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Abstract. This paper proposes a refinement relation supporting the
transition from unbounded to bounded communication buffers. Employ-
ing this refinement relation, a system specification based on purely asyn-
chronous communication can for example be refined into a system spec-
ification where the components communicate purely in terms of hand-
shakes. First a weak version called partial refinement is introduced. Par-
tial refinement guarantees only the preservation of safety properties —
preservation in the sense that any implementation of the more concrete
specification can be understood as an implementation of the more ab-
stract specification if the latter is a safety property. This refinement
relation is then strengthened into total refinement which preserves both
safety and liveness properties. Thus a total refinement is also a partial re-
finement. The suitability of this refinement relation for top-down design
is discussed and some examples are given.

1 Introduction

During the final phases of a system development many implementation depen-
dent constraints have to be taken into consideration. This is not a problem as
long as the introduction of these constraints is supported by the refinement rela-
tion being used — supported in the sense that the specifications in which these
constraints have been embedded can be understood as refinements of the ear-
lier more abstract system specifications where these implementation dependent
constraints did not occur. Unfortunately this is not always the case.

One important class of such implementation dependent constraints, which
(in general) is not supported by standard refinement relations like behavioral
refinement and interface refinement, is the class of requirements imposing upper-
bounds on the memory available for a communication channel. Such a require-
ment may for example characterize the maximum number of messages which at
one point can be stored in a certain channel without risking malfunction because
of channel overflow. Clearly this number may vary from one channel to another
depending on the type of messages that are sent along the channel, and the way
the channel is implemented.

Of course one way to treat such channel constraints is to introduce them
already at the most abstract level. However, this solution is not very satisfac-
tory because these rather trivial constraints may considerably complicate the



specifications and the whole refinement process. The other alternative is to in-
troduce them first in the final phases of a development. However, as already
pointed out, this requires a refinement relation supporting the introduction of
such constraints.

Consider a network consisting of two specifications S; and S3 communicating
purely asynchronously via an internal channel y, as indicated by Network 1 of
Fig. 1.
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Fig. 1. Introducing Synchronization

We want to refine Network 1 into a network of two specifications Sy, and S
communicating in a synchronous manner — in other words into a network of
the same form as Network 2 of Fig. 1.

That Network 2 is a refinement of Network 1 in the sense that any external
behavior of Network 2 is also a behavior of Network 1 is only a necessary re-
quirement, because we may still instantiate S; and S5 in such a way that the
communication via w is completely independent of the communication along z.
Thus that Network 2 is a refinement of Network 1 does not necessarily mean that
we have managed to synchronize the communication. It is still up to the devel-
oper to formulate S; and S, in such a way that they communicate in accordance
with the synchronization protocol the developer prefers.

Nevertheless what is needed is a refinement relation supporting this way
of introducing feedback loops. Clearly this refinement relation must allow for
the formulation of rules which do not require the proof efforts already invested
at the earlier abstraction levels to be repeated. For example, if it has already
been proved that Network 1 has the desired overall effect, then it should not be
necessary to repeat this proof when Network 1 is refined into Network 2. The
formulation of such a refinement relation is the objective of this paper.

The close relationship between specification formalisms based on hand-shake
communication and purely asynchronous communication is well-documented in
the literature. For example [HJH90] shows how the process algebra of CSP can
be extended to handle asynchronous communication by representing each asyn-
chronous communication channel as a separate process. A similar technique



allows different types of synchronous communication to be introduced in an
asynchronous system specification: each asynchronous channel is refined into
a network of two components which internally communicate in a synchronous
manner, and which externally behave like the identity component.
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Fig. 2. Naive Transformation

In fact with respect to the two networks of Fig. 1, using this strategy, we
may move from Network 1 to Network 2 in three steps, employing the usual
relation of behavioral refinement, which basically says that a specification S’ is
a refinement of a specification S iff any behavior of S’ is also a behavior of S:

— Step 1: Insert an identity specification I between S; and S, of Network 1,
as indicated by Network 3 of Fig. 2. The soundness of this refinement step
is obvious.

— Step 2: Refine the identity specification into two sub-specifications I; and
I which communicate in accordance with the desired protocol. We then get
Network 4 of Fig. 2.

— Step 3: Refine the network consisting of S; and I; into 51 and the network
consisting of Sy and I, into S, in which case we get Network 2 of Fig. 1.

Unfortunately, this strategy is rather tedious, and more importantly: it can
only be employed to internal channels. To handle external channels accordingly, a
more general refinement relation than behavioral refinement is needed — namely
a refinement concept which allows the more concrete specifications to have ad-
ditional input and output channels.

One might expect that some sort of interface refinement would be sufficient.
However, the principles of interface refinement known to us either are not suf-
ficiently general or do not have the desired compositionality properties. The
principle of (interaction) interface refinement proposed in [Bro93] allows a chan-
nel to be refined into a pair of channels, but only as long as the channels are all of
the same direction. Thus the refinement of a channel into two channels of oppo-
site directions is not supported. On the other hand, refinement principles in the
tradition of [Hoa72], [Jon87], [AL8S], where the concrete state is related to the



abstract state via a refinement function, do not seem to offer the required flex-
ibility. (In our context the state can be understood as a mapping from channel
identifiers to their communication histories.)

Below we attempt to deal with this problem by introducing two generaliza-
tions of behavioral refinement — one for partial correctness, and one for total
correctness — referred to as partial and total refinement, respectively. Partial
refinement is sufficient when only safety properties are considered. Total refine-
ment preserves both safety and liveness properties (and also any conjunction of
safety and liveness properties) — preserves in the sense that any implementation
of the more concrete specification can be understood as an implementation of the
more abstract specification. Thus a total refinement is also a partial refinement.

Total refinement allows for the introduction of both acknowledgment based
and demand-driven synchronization. However, it is suited only for synchroniza-
tion protocols which do not depend upon that acknowledgments (demands) sent
along a channel are fairly distributed over sets of acknowledgments (demands).

Of course the use of hand-shake synchronization is not the only way to avoid
buffer overflow — another alternative is to synchronize the computation by im-
posing real-time constraints on the behavior of processes and channels. However,
this alternative can be used only if the programming language in which the spec-
ified system is to be implemented supports the realization of such constraints.

The investigations are conducted in the context of data-flow networks mod-
eled by sets of continuous functions. The proposed relation can easily be restated
in the context of other models for reactive systems.

The paper is organized as follows. Section 2 introduces the basic concepts.
What we mean by specification and refinement is formalized in Sect. 3. Then
partial and total refinement are the subjects of Sects. 4 and 5 Finally, Sect. 6
contains a summary and discusses a possible generalization.

2 Basic Notations

N denotes the set of natural numbers, and N4 denotes N \ {0}. A stream is a
finite or infinite sequence of actions. It models the communication history of a
directed channel. Each action represents one message sent along the channel.
Throughout the paper D denotes the set of all streams. We do not distinguish
between different types of streams (streams of naturals etc.). However all our
results can easily be generalized to such a setting (and this is exploited in Ex. 4).
Let d be an action, r and s be streams, and j be a natural number, then:

— € denotes the empty stream;

— ft(r) denotes the first element of r if r is not empty;

— #r denotes the length of r;

r|; denotes the prefix of r of length j if j < #r, and r otherwise;

d & s denotes the result of appending d to s;

1~ s denotes r if r is infinite and the result of concatenating r to s, otherwise;
— r C s holds if r is a prefix of s.



A named stream tuple is a mapping from a finite set of identifiers to the set
of streams. It can be thought of as an assignment of channel histories to channel
identifiers. Given a set of identifiers I, then I“ denotes the set of all named
stream tuples of signature I — D. Moreover, I — ¢ denotes the element of I*
which for each identifier in I returns the empty stream; I°° denotes the subset
of I which maps every identifier to an infinite stream; I* denotes the subset of
I¥ which maps every identifier to a finite stream.

The prefix ordering C is also used to order named stream tuples. Given two
named stream tuples o € I¥ and § € O¥, then a C g iff I = O and for all
i €I:a(i)C B(i). We also overload the concatenation and length operators.
a~ 3 denotes the named stream tuple in (I U O)¥ such that:

i€I\O0 = (a—pB)(i) = ali),
i€ O\I= (a—p)(i)=B>),
i€INO = (a~B)(i) = ali)~ B).

#a denotes min{#a(i)|i¢ € I}. Finally, a/O denotes the projection of a on
O, namely the named stream tuple o' € (I N O)“ such that for all i € I N O,
o/ (i) = afi).

By a chain of named stream tuples we mean an infinite sequence of named
stream tuples ordered by C. Since streams may be infinite any such chain § has
a least upper-bound denoted by L.

When convenient named stream tuples are represented as sets of maplets.
For example, the set

{a—rb— s}

denotes the named stream tuple a € {a,b}*, where a(a) = r and a(b) = s.
Following [BD92] components are modeled by sets of functions mapping
named stream tuples to named stream tuples. Each such function

ferr —-ov
is required to be monotonic:
for all named stream tuples a, 3 : « C 8 = f(a) C f(B),

and continuous:

for all chains 6 of named stream tuples : f(U6) = L{f(6;)|j € N;+}.

In the sequel we refer to such functions as stream processing functions.
To reduce the use of the projection operator and thereby simplify the pre-

sentation, each function f € I¥ — O¥ is overloaded to any domain Q“ — O%

where I C @, by requiring that for any o € Q%, f(«) = fla/I).

Given two stream processing functions



fers —ov, felv—0~,
where INI =0NO =0, then f || f is a function of signature
(ITul)* - (OUO)~,

= f(a)~ f(a). If in addition TN O =INO =0, we define
e functions of signatures

=+
]
o

such that (f ||
f@ fand f

respectively, such that
(fef)la)=B/(ONTUO\TD),  (f&f)(a) =8,

where [ is the least fix-point of (f || f)(a ~ f3) = B with respect to C.

It follows straightforwardly that f || f, f® fand f& f are stream processing
functions.

In Fig. 3, Network 1 represents composition by @, and Network 2 represents
composition by &. Thus @ differs from & in that it hides the feedback channels.

Network 1 Network 2

(I\c?)l Gnn  ©nh l(f\m (I\o')l Gnn  ©nh l(f\O)

f f f f
(O\T) l l(é\l) (O\T) l l(é\f)

Fig. 3. Networks Relating the Operators ® and &

Given n > 1 stream processing functions
fiely -0y 1<j<n,

such that I; NO; =0 and [ # k implies I; N Iy = O; N Oy = B, then @7_, f; is a
short-hand for f1; ®...® f,. Note that the restrictions imposed on the identifier
sets imply that ® is associative — thus the bracketing is unimportant. © and ||
are generalized accordingly.



3 Specification and Refinement

A specification is represented by a triple
(1,0, R),

where I and O are disjoint sets of identifiers, and R is a formula with the ele-
ments of I and O as its only free variables. The identifiers in I and O name the
input channels and the output channels, respectively. We refer to these identifiers
as the input and the output identifiers. Moreover, (I,0) is called the specifica-
tion’s interface. In R each such identifier is of type stream. Each input identifier
models the communication history of an input channel, and each output iden-
tifier models the communication history of an output channel. R characterizes
the allowed relation between the communication histories of the input channels
and the communication histories of the output channels and is therefore called
the input/output relation.
For example the specification

({a}, {c.d, e}, #tc=F#ahd=e=0&a)

characterizes a component with one input channel a and three output chan-
nels ¢, d,e. Along the channel ¢ this component outputs exactly one (arbitrary)
message for each message it receives on a, and along the channels d and e the
component first outputs a 0 and thereafter any message received on a.

The denotation of a specification S o (1,0, R) is a set of stream processing
functions mapping named stream tuples to named stream tuples, namely the set
characterized by:

[S]E {fel” - 0“|VaeI: (a~ f(a)) E R},

where for any named stream tuple 8 € @“ and formula P whose free variables
are contained in @, # = P iff P evaluates to true when each identifier i € @ is
interpreted as ((i).

The basic refinement relation is represented by ~+. It holds only for specifi-
cations whose interfaces are identical. Given two specifications S; and So, then
S1 ~ So iff [ S2 ] € [ S1 ] Thus a specification So refines a specification S
iff any function which satisfies S also satisfies S7. This corresponds to what is
normally referred to as behavioral refinement.

Given two specifications S; def (I1,01,Ry) and S, def (I2,02, Ry), such that
Il 012201002:0,

then S; ® S5 represents the network pictured in Fig. 4. The channels modeled
by O1 NI and O, N I; are internal. The external input channels are represented



by (I; \ O2) U (I2\ Oy), and (O; \ I) U (O2 \ I1) represents the external output
channels. The denotation of this network is characterized by

[0S {fioflficlSiIAfelS: ]}

(11\02)1 (Ozﬁll) (01012) 1(12\01)

Sl SZ

(01\12)1 1(02\11)

Fig. 4. 51 ® Sy

The operator @7_, is lifted from functions to specifications in a similar way.

The properties characterized by a specification can be split into several
classes. For example, there is a long tradition for distinguishing between safety
and liveness properties [AS85]. Informally speaking:

— a safety property characterizes what a correct implementation is not allowed
to do,

— a liveness property characterizes what a correct implementation is required
to do.

Given a specification S & (I,0, R) then S characterizes a safety property iff
Vaelv:VBeO¥ : (a~fB)EReVF O :'CB=(af)ER,
and a liveness property iff

Vael“:V3e 0" :3 €0 :BCA Ala~f) ER.

4 Partial Refinement

This section introduces a refinement relation, called partial refinement, which
guarantees the preservation of safety properties. The suitability of this refinement
relation for top-down system development is investigated.



Given two specifications

def X X

S @Q,0,R), SY(Q,0,R),

where Q C Q and O C O. We want to characterize what it means for S to
refine S. If only the “old” channels are considered one might expect this to
be equivalent to insisting that for each function f € [ S ] there is a function
f €[S ] which behaves in the same way as f. Since by definition f(a) is equal
to f(a/Q) this suggests:

Vie[S]:3fe[S]:Vae@¥: f(a)/O = f(a).

However, due to the synchronization conducted via the new channels the output
can be halted too early because the required acknowledgments have not been
received. Thus, in the general case, unless we make certain assumptions about
the environment’s behavior, the insistence upon equality is too strong. On the
other hand, if only safety properties are considered, the following constraint is
sufficient:

Vie[S]:3fe[S]:Vae@¥: f(a)/OLC f(a).

If S and S are related in this way, we say that S is a partial refinement of S,
and we write S < S. Thus S is a partial refinement of S iff for any function f
which satisfies S, there is a function f which satisfies S, such that for any input
history « for the channels represented by Q, the projection of f(a) on O is a
prefix of f(a).

The rest of this section is devoted to partial refinement. In the next section,
we will introduce a more general refinement relation which guarantees equality
under the assumption that sufficiently many acknowledgments are received.

Clearly, if S is a safety property and S ~> S then S behaves in accordance
with S with respect to the interface of S. Thus > preserves safety properties in
the sense that S does not falsify S. Note that this does not mean that S has to
be a safety property. On the other hand, if S is a liveness property then there
is no guarantee that S behaves in accordance with S. Thus > preserves safety
properties but not liveness properties.

It is straightforward to prove that partial refinement is reflexive and tran-
sitive, and below we show that it is also a congruence with respect to ®. This
implies that whenever we have refined a specification S into a network of speci-
fications @7_, S; such that

sLan s, ()

and there is a network of specifications @7_, S such that



S; 48 1<j<m,
then it also holds that
p n
S~ @ Sl

Thus the workload invested in establishing (%) does not have to be repeated
when the refinement of the component specifications of ®7_;5; is continued.
This implies that the principle of partial refinement is well-suited for top-down
system development.

Before stating the general congruence property for partial refinement, we
prove an intermediate result, whose conclusion (3) is visualized by Fig. 5. Thus
we have four specifications Sy, S, Si, So. Their interfaces are characterized by
(QUX,0UY), (YUZ XUK), (QUX,0UY), (YUZ,XUK), respectively. It
is assumed that the sets of identifiers Q, X,0,Y, Z, K are all disjoint, and that
QCQ,XCX,0CO,YCY,ZCZ KCK.

Fig. 5. Partial Refinement

Proposition 1. If

(1) . 51
(2) : SQ

p
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P
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then

(3):51@52’3?51@52.

Proof. Let fi and fo be such that



(6)2f1€[[51]],

(7):f2€[[€2]]7~ N

(8): Ya € (QUX)* : fi()/(OUY) C fila),
(9) :Vae (YUZ): fala) (X UK) C foa).

(3) follows if it can be shown that
(10) :Va € (QU 2)* : (f1 ® f2)(@)/(OU K) C (f1 @ fo)().

Given some o € (QU Z)¥ and let f € (OUY UX UK)* be defined by
(11): (f1 © fo)(a) = B.

The monotonicity of fl and fg implies there are chains @, B such that

(12): @ =a~(XUY —e),
(13) : B; = (f1 || f2)(&)),

(14) - djp1 =~ f;.

(Remember that any stream processing function f € I“ — O is overloaded to
any domain Q¥ — O% where I C Q.)
(12), (13), (14) imply

(15) : (i © fa) (@) = LB.
We want to prove that

(16) : 3;/(OUY UX UK) C 3.

The base-case follows trivially from (8), (9), (11), (12), (13) and the monotonicity
of fi and f5. Assume for some k > 1

(17): B/ (OUY UX UK) C §.
We show that
(18) : fry1/(OUY UX UK) C B.

(13) implies that



(19): Br41/(OUY UX UK) = (fi || f2)(@r41)/(OUY UX UK).
(19) and the definition of || imply that
(20) : Bi41/(OUY UX UK) = fi(@r41)/(OUY) ~ fo(drs1)/(X UK).
(8), (9), (20) imply
(21) : Bi41 /(O UY UX UK) C fi(@rs1) = fol@nsr).
(14), (21) imply
(22): Bi1 /(OUY UX UK) C fila~Bi) ~ fola ™ By).
(17), (22) and the monotonicity of f; and fo imply
(23): Bre1/(OUY UX UK) C fi(a—B)~ fala—B).

(11), (23) imply (18). This ends the proof of (16).
(16) and the definition of LI imply

(24): UB/(OUYUXUK)LCB.

(11), (15), (24) and the fact that @ is equal to @ plus hiding imply (10).

L L
N

Fig. 6. Partial Refinement of the k’th Component Specification

We now extend Prop. 1 to finite networks of n specifications. Each of the
n component specifications Sy is partially refined into a component specifi-



cation S), in accordance with Fig. 6. Q. represents the external input chan-
nels, X, represents the internal input channels, Oy represents the external out-
put channels, and Y, represents the internal output channels. This means that
U?ZI)N(]- = U;-Lzlffj. It is assumed that the 3 x n sets Qx, Xx, O are all disjoint,
that the n sets Y}, are all disjoint, that U?_; X; = U7_;Y}, and that Qi C Qr,
X C X}C etc. .

Proposition 2. If
1):5;58  1<j<n,
then

(2): @518 5 @)L, 5.
Proof. Follows from Prop. 1 by induction on n.

5 Total Refinement

In the previous section a refinement relation called partial refinement was intro-

duced. It was shown that this relation is reflexive, transitive and a congruence

with respect to ®. Thus partial refinement is well-suited as a principle for top-

down design. Unfortunately, partial refinement only preserves safety properties.

To ensure the preservation of both safety and liveness properties a stronger re-

finement relation is needed — namely what we refer to as total refinement.
Given two specifications

S < (Q,0,R), $<(Q,0,R),
where Q C Q and O C O, then S is a total refinement of S, written S A S, iff
VFe[S]:3fe[S]:YacQ¥: #a/(Q\Q) =00 = f(a)/O = f(a).

Thus S is a total refinement of S iff for any function f which satisfies S, there is a
function f which satisfies S, such that for any input history «, whose projection
on Q \ @ is infinite, the projection of f(a) on O is equal to f(a).

The antecedent “projection on Q \ @ is infinite” may seem too strong. How-
ever, since we in this paper restrict ourselves to synchronization protocols whose
behavior depend only upon whether an acknowledgment (demand) is received
or not, and not upon what sort of acknowledgment (demand) is received, this
is exactly what is needed. Note that this antecedent can be thought of as an
environment assumption. We will later discuss the generality of total refinement
in more detail.



We first prove that total refinement degenerates to behavioral refinement if
the interface is not extended, and that total refinement implies partial refine-
ment.

Proposition 3. Given two specifications S and S whose interfaces are charac-
terized by (Q,0) and (Q, O), respectively. Then:

(1):Q=Qr0=0= (55 5= 5~ 3),
2): 54 5=>54 38

Proof. (1) follows trivially. To prove (2), assume
3): 55 8.

It must be shown that

U

(4): 8%
Let

(5): felS]
(3), (5) imply there is an f such that

©6):felS] i N
(7) : Vo € Q¥ 1 #a/(Q\ Q) = 00 = f(a)/O0 = f(a).

Given some arbitrary o € Q“. (4) follows if it can be shown that

4

(8): f(a)/O E fla).

If #a/(@ \ Q) = oo then (8) follows trivially from (7). Otherwise, there is an
a’' € Q¥ such that

(9):'/Q =0a/Q,
(10):aC o,
(11) : #0'/(G\ Q) = .
(7), (9), (11) imply
(12) : f(a")/O = f(a'/Q) = f(a/Q) = f(a).

(10), (12) and the monotonicity of f imply (8).



The next step is to prove that L is reflexive and transitive.
Proposition 4. Given three specifications Sy, 52, S3 whose interfaces are char-
acterized by (Q1,01), (Q2,02), (Q3,03), respectively. Assume that Q1 C Q2 C
Q3 and 01 Q 02 g 03 Then

(].) M Sl ’\t’> 51,

(2): 515 Sy A Sy S5 = 5 4 S5

Proof. (1) follows trivially. To prove (2), assume

(3) : 51 ’\t/) SQ,

Let f3 be such that
(5): fs €[ Ss].
(4), (5) imply there is an fo such that

6): f2€[52],
(7) :Va € (Q3)” : #a/(Q3 \ Q2) = 00 = f3(a)/02 = f2(a).

(3), (6) imply there is an f; such that

@®):field]
(9) :Va € (Q2)” : #a/(Q2\ Q1) = 00 = f2(a)/O1 = fi(a).

Given an o € (Q3)* such that
(10) : #a/(Q3 \ Q1) = <.
(10) and Q1 C @2 imply
(11) : #a(Q3 \ @2) = <.
(7), (11) imply
(12) : f3(@)/ 02 = fa(@) = foa/Q2).
(10) and Q5 C Qs imply

(13) : #(a/Q2)/(Q2\ Q1) = 0.



(9), (13) and Q; C Q; imply
(14) : f2(/Q2)/O1 = fi(a/Q2) = fi(a).
(12) and Oy C Oy imply
(15) : f2(/@2)/O1 = f3(a)/O2/O1 = f3(a)/Os.
(14), (15) imply
(16) : fs(a)/O1 = fi(a).
The way (16) was deduced from (10) implies
(17) : Va € (Q3)* : #a/(Qs\ Q1) = 00 = f3(@)/O1 = fi().
The way (17) was deduced from (3), (4) implies (2).

It has been proved that partial refinement is a congruence with respect to
the composition operator ®. The same does not hold for total refinement.

Ezample 1. To see that total refinement does not have this property, let

= IRTINET))

‘*éf {y} {k}. k=),
5 = ({q,2} {y},y T a A #y = min{#a + 1, #q}),
S & ({y}, {a, K}, k = y A #2 = max{#y — 1,0}).

Clearly S 5 8 and Sy ~> S,. Unfortunately, for all f € [ S; &S, ] and
fe[S &8, ], and any nonempty stream s, it holds that

f{a—s})={y— s,k — s},
fHgr s}) ={y—ft(s) & e,z — €,k — ft(s) & e}.
Thus

felSi1@% )= f({qa—s})={k s}
felSi@S = f({g—s})={kfi(s) &e}.

Since s # ft(s) & e if #s > 1 it follows that

S1© Sy 51 @ So.



What is required is some additional proof obligation characterizing under
what conditions total refinement is a “congruence” with respect to ®. To al-
low systems to be developed in a top-down style this proof obligation must be
checkable based on the information available at the point in time where the
refinement step is carried out — for example this proof obligation should not
require knowledge about how 5’1 and 5’2 are implemented. With respect to Ex. 1
the following condition is obviously sufficient:

Vie[S1©8]:3fe[S1985]: fla) = fla). ()

If (sx) holds there is no need to require that Sy A S, and S, A Ss. This fact
also characterizes the weakness of (#x). If we later decide to compose S; @ S

with another network S such that Ss A 5'3, then it is not easy to exploit the
fact that we have already proved (xx) when we now decide to prove that

3 U
®52155 ~ @j=y

5.

What we want is a proof obligation which takes advantage of the fact that

S1 A Sy and S, A Ss in the sense that the formulation of this additional
obligation is independent of S; and S,.

The problem observed in Ex. 1 is that total refinement may lead to premature
termination when the specifications are composed into networks with feedback
loops. This phenomenon can be understood as deadlock caused by an erroneous
synchronization protocol.

With respect to the given semantics this problem occurs only when the re-
finement step introduces a new least fix-point — new in the sense that the least
fix-point is reached too early. For the refinement step conducted in Ex. 1, it there-
fore seems sensible to require that for any a € {¢}*, fie [S1 ], €[ S2 |:

(hof)@)=BAd e{a}* = filamBa')=p/{y}.  (+)

This condition states that when the least fix-point has been reached then
the output along y will not be extended if additional input is received along the
feedback channel x. It makes sure that no new least fix-point has been introduced
as a result of the synchronization.

In some sense the proof obligation corresponds to the freedom from deadlock
tests in more traditional proof systems [OG76], [Stg91] and [PJ91]. In Ex. 1 this
proof obligation is not fulfilled. However, if Sy’s input /output relation is replaced
by

k=ynte =1ty
then (xxx) holds. Thus in the case of Ex. 1, (x*x) seems to be a reasonable proof

obligation. The next step is to figure out how this obligation should look in the
general case.



Ezample 2. Let Sy, S, and S; be as in Ex. 1, and let

S € ({y, 2}, {w, k). k Ty Atk = #a = min{#ty, #2)).
We then have that
S, @ So~5 5 @8,

Unfortunately, (xxx) does not hold. To see that, let fl €l Sy 1 fg e[ Ss, ], and
assume that s is a stream such that #s > 1. Clearly

(fi & f){g = 5,2~ €}) = {y = fit(s) &e,w = e,k — .
Moreover

h{am s,x = s}) = {y — s}
Thus (**x) is not satisfied.

In fact (x*x) must be weakened by adding assumptions about the environ-
ment’s behavior. In the case of Ex. 2 it seems sensible to require that for any

a€{q,z}*:

felSiInfael S 1A (A o)) =BA#(@/{z}) =ccona € {z}>
=

fila~p~a")=p/{y}

This motivates the next proposition, which characterizes a condition under which
a total refinement corresponding to Fig. 5 is valid. It is assumed that Q, X, 0,
Y, Z, K are disjoint sets of identifiers with corresponding subsets @, Q, X, X,
etc. such that Q = Q\Q, X =X\ X, etc.

Proposition 5. If for any a € (QUZ)¥, 3 € (OUYUXUK)?, o' € (XUY)>

(1): 8 ~5 8y,
(2):€2mt/>5'27 i i o -
B):AELSIINRELS2IA(fid fo)() =BA#a/(QU Z) =
=
(fill f)@a~B~a)/(OUYUXUK)=8/(OUY UXUK)

(4):51@52’\3511@512.



Proof. Assume (1), (2), (3). Let fi and fo be such that

(7)2f1€[[51]],

(8):f2€[[€2]]7~ R R N

(9): Vo€ (QUX)* : #a/(QUX) =00 = f1(a)/(OUY) = fi(a),
(10) :Vae (YU Z) : #a/(YUZ) =00 = fola)/(XUK) = fo(a).

It is enough to show that

(11):Va € (QUZ)* : #a/(QUZ) = 0 =
(f1 @ f2)(@)/(OUK) = (f1 © f2)(a).

Given some o € (Q U Z)* such that
(12) : #a/(QU 2) = .
Let € (OUY UX UK)“ be such that
(13): (f1 © fo)(@) = B.
The monotonicity of f1 and fg implies there are chains &, 3 such that
(14): @ =a~(XUY —e),
(15) 1 @41 = ™ By,
(16) : B; = (f1 |l f2)(a;).
As in the proof of Prop. 1 it follows straightforwardly by induction on j that
(17): 3;/(OUY UX UK) C 3.
(17) and the definition of U imply
(18): UB/(OUY UXUK)LC f.
Since B characterizes the Kleene-chain, it also holds that
(19) : (fi & fa) () = UB.

Assume



(20): 0’ € (X UY)>
(3), (5), (6), (12), (19), (20) imply

(21): (fi || fo)l@~(UB)~a')/(OUY UX UK)=U3/(OUY UX UK).
(9), (10), (12), (20) imply

(22): (fi | fo)(a~ (UB) ~a)/(OUY UX UK) = (f1 || fo)(a~ (UB) ~a).
(20), (21), (22) imply

(23): (f1 | fo) (@ (WB) ~ ') = (fu | fo)(a~ (UB)) =UB/(OUY UX UK).
(13), (18), (23) imply

(24) : (fu || fo) (@™ (UB)) = (f1 © fo)(a).
(23), (24) imply

(25): UB/(OUY UXUK) = (f1 & fo)(a).
(19), (25) imply

(26) : (f1 & f2)(@)/(O VY UX UK) = (f1 & fo)(a).
(26) and the fact that @ is equal to & plus hiding imply (11).

It can be argued that the freedom from deadlock test (3) of Prop. 5 is t0o

strong, because we may find specifications Sy, So, S; and S, which satisfy (1), (2)
and (4), but not (3). For example this is the case if:

a
LN

€

= ({¢}. {vhv=0),

‘*éf ({y}, {k} k& = ylo),
5 ' ({q,2}, {y},y T g A #y = min{#q, #a +1}),
Sy © ({y}, {k, 2z}, & = k = y|1o).

However, whenever we run into such a problem, which seems to be a rather
artificial one, there are specifications S7, S5, 57, S5 such that

51 ® Sy~ S) @ S, S! @8~ 5, Sy,

holds, and



S! @ Sh~4 S @S]
follows by Prop. 5. For example, with respect to our example, this is the case if

def
S1 = ({a},{y}, v = dho),
S5 = s,

S < ({g, 2}, {y},y E a Ay = min{#qlio, #2 +1}),

3 ES,.

Thus it is enough to strengthen the specifications in such a way that the com-
munication along the internal channels is halted as soon as the external channels
have reached their final value.

Since ~» is a special case of L it follows that Prop. 5 is (relative, seman-
tic) complete modulo a (relative, semantic) complete set of rules for behavioral
refinement.

Another point to note is that in practice it is normally so that whenever (3)
holds we also have that

AelSiInfelSaln(fill f)a~B)=Bra/(QUZ)=
=
(full fa)l@~B~a)/(OUYUXUK)=3/(0OUY UXUK).

Thus in order to use Prop. 5 it is in most cases not necessary to characterize the
least fix-point solution.

We now generalize Prop. 5 in the same way as Prop. 1 was generalized above.
Thus we have a network of n component specifications Sy which are totally re-
fined into n component specifications Sy in accordance with Fig. 6. As before Q;,
represents the external input channels, X, represents the internal input chan-
nels, Oy, represents the external output channels, and Y, represents the internal
output channels. Moreover, we also have the same constraints as earlier, namely
that U’_; X; = U7_,Yj, that U7 X- = UJ_,Yj, that the 3 x n sets Qr, X, Ok
are all dlS_]OlIlt that the n sets Yk are all disjoint, and that @y C Qr, Xr C X,
etc. In addition, let Q = U 1Q], 0 = U 10]7 Y = U Y], 0 = Uj_,0y,

Y=U j:lYJaQ—Ujﬂ(QJ\QJ)a = j:l(X]\X])v Yk—Yk\Yk~

A

Proposition 6. If for any a € Q, f € (OUY ), o' € X*°

(2): /\?:1f~j e[S 1A (®;L=1J?j)(a) = BA#a/Q =0
(7= f)la~B~a)/(OUY)=B/(OUY)



then

L
(3): @7, 8, 5 @1, ;.

Proof. Assume (1), (2). Let
4):f,€[S] 1<j<n
(1), (4) imply there are functions fi, ..., f such that
G):fielS 1 1<j<n,
(6) : Vo € (Q; U X;)” )
#a/(Q;UX;) =00 = f;(a)/(0; UY;) = fi(a) 1<j<n.
Tt is enough to show that
(7):Va € Q: #a/Q = co = (2, f;)(@) /O = (&}, f;)().
Given some a € Q% such that
(8) : #a/Q = oo.
Let B € (OUY)* be such that

(9): ()= f;)(a) = 5.

The monotonicity of the functions fl, ces fn implies there are chains d,B such
that

(10): &1 =a~ (Y —e),
(11) s @1 = a— B,

(12) : 35 = (llizy f(ay).

—

As in the proof of Prop. 1 it follows straightforwardly by induction on j that
(13): 3;/(OUY) C .

(13) and the definition of LI imply
(14): UB/(OUY) C B.

Since 3 characterizes the Kleene-chain, it also holds that



(15) : (951 f7)(e) = L.
Assume

(16) : o/ € X,
(2), (4), (8), (15), (16) imply

(A7) (If=y fi)(e~ (UB) ~a)/(OUY) =uB/(OUY).
(6), (8), (16) imply

(18) : (If=1 i)~ (W) ~a)/(OUY) = (I}, fi)(a~(Uf)~a).
(16), (17), (18) imply

(19) = (Ij=y f) (@~ (UB) ~a’) = (Il}=y f5)(a~ (UB)) = UF/(OUY).
(9), (14), (19) imply

(20) : (If=y f)(a~ (WD) = (&)1 fi)(a).
(19), (20) imply

(21) : UB/(OUY) = (D5_ f)(a).
(15), (21) imply

(22) - (851 [;)(@)/(0UY) = (8-, f;)(a)

(22) and the fact that @ is equal to @ plus hiding imply (7).

S1 Sa Sn

x] T2 Tn

Fig. 7. Asynchronous Network



Ezrample 3. To see how Prop. 6 can be employed in practice, assume we have
a network consisting of n specifications composed in sequence as indicated by
Fig. 7. The network communicates with its environment via zy and x,. Each
specification S; characterizes a component which applies an operation repre-
sented by the function g; to each message received on z;_; and outputs the
result along z;. This means that the j'th component is required to satisfy the
specification

def
Si = {zj b {zj}x; = map(z;-1,9;)),

where map(s, f) is equal to the stream we get by applying the function f to each
element of the stream s.

Assume we want to implement this network employing some architecture
based on hand-shake communication. We then get the network pictured in Fig. 8.

) Y1 1 Y2 Tp—1 Yn
N v I \ 2
S S, S
< L J L
Yo Tl Y1 2 Yn—1 Tn

Fig. 8. Synchronous Network

Each of these new components is characterized by

=~ def ~
Si = ({zj—1,y bz, 95—}, R)),
where

~ d f .
R; = wj T map(; 1, g5) A ey = min{#a; 1, #y; + 1} Ay; = 5.

Clearly

Since each R; is deterministic in the sense that for any (x;_1,y;) there is a
unique pair (z;,y;—1) such that R; holds, and we have that

D, n—1p j
#yn = 00 A (N Rj) = NI R[] Ay;] A R,



where R; [z’ Ay,] denotes that each occurrence of y; in R; is replaced by the
iy

expression y; ~ y;, it follows by Prop. 6 that

@, 8; o @ S (1)

This is of course not the only way to synchronize the network pictured in
Fig. 7. Assume the architecture chosen for the implementation offers channels
which can store up to 100 messages. Given that // is the operator for integer
division, we may then redefine the input/output relation of 5']- as below:

R; € 2; T map(x;-1,g;) A
#x; = min{#x;1, (#y; + 1) x 100} A #y;1 = (#;)//100.

Again it follows straightforwardly by Prop. 6 that this is a correct total refine-
ment.

Of course the fact that the network in Fig. 8 is a total refinement of the
network in Fig. 7 does not mean that buffer overflow cannot occur. It remains
the developer’s responsibility to formulate a correct protocol. For example if

~ def
R; = x; =map(x;-1,9;)

then (f) holds although there is no synchronization between the components in

7—15; — the output along z; is completely independent of the input along y;.
On the other hand, if

~ d f .
R; = x; Cmap(aj_1,9;) A #a; = min{#e; 1, #y; + 1} Ay = x50,

then (}) holds, and buffer overflow cannot occur. However, there is no correct
implementation of 5']- which requires only a bounded amount of local memory.
Thus in this case the buffer overflow problem has been transferred from the
channels to the components.

As already pointed out in the introduction, the use of hand-shake communi-
cation is not the only way to avoid buffer overflow — another alternative is to
synchronize the computation by imposing real-time constraints on the behavior
of processes and channels. Since in this paper we use a semantic model without
any notation of time, we can obviously not handle this kind of refinement. How-
ever, by adding ticks to the streams along the lines of [Par83], [BS94], we believe
this type of refinement can be dealt with using ordinary behavioral refinement.

In the untimed case some sort of hand-shake algorithm must be used. As
mentioned in the introduction total refinement is not sufficiently general to deal
with all sorts of hand-shake protocols. To clearly see the limit of our approach,
consider the following example.



Example 4. So far in this paper we have worked in an untyped setting. However,
our approach can of course be generalized straightforwardly to handle typed
channels, and this will be exploited here. Thus assume each channel is assigned
a type, and moreover that the definition of 4 is modified in the obvious way to
take typed channels into account.

In this example, for any set M, we use M > to denote the set of all infinite
streams over M. For any infinite stream s and k € N4, we use s(k) to denote the
k’th element of s. Finally, the concatenation operator — is overloaded to pairs
of streams in the obvious point-wise way.

Given the specifications S; and S; of Ex. 1. Moreover, let S, and Sy be
specifications with the same interfaces as in Ex. 1. Assume S, and S, work in
a demand-driven fashion, in the sense that whenever S, is ready to receive a
(positive) number of data elements along y it informs S; about this by sending
the corresponding number along x. Thus we assume that the channel z is of type
N, — the set of positive natural numbers. After having sent a demand Sy waits
until the requested number of data elements have been received before it sends
a new demand along z. Sy, on the other hand, waits until it receives a demand
along z, and then outputs the requested number of data elements along y. If the
number of data elements demanded by 5’2 exceeds the number of data elements
that is forwarded to S by the environment, it outputs what it has received. The
input/output relations Ry (of S;) and Ry (of Sy) are characterized as below:

Ry = g(0)(q, )

where
n=0=
g(n)(g,e) =
g(n)(g,m & x) = g(m)(q,z)
n>0=
g(n)(e,x) =
g(n)(a&q,x) =a&g(n—1)(g,2)
Ry E 3pe (N : (2, k) = £(0)(p,y)
where
n=0=

f(n)(e,y) = (e,¢€)

f(n)(m&p,y) = (m&e,e) =~ f(m)(p,y)
n>0=>

fm)(p,e) = (e,¢)

fn)(p,a&y) = (e,al&e)~ f(n—1)(p,y)

It follows straightforwardly that S AN 5‘1, Sy AN 5‘2. Moreover, it is also clear
that



S @8~ S ©8. (1)

If we change the type of the channel z from N4 to N and also replace N by N
in the definition of Ry then (1) does not hold anymore. For example, p in the
definition of Ry may consist of only 0’s in which case nothing will be output
along k. However, if we add the liveness constraint

VjeN, :JkeN, k> jApk)#0,

to the definition of Ry then (f) is valid. Unfortunately,

t =~

51 ~ Sl.

does not hold, because our definition of total refinement does not allow the
liveness constraint guaranteed by S5 to be exploited. This clearly points out the
limit of our approach: synchronization protocols whose correctness depend upon
that the demands (acknowledgments) sent along a channel are fairly distributed
over sets of demands (acknowledgments) cannot be handled.

6 Conclusions

Since Kahn’s influential paper on the modeling of deterministic data-flow net-
works was published in 1974 [Kah74], a number of authors have proposed for-
malisms for the representation of reactive systems based on asynchronous com-
munication via unbounded, directed channels (see for example [Kel78], [BA81],
[Par83], [Kok87], [Jon87], [LT87], [BDD*93]). The unboundedness assumption
is very useful when specifying and reasoning about systems at an abstract level.
However, at some point in a development this assumption must be discharged
in the sense that the communication is synchronized in order to avoid channel
overflow. The contribution of this paper is the formulation of a refinement rela-
tion allowing the transition from unbounded to bounded communication to be
conducted in a natural way.

We first proposed a relation for partial correctness — called partial refine-
ment, which then was generalized into a refinement relation for total correctness
— called total refinement. Partial refinement guarantees only the preservation
of safety properties. To be sure that both safety and liveness properties are
preserved, the principle of total refinement is required.

Partial refinement was proved to be reflexive, transitive and a congruence
with respect to the composition operator on specifications. It was shown that
total refinement characterizes a reflexive and transitive relation, but does not
satisfy the congruence property. The problem was found to be that deadlocks
can be introduced when feedback loops are added — deadlock in the sense that
the least fix-point is reached too early. Nevertheless, we have shown that rules
can be formulated which allow for top-down system development in a modular



style — modular in the sense that design decisions can be checked at the point
in a development where they are made, i.e., on the basis of the component spec-
ifications alone, without knowing how they are finally implemented. In addition
to the obvious premise that each (concrete) component specification is a total
refinement of the corresponding (abstract) component specification, a freedom
from deadlock test must be fulfilled.

As already explained (see Ex. 4) the proposed refinement relation is not
suited for synchronization protocols whose correctness depend upon that the
demands (acknowledgments) sent along a channel are fairly distributed over
sets of demands (acknowledgments). Such a protocol is for example proposed in
[AvT8T].

However, there are several ways of generalizing total refinement. For example,
let A be a formula whose free variables are contained in Q \ @, we may then

define < to be the refinement relation characterized by

Vie[S]:3fe[S]:YaeQ¥:(a/(Q\Q)) F A= f(a)/O = f(a).

This refinement relation seems to be sufficiently general, but leads to more com-
plicated proof obligations based on an assumption/commitment style of reason-
ing [AL90], [SDW93].

Another approach is to try to combine the ideas of this paper with what
[Bro93] calls interface interaction refinement, which can be understood as be-
havioral refinement modulo two representation specifications allowing also the
input and the output histories (including the number of channels and their types)
to be refined. When the representation specifications are sufficiently constrained
interface interaction refinement is a congruence with respect to the composition
operator on specifications [Bro92].
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