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Abstract. This paper presents proof terms for simply typed, intuition-
istic higher order logic, a popular logical framework. Unification-based
algorithms for the compression and reconstruction of proof terms are de-
scribed and have been implemented in the theorem prover Isabelle. Ex-
perimental results confirm the effectiveness of the compression scheme.

1 Introduction

In theorem provers based on the LCF approach, theorems can only be con-
structed by a small set of primitive inference rules. Provided the implementation
of these rules is correct, all theorems obtained in this way are sound. Hence it
is often claimed that constructing an explicit proof term for each theorem is
unnecessary. This is only partially true, however. If the core inference engine of
a theorem prover is relatively large, correctness is difficult to ensure. Being able
to verify proof terms by a small and independent proof checker helps to mini-
mize the risks. Moreover, a precise notion of proof terms facilitates the exchange
of proofs between different theorem proving systems. Finally, proof terms are a
prerequisite for proof transformation and analysis or the extraction of computa-
tional content from proofs. Probably the most prominent application these days
is proof-carrying code [5], a technique that can be used for safe execution of un-
trusted code. For these reasons we have extended Isabelle [9] with proof terms.
However, apart from the actual implementation, our work is largely independent
of Isabelle and most of this paper deals with the general topic of proof terms
for simply typed, intuitionistic higher order logic (abbreviated to λHOL below),
Isabelle’s meta logic. Because other logics (e.g. full HOL) can be encoded in this
meta logic, this immediately yields proof terms for those logics as well.

We start with a disclaimer: the idea of proof terms based on typed λ-calculus
has been around for some time now and is the basis of a number of proof assis-
tants for type theory, for example Coq [2]. Even more, with the advent of “pure
type systems” and the λ-cube [1], it became clear what proof terms for λHOL
look like in principle (although this seems to have had little impact on the HOL
world). What we have done is to re-introduce the strict syntactic separation
between terms, types, and proofs to make it more amenable to readers from a
simply typed background. Thus our presentation of proof terms can be seen as a
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partial evaluation of the corresponding pure type system, i.e. separating the lay-
ers. Things are in fact a bit more complicated due to the presence of schematic
polymorphism in our term language.

The main original contribution of the paper is a detailed presentation of
proof compression. A naive implementation of proof terms results in proofs of
enormous size because with every occurrence of a proof rule the instantiations
for its free variables are recorded. Thus it is natural to try and leave out some of
those terms and to reconstruct them by unification during proof checking. Necula
and Lee [6] have presented a scheme for proof compression in LF, another logical
framework based on type theory. They analyze the proof rules of the object logic
statically to determine what can be reconstructed by a weak form of unification.
In contrast, we do a dynamic analysis of each proof term to determine what
can be dropped. Reconstruction of missing information by unification is also
available in other systems, e.g. Elf [12, 11], but none of them offers an automatic
dynamic compression algorithm.

There has also been work on recording proofs in the HOL system [3, 14], but
it is firmly based on a notion of proof that directly reflects the implementation
of inferences as calls to ML functions. These proof objects lack the conciseness
of λ-terms and it is less clear how to compress them other than textually.

We start by presenting the logical framework (§2) and its λ-calculus based
proof terms (§3). In order to shrink the size of proofs we introduce partial proofs
(§4), show how to collect equality constraints from a (partial) proof (§4.1), how
to solve these constraints (§4.2) (to check that the proof is correct), and how to
generate partial proofs from total ones, i.e. how to compress proofs (§4.3).

2 The logical framework

In a nutshell, Isabelle’s meta logic [9, 8] is the minimal higher order logic of
implication and universal quantification over simply typed λ-terms including
schematic polymorphism. Thus types are first order only, which makes type
reconstruction decidable. A type τ is either a variable α or a compound type
expression (τ1, . . . , τn)tc, where tc is a type constructor and n is its arity. The
(infix) constructor → for function types has arity 2. We assume implicitly that
all types are well-formed, i.e. every type constructor is applied to the correct
number of arguments. The set t of terms is defined in the usual way by

t = x | c | λx :: τ. t | t t
Formulae are terms of the primitive type prop. The logical connectives are:

universal quantification
∧

:: (α→ prop)→ prop
implication =⇒ :: prop→ prop→ prop

Now we show how an object logic is formalized in this meta logic. As an example
we have chosen a fragment of HOL. First we introduce new types and constants
for representing the connectives of this logic:

Tr :: bool→ prop ∀ :: (α→ bool)→ bool
−→ :: bool→ bool→ bool ∃ :: (α→ bool)→ bool
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Here, bool is the type of object level propositions. The function Tr establishes
a connection between meta level and object level truth values: the expression
Tr P should be read as “P is true”. The application of Tr is occasionally dropped
when writing down formulae. The inference rules for the meta logic consist of
the usual introduction and elimination rules and are shown in §3.1 below.

Inference rules of object logics are usually written like this:

φ1 . . . φn
ψ

In our meta logic they become nested implications:

φ1 =⇒ · · · =⇒ φn =⇒ ψ

Here are some examples:

impI :
∧
A B. (Tr A =⇒ Tr B) =⇒ Tr (A −→ B)

impE :
∧
P Q R. Tr (P −→ Q) =⇒ Tr P =⇒ (Tr Q =⇒ Tr R) =⇒ Tr R

allI :
∧
P. (

∧
x. Tr (P x)) =⇒ (Tr (∀x. P x))

allE :
∧
P x R. Tr (∀x. P x) =⇒ (Tr (P x) =⇒ Tr R) =⇒ Tr R

exI :
∧
P x. Tr (P x) =⇒ Tr (∃x. P x)

exE :
∧
P Q. Tr (∃x. P x) =⇒ (

∧
x. Tr (P x) =⇒ Tr Q) =⇒ Tr Q

Note that the introduction rules impI and allI are for object level implication
and universal quantification are expressed by simply referring to the meta level
counterpart of these connectives. The expression

∧
x. φ is just an abbreviation

for
∧

(λx. φ), and similarly for ∀ and ∃.

3 Proof terms

3.1 Basic concepts

The set of proof terms p is defined as follows:

p = h | c
[τn/αn]

| λh : φ. p | λx :: τ. p | p p | p t

The letters h, c, x, t, φ and τ denote proof variables, proof constants, term
variables, terms of arbitrary type, terms of type prop and types, respectively.
Note that terms, types and proof terms are considered as separate concepts. This
is in contrast to type theoretic frameworks, where these concepts are identified.
We will write Γ ` p : φ for “p is a proof of φ in context Γ”, where φ is a term
of type prop, representing the logical proposition proved by p. The context Γ
associates a proof variable with a term representing the proposition whose proof
it denotes, and a term variable with its type. We require each context to be well-
formed, i.e. every variable is associated with at most one term or type. Proof
constants correspond to axioms or already proved theorems. The environment Σ
maps proof constants to terms representing propositions. Our language of proof
terms allows abstraction over proof and term variables, as well as application of
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proofs to proofs and terms. The abstractions correspond to the introduction of
∧

and =⇒, while applications correspond to the elimination of these connectives.
In contrast to polymorphic λ-calculi, no explicit application and abstraction is
provided for types. To achieve a certain degree of polymorphism, we allow Σ(c)
to contain free type variables and introduce the notation c

[τn/αn]
to specify a

suitable instantiation for them. The notion of provability can now be defined
inductively as follows:

Γ, h : φ, Γ ′ ` h : φ

Σ(c) = φ

Γ ` c
[τn/αn]

: φ[τn/αn]

Γ, h : φ ` p : ψ Γ ` φ :: prop

Γ ` (λh : φ. p) : φ =⇒ ψ

Γ, x :: τ ` p : φ

Γ ` (λx :: τ. p) :
∧
x :: τ. φ

Γ ` p : φ =⇒ ψ Γ ` q : φ

Γ ` (p q) : ψ

Γ ` p :
∧
x :: τ. φ Γ ` t :: τ

Γ ` (p t) : φ[t/x]

The judgement Γ ` t :: τ used above expresses that the term t has type τ in
context Γ . We will not give a formal definition of this judgement here, since it
is well-known from simply typed lambda calculus.

3.2 Representing backward resolution proofs

This section explains how proof terms are constructed for proofs that are built
up backwards by higher-order resolution as described by Paulson [8] and imple-
mented in Isabelle. Although Isabelle also has LCF-like functions for forward
proofs corresponding to the above inference rules, most proofs are constructed
backwards without recourse to the forward rules. We now show how to augment
these backward steps by proof terms. Thus the functions for backward resolution
proofs need no longer be part of the trusted kernel of Isabelle.

In Isabelle, proof states are represented by theorems of the form

ψ1 =⇒ · · · =⇒ ψn =⇒ φ

where φ is the proposition to be proved and ψ1, . . ., ψn are the remaining sub-
goals. Each subgoal is of the form

∧
x. A =⇒ P , where x and A is a context of

parameters and local assumptions.

Resolution
A proof of a proposition φ starts with the trivial theorem φ =⇒ φ whose proof
term is λv : φ. v. The initial proof state is then refined successively using the
resolution rule

P1 . . . Pm
C

R

P ′1 . . . P
′
i . . . P

′
m′

C′
R′
7→ θ

(
P ′1 . . . P ′i−1 P1 . . . Pm P ′i+1 . . . P ′m′

C′

)
where θ C = θ P ′i
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until a proof state with no more premises is reached. When refining a proof state
having the proof term R′ using a rule having the proof term R, the proof term
for the resulting proof state can be expressed by

θ (λqi−1 pm. R
′ qi−1 (R pm))

where θ is a unifier of C and P ′i . The first i − 1 abstractions are used to skip
the first i − 1 premises of R′. The next m abstractions correspond to the new
subgoals introduced by R.

Proof by assumption
If the formula Pj in a subgoal

∧
xk. Pn =⇒ Pj of a proof state having the proof

term R equals one of the assumptions in Pn, this subgoal trivially holds and can
therefore be removed from the proof state

Q1 . . . Qi−1

∧
xk. Pn =⇒ Pj Qi+1 . . . Qm

C
R 7→

Q1 . . . Qi−1 Qi+1 . . . Qm

C

where 1 ≤ j ≤ n

The proof term of the new proof state is obtained by supplying a suitable pro-
jection function as an argument to R:

λqi−1. R qi−1 (λxk pn. pj)

Lifting rules into a context
Before a subgoal of a proof state can be refined by resolution with a certain
rule, the context of both the premises and the conclusion of this rule has to
be augmented with additional parameters and assumptions in order to be com-
patible with the context of the subgoal. This process is called lifting. Isabelle
distinguishes between two kinds of lifting: lifting over assumptions and lifting
over parameters. The former simply adds a list of assumptions Qn to both the
premises and the conclusion of a rule:

P1 . . . Pm
C

R 7→
Qn =⇒ P1 . . . Qn =⇒ Pm

Qn =⇒ C

The proof term for the lifted rule is

λrm qn. R (rm qn)

where the first m abstractions correspond to the new premises (with additional
assumptions) and the next n abstractions correspond to the additional assump-
tions.

Lifting over parameters replaces all free variables ai in a rule R [ak] by new
variables a′i of function type, which are applied to a list of new parameters xn.
The new parameters are bound by universal quantifiers.

P1 [ak] . . . Pm [ak]

C [ak]
R [ak] 7→

∧
xn. P1

[
a′k xn

]
. . .

∧
xn. Pm

[
a′k xn

]∧
xn. C

[
a′k xn

]
The proof term for the lifted rule looks similar to the one in the previous case:

λrm xn. R
[
a′k xn

]
(rm xn)
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3.3 Constructing an example proof

We will now demonstrate how a proof term can be synthesized incrementally
while proving a theorem in backward style. A proof term corresponding to a
proof state will have the general form

λ(g1 : φ1) . . . (gn : φn). . . . (gi xi hi) . . .

where the bound variables g1, . . ., gn stand for proofs of the current subgoals
which are still to be found. The xi and hi appearing in the proof term (gi xi hi)
are parameters and assumptions which may be used in the proof of subgoal i.
As an example, the construction of a proof term for the theorem

(∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)

will be shown by giving a proof term for each proof state. The parts of the proof
terms, which are affected by the application of a rule will be underlined. Initially,
the proof state is the trivial theorem:

step 0, remaining subgoal: (∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)

λg : ((∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)). g

We first apply rule impI. Applying a suitable instance of this rule to the trivial
initial proof term yields

λg : (∃x. ∀y. P x y) =⇒ (∀y. ∃x. P x y).
(λg′ : ((∃x. ∀y. P x y) −→ (∀y. ∃x. P x y)). g′) }proof term from step 0

(impI (∃x. ∀y. P x y) (∀y. ∃x. P x y)︸ ︷︷ ︸
instance of impI

g)

and by βη reduction of this proof term we obtain

step 1, remaining subgoal: (∃x. ∀y. P x y) =⇒ (∀y. ∃x. P x y)

impI (∃x. ∀y. P x y) (∀y. ∃x. P x y)

We now apply allI to the above proof state. Before resolving allI with the proof
state, its context has to be augmented with the assumption ∃x. ∀y. P x y of the
current goal. The resulting proof term is

λg : (
∧
y. ∃x. ∀y. P x y =⇒ ∃x. P x y).

impI (∃x. ∀y. P x y) (∀y. ∃x. P x y) }proof term from step 1
((λh2 : (∃x. ∀y. P x y =⇒

∧
y. ∃x. P x y).

λh1 : (∃x. ∀y. P x y).
allI (λy. ∃x. P x y) (h2 h1))

}
lifted instance of allI

(λh3 : (∃x. ∀y. P x y)
λy :: β. g y h3))

}
rearranging quantifiers

as before, we apply β reduction, which yields
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step 2, remaining subgoal:
∧
y. ∃x. ∀y. P x y =⇒ ∃x. P x y

λg : (
∧
y. ∃x. ∀y. P x y =⇒ ∃x. P x y).

impI (∃x. ∀y. P x y) (∀y. ∃x. P x y)
(λh1 : (∃x. ∀y. P x y).

allI (λy. ∃x. P x y) (λy :: β. g y h1))

By eliminating the existence quantifier using exE we get

step 3, remaining subgoal:
∧
y x. ∀y. P x y =⇒ ∃x. P x y

λg : (
∧
y x. ∀y. P x y =⇒ ∃x. P x y).

impI (∃x. ∀y. P x y) (∀y. ∃x. P x y)
(λh1 : (∃x. ∀y. P x y).

allI (λy. ∃x. P x y)
(λy :: β. exE (λx. ∀y. P x y) (∃x. P x y) h1 (g y)))

Applying the introduction rule exI for the existential quantifier results in

step 4, remaining subgoal:
∧
y x. ∀y. P x y =⇒ P (?x y x) y

λg : (
∧
y x. ∀y. P x y =⇒ P (?x y x) y).

impI (∃x. ∀y. P x y) (∀y. ∃x. P x y)
(λh1 : (∃x. ∀y. P x y).

allI (λy. ∃x. P x y)
(λy :: β. exE (λx. ∀y. P x y) (∃x. P x y) h1

(λx :: α.
λh2 : (∀y. P x y).

exI (λx. P x y) (?x y x) (g y x h2))))

We now eliminate the universal quantifier using allE, which yields

step 5, remaining subgoal:
∧
y x. P x (?y y x) =⇒ P (?x y x) y

λg : (
∧
y x. P x (?y y x) =⇒ P (?x y x) y).

impI (∃x. ∀y. P x y) (∀y. ∃x. P x y)
(λh1 : (∃x. ∀y. P x y).

allI (λy. ∃x. P x y)
(λy :: β. exE (λx. ∀y. P x y) (∃x. P x y) h1

(λx :: α.
λh2 : (∀y. P x y).

exI (λx. P x y) (?x y x)
(allE (P x) (?y y x) (P (?x y x) y) h2 (g y x)))))

We can now prove the remaining subgoal by assumption, which is done by sub-
stituting the projection function λ(y :: β) (x :: α). λh3 : (P x y). h3 for g:

step 6, no subgoals
impI (∃x. ∀y. P x y) (∀y. ∃x. P x y)

(λh1 : (∃x. ∀y. P x y).
allI (λy. ∃x. P x y)

(λy :: β. exE (λx. ∀y. P x y) (∃x. P x y) h1

(λx :: α.
λh2 : (∀y. P x y).

exI (λx. P x y) x
(allE (P x) y (P x y) h2 (λh3 : (P x y). h3)))))

7



4 Partial proof terms

Proof terms are large, contain much redundant information, and need to be com-
pressed. The solution is simple: leave out everything that can be reconstructed.
But since we do not want to complicate reconstruction too much, it should not
degenerate into proof search. Thus we have to keep the skeleton of the proof.
What can often be left out are the φ, τ and t in λh:φ. p, λx::τ. p and (p t).

Since we will have to reconstruct the missing information later on, it is con-
ceptually simpler to model the missing information by unification variables.
These are simply a new class of free (term and type) variables, syntactically
distinguished by a leading “?”, as in ?f and ?α. We will sometimes write ?fτ to
emphasize that ?f has type τ . Substitutions are functions that act on unification
variables, e.g. θ = {?f 7→ λx.x, ?α 7→ τ}.

In the remainder of this section we work with partial proofs, where terms
and types may contain unification variables, as in (p ?f). Note that term uni-
fication variables that occur within the scope of a λ need to be “lifted” as in
λx::τ. (p (?f x)). Because of this lifting, this partial information may take up
more space than it saves. Therefore an actual implementation is bound to intro-
duce separate new constructors for proof trees, e.g. λh: . p, λx:: . p and (p ),
where represents the missing information. This is in fact what Necula and Lee
describe [6]. However, it turns out that our partial proofs are easier to treat
mathematically, not far from the “ ”-version, and also allow to drop only part
of a term (although we will not make use of this feature).

Of course, we cannot check partial proofs with the rules of §3.1. In fact, we
may not be able to check them at all, because too much information is missing.
But we can collect equality constraints that need to hold in order for the proof to
be correct. Such equality constraints are of the form T1 =? T2, where T1 and T2

are either both terms or both types. A substitution solves a constraint if the two
terms become equal modulo βη-conversion, or if the two types become identical.
Sets of such equality constraints are usually denoted by the letters C and D. To
separate C into term and type constraints, let Ct denote the term and Cτ the
type part. The subscripts t and τ do not refer to variable names but are simply
keywords.

We will now show how to extract a set of constraints from a partial proof;
how to solve those constraints is discussed later on.

4.1 Collecting constraints

The relation Γ ` p� (φ, C) is a partial function taking Γ and a partial proof p
and producing a formula φ (which may contain unification variables) and a set
of constraints C. The function will be defined such that, if θ solves C, then θ(p)
proves θ(φ). The notation VΓ denotes the list of all term variables declared in
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Γ , and τΓ denotes the list of their types, i.e. VΓ = x1 . . . xn and τΓ = τ1 . . . τn
for Γ = x1 :: τ1 . . . xn :: τn.

Γ ′, h : φ, Γ ` h� (φ, ∅)

Σ(c) = φ

Γ ` c
[τn/αn]

� (φ[τn/αn], ∅)

Γ, h : φ ` p� (ψ, C) Γ ` φ� (τ, D)

Γ ` (λh:φ. p) � (φ =⇒ ψ, C ∪D ∪ {τ =? prop})

Γ, x :: τ ` p� (φ, C)

Γ ` (λx::τ. p) � (
∧
x :: τ. φ, {λx :: τ. r =? λx :: τ. s | (r =? s) ∈ Ct} ∪ Cτ )

Γ ` p� (φ, C) Γ ` q � (ψ, D)

Γ ` (p q) � (?fτΓ→prop VΓ , {φ =? (ψ =⇒ ?fτΓ→prop VΓ )} ∪ C ∪D)

Γ ` p� (φ, C) Γ ` t� (τ, D)

Γ ` (p t) � (?fτΓ→τ→prop VΓ t, {φ =?
∧
x :: τ. ?fτΓ→τ→prop VΓ x} ∪ C ∪D)

As usual, the unification variables ?f must be “new” in each case.
The above rules follow those in §3.1 very closely. For example, the intuition

behind the rule for the application (p q) is the following: if p proves proposition
φ, then φ must be some implication and the proposition ψ proved by q must
be the premise of this implication. Moreover, the proposition proved by (p q) is
the conclusion of the implication. The set of constraints for (p q) is the union of
the constraints for p and q, plus one additional constraint expressing that φ is a
suitable implication. One point to note is the judgement Γ ` t� (τ, D) used in
two premises of the constraint collection rules. It corresponds to Γ ` t :: τ just
like Γ ` p� (φ, C) corresponds to Γ ` p :: φ, i.e. D is a set of type constraints
whose solvability implies that t has type τ . The rules for Γ ` t� (τ, D) are not
given because they are well-known: both from the literature about type inference
for simply typed terms and because they closely resemble the rules above, just
one level down. In a setting where types, terms and proofs are not syntactically
distinguished, we would only have one judgement . ` .� (., .).

We introduce the notation (φ,C) = collect(Γ, p) as a functional variant of
Γ ` p� (φ, C).

Example 1. Let p = λx :: ?α1. λh1 : (?f?α2
x). λy :: ?α3. λh2 : (?f ′?α4

x y). h1 h2 y
Then

collect([], p) = (
∧
x :: ?α1. ?f?α2

x =⇒
∧
y :: ?α3. ?f ′?α4

x y =⇒
?g′?α1→?α3→?α3→prop x y y,

{λx :: ?α1.λy :: ?α3. ?f?α2
x =?

λx :: ?α1.λy :: ?α3. ?f ′?α4
x y =⇒ ?g ?α1→?α3→prop x y,

λx :: ?α1.λy :: ?α3. ?g ?α1→?α3→prop x y =?

λx :: ?α1.λy :: ?α3.
∧
z :: ?α3. ?g′?α1→?α3→?α3→prop x y z,

?α2 =? ?α1 → ?β1, ?β1 =? prop

?α4 =? ?α1 → ?α3 → ?β2, ?β2 =? prop})

where ?g, ?g′ and ?βi are new variables generated during constraint collection.
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Theorem 1. (Soundness and completeness)

1. If Γ ` p� (φ′, C) and θ solves C then θ(Γ ) ` θ(p) : θ(φ′).
2. If Γ ` p : φ and Γ ` p� (φ′, C) then C ∪ {φ =? φ′} is solvable.

This theorem shows the advantage of working with partial proofs as opposed to
proofs containing “ ”: we can produce the full proof by instantiation from the
partial one.

Thus there are two possible system architectures for checking partial proofs:

• either constraint collection Γ ` p � (φ′, C) and constraint solving are part
of the trusted kernel and θ(φ′) is accepted as the correct answer;
• or, for the security conscious, neither collecting nor solving is part of the

trusted kernel and their result is checked by checking θ(Γ ) ` θ(p) : θ(φ′).

4.2 Solving constraints

Our constraints are a mixture of term and type constraints. Type constraints
can be solved by first-order unification and thus do not need to be discussed
here: they can be solved at any time in any order. Therefore we concentrate on
term constraints in this subsection.

Since higher-order unification is undecidable, we restrict to unification of
so called (higher-order) patterns [4], i.e. λ-terms where each occurrence of a
unification variable is applied only to distinct bound variables. For example
λxy.?F y x is a pattern, whereas λx.?F x x and ?Fa are not patterns. The set
of all patterns is denoted by Pat. For us, the key property of patterns is that
their unification is decidable and that solvable pattern unification problems have
most general unifiers [4, 12, 7, 13]. Thus we may assume a function mgu taking
two patterns as arguments and either failing or returning the most general unifier
of its arguments.

Since the constraints C generated by Γ ` p � (φ, C) may contain non-
patterns, we have to delay solving those constraints until (hopefully) they are
turned into patterns by the solution of other pattern constraints. Of course, in
the worst case C may not contain any patterns at all, in which case we have to
give up. Thus we have to take care when constructing partial proofs to make
sure the complete proof can be reconstructed by pattern unification.

Example 2. The first constraint in {?f ?z =? ?z, λxy.?f x =? λxy.?f y} is not
a pattern constraint, but if the second constraint is solved first, it yields the
substitution ?f 7→ λx.?u, which turns the first constraint into the trivial ?u =? ?z.

We say that a set of equality constraints C can be solved by pattern unification
if C −→∗ ∅, where −→ is defined by the rewrite rule

C ∪ {s =? t} −→ θ(C)

where s and t are patterns and mgu(s, t) returns the unifier θ. Note that the
choice of which pair s =? t to solve at which point is immaterial because −→ is
confluent. This is well-known for first-order terms, and holds for patterns as well
because of the existence of most general unifiers and the following easy results:
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Lemma 1. 1. If s, t ∈ Pat and mgu(s, t) returns θ then Ran(θ) ⊆ Pat.
2. If Ran(θ) ⊆ Pat and u ∈ Pat then θ(u) ∈ Pat.

4.3 Compressing proof terms

The basic idea here is straightforward: given a proof term, remove all of the
information that can be reconstructed by unification. If our meta logic were
Prolog (i.e. proof terms contain no λs), we could drop all terms t in an application
(p t), because first-order unification can reconstruct them. In our setting we
require that pattern unification should be able to reconstruct the missing terms.

Compression is performed in three phases. First, all terms and types in the
proof are replaced by suitably lifted unification variables. A substitution revers-
ing the term abstractions is constructed as well.

varify(x, τ , λv:φ. p) = let (p′, θ) = varify(x, τ , p)
in (λv:(?fτ→prop x). p′, θ ∪ {?f 7→ λx.t})

varify(x, τ , λy::τ. p) = let (p′, θ) = varify(xy, τ ?α, p)
in (λy::?α. p′, θ)

varify(x, τ , (p q)) = let (p′, θ) = varify(x, τ , p); (q′, θ′) = varify(x, τ , q)
in ((p′ q′), θ ∪ θ′)

varify(x, τ , (p t)) = let (p′, θ) = varify(x, τ , p)
in ((p′ (?fτ→?β x)), θ ∪ {?f 7→ λx.t})

varify(x, τ , c
[τn/αn]

) = (c
[?αn/αn]

, ∅)

Thus varify(x, τ , p) = (p′, θ) does not quite imply θ(p′) = p because θ does
not reverse the type abstractions: types are first-order and thus they can be
reconstructed uniquely by unification.

Then the constraints are extracted from the resulting partial proof: (φ′, C) =
collect(Γ, p′). Finally we compute (with the help of function solves) a minimal
set of term variables V ⊆ Dom(θ) such that θ(C) can be solved by pattern
unification. Thus the overall algorithm for compressing a proof p is

compress(p, φ) = let (p′, θ) = varify([], [], p)
(φ′, C) = collect([], p′)
V = solves(C ∪ {φ =? φ′}, θ)

in θ|V (p′)

where θ|V is the restriction of θ to V . Function solves(D, θ) returns V ⊆ Dom(θ)
such that θ|V (D) is solvable by pattern unification. The details are explained
below.

The main correctness theorem expresses that compression does not lose any
information in the following sense: the constraints collected from the compressed
version of a valid proof are solvable by pattern unification and any solution yields
a proof of the original formula.

Theorem 2. Let φ be ground. If ` p : φ, q = compress(p, φ) and (ψ,C) =
collect([], q) then

11



1. C ∪ {φ =? ψ} is solvable by pattern unification and
2. if θ solves C ∪ {φ =? ψ} then ` θ(q) : φ.

The second part of the theorem follows directly from the soundness of collect
(part 1 of Theorem 1) because φ is ground, i.e. θ(φ) = φ.

The fact that C ∪ {φ =? ψ} is solvable by pattern unification is a bit more
subtle. From q = compress(p, φ) it follows by definition of compress that there
are p′, θ, φ′, C ′ and V such that (p′, θ) = varify([], [], p), (φ′, C ′) = collect([], p′),
V = solves(C ′ ∪ {φ =? φ′}, θ) and q = θ|V (p′). Because (ψ,C) = collect([], q) =
collect([], θ|V (p′)) and (φ′, C ′) = collect([], p′) it can be shown that ψ = θ|V (φ′)
and C = θ|V (C ′). Thus C ∪ {φ =? ψ} = θ|V (C ′ ∪ {φ =? φ′}). It can be shown
that θ(C ′∪{φ =? φ′}) is solvable by pattern unification. Appealing to Theorem 3
below, it follows that so is C ∪ {φ =? ψ}.

Theorem 3. If θ(C) is solvable by pattern unification, then solves(C, θ) termi-
nates successfully with a set of variables V such that θ|V (C) is solvable by pattern
unification.

This can be viewed as a specification of solves or as its main correctness theorem.
Of course there are trivial implementations of solves that simply return Dom(θ).
What we want is a minimal set V with the stated property. Note that in general
there is no least such V :

Example 3. Let C = {λx.?f(?g(x)) =? λx.f(x)} and θ = {?f 7→ f, ?g 7→ λx.x}.
Then θ(C), θ|{?f}(C) and θ|{?g}(C) are solvable by pattern unification.

Therefore solves nondeterministically computes a minimal set of variables by
simulating the process of solving the constraints by pattern unification. Every
time the process gets stuck, i.e. no more pattern constraints are left, a minimal
set of additional variables is instantiated.

The main complication is that pattern unification may introduce new vari-
ables. Thus we need to keep track of where they came from, i.e. which original
variable needs to be instantiated in order to ensure that the new variable be-
comes instantiated. Again, there may be a choice:

Example 4. Let C = {λxyz.?f z x =? λxyz.?g x y} ∪ C ′ and let θ = {?f 7→
λxy.f y, ?g 7→ λxy.f x} ∪ θ′. Solving the first constraint in C yields the substi-
tution σ = {?f 7→ λxy.?h y, ?g 7→ λxy.?hx}. Now we need to compute the value
of ?h (in case it is required later on in order to continue) and we need to record
that ?h depends on either ?f or ?g, i.e. instantiating ?f or ?g will instantiate ?h.
We can chose to record either dependency.

In the algorithm below, this dependency relation is stored in a partial function
D mapping new variables to old ones they depend on.

Finally we introduce some terminology to select those variables that occur
in non-pattern positions: given an equality constraint st, NPVars(st) is the set
of variables ?f that occur in subterms of the form ?f u in st, such that u is not
a list of distinct bound variables.
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Now we can describe solves(C, θ) as an imperative algorithm. As long as
there are pattern problems left in C, we solve them and propagate the solution.
Once we are left only with non-pattern problems, we pick one such that values
for all its non-pattern variables are known (via θ). All those variables are then
instantiated and recorded in V . If there is no such non-pattern problem either,
the algorithm fails. Luckily, Theorem 3 tells us that this will not happen in the
cases we are interested in.

V := ∅;D := {?f 7→ ?f | ?f ∈ Var(C)}
while C 6= ∅ do
if there is a pattern problem (s =? t) ∈ C
then σ := mgu(s, t); C := σ(C − {s =? t});

forall (?f 7→ t) ∈ σ do
δ := mgu(θ(?f), θ(t)); θ := θ ∪ δ
D := D ∪ {?h 7→ D(?f) | ?h ∈ Dom(δ)}

od
else pick some st ∈ C such that NPVars(st) ⊆ Dom(θ);

V := V ∪ {D(?f) | ?f ∈ NPVars(st)};
C := θ|NPVars(st)(C);

od;
return V

Note that the else-case does not necessarily compute a minimal V : if st =
(λxy.?f x (?g y y) =? λxy.x} and θ(?f) = λxy.x and θ(?g) = λxy.x then it suffices
to instantiate either ?f or ?g, whereas above both are added to V . The above al-
gorithm can be refined by instantiating st stepwise from the top and normalizing
the result each time.

5 Implementation

The algorithms for compression and reconstruction of proofs have been imple-
mented in ML as a part of the theorem prover Isabelle. During the proof of a
theorem, the corresponding proof term is built up incrementally. Since this may
slow down the execution of proof scripts, the generation of proof terms can be
switched on and off as needed: during the interactive development of a proof this
feature may be switched off. When the proof is completed, the proof script may
be re-run with proof generation switched on and the resulting proof term could
be exported.

We have tested the implementation on several proofs of theorems in Pelletier’s
collection [10], which were generated by Isabelle’s tableau prover. The following
table summarizes some results1. It shows the number of terms (i.e. terms such as
φ and t in λh:φ. p and (p t)) occurring in the uncompressed proof term, as well
as the number of terms occurring in the compressed proof term (i.e. terms not
replaced by placeholders “ ”, as explained in §4). In all cases, the compression
1 These measurements were done on a Pentium II with 400 MHz and 512 MB RAM
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ratio was more than 90%. The compression rate reported by Necula and Lee [6]
appears to be a little better, but that is probably because we counted only the
number of terms, not their size: our dynamic compression scheme should drop
at least as much as Necula and Lee’s static scheme.

number of terms reconstruction
uncompressed compressed compression time [s]

52 4 92.3% 0.030

116 6 94.8% 0.120

170 9 94.7% 0.190

316 16 94.9% 0.360

425 31 92.7% 0.710

1948 142 92.7% 5.220

2345 153 93.5% 5.950

The following diagram shows the correspondence between the number of terms
in the uncompressed proof term and the time needed for reconstruction.
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A crucial point is the efficient handling of large sets of constraints: when having
computed a unifier for a constraint, one possibility is to apply this unifier to
all the remaining constraints. Another possibility is to accumulate the unifiers
and only apply them when needed. The first solution can be rather slow when
having a large number of constraints, while the second solution—which has been
chosen in our implementation—requires efficient data structures for storing sub-
stitutions. To speed up reconstruction, our implementation of function collect
described in §4.1 tries to solve newly introduced constraints immediately, instead
of collecting all constraints first and then solving them at the end.

6 Conclusion

We have given a first presentation of proof terms for simply typed intuitionistic
higher-order logic, an important logical framework. We hope that by unfolding
the underlying type theory and explicitly isolating the simply typed components
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familiar to users of Isabelle or HOL, this may popularize the λ-calculus view of
proofs in those quarters as well. We have also presented what appears to be
a novel compression scheme for proofs. Hence our work provides a new and
promising basis for exchanging proofs in simply typed logics, in particular HOL,
both among theorem provers (especially automatic and interactive) and in the
realm of proof carrying code.
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