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Abstract. In this case study, three description techniques representing Petri net
and automata based approaches are applied on an industrial application: The
control system for the tool changer of a manufacturing cell is developed. The
techniques to be compared include common extensions both to the basic Petri
net and automata concepts. In order to evaluate the applicability of the
approaches, a set of practice oriented criteria is presented in the paper. Based on
the experiences gained by the development of the control system, the
approaches are evaluated to these criteria.
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1. Introduction

Graphical description techniques have raised much attention in the software
engineering community in the last couple of years. Partly this trend is based on the
success story of object oriented design methods and languages, where graphical
representations  play a major role. Until a couple of years ago, graphical descriptions
where mainly used as ”sketches” for documentation at the very start of the software
development process. Thanks to many improvements, the usage of graphical
description techniques has been extended to cover the whole software engineering
process, from the early stage of requirements specification up to code generation.

Unfortunately, the software engineer today faces the choice between a whole bunch
of description techniques for the same specification task. Not only do many
communities use their own description technique, also various semantics for the same
elements of description techniques are proposed. Among the different approaches, two
mainstreams can be identified: Petri net- and automata based approaches. Automata
have quite a number of protectionists in the OO-community while Petri nets are
widely used in the field of automation.

The intent of this paper is to achieve more clarity concerning the strengths and
weaknesses of both concepts from the users point of view. From the theoretical point
of view, the properties of both approaches are well known. Opponents to Petri nets
complain that they are not modular while adversaries to automata claim that they are
not expressive enough. In practice however, both concepts are extended by additional
features to overcome those setbacks. For a comparison of both concepts with respect
to practical usage, three approaches which involve common extensions of the basic
concepts are applied on an industrial example: The control system for the tool changer
of a manufacturing cell is specified. Based on the gained experiences, the approaches
are evaluated with respect to a set of criteria, which focus on practical usage and are
defined in the paper.

The concept of Petri nets is represented by Wessa [1], which is developed at the
Institute for Machine Tools and Industrial Management (iwb) at Technische
Universität München. To represent the wide variety of automata approaches
accurately, two approaches have been included in the case study: First, a UML [2]
based approach also developed at the iwb uses specifics of UML Statechart Diagrams.
Second, AUTOFOCUS [3], which is developed at the department of computer science at
Technische Universität München, defines State Transition Diagrams which aim on a
lean semantics to ease understandability and verification.

The paper is organized as follows: Section 2 defines the criteria for the comparison
of the approaches. An informal description of the tool changer is given in Section 3.
Models for the control system using each of the approaches are presented in Section 4,
where also an evaluation with respect to the criteria is given. Finally, the experiences
of the comparison are summarized in Section 5.



2. Criteria for the comparison:

In this section, a selection of criteria for the comparison is presented in order to
establish a profile of the approaches regarding applicability in practice.  Three classes
of criteria are considered: First, methological requirements for a description technique
include stepwise refinement and modularity. Second, the expressiveness of the
approaches is of interest. Finally, basic aspects of tool support are addressed.

2.1 Methogical requirements

•  Modularity:  The question whether a description technique is modular is a
frequently used weapon in discussions about the best approach to use. Often
though discussions arise on this subject. A common source of these discussions is a
different understanding of the term modular. Therefore, the understanding of
modularity which underlies the comparison is stated here:

 A description technique is modular if properties of a component can be established
independently of properties of the environment.

•  Reuse: The reuse of models safes resources in software development. The notion
of reuse discussed here involves both the multiple usage of a component and the
adaption of a component to meet new requirements.

•  Hierarchical refinement: Large systems cannot be specified from scratch.
Description techniques should support the stepwise development of a component
specification by hierarchical refinement. Two criteria regarding refinement are
discussed: The offered notations should be sufficient for practical modelling
purposes, and refinement should preserve modularity, i.e. properties of an abstract
model should also hold after refinement.

2.2 Expressability of interesting properties

•  Control flow: Both the control flow of a single component and the
synchronisation of different components is of interest. Especially the complexity of
models for synchronisation is discussed.

•  Time aspects: Many embedded systems are real time applications where the
timing of activities needs to be specified explicitly. The ways of specifying time
related properties are examined.

•  Local data: Both automata and Petri net based approaches are especially suited for
the modelling of control flow. Many systems however also need to handle large
data structures. The ability of incorporating complex data structures into a
specification is investigated.

•  Complexity of models: An important aspect is the overall complexity of the
resulting models using each approach. The complexity of the models of the tool
changer is compared focusing on the handling of the model for the software
engineer.



•  Active and idle system status: For the control of mechanical systems, it is
important to distinguish whether the system is idle or running. The ability to model
these properties shows the flexibility of a description technique.

2.3 Tool support

Both existing tool support for the editing of the graphical specifications and basic
aspects of the generation of executable code from these specifications are discussed
briefly.

Other, more theoretical criteria as the possibility of underspecification and
nondeterminism are ignored, as this case study focuses in particular on a practical
comparison.

3. Informal description of the modelled system

 

 Fig. 1. Tool changer mechanics (Source: Deckel)

The subject of this case study is the control system for the tool changer of the
manufacturing cell shown in Fig. 1: To enable the machine to manufacture complex
parts, a number of different tools are needed. The active tool resides in the spindle
while the temporarily unemployed tools are stored in a chain magazine. The exchange
of tools between the magazine and the spindle is performed automatically by a picker
arm to save execution time and for safety reasons. Also for safety reasons, the
magazine is separated from the workspace by a door.

 The control system has to ensure that the tool exchange is performed at minimal
time. This includes a maximum of parallelisation of mechanical actions and partly
complex low level hardware control. Since for constructive reasons the storage
positions of tools in the magazine are not fixed, the system also keeps track of the
actual position of the tools.



4. Comparison of the different models

In this section, three different models of the control software using the approaches to
be compared are presented. The models adopt a common architecture: The low level
hardware control is separated into the control of magazine, door, picker arm and
spindle. The coordination task is performed by a flow control unit. The tool change is
performed in two phases: In the phase prepare_change the magazine performs some
preparations, and in the phase perform_change the change is actually executed. Due to
space limitations, only the flow control and the arm control units are specified in the
paper.

The models are discussed in separate subsections which are structured as follows:
First, the essential concepts of the description technique are explained. Second, a
model of the control system is presented, whereas the flow control and the picker arm
control are discussed in detail. Finally, the compliance of the criteria presented in
Section 2 is discussed.

4.1 Wessa, a petrinet based approch

4.1.1 Background
Wessa is a flow control with integrated mechanisms for malfunction treatment,
which was developed at the Institute for Machine Tools and Industrial Management at
the Technische Universität München (iwb) in co-operation with numerous machine
tool manufacturers [1]. For the description of the control software a special Petri net
based description technique was developed.

Basically all Petri nets used in Wessa are event-condition nets, i.e. that a place
can only take up one mark a time. In the here specified notation the specification of an
action is done in the transition (Fig. 2, left). An activated transition remains active
until an event (acknowledgement) indicates the termination of the action. Thus, the
transitions in Wessa are time consumptive. Following the event-condition nets net of
König & Quäck [4], all transitions also contain an internal condition to enable
branching in the Petri net. To fire a transition, all incoming places must be marked and
the internal conditions must be fulfilled. Additionally, observation time can be defined
in the transition, to indicate the maximum valid duration of an activity.

To enable incremental specification transitions can be refined by sub Petri nets. A
sub Petri net must always contain an unique initial and final place. It is considered as
an independent net. The interaction between the superior net and the sub net is
managed by messages (Fig. 2, middle).
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Fig. 2. Syntax constructs in Wessa

To specify synchronisation of two parallel executing Petri nets, Wessa provides
similar to the control places of Moßig & Stäble [5] so called synchronisation places.
The synchronisation is represented by two places distributed on two Petri nets. One
place serves as a mark source while the other serves as a mark drain (Fig. 2, right).
Based on the described notation two types of Petri nets are distinguished: modelling
and controlling Petri nets (Fig. 3).

Modeling Petri net Controling Petri net

initial place

Fig. 3: Modelling and controlling Petri nets in Wessa

Modelling Petri nets serve similar to state diagrams for the description of the dynamic
behaviour of software modules. Here the places of the modelling nets represent all the
states a software module adopts during its lifetime. The transitions between the places
describe the change from one state to the other. Because real objects can only take up
one state a time, parallel control flow is not allowed in these nets. In modelling nets all
transitions must define the internal condition described above. To fire a transition the
incoming places must be marked and its internal condition must be fulfilled. The
condition can be changed by messages coming from external Petri nets. After the
execution of a transition the outgoing state is marked and maintained until a request
for state change is received. Thus, the flow in a modelling net is not continuous.

Controlling Petri nets serve for the description of sequences of control flow. They
always contain an unique initial and final place. The initial place describes where the
control flow begins, while the final place describes where it ends. In the controlling
nets branching, parallelisms and synchronisations are permitted. The control flow is



continuous, i.e. as soon as all source places of a transition are marked, the transition
can be fired without regarding an external message.

Modelling and Controlling nets are used to specify Software components in a
Client/Server based control software architecture. Each module is specified by one
modelling net that describes the outward visible behaviour of the module. The
transitions of the modelling Petri net are the services offered by the module. In case of
complex services, controlling nets are used specify the flow control during the
activation of the transition.

4.1.2 The model of the control system
To clarify the modelling technique used in Wessa the specification of control software
for the tool changer mentioned in Section 2 will be discussed here. As described in
Section 2 the specification defines the components flow control, door control, arm
control, chain magazine control and spindle control (Fig. 4).

flow control

arm control door control chain magazine controlspindle ontrol

Fig. 4: The five software modules

The components flow control and arm control are to be explicitly detailed (Fig. 5, 6).
As mentioned in Section 2 the tool changer offers two main services: preparing a tool
change and executing a tool change. These services are specified in the modelling net
pn_flow_control by two to be refined transitions (Fig. 5, left). The refinement of the
transition execute_change is detailed in the sub petri net pn_preforming_change (fig 5,
right). For efficient control the sub net twice specifies parallel execution of
transitions. These are the transitions spindle_gripp chain_magazine_gripp and
spindle_release chain_magazin_release. The rest is described as sequential flow. In
the transitions of the sub Petri net services offered by other modules are specified. The
specification contains the name of the modelling net representing the required module
and the wanted service, respectively transitions offered by the modelling net.
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Fig. 5: The module  "flow control"

Fig. 6 shows the module "arm control" and its modelling net pn_arm_control. In the
modelling net, the services offered by the arm control are specified. Further
refinement of the transitions gripp, release or move_in is not necessary. In these
transitions the specification of hardware connection is done describing the used actors
and sensors of the tool changer. Because of the complexity of the transition spin it is
refined into a sub Petri net called pn_spinning_tool (Fig. 6 left). In the transitions of
the sub net  the remaining specification of hardware connection is done.
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Fig. 6: The module  "arm control"

4.1.3 Evaluation of the description technique
The evaluation of the description technique leads to the following results:

Methological requirements
•  Modularity: According to the definition of modularity described in Section 2, the

Wessa description technique is modular. By using the modelling nets, the
specification of the behaviour of a component can be established independently of
the environment it is used in.

•  Reuse: This characteristic supports the reusability of modules to a great extent.
Due to the fact that all Petri nets are independent units interacting by
asynchronous message passing reusability is increased. However, limitations exist
when it comes to interactions with new partners. The adoption to a new
environment in the sense of new client or server modules is done in the
transitions.

•  Hierarchical refinement: Wessa supports the refinement of transitions through
sub Petri nets. This refinement is based on sequential composition. When
specifying a complex change of state, a controlling Petri net is used to give
detailed description of states and control flow. These sub Petri nets are
independent units and can contain parallel flow. However, unlike the refinement
of states in automata based approaches the refinement of  transitions is always
limited to just one entry point an one exit point.

Expressability of the description technique
•  Control flow: Due to the fact that Wessa originates form a description technique

for flow control, it naturally offers the description of features particularly useful
for control flow. These include the specification of parallel execution, branchings
and iterations. To specify synchronisation between two parallel executing Petri
nets, synchronisation places are introduced as mentioned above.

•  Time aspects: Wessa distinguishes between waiting time and observation time.
All time specifications are relative. The definition of waiting time can only be
done in the places of a controlling Petri net. The specification of observation time
can take place in the transitions of both Petri nets. This time specifies the
maximum allowed time for the duration of an activity.

•  Local data: Generally the purpose of Petri nets is to describe dynamic behaviour
and not data handling. Regardless to that fact, local data can be defined in each
Petri net in Wessa. This data is limited to simple data types like binary variables
and may be manipulated by arithmetical operations defined in the transitions.

•  Complexity of models: Generally Petri net based models have the affection of
becoming rather big in size due to the fact that Petri nets alternate the definition of
places and transitions. This is especially noticed when defining parallel or
alternative control flow. On the other hand Wessa defines several elements in one



transition (condition, action, termination event) and therefore reduces the number
of elements needed in the model. This leads to a rather transparent model of the
system.

•  Active and idle system status: Wessa distinguishes between "idle" and "running"
states. All transitions defined in Wessa are "running" states with t > 0. The places
in a modelling net describe "idle" states with t > 0. The places in controlling nets
describe "idle" states with t = 0, unless waiting time has been specified.

Tool support
The description technique Wessa is supported by a case tool that enables the graphical
specification of software for control systems. Additionally the tool can create
controlling instructions for special drivers on a real time platform. These configured
drivers are executables to control a manufacturing cell. Thus, a full generation of code
for control software is possible with Wessa.

4.2 The AUTOFOCUS model

4.2.1 Background
AUTOFOCUS [3], which is developed at the department of computer science at the
Technische Universität München, is a formally founded case tool designed in
particular for the development of embedded systems and incorporates support for
testing and verification. AUTOFOCUS combines several views for the specification of a
software system: The structure of a system and its interfaces, i.e. its components and
communication relations, are specified using System Structure Diagrams (SSD’s). The
behaviour of the components is specified in State Transition Diagrams (STD’s) which
are subject of this case study. Furthermore, scenarios for the interaction of the
components are expressed in Extended Event Traces (EET’s), a variant of Message
Sequence Charts. Finally, types of messages and local data are defined in Data Type
Definitions (DTD’s) which use the powerful concepts of the functional programming
language Gofer [6]. These diagrams support the stepwise refinement of a
specification: A component can be refined by a set of sub components in SSD’s and
EET’s, and a state may be refined by a sub STD. A DTD specifying a message type
may be refined  by a more fine grain specification to refine the interface of a
component.

The essential operational concepts of AUTOFOCUS State Transition Diagrams are
explained below. Components interact by sending and receiving messages over
channels specified in an SSD and may further incorporate local variables which are
specified in Gofer syntax as mentioned above. Local variables are quite useful to
reduce the number of control states in a specification by partitioning the system state
into a visualised control state and a data state.

States are places in control flow, in which a system may reside for a duration longer
than zero. Thus states may both express a stable status of a system or a place in control
flow which is subject to refinement by further actions. To model the latter, a state may



be refined by a sub STD. No actions are attached to states directly. The refinement of
states is explained in detail along with its application in the next subsectcion.

Transitions, which express the activity of a component, are an atomic concept in
STD’s, i.e. they can be neither interrupted nor refined in STD’s. A transition depends
on a condition to be taken which may consider the receipt of messages and the data
state of the component. Actions attached to a transition include the sending of new
messages and  the update of the data state. The latter is expressed in Gofer syntax and
may involve complex operations. The conditions and actions are seperated by colons:

PreCond(data_st):Rec_Msg?Ch:Sent_Msg!Ch:PostCond(data_st)

4.2.2 The model of the control system
At the start of the specification process using AUTOFOCUS, the structure of the system
is specified in an SSD. Since the communication infrastructure is specified here, the
SSD of the flow control is shown in Fig. 7. It structures the system as explained in the
introduction of Section 4. The behaviour specification of the flow control and the
picker arm, which is specified using STD’s, is discussed in detail below.

The behaviour specification of the flow control starts with the STD shown in Fig. 8
which specifies the interaction with the environment. After an initialisation phase, the
system can subsequently perform the services Prepare_change and Perform change.
The messages for the communication are specified in a DTD using Gofer syntax:

data Input_type =
     Init | Prepare_change(Int) | Perform_change
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Fig. 7: The static structure of the control system

idle

preparing change

performing change

init

c_in ? Prepare_change(num) ::

c_in ? Perform_change::

(empty label)

c_in ? Init:fc_ac ! Init:

Fig. 8: The top level STD for the flow control

Since transitions are atomic, the execution of the services which last some time have
to be modelled by states. In AUTOFOCUS hierarchical refinement of states is used for
the detailed specification.

The refinement of the state performing change is shown in Fig. 9. To link the
transitions to this state shown in Fig. 8 to the transitions in the sub STD, the concept of
connectors is used in AUTOFOCUS: For each transition to/ from the state
performing_change, an entry/ exit point is inserted and linked to transition in the sub
STD. These connectors enable to consider the context in which the sub STD has been
entered. The conditions for entering and leaving the sub STD specified on both levels
are combined by conjunction.

As mentioned before, the parallel execution of mechanical actions is necessary for
efficiency reasons. For example, in the state sp./m. rel. tool the release of gripped tools
by the spindle and the magazine is awaited. To model the synchronisation in a
compact manner, a local variable consisting of a pair of Boolean values is used. For
both the spindle and the magazine releasing its tool, a looping transitions setting one
of the values to False is specified. The execution proceeds as both values are set to
False.



sc_fc ? Release_ok::sync = (fst(sync),False)

mc_fc ? Release_ok::sync = (False,snd(sync))

fc_sc ? Grip_ok::sync = (True,snd(sync))

mc_fc = ? Grip_ok::sync = (fst(sync),True)

arm picking tool

sp./m. rel. tool

spinning

sp./ m. pck. tool

arm rel. tool

moving arm in

opening door

moving arm out

closing door

ac_fc ? Grip_ok:fc_mc ! Release, fc_sc ! Release:sync = (True,True)

sync == (False,False)::fc_ac ! Spin:

ac_fc ? Spin_ok:fc_sc ! Grip, fc_mc ! Grip:

sync == (True,True)::fc_ac ! Release:

ac_fc ? Move_in_ok:fc_ac ! Grip:

dc_fc ? Open_ok:fc_ac ! Move_in:

fc_dc ! Open::

ac_fc ? Release_ok:fc_ac ! Move_out:

ac_fc ? Move_out_ok:fc_dc ! Close:

dc_fc ? Close_ok:c_out ! Change_ok:

Fig. 9: Refinement of performing change

The arm control, which is specified in Fig. 10, performs the low level interaction with
the mechanics of the picker arm and keeps track of the status of the mechanics.
Therefore the possible state changes performed by the mechanics are modelled in the
specification. In order to save space, the specification is given using a single STD. The
messages Move_in, Grip, Release and Move_out are translated to appropriate
messages for the interaction with the hardware. The messages are defined using
DTD’s as shown for the flow control. The execution of the Spin operation is
performed by an appropriate sequence of hardware interactions.

basic position

moving in moving out

moved in

exchanging

pulling out pushing in

ready to spin

gripping releasing

released

finished spinning

init

fc_ac ? Move_in:ac_w0c ! In:

w0c_ac ? In_ok::

lwc_ac ? Pull_ok:ac_w1c ! Rotate: w1c_ac ? Rotate_ok :ac_lwc ! Push:

w0c_ac ? Out_ok:ac_fc ! Move_out_ok:

fc_ac ? Grip:ac_l1 ! Lock, ac_l2 ! Lock:

l1_ac ? Lock_ok, l2_ac ? Lock_ok:ac_fc ! Grip_ok:

fc_ac ? Spin:ac_lwc! Pull:

fc_ac ? Move_out:ac_w0c ! Out:

l1_ac ? Unlock_ok, l2_ac ? Unlock_ok:ac_fc ! Release_ok:

fc_ac ? Release:ac_l1 ! Unlock, ac_l2 ! Unlock:

lwc_ac ? Push_ok:ac_fc ! Spin_ok:

fc_ac ? init::

Fig. 10. The arm control STD

4.2.3 Evaluation of the description technique
The evaluation of the model according to the criteria described in Section 2 leads to
the following observations:



Methological requirements:
•  Modularity: AUTOFOCUS specifications are clearly modular with respect to the

definition given in Section 2. All kind of behaviour visible at the interface of a
component - its  ports - can be established independently of the environment in
witch the component is used.

•  Reuse: Due to the concept of ports, components can be reused in different
environments, if the same messages are used for communication in each case. If
these messages are subject of change however, changes to the whole STD may be
necessary as the messages are used in the transitions. This is a common property of
both Petri net and automata approaches.

•  Hierarchical refinement: The state refinement concept explained above of
AUTOFOCUS is quite adequate for refinement in terms of a more detailed
specification of actions, as used above. The facility of connectors enables the
consideration of the context in which a sub STD is executed. Further it keeps
different levels of abstraction in a specification independent from each other and
thus modular. The state refinement concept use in AUTOFOCUS is especially
powerful in combination with combination with structural refinement of SSD’s
and interface refinement of DTD’s.

 Expressability of  interesting properties:
•  Control flow: As commonly known, automata are in general well suited for the

visualisation of sequential control flow. Due to the concept of state variables, also
synchronisation of parallel control flows can be modelled compactly, although not
in a visual manner like in Petri nets.

•  Time aspects: AUTOFOCUS does not provide a particular notation to express time
constraints for a transition. Time related properties were not necessary in the
specification described above. Where time constraints are needed, they can be
easily modelled by communication with a special timer component.

•  Local data: AUTOFOCUS allows to specify local data of components using the
functional programming language Gofer. This allows a powerful combination of
data oriented and control flow orientated specifications. This was especially useful
for the specification of the tool management aspect in the magazine control. As
mentioned in Section 3, this cannot be discussed in detail here due to space
limitations.

•  Complexity of models: The complexity of the resulting models is moderate as can
be seen from the above. The number of graphical elements in a specification is
comparatively low due to the powerful notation for conditions of transitions. The
number of graphical elements could even be reduced further, but this would be on
the cost of complex operational specifications of post conditions in transitions.

•  Active and idle system status: AUTOFOCUS has no notation to distinguish
between idle and active states. The syntax could be easily extended for an
appropriate marking of states, though this does not imply a semantics of such a
marking.



Tool support:
AUTOFOCUS provides a complete tool environment including graphical editors for the
described system views and facilities for the simulation of specifications. The
experience with the simulation shows that reasonably efficient code generation for
STD’s is possible. Code generation can be performed fully automatic for executable
systems. Further, facilities for testing of non deterministic systems are offered.

4.3 UML based approach

4.3.1 Background
 The third approach in this case study is a description technique based on the Unified
Modelling Language (UML) version 1.1 [2]. The UML a is description technique
defined by the OMG (Object Management Group). It primarily contains a uniform
notation and a meta model. UML is mainly a summary of the methods OOD [7], OMT
[8] and OOSE [9], but it is also influenced by other methods  like the State Charts by
Harel [10].

 For the object-oriented modelling of software the UML offers numerous diagrams.
These diagrams can specify structural, behavioural and implementation aspects of
software modules. In this case study the main focus are Statechart Diagrams to specify
the internal behaviour of software components.
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 Fig. 11: Basic elements of the Statecharts defined in UML

The UML Statechart Diagram consists of states and transitions as shown in Fig. 11. In
UML a state can contain three different kinds of actions. These are the "entry", "exit"
and "do" action. The "entry" and "exit" actions are only executed once when entering
respectively leaving a state. The "do" action is repeated continuously until the state is
left. Additionally, the states defined in the UML can be refined into sub state diagrams
which can either have sequential or concurrent running states. The transitions that
indicate the connections between the states can be assigned triggering events and
optional atomic operations. In UML the following classes of triggering events are
distinguished: "signal" events, "call" events, designated conditions and passage of a
designated period of time after a designated event.

4.3.2 The model of the control system
To model the control software for the tool changer specified in Section 2 the software
is structured into the 5 components: flow control, door control, chain magazine



control, spindle control and arm control. In  Fig. 12 these components are shown by
using the UML notation for components.
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 Fig. 12: Structural units of the control software

The interface of the components is represent by circles attached to solid lines. The
dashed arrows are used to specify the associations between the components and show
that components use services offered by other components.

 To specify the behaviour of these software units hierarchical Statecharts as defined
in the UML are being used. In the following Section the behaviour for the flow control
and the arm control will be detailed. To simplify this process a uniform scheme shall
be used, which can be applied to all five control units.

 Generally, the scheme defines two super states called idle and running. These states
have to be refined into several sub states. The super state idle is refined into all the
states the modelled unit has while not executing one of its offered services. The super
state running is refined into all the states the unit takes on while executing an offered
service. To activate the services "call" events have to be received from external units.
These "call" events are specified at the outgoing transitions of the sub idle states. To
certify the correct termination of a requested service, a reply operation is defined in
the entry action of the super state idle. If the execution of an offered service requires
interaction with external units the sub state may be refined into further sub states to
encapsulate the interactions with these server units. Though the UML offers the
specification of "do" actions in states, no such actions shall be used here, i.e. only
"exit" and "entry" actions are specified.

 Fig. 13 shows how the Statecharts of UML can be used in conjunction with the
specified scheme to model the dynamic behaviour of the flow control. Here the two
states "initialised" and "prepared" are sub states of the super state idle. The two
services of the tool changer prepar_change and perform_change are specified by the
two states preparing_change and preforming_change. To initiate these services the
two events e_ prepar_change and e_perform_change are specified.
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 Fig. 13: Behaviour of the flow control
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 Fig. 4: Behaviour of the arm control

 Due to the fact, that the state preforming_change defines a complex behaviour that
requires several interactions with the other control units, the state is refined into
several further states. In the entry action of these states further requests at the other
control units are specified. To enable parallel interaction with the spindle control and
the chain control the states grip and  release are again refined into concurrent sub
states.



 In Fig. 14 the behaviour of the arm control is shown, where the scheme introduced
above is applied as well. In the sub states of the super state running the interaction
with the hardware devices in term of actors and sensors are specified.

 

4.3.3 Evaluation of the description technique
The evaluation of the UML based approach with respect to the criteria introduced in
Section 2 leads to the following conclusion:

 Methological requirements
•  Modularity: According to the definition of modularity as defined in Section 2 the

UML based approach is clearly modular. The modularity is based on the use of
independent classes (active classes) with indivdual interfaces and behaviour. In
UML the interface of a component can be specified in a separate interface class
that only declares the services the component offers.

•  Reuse: Due to the fact that the described software is based on a Client/Server
architecture the following can be observed: As long as the changes in the
environment do not influence the interactions between a component and its server
units reusability is supported to a high degree. If these interactions are influenced
the changes will have to be considered in the states of the Statechart Diagrams.

•  Hierarchical refinement: Statecharts in UML supports the hierarchical
refinement of states into sub statecharts. This feature is essential for the scheme
described above to specify the behaviour of a component. Additionally to the
described characteristic transitions can be connected to so called "stubs" that
specify connectors to states in a sub Statechart. These sub states are other states
than initial or final states.

 Expressability of interesting properties:
•  Control flow: As already described in the AUTOFOCUS Section Statecharts are

well suited for the description of control flow. Due to the face that states in UML
can be refined sub statecharts containing sequential or concurrent running states,
the synchronisation of parallel execution can be specified graphically. A graphical
description of synchronisation in the sense of semaphores is not supported.

•  Time aspects: In UML time aspects can be defined in Statecharts by using time
events in transitions. This event specifies that a designated period of time after a
designated event has to pass before the transition fires. The usage of the key word
"after" denotes the period of time since the entry of a current state.

•  Local data: Unlike UML version 1.0 where local data in terms of state variables
could be specified in an Statechart Diagram, UML version 1.1 suppresses the
specification of local data. Only so called "guard-conditions" in the from of
defined variables can optionally be specified in transitions.

•  Complexity of models: Compared with basic automata concepts the number of
elements needed to specify the software module in this approach has increased
slightly. The reason for that lies not in the UML based notation but in the defined



scheme that uses the hierarchical refinement to structure the model. On the other
hand the structured scheme increases the transparency of the model. This makes it
easier to handle of the model and reduces the complexity for the software
engineer.

•  Active and idle system status: Generally the Statechart Diagrams of UML do
not distinguish between running and idle states. By using the scheme defined
above the distinction is introduced

Tool support
Basically a large set of commercial case tools support the UML. Unfortunately these
tools differ strongly concerning the number of supported UML diagrams. Due to the
fact that Statechart Diagrams are essential to specify dynamic behaviour most of the
tools do support these diagrams. Further more the scope of automatic code generation
differs strongly. Some tools just support the generation of basic structural elements
while others enable full generation of executable code.

5. Conclusion

 In this case study, we applied three Petri net and automata based description
techniques for behaviour modelling on the development of an industrial application:
The Petri net based approach Wessa, State Transition Diagrams in AUTOFOCUS and a
Variant of UML State Diagrams. These description techniques involve common
extensions to the basic Petri net and automata concepts. With practical experience
obtained in the study, we evaluated each description technique with respect to criteria
which focus on practical applicability. The observations are summarized below:

 All three approaches can be applied in a way that they are modular with respect to
the specification of components. The reuse of specifications is possible but limitations
exist regarding the adaption of a component to meet new requirements.  In all
approaches, notations for the stepwise refinement of a specification are provided
which are sufficient for the modelling tasks occuring in the study.

 The compared approaches are expressive with respect to a number of important
properties of the developed system. Wessa enables to visualize synchronisation of
parallel control flow in a graphical manner and introduces compact and convenient
syntax construct for time related properties. AUTOFOCUS is especially well suited to
incorporate complex data definitions. UML extends the ability of automata to
visualize parallel control flow and offers a syntax to specify time aspects. Regardless
of contrary statements found in the literature, e.g. [11], the specifications described in
this study are of similar complexity. The evaluation of the criteria is summarised in
table 1.

Due to the different focus of the approaches, the amount of tool support concerning
code generation differs widely. However, the existing facilities show that a principal
tool support is given for all approaches and that the basic problems concerning this
subject have already been solved



Criteria Wessa AUTOFOCUS UML based approach
Modularity
Reuse
Hierarchical refinement

Control flow
Time aspects
Local data
Complexity of models
Active and idle states

Tool support

+
+
+

+
+
0
0
+

+

+
+
+

0
0
+
+
-

0

+
+
+

+
0
-
+
0

+

Table 1. Summary of the comparision

These results of this case study yield to the following conclusions: Commonly known
drawbacks of the basic concepts are mostly overcome by extensions introduced in
modern approaches. Assertions that blame Petri nets for lack of modularity do not
hold for extensions as the communicating nets introduced in Wessa. Also the critics
that claim automata are not expressive enough are not valid for extended approaches
like State Transition Diagrams of AUTOFOCUS or State Diagrams of the UML. As a
consequence, the results show that the differences between Petri net and automata
based description techniques are becoming increasingly smaller. Surely will every
description technique retain its particular strengths and weaknesses. But it is clear to
see, that they are moving closer together towards efficient, component based software
development.
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