
Model-Based Development
of Embedded Systems?

B. Schätz1, A. Pretschner1, F. Huber2, and J. Philipps2

1 Institut für Informatik, Technische Universität München
Arcisstr. 21, 80290 München, Germany

2 Validas Model Validation AG
Software-Campus, Hanauerstr. 14b, 80992 München, Germany

Abstract. Model-based development relies on the use of explicit models
to describe development activities and products. Among other things, the
explicit existence of process and product models allows the definition
and use of complex development steps that are correct by design, the
generation of proof obligations for a given transformation, requirements
tracing, and documentation of the process. Our understanding of model-
based development in the context of embedded systems is exposed. We
argue that the concept of model-based development is orthogonal to a
specific process, be it agile or rigorous.

1 Introduction

Intuitively, model-based development means to use diagrams instead of code:
Class or ER diagrams are used for data modeling, Statecharts or SDL process
diagrams abstractly specify behavior. CASE tool vendors often praise their tools
to be model-based, by which they mean that their tools are equipped with graph-
ical editors and with generators for code skeletons, for simulation code, or even
for production code.

However, we do not believe that model-based development should be re-
garded as the application of “graphical domain-specific languages”. Instead, we
see model-based development as a paradigm for system development that besides
the use of domain-specific languages includes explicit and operational descriptions
of the relevant entities that occur during development in terms of both product
and process. These descriptions are captured in dedicated models:

Process models allow the description of development activities. Because of the
explicit description, activities are repeatable, undoable and traceable. Activi-
ties include low-level tasks like renamings and refactorings, but also higher-
level domain-specific tasks like the deployment of abstract controller func-
tionalities on a concrete target platform.

? This work was in part supported by the DFG (projects KONDISK/IMMA, InOpSys,
and Inkrea under reference numbers Be 1055/7-3, Br 887/16-1, and Br 887/14-1)
and the DLR (project MOBASIS).



Product models contain the entities that are used for the description of the
artifact under development and the necessary parts of its environment, as
well as the relations between these entities. All activities in the process mod-
els are defined in terms of the entities in the product models.

We believe that many important problems in industry like the coupling of differ-
ent tools for different development aspects (e.g., data aspects, behavior aspects,
scheduling and resource management aspects) are still unsolved because of a
lack of an underlying coherent metaphor. We see explicit product and process
models as a remedy to this problem.

Overview. In this paper, we provide a rather abstract treatment of our under-
standing of model-based development. An extended version of this paper has
been published as a technical report [11]. As application domain, we choose that
of embedded systems, but the general ideas apply to other domains as well. The
article’s remainder is organized as follows. We kick off with the basic idea of
explicit process and product models in Section 2. The essence of product and
process models is described in Sections 3 and 4, respectively. In Section 4, we
argue that model-based development may be used in different processes, agile or
rigorous. Related work is presented in Section 5, and Section 6 concludes.

2 Models

The shift from assembler towards higher languages like C or Ada essentially
reduces to the incorporation of abstractions for control flow (like alternative,
repetition, exceptions), data descriptions (record or variant types), and pro-
gram structure (modules) into these higher languages. Middleware (like CORBA,
.NET) are further examples of increasingly abstract development. We consider
model-based development to be a further step in this direction. It aims at higher
levels of domain-specific abstractions as seen, at a low level, in the abstraction
step performed in lex. In the field of embedded controllers, the concepts of cap-
sules and connectors of, e.g., the UML-RT are used as well as state machines to
describe component behavior. That these abstractions have intuitive graphical
descriptions is helpful for acceptance, but not essential for the model concept.
Furthermore, in model-based development there is no need to exclusively rely
on one particular description technique, or rather the underlying concept.

What are the advantages of model-based development? One advantage is
independence of a target language: Models can be translated into different lan-
guages like C or Ada for implementation. For graphical simulation, other lan-
guages are likely better suited. Again, this is in analogy with the abstraction step,
or, inversely, compilation of programming languages: C code can be translated
into a number of different assembler languages.

The key advantage, however, is that the product model, which subsumes the
abstract syntax of a modeling language, restricts the “degrees of freedom” of
design in comparison with programming languages. This is akin to modern pro-
gramming languages that restrict the degrees of freedom of assembler languages



by enforcing standard schemes for procedure calls, procedure parameters and
control flow. In a similar sense, Java restricts C++ by disallowing, among other
things, multiple inheritance. Ada subsets like Ravenscar or SPARK explicitly
restrict the power of the language, e.g., in terms of tasks. The reason is that
these concepts have proved to yield artifacts that are difficult to master.

Model-based development incorporates the aspects of abstraction and restric-
tion in high level languages. This happens not only at the level of the product
but also at the level of the process. Working with possibly executable models
not only aims at a better understanding and documentation of requirements,
functionality, and design decisions. Models may also be used for generating sim-
ulation and production code as well as test cases. We consider the integration of
different models at possibly different levels of abstraction as the key to higher
quality and efficiency of the process we propose. Integration is concerned with
both products and processes, on a horizontal as well as a vertical level.

Horizontally, different aspects have to be integrated. These aspects reflect a
separation of concerns by means of abstractions. They deal with concepts
like structure, functionality, communication, data types, time, and schedul-
ing. Structural abstractions concern logical as well as technical architectures,
and their relationship. Functional abstractions discard details of the actu-
ally desired behavior of the system. Communication abstractions allow the
developer to postpone decisions for, e.g., hand-shaking and fire-and-forget
communications. Data abstractions introduce data types at a level of granu-
larity that increases over time. and helps in building functional, communica-
tion, and structural abstractions. Timing and scheduling abstractions enable
the developer to neglect the actual scheduling of components—or even ab-
stract away from timing by relying solely on causality—in early development
phases. Other aspects like security, fault tolerance, or quality-of-service may
be considered as well. While these aspects are not entirely orthogonal one
from another, thinking in these terms allows a better structuring of systems.

Vertically, different levels of abstraction1 for each of the above aspects have to
be brought together in a consistent manner. This applies to both integrating
different structural abstractions and integrating structure with functionality
and communication. Furthermore, different levels of abstractions in all areas
have to be interrelated: Refinements of the black box structure have to be
documented and validated, and the same is obviously true for functional
and data refinements. Since in a sense, possibly informal requirements also
constitute abstractions, tool supported requirements tracing is a must for
such a model-based process.

In an incremental development process, increments (or parts of a product) have
to be integrated over time (Figure 1). While this figure suggests that the concepts
of level of abstraction and increments are orthogonal, one might well argue that
1 Note that the term abstraction is used in an ambiguous manner: abstractions in

the mathematical sense and abstractions on a conceptual level where constructs for
describing one view of a system are considered (i.e., ontological entities).



for
projections

analysis, generation;
as specification

,

refinements
abstractions,

increments,
versions,

configurations

structure
data

function

scheduling communication

data function

structure

communication
scheduling

Fig. 1. Model-Based Development

a refinement step does constitute an increment. The reason for the distinction
is that abstractions and refinements form special increments the correctness of
which might, in a few cases, be proved or automatically tested.

Process and product models. In the UML, the notion of a model is used to de-
scribe the elements and concepts used during the development process, e.g. class,
state, or event. Since, however, this distinction is too coarse for the description
of the model-based approach, here more fine-grained notions of models will be
used: process, product, conceptual, and system models. In the following, these
models are explained in more detail and related to each other. We use the do-
main of embedded systems development and the CASE tool AutoFocus [7]
with its UML-RT-like description techniques for illustration.

The first two models are used to describe the development process from
the engineer’s and thus the domain model point of view. Together process and
product models form the domain model:

Process model: The process model consists of the description of activities of
a development process and their relations. In the domain of embedded reac-
tive systems, e.g., the process model typically contains modeling activities
(“define system interface”, “refine behavior”) as well as activities (“generate
scenarios or test cases”, “check refinement relation”, “compute upper bound
for worst case execution time”). The activities are related by their depen-
dency between them defining a possible course of activities throughout the
development process. By relating them to a product model, process patterns
can be formalized as activities and thus integrated in the process model.

Product model: The product model consists of the description of those as-
pects of a system under development explicitly dealt with during the devel-
opment process and handled by the development tool. For embedded sys-
tems, a product model typically contains domain concepts like “component”,
“state” or “message”, as well as relations between these concepts like “is a
port of a component”, etc. In addition to these more conceptual elements,
used for the description of the product, more semantically oriented concepts
like “execution trace” are defined to support, for example, the simulation
of specification during the development process. Finally, it contains process



oriented product concepts like “scenario” or “test case”, supporting the def-
inition of process activities.

3 Product

The product model describes the aspects, concepts and their relations needed
to construct a product during the development process. Thus, it supplies the
‘language’ to describe a product. Usually, this language is represented using view
based description techniques like structural, state oriented, interaction oriented,
or data-oriented notations. The concrete product itself is an instance of the
product model, for example represented by system structure diagrams, state
transition diagrams, or MSC-like event traces.

Since process activities are defined as changes of instances of the product
model, a process model can only be defined on top of a product model. The
granularity of a product model also defines the expressiveness and thus the
quality of the process model. Using both models, detailed development processes
can be described, accessible to CASE support.

3.1 Structure of the product model

While the ‘abstract syntax’ is sufficient to describe conceptual relations of ab-
stract views or the functionality of modeling activities during the process, a
semantical relation is needed to define or verify more complex semantical de-
pendencies of views as well as properties of activities (like refining activities
or activities not changing the behavior as, e.g., refactoring). Since the seman-
tical and the conceptual part of the product model are used differently in the
model-based approach, the product model is broken up into two sub models:

Conceptual model: The conceptual model consists of the modeling concepts
and their relations used by the engineer during the development process.
The conceptual model is independent of its concrete syntactic representa-
tion used during the development process. Typical domain elements for em-
bedded systems are concepts like “component”, “port”, “channel”, “state”,
“transition”, etc. Typical relations are “is port of”, “is behavior of”, etc.
Figure 2 shows a simplified part of the AutoFocus conceptual model. Be-
sides those low-level concepts, concepts like “requirement” or “test case”
including relations like “discharged by” or “is test case of” are included.

System model: The system, or semantical, model consists of semantical con-
cepts needed to describe the system under development. A typical element
is “execution sequence”. Typical relations are “behavioral refinement” or
“temporal refinement”.

As shown in Figure 3, the notion of the conceptual model is closely related to
the notion of views and description techniques. Views of a product correspond
to abstractions of an instance of the conceptual model (e.g., horizontally: struc-
ture, communication; vertically: component, subcomponent) and are represented
using description techniques.



Component

SubComponents

Channel

ControlState

Transition

InputPort OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataTypeDataElement

Port
0..*

1..*0..*
0..*

0..*
0..*

0..*

0..*

0..*
0..2

0..*

2

1

2

1
1

1..*

1

1

1

0..*

0..*
0..*

Connector

0..*

0..2

0..* 1

10..*

Predicates over the
component's encapsulated
data elements, not treated
here in detail

Expression constructed
according to the rules
for the associated data type,
not treated here in detail

At most two channels can
be connected to a port:
One to the environment of a
component and one to its
internal sub-structure

Process-

Model

ODL-Op

CCL-Term

Model-

Activity

Model-

Condition

Model-

Phase

Atomic-OpGeneric-Op

1..*

0..1
1..*

1..*

1..*1

1

1..*1

Entry-Condition

Exit-Condition

Fig. 2. Simplified Conceptual Product Model (left) and Process Model (right)

Component
SubComponents

Channel

ControlState

Transition

InputPort
OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataType

DataElement

Port

0..*

1..*

0..* 0..*

0..*

0..*

0..*

0..*

0..*0..2

0..*

2

1

2

1
1

1..*

1

1

1

0..*0..*

0..*

Connector

0..*

0..2

0..*

1

1

0..*

Predicates over the
component's encapsulated

data elements, not treated

here in detail

Expression constructed
according to the rules
for the associated data type,

not treated here in detail

Conceptual Level

strucutural part o
f 

conceptual m
odel

Start

Angemeldet

Eingebucht

Anmeldung

:Karteneingabe?Nummer(Kntonr):Ausgabe!Pineingabeaufforderung:AktuelleKontonummer = Kntonr

Einbuchung

:Eingabe?PINEingabe(Pinnr):Ausgabe!Auswahl;Anfrage!Identifikation(AktuelleKontonummer,Pinnr):AktuellePINNummer = Pinnr

Terminal
Netzwerk

Bank

Karteneingabe.Nummer(100)
Ausgabe.Pineingabeaufforderung

Eingabe.PINEingabe(20)

Ausgabe.Auswahl

Anfrage.Identifikation(100, 20)

Terminal

Netzwerk

Bank

Eingabe:Kommando
Ausgabe:Meldung

Anfrage:Auftrag
Anfrage:Auftrag

Ergebnis:Quittung

Ergebnis:Quittung

Karteneingabe:Karten

Description Level

Fig. 3. Models and Views

A semantic interpretation is assigned to the instances of the conceptual model
by instantiating the system model according to its relation to the conceptual
model. In this way, for instance, refinement relations can be proved, or the va-
lidity of timing constraints can be checked.

3.2 Application of models

The purpose of the product model is to support a more efficient and sound
development process by providing a domain-specific level of development. For the
engineering process, the model is used transparently through views of the model
in form of description techniques as described above and interaction mechanisms
supporting the development process. Two mechanisms can be used: consistency
conditions and the definition of process activities. Consistency conditions exist
at three different levels:



Invariant conceptual consistency conditions: They are expressible within
the conceptual model, and hold invariantly throughout the development pro-
cess. Therefore, they are enforced during construction of instances of the con-
ceptual model. Since generally these are only simple consistency conditions,
they can be defined as multiplicities of relations of the conceptual model.
Examples are syntactic consistency conditions as used in AutoFocus like
“a port used during the interaction of a component is part of its interface”
or “a channel and its adjacent ports have the same types”.

Variant conceptual consistency conditions: Like the invariant conceptual
conditions, these conditions can be expressed completely within the concep-
tual model. However, unlike those, they may be relaxed during certain steps
of the development process and are enforced during others. Examples are
methodical consistency conditions like “The dependency graphs of variable
assignments are non-circular”, or “All transitions leaving a state have dis-
joint patterns thus ensuring deterministic behavior”.

Semantic consistency conditions: These conditions are not expressible in
the conceptual model. Since, generally, they cannot simply be enforced, the
validity of these conditions is not guaranteed throughout the development
process but must be checked at defined steps of the process. Examples are
semantic conditions: “The glass box behavior of a component refines the
black box behavior”, “The behavior of an event trace of a component is a
refinement of the behavior of the component”, or “The timing behavior of a
component respects its worst case time bounds”.

In general, the distinction between invariant and variant conceptual consistency
conditions is a matter of flexibility and rigorousness of the development process
supported by the underlying model. In the AutoFocus approach we use CCL
(Consistency Constraint Language, [7], [12]) to define conceptual consistency
conditions. Similar to the OCL, it corresponds to a first order typed predicate
calculus with the types (classes) and relations (associations) of the conceptual
model; expressions are evaluated using an instance of the conceptual model as
universe. AutoFocus offers an evaluation mechanism for CCL expressions re-
turning all counterexamples of the current instance of the conceptual model.

Variant conceptual consistency conditions as well as generic primitive opera-
tions of the conceptual model (introducing/removing instances of elements and
relations) provide the base operations needed to access the conceptual model
from the process point of view. Together with the semantic operations like
checking semantical consistency conditions they form the basic activities of a
development process as explained in Section 4.

4 Process

As mentioned above, the justification of the product model is its application in
the definition of a process model. By the use of a detailed product model we
can (1) give a detailed definition of the notions of phase and activity in terms
of how they interact with the conceptual model, (2) increase the soundness of



the development process by introducing semantical consistency conditions or
sound activities with respect to the system model, and (3) most importantly,
add CASE support to the process to increase efficiency of development.

4.1 Structure of the Process Model

As shown in Figure 2, a simplified process model consists of

Phases: Phases define a coarse structure of a process. They can be associated
to conditions that must be satisfied before or after the phase. Each phase
has an associated set of activities that can be performed during this phase.
Typical examples are phases like “Requirements analysis” or “Module im-
plementation”. Simplified examples for corresponding conditions are “Each
requirement must be mapped to an element of the domain model” to hold at
the end of requirements analysis or “Each component has an implementable
time-triggered behavior” to hold at the end of the implementation phase.
Using the consistency mechanism, development is guided by checking which
conditions must be satisfied to move on in the process.

Activities: In contrast to the unstructured character of a phase, an activity is
an operationally defined interaction with an instance of the conceptual model
and thus executable. An activity can be extended with a condition stating
its applicability at the current stage for user guidance. An activity is either a
generic operation generated from the conceptual model, an atomic operation
supplied by the system model, for example checking semantic consistency,
or a complex operation constructed from the basic operations.

In more complex processes, phases and activities usually consist of sub-phases
and sub-activities, respectively. Since phases and activities are defined in terms of
the product model, their dependencies can be expressed in terms of the product
rather as in generally unspecific ways as found in general process description
languages [3].

Examples for basic operations include simple construction steps like “gener-
ation of a new state of a component” or “introduction of a new transition into
the state-description of a component”. Complex operations include refactoring
steps like “pull up a subcomponent out of its super-component to become a
component of the same level (involving a change in the subcomponent relation
and a relocation of ports and channels)”.

Process activities generally consist of a collection of simple and complex oper-
ations to be applied during an activity. Complex operations can be defined in the
form of extended pre/post-conditions, describing a transformation of instances
of the conceptual model. In the AutoFocus approach these operations can be
defined in ODL (Operation Definition Language, [12]), an extension to the OCL-
like CCL introduced above. ODL allows to precisely define the pre- and postcon-
ditions (including user interaction) of an operation in terms of the instance of
a conceptual model. ODL definitions are executable but come in a logical form
that supports the verification of conceptual properties of the operation. These



properties include stability w.r.t. consistency conditions or semantical properties
like behavioral refinement.

To illustrate how process, conceptual and system models interact, we use
the example of the “elimination of dead states” refactoring step that reduces
code size. In this example, a control state including all its adjacent transitions
is removed from an automaton provided this state is marked as unreachable.

Process: On the level of the process model, an activity “Show unreachability
of a state” must be introduced. This step may either be a single atomic
operation (and can be carried out, e.g., by some form of model checking
algorithm) or a more complex operation requiring user interaction. These
operations correspond to operational relations of the system model. Fur-
thermore, the activity “Remove dead state” removes all transitions leading
to a state marked unreachable as well as the state.

Conceptual: On the level of the conceptual model, the concept of “unreach-
ability” of a state, e.g. as a state annotation, is introduced. If no user inter-
action is required for the proof of unreachability, this extension is sufficient.
Otherwise conceptual elements of proof steps must be added, as well as
additional concepts like state/assignment of variable, or precondition of a
transition

System: On the level of the system model the semantics have a direct effect: in
case of an atomic operation, there is an operational notion of the semantical
predicate “unreachability”, e.g., in form of a model-checking algorithm. This
operation adds the conceptual annotation “unreachable” to a state unreach-
able according to the semantics of the system model. In case of an operation
requiring user interaction, the system model is used via atomic operations
corresponding to operational relations of the system model (e.g. combining
parts of a proof, applying modus ponens). Besides this application of the
system model “at run-time of the CASE tool”, the system model is also
applied “at build-time” to prove the correctness of the refactoring step.

Since an activity as the atom of a process describes how a product is changed, an
activity can be understood as a process pattern in the small. Additionally, each
activity is described in an operational manner. Furthermore, by the use of the
system model, properties like “soundness considering behavioral equivalence” or
“executability of the specification” can be established for activities and phases.
This combination of user guidance by consistency conditions, of executable ac-
tivities, and of the possibility for both arbitrary and provably sound process
activities and states of a product, is directed at improving the efficiency of the
CASE based development process.

4.2 Agility

Model-based development is orthogonal to the degree of rigorosity of a process.
Without giving a clear definition of agile processes, we illustrate this claim by
embedding aspects of Extreme Programming [1] into model-based development.



Language: While generally associated with Java, XP itself does not prescribe
any particular language, and we might thus use any model-based formal-
ism appropriate for a given application domain. Furthermore, we do not
exclude classical languages from model-based development (in the context
of aspect oriented programming we will, however, argue that general purpose
languages are difficult to handle in terms of correctness). XP clearly is code
centered. However, since we advocate the use of operational models not only
for documentation purposes, in this context there is no qualitative difference
between using a low level and a high level language. One of our main points,
the restriction of general purpose languages, is orthogonal to this aspect.

Testing: One of the core ideas of XP is to continually test the system under
development. In fact, test cases are the only formal means of specification.
Incorporating explicit process activities for testing and implementation steps
does by no means contradict the principles of XP nor those of model-based
development.

Refactoring: The activity of refactoring [4] is a common technique in incremen-
tal processes like XP. Refactoring is the activity of restructuring an artifact
(code) without altering its behavior. Within the model-based approach, these
refactoring steps may well be incorporated in the process model as explicit
process activities as well.

Augmenting agile approaches like XP by model-based constructs is likely to pay
off. Firstly, if one accepts domain specific languages to be a good choice, then
it is a good choice for agile methods as well. Remember that the explicit ex-
istence of product and process models does not mean they are visible to the
user. Rather, the contrary is desirable. Secondly, every automatic approach to
test case generation clearly requires a clear and explicit understanding of the
semantics of the language that is used. Thirdly, refactoring relies on behavioral
equivalence, and behavior is always dependent on an observer: is execution time
part of the behavior or not? An explicit semantics must thus complement the
intuitive notion when building, for instance, safety critical systems. The defini-
tion or automatic generation of test cases for checking behavioral equivalence of
the system with its refactored counterpart obviously requires this semantics as
well. Assigning explicit meaning to the language the XP engineers deploy would
thus result in an explicit system model which could be linked to the refactoring
patterns in the process model.

Intuitively, model-based development seems to imply rather rigorous pro-
cesses. However, depending on the rigor of the defined process activities, it can
support very flexible processes as well. Thus, applying the model-based approach
to XP, this could result in a less code-centered but still flexible ‘Extreme Mod-
eling’ approach.

5 Related work

Though widely used, we are not aware of explicit definitions of “model-based
development”. Especially, this term is often used in a more restricted sense, e.g.



domain oriented software architectures [15]. Harel [5] is concerned with using
statecharts for behavior specification. The approach presented by Sgroi et el. [13]
and Keutzer et al. [8] is similar to ours, in terms of the incorporation of different
levels of abstraction, separation of concerns—in particular, computation and
communication—, and the emphasis on explicit system models. The especially
CASE relevant distinction of models within a layered approach as we propose it
complements their line.

While clearly code centered, aspect oriented programming [9]—or, more gen-
erally, separation of concerns—is similar in its vision w.r.t. finding ontological
entities, i.e., abstractions, for aspects like concurrency, exception handling, etc.
Differing from our approach, the idea is to incorporate these abstractions into
general purpose languages like Java or C rather than to use dedicated domain
specific languages. While there are static analysis tools for these languages, their
expressive power renders these analyses most difficult—this is one reason why
we emphasize the restriction of existing languages. In its pure form, AOP does
not require an explicit product nor process model.

The notion of explicit product and process models is also found in the area
of Process Definition Languages [3], however, focusing on user participation and
neglecting the importance of a domain-specific, detailed product model to define
a process upon.

In the UML, a detailed model of the product is defined, integrating differ-
ent views of a product. However, semantical relations exceeding the structural
relations of the conceptual model are missing. Since UML is focused on the con-
ceptual product model, it must be related to development activities. While the
RUP defines a process on top of the UML, it does not make use of the fine
grained meta model underlying those description techniques. Activities of the
process, their preconditions and results are not defined in terms of the UML
meta model; rather, the RUP outlines the phases to be carried out and suggests
the description techniques that are useful for each phase.

Modeling approaches like MOF (Meta Object Facility) rather focus on tech-
nical aspects of how to implement and access models and meta models, but do
not address their application in defining domain-specific development processes.
The OMG’s model driven architecture [14] aims at the definiton of platform-
independent models in a platform-independent language (UML) that are later
mapped to platform-specific models (CORBA, SOAP, etc.). It is thus concerned
with the aspect of communication as well as structure as described in Section 2,
however focusing on the architecture of a product.

Graphical editors in tools like Together or ArgoUML [10], for instance, con-
centrate on an explicit (UML) meta model but do not take into account a process
model. Development platforms like Eclipse2, the latest in IDE development, de-
fine process patterns (e.g., refactorings) but do not do this in an explicit manner.
As far as we know, there is no explicit product model, either.

2 http://www.eclipse.org



6 Conclusion

Our vision of model-based development rests on two pillars: Explicit product
models, which for the developer appear as domain-specific languages, and ex-
plicit process models, which define the developer’s activities that transform early,
abstract, partial products to the final, concrete and complete products that are
ready to be delivered and deployed.

The benefits of model-based development come from the interaction of pro-
cess and product models and their realization in a CASE tool: Firstly, complex
design steps such as refactorings or the introduction of complex communication
patterns [11] between components can be naturally defined and performed in a
tool. Secondly, the application of such design steps naturally leads to a develop-
ment history that can be recorded in the tool and used for a kind of high-level
configuration and version management. Finally, the requirements and design ra-
tionales that influence design steps can be traced and documented throughout
the complete development process.

The main goal of model-based development is to produce high-quality soft-
ware at acceptable cost. While high software quality can be achieved even now—
as demonstrated by avionics software—, cost and development time are usually
forbidding. Model-based development aims at improving not only the product,
but also the process that leads to the product, making high-quality software
development more affordable. In particular, it aims increasing the efficiency of
the development not only of single products but of related product families.

However, model-based development is not without risk. It is not obviously
clear whether a seamless development process from early design to final target
code is feasible: Some design steps might demand knowledge of environment
properties which are difficult to formalize. Design steps in the later phases will
require precise knowledge of the target platform, for instance to access device
drivers or in order to estimate the worst case execution times which are needed
as input for scheduling algorithms. Even if this knowledge is formalized and
incorporated into the product model—as, for example, partly done in the Giotto
language [6]—, more pragmatic problems, like the integration of legacy code,
tailoring to customer-specific coding and certification standards or possibly just
idiosyncrasies in compiler or operating system technologies can hamper our ideal
of a seamless process.

These problems can—with varying degrees of difficulty—be solved. The main
problem is that in contrast with, for instance, compiler construction, they can
be solved not by tool builders alone, but only in close cooperation with domain
experts: A model-based development will necessarily be domain-specific. Find-
ing common vocabularies and notations to define the conceptual, system and
product models is a rather ambitious goal.

Still, in view of our experiences with the AutoFocus project we are opti-
mistic that such tools can be built. Although we do not yet have enough experi-
ence with industrial-size projects, we obtained satisfying results with some core
aspects of such systems (deployment of systems on 4-bit and 8-bit microproces-
sors, schematic introduction of security aspects, custom scheduling algorithms



to distribute computation effort over time). That the close integration of domain
properties into CASE tools is feasible has been demonstrated, for example, for
simultaneous engineering in process automation [2].

References

1. K. Beck. Extreme Programming Explained: Embrace Change. Addison Wesley,
1999.

2. K. Bender, M. Broy, I. Péter, A. Pretschner, and T. Stauner. Model based de-
velopment of hybrid systems: specification, simulation, test case generation. In
Modelling, Analysis and Design of Hybrid Systems, LNCIS. Springer, 2002. To
appear.

3. Jean-Claude Derniame, Badara Ali Kaba, and David Wastell, editors. Software
Process: Principles, Methodology and Technology. Springer, 1999. LNCS 1500.

4. M. Fowler. Refactoring - Improving the Design of Existing Code. Addison Wesley,
1999.

5. D. Harel. Biting the silver bullet: Toward a brighter future for system development.
IEEE Computer, 25(1), January 1992.

6. Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A
time-triggered language for embedded programming. In Proceedings of EMSOFT
2001, LNCS 2211, 2001.

7. Franz Huber and Bernhard Schätz. Integrated Development of Embedded Sys-
tems with AutoFocus. Technical Report TUMI-0701, Fakultät für Informatik, TU
München, 2001.

8. K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. Sys-
tem Level Design: Orthogonalization of Concerns and Platform-Based Design.
IEEE Transactions on Computer-Aided Design of Circuits and Systems, 19(12),
December 2000.

9. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proc. European Conference on
Object-Oriented Programming (ECOOP’97), Springer LNCS 1241, 1997.

10. J. Robbins. Cognitive Support Features for Software Development. PhD thesis,
University of California, Irvine, 1999.

11. B. Schätz, A. Pretschner, F. Huber, and J. Philipps. Model-based develop-
ment. Technical Report TUM-I0204, Institut für Informatik, Technische Univer-
sität München, 2002.

12. Bernhard Schätz. The ODL Operation Definition Language and the AutoFo-
cus/Quest Application Framework AQuA. Technical Report TUMI-1101, Fakultät
für Informatik, TU München, 2001.

13. M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli. Formal Models for Embeded
System Design. IEEE Design& Test of Computers, Special Issue on System Design,
pages 2–15, June 2000.

14. R. Soley. Model Driven Architecture. OMG white paper, 2000.
15. James Withey. Implementing model based software engineering in your organiza-

tion: An approach to domain engineering. Technical Report CMU/SEI-94-TR-0,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa., 1994.


