which is tailored for common usage scenarios or
control phases. Furthermore, we assume that a test suite has been generated for the
discrete model. This test suite might cover all transitions of the discrete model, or all
pairs of transitions, or it might be based on a completely different coverage criterion.
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Since the discrete abstraction was chosen with some abstraction criterion in mind,
it is possible to choose a concretization mapping that is dual to this abstraction. Here,
the degrees of freedom include the duration of what has been abstracted by one single
signal and the signal’s evolution in this time slot.

In general, the output cannot be concretized in the same manner because the rela-
tionship between input and output cannot be reconstructed. This is because the abstrac-
tion in the discrete model usually is too coarse. We can, however, use the concretized
input and feed it into the continuous model to obtain reference output sequences. These
concretized inputs and the generated outputs can then be used just as test sequences for
the purely discrete situation described above. Of course, inputs still have to be further
adapted for the implementation, and the verdict finder must allow small derivations for
the output values; we also need to allow small derivations for the times of the discrete
mode changes.

Closed-loop systems. As experience shows, the situation is more complicated for
closed-loop systems, where we consider not only the controller, but also the environ-
ment (the plant). Environment models are desirable in order to reduce the complexity
of the discrete model, the concretizer and the verdict finder, and thus to indirectly also
reduce the search space for test cases. For instance, the ACC introduced in Sec. 2
bases its decision partly on the current vehicle speed; it influences this speed indirectly
through vehicle acceleration or deceleration. The dependency between acceleration
and speed is trivial, but its exclusion by considering only open-loop systems would
immensely increase the search space, thus requiring more elaborate discrete models to
restrict the search.

However, now test case generation requires a feedback construction as shown in
Fig. 4, in a way that the discrete model enforces a new control law only after the mixed
model has reached a certain state. This state information is abstracted from the mixed
model outputs. Typically, the abstractions used are simple partitions of the output value
space.

Test case generation. For the test scenarios shown in Figs. 3 and 4, model-based
test case generation techniques can be used to generate sets of input traces that satisfy
coverage metrics over the discrete model.

For instance, if transition coverage is to be achieved, then a heuristics could be
implemented as follows: for each discrete state (mode), it is recorded which transitions
have already been taken. If a particular state is reentered, then a transition is chosen
that has not been chosen before. If all transitions have been chosen before, then one
can compute the transition that is most likely to lead to a transition that has not been
taken before. This involves the definition of proximity metrics on the state space, or
fitness functions that compute the “distance” to all the transitions that have not fired
before. The transition that is “closest” to one that did not fire before is chosen [3].

Test case execution. In the three situations mentioned above, we only hinted at the
critical steps of the adaption of the test case inputs for the implementation and the
comparison of model and implementation output (verdicts).
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Figure 4: Closed-loop hybrid systems

Input adaption is comparatively straightforward, but it is highly dependent on the
used test bed. The comparison of model and implementation outputs is less trivial,
however. Obviously there will always be some mismatch between both the values and
the timing of the two outputs, since the implementation will suffer from some effects
(e.g. friction), which can only roughly be described in the model. The solution here
is to add “tolerance tubes” around the model output, and to accept an implementation
output if its time/value combination falls within the tube, as shown in Fig. 5. Note
that the tubes define a tolerance both for value and for time (note that the tubes extend
beyond the boundaries of the different phases). While this approach is conceptually
simple, the definition of suitable tubes is surprisingly intricate, it is described in more
detail in [2, 6].

Figure 5: Tolerance tubes around a reference signal

Of course, there are some subtle deviations which are not tolerated by the tube
construction—although they arguably should be. These deviations occur when the
implementation roughly conforms to the mixed model, but is consistently faster (or
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slower) than the model. In this case, corresponding time/value points will fall outside
the tolerance tube. We assume that such deviations should be handled in the model,
and our experiments have not led us to believe otherwise. It is possible, of course, to
augment the approach by retiming relations, which allow a certain, bounded, speed-up
or slow-down of the implementation.

One may wonder whether the mixed model is indeed necessary—certainly the im-
plementation could be directly driven by the discrete model. The discrete model, how-
ever, is too abstract. In particular, even if it were extended to produce reference outputs,
finding a verdict would be much more difficult; a suitable verdict finder would have to
contain part of the mixed model, which only shifts the problem.

4 ACC Test Cases

A natural abstraction of the ACC that reflects the qualitative states of the overall system,
which includes ACC control logic, control laws, lateral dynamics and the behavior of
predecessor cars, is as follows. In the overall system we have the qualitative states Off,
where the ACC is switched off, and OnEmpty with the ACC switched on and the driving
lane empty and some further states when the lane is occupied and the ACC is on. These
further states reflect the values of the predecessor’s speed, the follower’s speed and the
set value for the follower’s speed relative to each other. Not all combinations of these
speeds result in qualitatively different states. For instance, speed control in the ACC
system is active if there is no car in front regardless of whether vFol is less than or
greater than Vset. The interesting combinations are: vPred ≤ Vset + 1

m
s ∧ vPred <

vFol − 5
m
s (state PredMin), vFol − 5

m
s ≤ vPred ≤ Vset + 1

m
s (state FolPredSet),

Vset+1
m
s < vPred < vFol−5

m
s (state SetPredFol) and Vset+1

m
s < vPred ∧ vFol−

5
m
s ≤ vPred (state PredMax).

These combinations are relevant, because they correspond to transition guards in
the ACC control logic (Fig. 1, left side) which enforce that states VrelLE0 and VpredGRVset,
respectively, are entered. State VrelEq0 is more or less “in between” those other two
states when the values for the velocities are considered. The abstract states SetPredFol
and PredMin can be unified to a single state, PredFol, since whenever one of the two
predicates is true, the concrete ACC logic is in state VrelLE0 without distinguishing
further.

Figure 6: State machine of the discrete model
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The state machine for the discrete abstract driver for test case generation is shown in
Fig. 6. It consists of these five states (with the unified one). They are strongly connected
by transitions that reflect the corresponding conditions which have to be satisfied when
the state is entered. As described above, to the end of test case generation, we can
compute (1) sequences that cover all (pairs of) states, and (2) sequences that cover all
(pairs of) transitions.

Abstraction and concretization. The abstraction mapping from the detailed discrete-
continuous model to the abstract driver is simple. All the above states correspond to
predicates over the overall system’s state space. The abstraction mapping evaluates
these predicates and makes the result available to the state machine of the abstract
driver whose transitions are triggered by them.

The concretization is a lot more difficult, since there are whole ranges of legal val-
ues for the speeds in the states. Velocities can even change with the qualitative state re-
maining the same. For instance, in state FolPredSet, vPred can increase until Vset+1

m
s

without a change in the qualitative state. In our case we used the following more or
less arbitrary concretization: Since the main application area for the ACC system is
highway traffic, we focus on ranges for the speeds between 30 and 45

m
s . Furthermore,

accelerations and decelerations are limited by physics. We therefore consider accelera-
tions/decelerations up to ±3

m
s2 . With these limitations one sensible way of concretiza-

tion is to randomly select linear trajectories for the velocities which are within these
bounds. Operationally, this means that when entering a state, we use heuristics to de-
termine which state or transition is desired to be visited/executed next. Based on the
corresponding transition guard we can randomly select values which make the guards
true for those continuous variables which are input to the concrete model. Based on the
allowed accelerations/decelerations we can furthermore determine when the selected
values can and should be reached. Then we linearly interpolate between the present
values and the desired future values and provide the resulting trajectory as input for the
concrete model.

In the ACC model vFol need not be concretized, because it is an output of the
discrete-continuous system and input to the abstract driver. For the events of switching
the system on and off and newly occurring predecessors a stochastic is used. A further
stochastic model gives concrete values for the initial distance in which a predecessor
appears in the driving lane.

Example test sequence. Fig. 7 shows an output of the Matlab model for a test case
derived using the ideas described above. We describe a test case that was generated
according to a specification that required all five states to be covered. Variable dAct
denotes the actual distance between predecessor and follower, vFol and vPred are as
above. The vertical lines in the plots define segments of 50s, the vertical lines in the
plot for dAct define segments of 50m and those in the plots for vFol and vPred define
segments of 5

m
s . In the test case, the ACC is first switched off. At time t = 10s the

system is switched on and the car accelerates to Vset = 30
m
s . After approximately 80s

from start the set value is increased to 35
m
s and the car accelerates further. Between

time 125s and 160s the ACC is switched off and on again. This is not visible in the
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Figure 7: Trajectories of vPred, vFol, dAct (input to the concrete model)

trajectory for vFol because the used model of the cars lateral dynamics does not include
loss of energy by aerodynamics and friction. After approximately 160s a new car with
vPred = 33

m
s appears in the driving lane at an initial distance of 100m. This causes

the ACC control logic to change to state VrelEq0 and activate distance control. Thus
the car first accelerates to decrease the distance until time 165s and then decelerates in
order to obtain the desired distance.2 Before this distance is reached the predecessor
starts to steadily accelerate to a speed higher than Vset, namely to 40

m
s . This causes

the ACC control logic to switch back to speed control after approximately 250s. After
300s the predecessor disappears which is not visible in the trajectory for vFol, because
the follower still pursues speed control. The next event occurs at about 340s. A new
predecessor appears in a distance of 30m with vPred being 6

m
s smaller then vFol at

that point in time. Due to the much smaller speed, the ACC control logic enters state
VrelLE0 and the follower decelerates. Some time later state VrelEq0 is entered and the
desired distance of 50m is obtained.

5 Conclusions

The main benefit of the method we reported on is to have a systematic and highly
automatic means for deriving test for mixed discrete-continuous systems. If test cases
are sought manually the danger to forget an important case is high. In particular we
encountered that it is indeed very likely to forget to test one of the qualitative states of
the system. Possibly this is due to focusing too strongly on the continuous aspects—the
details—while forgetting about the discrete states—the big picture—of the system.

Test case generation is based on a two-tiered modeling approach: A mixed discrete-
continuous model serves as the reference for verdicts, while a purely discrete model
describes usage scenarios and serves as a source for relevant test sequences. In this pa-
per, we demonstrated our approach with Matlab models. The approach itself, however,
is independent of the modeling language. The essence is the notion of “model-in-
the-loop” simulation in order to resolve the nondeterminism of the environment of the

2A real ACC system would have more control states and would thereby be able to realize that acceleration
is undesirable in this situation. For the purpose of this paper, however, we use the simple example system.
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system.
Our current work focuses on finding verdicts when the physical system is triggered

with the generated sequences, in particular on finding suitable “tolerance tubes” around
the reference sequences. If the tolerance is too high, inacceptable system behavior
might go undetected; if the tolerance is too low, small perturbations in the environment
will lead to false test failures. While our approach is usable as described in this paper,
solving the tolerance problem is essential to making our approach cost-effective: The
main cost occurs in the construction of the mixed model. Reuse of model building
blocks will reduce these costs, but the risk of behavior mismatches between the model
and the implementation system is higher than for a custom-built model.
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