
Service-Based Development of Embedded
Systems?

L. Kof, B. Schätz, I. Thaler, and A. Wisspeintner

Institut für Informatik, Technische Universität München
Boltzmannstr.3, 85748 Garching, Germany

Abstract. Services as a basic notion are helpful in two respects: on
the one hand, services are used to structure the specification of a sys-
tem easing understand and reasoning about the system; on the other
hand, services can also be used as design principle of the implementation
architecture. This paper presents an approach for developing software
systems using services as the central development concept. A concrete
case study, namely the development of a control unit for an automotive
seat adjustment system, clarifies the proposed service-based development
process.

1 Introduction

Using services as basic concept eases the specification of reactive systems with
a high degree of interaction with its environment as found, e.g., in the telecom-
munication or web services domain. This approach allows breaking up complex
system functionality into smaller functional modules. This modularity supports a
more manageable and comprehensible description of the functionality. This shift
from a structural architecture (using components as the main building blocks) to
a behavioral architecture (using services instead) is, e.g., applied in the domain
of web services. There, systems do not consist of a fixed set of components, but
are dynamically composed from services. However, using a service-based engi-
neering process is not only useful in the field of dynamic networks, but also in
domains with static structure supplying complex interacting functionalities. In
the automotive domain, e.g., a large number of functionalities like ABS (anti-
lock braking system) and ABC (active body control) are combined, interacting
with each other and resulting in a complex overall behavior requiring a high
level of safety. Here, too, services can help to structure the behavior of the com-
plete system and make those interactions more explicit, thus leading to improved
safety.

Our description formalism is based on the formalization of interatcion sce-
narions and is somehow related to [7]. In [7] Krueger defines a service as an
interaction pattern. In this paper we go further and combine basic services, de-
fined by their interaction patterns/scenarios, to more complicated services and
to a complete application.
? This work was in part supported by the DFG (project InOpSys under reference

number Br 887/16-1 and project Inkrea under reference number Br 887/14-1).

2 Services and Components

As defined in [10], a service is a clipping of the behavior of a component that is
under-specified concerning internal structure and – making assumptions about
the environment – supports the definition of partial behavior. However, there is
also a strong relation between services and components: both an abstract compo-
nent as well as an abstract service can be realized by a network of communication
components or services, resp. And – most importantly – a service (or network
of services) can be implemented by a component (or network of components)
making it an offered service of the component.

2.1 Component-Based Architecture

Component-based architecture uses only the notion of a component as the central
concept. As defined, e.g., in [2], a component

– has an interface (usually in form of typed ports)
– exhibits some behavior using this interface (usually in form of receiving and

sending messages via these ports)
– can be hierarchically structured using networks of sub-components (usually

communicating by channels linking their ports)

ROOM [11], SDL [3], or AutoFocus are typical examples for such a component-
based approach (with some slight extensions, e.g., multiple instances of compo-
nents supported by ROOM).

A (rudimentary) component-based development consists of three basic steps:

Component Specification: To specify a basic component, first the interface
of a component is defined (e.g., in form of a ROOM capsule). Then, scenarios
of interactions between the component and its environment are defined (e.g.,
in form of UML sequence diagrams).

Component Definition: Based on the component specification, a complete
and consistent description of the behavior of the component is defined (e.g.,
in form of a state transition diagrams) fulfilling the specification (e.g., the se-
quence diagrams describe possible behavior of the state transition diagrams).

Component Combination: To build complex systems, components are com-
bined by connecting their (shared) interfaces, linking an output port to a set
of input ports. In a composed system, components run in parallel, exchang-
ing messages. The composition of components is static: the set of communi-
cating components does not change during the execution of a system. Due
to these restrictions, composition is a total operation: combing components
does always result in a component.

As a result of their constructive nature, component-based architectures are
generally used in a bottom-up development process, focusing on easily reusable
parts with limited degree of interaction; this is generally ensured by standard
frameworks (e.g., layered architectures or multi-tier approaches) off restricted

classes of components with highly-structured interfaces between the elements of
the framework. Consequently, they are much less suited for the engineering of
product lines, using large sets of interacting (and even conflicting) functionalities
to construct variants of behavior.

2.2 Service-Based Architecture

In contrast of component-based architectures, service-based architectures makes
use of two central concepts, the notion of a service and the notion of a configu-
ration. As defined, e.g., in [8], their main characteristics are

Service: Besides the hierarchic structure, a service is rather similar to a com-
ponent. A service
– has an interface (usually in form of typed ports).
– exhibits some behavior using this interface (usually in form of receiving

and sending messages via these ports).
– has a set of configurations (with transitions between), describing which

groups of sub-services are can be active simultaneously.
Configuration: Configurations describe the dynamic aspect of a service or a

whole system: by changing from configuration to configuration, a service or
a system can dynamically change its internal structure. Configurations
– describe sets of simultaneously active sub-services
– are linked by by transitions between them; transitions are triggered by

inputs

Since service descriptions support the description to conflicting behavior, they
are especially suited for the early phases of development: during the construc-
tion of a functional architecture of a system, a major step is the integration of
functions, the detection of conflicts between functions, and conflict resolution
strategies.1 Here, services are especially suited to support those steps without
enforcing design or implementation

Obviously, component-based architectures are a special case of service-based
architectures (with only one configuration per service and only 1:n channels
between input and output ports). Current approaches and tools support the
definition of service-based architectures only to a very limited extent.

By allowing an arbitrary number of configurations (or services) in a component-
like service-based architectures, we obtain a constructive subset of service-based
architectures, similar to Statecharts [4]. Here, the sub-services of a configurations
correspond to the composition of an AND state; the configurations of a service
correspond to the compositions of an OR state.

In the remainder, we focus on the engineering aspect of applying services in
the development process. Therefore, for the treatment of the issues of consistency
of the combination of services and the completeness of a service, we refer to [10];
for the description of conflict-resolution steps for services and some resolving
patterns we refer to [8].
1 [8] treats those issues in more detail.

In the following, we focus on the construction of components from scenarios
of interaction using services as intermediate construction between analysis and
design. Therefore, in Section 3, we demonstrate

– how to identify basic services, starting from interaction descriptions in form
of Sequence Diagrams,

– how to combine basic services to more complex services by configurations of
exclusive services, and finally,

– how to combine services to complex components, using configurations of
simultaneously active services and continuations of services.

Section 3 illustrates those steps using an example of [9].

2.3 Comparison

Focusing on interface behavior instead of system structure is the fundamental
difference between a component-based and a service-based development process.
Components and services own interfaces defined by the types of messages that
flow via these interfaces (e.g., interfaces in Java or the interface of a hardware
interfaces). Components are generally defined as reusable units of behavior and
structure. Structure is defined by assigning subcomponents including their be-
havior to a component.

To reuse a component, it is structurally composed with other components,
restricted only by structural compatibility conditions and supporting only a re-
stricted form of behavioral combination (through communication). In contrast, a
service represents a more abstract behavioral specification, its behavior depend-
ing on other services in the form of needed services. For reuse, services require a
much stronger (behavioral) compatibility; in return, they also support a stronger
form of (behavioral) combination.

As mentioned above, the main purpose of services is their ability to describe
a coherent piece of behavior and thus support the stepwise integration of basic
functionalities to high-level behavior. In contrast to a component-based architec-
ture, a service-based architecture explicitly models active and inactive services,
using configurations of (active) services. Component-based architectures usually
use a static hierarchy of components: components are always active, their com-
munication structure does not change. Furthermore, service-based architectures
are more flexible concerning the compositions of services. Component-based ar-
chitectures usually only support only the combination of

Furthermore, service-based architectures are more flexible concerning the
compositions of behavior. Component-based architectures usually only support
the combination of behavior with a rather restricted notion of (interface) compat-
ibility, targeting rather a bottom-up design process. Service-based architectures
also allow the combination of less restricted behavior, supporting the definition
of a functional architecture.

Though targeting the early phases of the development process, a service-
based architecture does even influence the later phases like design and imple-
mentation.

The service-based architecture:

– avoids the necessity for the introduction of auxiliary design elements, of-
ten enforced by component-based architectures (e.g., in form of managing
components like arbiters).

– enables the explicit description of modes of operation in form of configura-
tions of active services.

– supports efficient implementations by explicitly describing activation (and
deactivation) by configurations of services, instead of using networks of con-
tinuously active components.

To illustrate the engineering relevance of a service-based architecture, in the
following section we concentrate on the constructive development steps and use
description techniques along the lines of ROOM and Statecharts.

3 Service-Based Development

3.1 Identifying Basic Services

This section presents a case study on service–based development of an automo-
tive seat adjustment controller. The case-study has been carried out in a student
project [12] using the service-based development process described in [6]. In the
case study a part of a DaimlerChrysler automotive controller specification [5] has
been modeled. The specification describes an electronically controlled car seat.
The seat offers position adjustment in 3 axes. Each adjustment axis is equipped
with a separate motor.

There are several constraints on the adjustments:

– Any adjustment must be stopped when the car speed is above 5 km/h.
– Any adjustment must be stopped when the battery voltage falls below 10 V.
– At most two axes can be adjusted simultaneously.

Defining Scenarios The first key element of the service–based approach is the
definition of the system interface. In the case of an embedded control system,
such as seat adjustment control, the interface consists of a set of input signals
“understood” by the system and a set of possible feedback signals. In our case
study the inputs are the events of pressing/releasing single seat adjustment but-
tons, propagated to the system in the form of messages. The outputs are different
signals activating and deactivating the adjustment motors.

Furthermore, the actual service specification defines its observable behavior
of the service and not its internal structure. A good means to specify observable
behavior are Message Sequence Charts (MSCs). An example of the behavior
specification is shown in Figure 1. It shows a possible adjustment scenario:

– The seat control gets the signal S2 SITZ HOR vor.
– It starts the motor for horizontal seat adjustment.

Fig. 1. Example of a basic service “Move seat horizontally forwards”

In the exceptional situation shown in Figure 2 the scenario is more complicated
and contains additional steps:

– During the adjustment the seat control gets the signal CAN BATT kleiner 10 V olt.
– It stops the adjustment due to low voltage.
– It reports that the adjustment was finished.

Such scenarios become the basic system services. Next subsection explains
the transition from scenarios to services.

From Scenarios to Basic Services After identifying the single use case sce-
narios of our system we want to define basic services. Therefore first of all we
identify reoccurring parts in the set of sequence diagrams. These reoccurring
parts give useful information for identifying candidates for basic services.

In the preceding paragraph we have shown several sequence diagrams (see
Figure 1 and 2). All these sequence diagrams include the message S2 SITZ HOR vor
indicating the event that the user presses the horizontal seat adjustment button
to move the seat forward. Consequently we conclude, that all these scenarios
must deal with the functionality of moving the seat forward and we define a
basic service move seat forward that should realize the different scenarios.

From the set of sequence diagrams defining one single basic service, the basic
service interface is extracted. All messages appearing in the different sequence
diagrams describing the service are part of the service interface. The service

Fig. 2. Example of a basic service “Move seat horizontally forwards”, exceptional sit-
uation

interface is depicted using a structure diagram. Figure 3 shows the interface
definition of the move seat forward service.

Fig. 3. Interface of the move seat forward service

Based on the different use case scenarios of the move seat forward service we
are now building a state chart description (Figure 4). The state chart is tested
against the use case scenarios by executing the state machine and providing the
inputs and checking the outputs according to the sequence diagrams.

3.2 Building Complex Services

When building a complex behavior, a system is obtained by constructing it from
a set of small services, as introduced in the previous subsection. However, a
system generally is not just the independent execution of all services: not all the
services are simultaneously executable. For example, the services “Move seat
forward” and “Move seat backward” are not independent, because they access
the same motor.

This conflict is solved by using arbiter services. For each service (or compo-
nent) that can be used only exclusively, there is one arbiter service monitoring
this component. In the case of the services “Move seat forward” and “Move seat
backward” the shared hardware component is the adjustment motor. As this
motor is used by both services “Move seat forward” and “Move seat backward”,
we have to introduce the arbiter service for the motor. This service monitors the
services and decides which one is allowed to execute.

Fig. 4. Behavior of the move seat forward service

An example of the arbiter service is shown in Figure 5. It demonstrates
the role of the arbiter service: The simple services themselves are no longer
accessible directly. To access them, the user interacts with the arbiter service
first. To that end, the arbiter service makes use of three states (Startzustand,
Sitz horizontal vor, Sitz horizontal zurueck). Depending on its state, the arbiter
service passes commands to its controlled services. The arbiter service also con-
trols whether subordinate services are finished. Thus teh arbiter controls com-
mand execution by dispatching activation signals for both subordinate services.

This “hiding” is desired, because it converts uncontrolled and unwanted fea-
ture interaction into controlled one. The undesired feature interaction manifests
itself in the usage of the same adjustment motor for two services. The solution
is to identify the conflicting services, their shared resources and to introduce an
arbiter service for every shared resource. Figures 6 and 7 illustrate this idea of
the “controlled service”.

In a component-based architecture, an arbiter component is added to a
set of components to avoid conflicts. As a result, we obtain a layered compo-
nent architecture with three concurrent services: a higher service Sitz horizontal,
which is delegating commands to the lower services Sitz horizontal vor and
Sitz horizontal zurueck. Since all components of this set – including the arbiter –
are active at the same time, this composition corresponds to the use of an AND
state in Statecharts.

In a service-based architecture, we use alternative configurations of services
to avoid conflict of services when constructing complex behavior. Similar to

Startzustand

Sitz_horizontal_vor Sitz_horizontal_zurueck

Initial

SITZ_HOR_vor
SITZ_HOR_zurueckSITZ_HOR_vor_beendet

SITZ_HOR_neutral SITZ_HOR_neutral

SITZ_HOR_zurueck_beendet

File: c:\Dokumente und Einstellungen\thaler\Eigene Dateien\uni\hauptstudium\SEP - Softwaremodellierung\CD\Modell mit RoseRT\TSG Tuer 5.0.rtmdl 01:50:49 Dienstag,

Fig. 5. Example of an arbiter service, service configuration diagram (see also section
3.3)

the use of OR states in Statecharts, this form of compositions corresponds to
describing non-simultaneous activation of services. For the horizontal movement
service, we achieve this composition by constructing a new service consisting of

– three configurations (Startzustand, Sitz horizontal vor, Sitz horizontal zurueck),
corresponding to the states of the arbiter service described in Figure 5

– an embedding of the two basic services (Sitz horizontal vor, Sitz horizontal zurueck)
in the corresponding configurations, and activated/deactivated by enter-
ing/exiting the configuration

In contrast to the component-based architecture (where we obtained a layered
component architecture with three concurrent services), here the services are
directly embedded in the configurations.

Note that this from of construction is not supported by component-based
approaches like ROOM. Even Statecharts-based approaches support this form
of construction only to a limited extent: in Statecharts there is no explicit de-
scription of the communication interface of a service associated with a state;
furthermore, embedding a service by reference into a state is not supported by
all Statecharts variants; finally, since services are activated through configura-
tions, inter-level transitions must broken up at state borders.

3.3 Building Applications

After defining the single services, we want to build whole applications based on
them. When combining several services to one application the developer has to

Fig. 6. Arbiter service controlling the service “Move seat forward”

Fig. 7. Arbiter service controlling the service “Move seat backward”

think about the dynamic system structure during the execution of the applica-
tion. Typically at a certain time during execution only a subset of the available
services of the system is active. The currently inactive services can be suspended
to save computing power.

<<Service>>
Sitz horizontal

verstellen

<<Service>>
Lehne

verstellen

<<Service>>
Schalung
verstellen

<<Service>>
Sitz horizontal

verstellen

<<Service>>
Lehne

verstellen

<<Service>>
Sitz horizontal

verstellen

<<Service>>
Schalung
verstellen

<<Service>>
Schalung
verstellen

<<Service>>
Lehne

verstellen

<<NoService>>

H_sta
rt

H_ende

L_start

L_ende

S_start
S_ende

L_start
L_ende

H_start

H_ende

S_startS_ende

S_startS_ende

H_start

H_ende

L_start
L_ende

not(S1_T_OFFEN) or
CAN_Batt_kleiner_10Volt or

CAN_FZG_V >= 5

Fig. 8. Service configuration diagram of the seat adjustment system

In Section 2.2 we have introduced the concept of service configurations. One
configuration describes the set of services that is simultaneously active at a
certain time during system execution. Figure 8 shows the service configuration
diagram of our seat adjustment system. The diagram describes the available
service configurations combining the services to adjust the seat in three different
axes.

The service configuration diagram shows one configuration with no active ser-
vices, three configurations representing the adjustment of a single axis and three
configurations representing the simultaneously activation of two adjustment ser-
vices. One user requirement of the shown seat adjustment system is, that only
two axes of the seat can be adjusted simultaneously. The service configuration
diagram does not include a configuration activating all three adjustment services
at the same time. Consequently the previously mentioned user requirement is
fulfilled.

At system startup no service is active at all (configuration << NoService >>).
When the user presses a button to adjust the horizontal seat position (H start
event) our system switches to the Sitz horizontal verstellen configuration. In
this configuration the horizontal seat adjustment service is active. This fact is
described by a reference between the configuration in the service configuration
diagram and the state machine describing the single service. In our example the
configuration Sitz horizontal verstellen holds a reference to the state machine
describing the horizontal adjustment service depicted in Figure 5.

Now if the user presses a button to adjust the back of the seat (event
L start) without releasing the button of the horizontal seat position adjust-
ment, a configuration change occurs. In the new active configuration the two
services horizontal seat adjustment (Sitz horizontal verstellen) and back ad-
justment (Lehnenwinkel verstellen) are running simultaneously. Because the
horizontal seat adjustment service is part of the previous and current configura-
tion, the referenced state machine describing the horizontal seat adjustment is
not stopped and restarted during the configuration change. In both configura-
tions the same instance of the state machine of this service is referenced and the
state machine simply continues working in its current state. This interpretation
of configuration changes shows one main difference of the common semantics of
hierarchical state charts and the service configuration diagrams.

The service configuration diagram in Figure 8 also describes exception han-
dling. Whenever some seat adjustment services are active, these services are de-
activated (configuration change towards the configuration << NoService >>)
when the battery has low voltage (CAN Batt kleiner 10V olt event) or the car
speed is higher or equal than 5 km/h (CAN FZG V >= 5 condition) or the car
door is closed (not(S1 T OFFEN) condition).

4 Conclusion

As shown in Subsections 3.2 and 3.3, components and services differ essentially
concerning the construction of complex systems: component-based architectures
only support concurrent composition to form hierarchic structures; service-based
architectures support a more flexible form of reusing behavior by offering com-
position with concurrent and alternative configurations.

As a result, service-based architecture:

– supports a description of the functional structure of the system using explicit
description of modes of operation in form of configurations of active services.

– avoids design-oriented description of the system enforced by component-
based architectures.

– supports efficient implementations by explicitly describing active and inac-
tive functionality.

Since service-based architectures target the functional structure of a system,
an important aspect of the development process is the systematic detection of

conflicts and underspecifications during service composition, as well as the tran-
sition from service-based to component-based architectures. Besides the issues
covered in [8], current investigations include tool-based refactoring steps sup-
porting conflict elimination and transition from service- to component-based
architectures. Furthermore, suitable variants for the constructive design of em-
bedded software are investigated (see, e.g., [1], focusing on issues like explicit
description of timing constraints and efficient deployment to hardware.

References

1. Andreas Bauer, Jan Romberg, and Bernhard Schätz. Integrierte Entwicklung von
Automotive-Software mit AutoFOCUS. In 2. Workshop Automotive Software En-
gineering, 34. Jahrestagung der Gesellschaft für Informatik, 2004.

2. Manfred Broy and Ketil Stoelen. Specification and Development of Interactive
Systems. Springer, 2001.

3. CCITT. Specification and Design Language SDL Z.100, 1983.
4. David Harel and Michal Politi. Modeling Reactive Systems with Statecharts.

MacGraw-Hill, 1998.
5. Frank Houdek and Barbara Paech. Das Türsteuergerät - eine Beispielspezifikation.

Technical Report IESE-Report Nr. 002.02/D, Fraunhofer Institut Experimentelles
Software Engineering (IESE), 2002.

6. Leonid Kof. Formales Service Engineering für Eingebettete Systeme. Master’s
thesis, Technische Universität München, November 2001.

7. Ingolf Heiko Krueger. Service Specification with MSCs and Roles. In M. H. Hamza,
editor, Proceedings of the IASTED International Conference on Software Engineer-
ing, Innsbruck, Austria, February 17-19 2004.

8. Bernhard Schätz. Service-based development of embedded software. TUM-I 0411,
TU München, 2004.

9. Bernhard Schätz, Tobias Hain, Frank Houdek, Wolfgang Prenninger, Martin
Rappl, Jan Romberg, Oscar Slotosch, Martin Strecker, and Alexander Wisspeint-
ner. Case-tools for embedded systems. Tum-i, TU München, 2003.

10. Bernhard Schätz and Christian Salzmann. Service-Based Systems Engineering:
Consistent Combination of Services. In Proceedings of ICFEM 2003, Fifth In-
ternational Conference on Formal Engineering Methods. Springer, 2003. LNCS
2885.

11. B. Selic, G. Gullekson, and P. Ward. Real-Time Object Oriented Modelling. Wiley,
1994.

12. Ingomar Thaler. Service basierter Entwurf eines Steuergeräts für Kraftfahrzeuge,
2004. Systementwicklungsprojekt, Institut für Informatik, Technische Universität
München.

