
Developing Distributed Systems Step by Step with UML-RT

Robert Sandner�

Institut für Informatik
Technische Universit¨at München

80333 München, Germany
email: Robert.Sandner@in.tum.de

Abstract

In this paper, we argue that Case tools provide a valu-
able support for the presentation and analysis of models,
but more support for a stepwise development process is
still needed. In particular, we focus on the development
steps for behaviour models, and which support can be
provided by Case tools for them. Notions of refinement
can help to provide this support. We discuss the use of
existing refinement calculi for this task and present ad-
ditional high level refinements necessary to support im-
portant practical development steps. In particular, we
address two important issues: Interface refinement and
the introduction of time.

1. Introduction

Software systems development is a complex task,
in particular for technical applications, where real-time
requirements and various physical influences have to
be considered. A number of visual modeling lan-
guages have been developed to cope with this complex-
ity. Whereas for business software, theUnified Modeling
Language UML [30, 29, 28] has become a dominating
standard, in the field of technical applications a number
of more specialized, tool supported languages have been
quite successive, e.g. ROOM [35], Statemate [14], Mat-
lab [37, 38] and Ascet-SD [2]. Currently, aUML profile
for Scheduling, Performance and Time [26, 25] is being
standardized by the Object Management Group (OMG),
influenced by concepts of ROOM [22, 36]. This profile
is commonly known under the name UML-RT. In this
paper, we address the stepwise development of techni-
cal, time critical software systems using the notations of
UML-RT.

Visual modeling languages - especially the UML -
are supported by numerous commercial Case tools today.
Due to the participation of Case tool vendors in the stan-
dardization process, the same can be expected for UML-
RT. However, current Case tools have their strengths in

�Research supported by the DFG projectInTime.

the presentation and analysis of models. A structured de-
velopment process is mainly provided by the definition
of views for the separation of concerns. This is not suf-
ficient to structure a stepwise development of complex
systems: We also need guidance how to change a model
in a development step without destroying earlier estab-
lished desired properties, to which someone else may
rely on. Most Case tools, however, only provide mecha-
nisms to check the result of a change for syntactical con-
sistency, but do not take care of the semantics of models.

The methodological support needed for development
steps can be achieved by notions of refinement, based on
a precise semantics for the modeling techniques. Refine-
ment approaches are an active research field in academia.
However, they are poorly used in industrial practice so
far. A reason is that only a few approaches are designed
to be used with popular modeling languages. Further,
most approaches which do so focus on too fine grained,
isolated refinement steps like removing or adding a sin-
gle transition in a Statechart. These refinement princi-
ples provide a firm basis for systematic system develop-
ment, but they need to be accompanied by higher level
refinement principles which reflect important practical
development tasks. We concentrate on the modeling and
refinement of structure and behaviour using UML-RT
Capsule diagrams and Statecharts. We discuss two par-
ticular refinement principles:

Behavioural interface refinement: Although it is al-
most a truism that a system has to be broken up into
manageable components connected by well defined
interfaces, usually these interfaces are not perfect
at the first attempt. Reasons include both flaws in a
design but also organizational matters: For develop-
ing a component of a larger systems, the deadlines
of the project may make it impossible to wait until
all interfaces of neighboring components are abso-
lutely definite. To allow interfaces to be developed
themselves step by step, we present an easy to use
refinement principle which allows to change the in-
terface of a component together with the Statechart
specifying its behaviour. A set of easily checkable
rules is given to ensure that the change is a sensible
refinement.



Figure 1. Example: Application scenario for behavioral interface refinement

Incorporating time: Although real-time is a critical is-
sue for technical applications, dealing with time in a
too detailed way at the very beginning of the devel-
opment hardly allows the refinement of models. We
suggest to ignore execution times of components as
long as possible. In order to do so, we present a
simple approach which helps to introduce time as-
pects into models only if they become necessary.

Outline: In Section 2 we sketch basic ideas of a de-
velopment process which motivate the refinement prin-
ciples presented in the paper. Section 3 provides an
overview on existing refinement calculi. High level re-
finement rules which close the gap between theory and
practice are discussed in Section 4. Finally, Section 5
contains concluding remarks.

2. Refinement: Existing approaches

Notions of refinement have a long tradition in the the-
ory of programming. Notions of refinement for pro-
grams have e.g. been presented in [16]. A number of
theories have been developed to generalize the notion
of refinement. An underlying theory used by many ap-
proaches are process algebras [15, 10]. Notions of re-
finement which have been developed include trace re-
finement [23] and failure preorder [16]. For a discussion
of their interrelations, see [24]. Another powerful frame-
work for the definition of refinement calculi are stream
processing functions, as used in the FOCUS framework
[8, 9]. They allow to understand refinement in a quite
simple manner, namely in terms of logical implication
(cf. [5, 6]) and yield the logical basis for our approach.
Interpreting refinement as logical implication has also
been applied on timed specifications: An approach re-
fining functional timed specifications to programs can be
found in [33]. The use of different timing models and
their interrelations are closely discussed in [7]. Not only

behaviour is a matter of refinement: Structural refine-
ment of specifications is considered in [27]. A well in-
vestigated field is the refinement of communication prin-
ciples, see e.g. [11, 32, 3]. Refinements of specifications
written in different languages are discussed in [12].

Of particular interest for us are approaches with ap-
ply notions of refinement on visual modeling techniques,
especially on behaviour modeling. Refinement rules
for Statecharts and related formalisms are presented in
[31, 34, 19]. A refinement calculus for MSCs has been
developed in [20]. These approaches have in common
that they mostly deal with very fine grained refinements,
e.g. adding a transition to a Statechart. Refinement of
interfaces is only allowed in a restricted manner. Re-
finement of timed specifications is not considered. In
conjunction with visual modeling languages, this is still
an open field in research. In our setting, the refinement
rules provided by the approaches discussed above are
augmented by the principles discussed in Section 4.

3. Development Scenario

In this paper, we concentrate on structure and be-
haviour modeling using the UML-RT notations Capsule
diagrams and Statecharts which have strongly been influ-
enced by the ROOM method. It should be noticed that
UML-RT Statecharts differ from standard UML State-
charts: They introduce some syntactical extensions and
- more important - their semantics differs from the one
given in [13] since they employ an asynchronous execu-
tion model. This will be addressed in more detail in Sec-
tion 4. To motivate the refinement principles presented
there, we give a sketch of a simplified development pro-
cess which uses Message Sequence Charts (MSCs) [18],
Capsule diagrams and Statecharts. Of course, these ideas
fit into a full scale development process.

As a starting point of the development process, the
components of the system are identified using Capsule



Figure 2. A mapping of scenarios

diagrams. Next, their interactions are explored in exam-
ple application scenarios using both Capsule diagrams
and MSCs. Scenarios serve both as requirements speci-
fications and as a first design: Using the algorithm pre-
sented in [20, 21], Statecharts can be generated from
them. These generation saves a lot of work since the
information gained from the MSCs need not to be re-
engineered in the design of the system components. The
generated models are usually not complete and may be
too application specific. Thus they need to be refined
and generalized. Besides reasons given in the introduc-
tion, these is one of the motivations for our concept of
interface refinement. In the following, we focus on the
refinement of these generated models towards a detailed
design.

We recommend that in the first steps, the refinement
of the logical behaviour and the structure of the sys-
tem should take precedence. Both refinements may be
carried out interleavingly. Although some performance
analysis may be carried out earlier, we suggest to incor-
porate time as an integral part of a model only at the late
stages of development. Incorporating time dependency
and execution speed into models completes the design
process. This way, the design process ends up with mod-
els that can be used immediately as a starting point of the
implementation.

4. High level refinements for important de-
velopment tasks

In this section, we discuss two important refinement
principles which play a crucial rule in practical system
development. As discussed in Section 2, structural and
behavioural refinement often need to be combined. In
Section 4.1 we present a principle to refine both the syn-

tactic interface and the behaviour of a component. It
requires a minimum of theoretical background for the
developer. We also suggested in Section 2 to postpone
the treatment of real-time aspects as long as possible.
This eases the “logical design” of the system, but re-
quires a refinement principle introducing time into mod-
els, which is discussed in Section 4.2. Finally, we give
an outlook on further useful refinements and future work
in Section 4.3.

4.1. Behavioural interface refinement

Behavioural interface refinement allows to refine the
interface of a component together with the Statechart
which models its behaviour. Applications of such a re-
finement have already been discussed above: Interface
refinements may be necessary because of design flaws,
organizational reasons or generalizations of interfaces
gained from application scenarios.

Application scenario

In the following, we will use a (simplified) example
taken from mechatronics. The upper diagram in Figure
1 shows a componentControl, which provides ser-
vices toEnv, using the hardware it controls. The be-
haviours of the components are specified by Statecharts.
Since the details of the hardware are not known at the
start of the development, we need to refine the hardware
interface in subsequent development steps, as shown in
the lower diagram. Of course, the refined component
Control’ should preserve the behaviour ofControl
shown toEnv in some sense. However, this depends
on the meaning of the messages transmitted along both
hardware interfaces, e.g. which messages correspond to
anok message by the abstract hardware.



We need a simple way for the developer to specify
this interrelation. Let us consider the Statecharts of both
components: The left Statechart in Figure 2 models the
behaviour ofControl, the right one the behaviour of
Control’. To establish a refinement relation between
them, we use a mapping between their interaction sce-
narios. In our setting, we mapconcrete scenarios toab-
stract ones. Thus, the mapping goes into the opposite
direction to the development process. As we will see be-
low, this simplifies the definition of constraints which are
desirable for methodological reasons. The mapping can
be easily defined by identifying execution paths through
the Statecharts which start and end in a state, as illus-
trated in Figure 2. For example, the scenarios identified
by the black arrows inControl’ are both mapped on
the black marked scenario inControl. The gray ar-
rows show scenarios which also have to be mapped to
define a total mapping1. To be more precise, we define a
mapping of scenarios by cases. The cases for the black
paths are shown below. For matters of space, we use the
abbreviationsC, C’ andHW:

���
��
� �

� � �� ��
� �� �

���
���
� �

� � �� ���� ��� � �� ���� �� �

���
�

� �
� � ���

�

� �
� � �� ��� �

� ���

�

���
��
� � � �

��
� �	 �

���
���
� � � �

���
� ��� � �

���
� �	 �

�	
��
� � � �

��� �
� ���

���
��
� �

� � �� ��
� �� �

���
�

� �
� � ���

�

� �
� � �� ��

� �� �

���
���
� �

� � �� ���� ��� � �� ���� �� �

���
�

� �
� � ���

�

� �
� � �� ���� �� �

���
�

� �
� � ���

�

� �
� � �� ��� �

� ���

�

���
��
� � � �

��
� �	 �

���
���
� � � �

���
� ��� � �

���
� �	 �

�	
��
� � � �

��� �
� ���

Conditions for a refinement

Of course, just to define a function between scenarios
does not necessarily lead to a sensible refinement. How-
ever, the mapping of the scenarios shown above can be
used to define a refinement relation betweenControl
andControl’. Control’ is a refinement ofCon-
trol if each complete execution trace of Control’
relates properly to an execution trace ofControl. This
coincides with common notions of refinement: Each sys-
tem run of the refined system must also be possible in
the more abstract system in terms of its interface defini-
tion. We have to define a refinement relation on com-
plete traces: It is given as a total mapping from traces of

1For clarity, we only showed one error path in the system. Of
course, the real system, and also the mapping, would be more com-
plex if all errors are considered.

Control’ to traces ofControl, defined inductively
by the cases shown above which map finite scenarios. To
get a proper inductive definition of a total mapping, we
need to impose two conditions on the scenarios identified
in the refined component:

� No scenario defining the mapping may be a prefix
of another. Otherwise, the mapping on execution
traces would be ambiguous. This condition is well
known as the Fano condition from coding theory.

� The scenarios must provide a complete path cover-
age. The mapping of the finite scenarios must be to-
tal2. This is necessary for that the inductive defini-
tion defines a total mapping of execution traces. A
partial mapping would leave parts of the behaviour
unconstrained. This clearly does not coincide with
refinement.

For methodological reasons, standard notions of re-
finement also imply the following conditions:

� The cases need to define a function. This is al-
ready given by definition since each scenario has
to be mapped on a scenario in the Statechart of the
abstract component. A function ensures that be-
haviour which can be distinguished at the abstract
level can also be distinguished at the concrete level.

� The range of the mapping provides a complete path
coverage in the abstract component. This way, we
disallow to throw away behaviours shown to other
components not subject to the interface refinement.
This would only be a refinement if we omit a nonde-
terministic behaviour in the abstract component but
not in other cases. Reduction of non determinism
can be performed using standard refinement rules,
e.g. given in [31, 34]. Therefore, we can exclude it
completely here to avoid to make things unneces-
sarily complicated.

� The projection of each mapping to unchanged in-
terfaces is the identity. This ensures that causality
dependencies of all actions not subject to the inter-
face refinement are preserved3. Note that causality
dependencies on the refined interface are only sub-
ject to the scenarios. Fortunately, their order cannot
be changed by the inductive definition given above.

� Each image of a scenario starting in an initial state
must also start in an initial state. Each image of a
scenario ending in an terminal state must also end
in a terminal state.

� Concrete scenarios need to be finite. Together with
the two previous items, this condition ensures that
termination is preserved: If the abstract component
terminates, also the refined component does.

2For each scenario, there must be a non-empty scenario to which
this scenario is mapped.

3The term causal means that each two events in the concrete model
must be in the same order as their counterparts in the abstract one.



Figure 3. Implicit time dependency due to synchronous execution

Applicability in practice

At a first glimpse, the conditions introduced above seem
to be rather extensive. However, if we skip the method-
ological justifications, they are relatively short: We
need a total function from concrete to abstract scenar-
ios, which has to ensure complete path coverage for its
domain and image, and which has to be the identity on
unchanged parts of the model. These conditions are un-
derstandable without deep mathematical knowledge, and
they can be checked fully automatically by tool support.
Although we have not yet gained much experience with
large industrial case studies using this approach, we are
confident that it scales up well to real life applications.

It should be noted that in the literature, much simpler
refinement rules for interface refinement can be found
(e.g. in [6]). They introduce mappings between input
and outputmessages of an abstract and a refined com-
ponent. However, they are not convenient for complex
cases as the example in Figure 2: A message by a sensor
can both meanok andnok, depending on the state of
the interaction with the componentcontrol.

The approach can be used in different situations: A
given Statechart can be verified whether it refines an ab-
stract one, as shown above. For components of moderate
size, it is also possible to specify the refined scenarios
independently and generate the Statechart model for the
refined component using the algorithm presented in [20].

4.2. From untimed to timed models

Introducing time aspects late eases the development
in the earlier phases. Since both developing an appropri-
ate “logical” design and treating real-time requirements
are complex issues, each of these tasks should be sup-
ported by best suited modeling environments. State-
charts have proved their adequacy for both levels of ab-
straction. The question addressed here is which under-
lying semantics is appropriate for a logical design and
which for time dependent models, and how they can be
integrated. In the following, we will consider time de-
pendent models first. Given these models, we discuss
which abstractions are desirable in the course of a logi-
cal design.

A semantics for timed models

For time dependent models, we are looking for a seman-
tics which is easy to use and especially allows to eas-
ily analyze time aspects of a model. The crucial deci-
sion which has to be made thereby is the choice of an
appropriate execution model. For the analysis of time
dependent models, we need an execution model which
allows to predict the execution time of all actions of a
component. A quite useful and widely used approach is
to synchronize the execution of all components in a sys-
tem by global clock ticks: Each time the clock ticks each
component performs one step - i.e. one transition - of ex-
ecution. Because of this synchronization mechanism, we
refer to this approach as asynchronous execution model.
Often, a more refined variant of this model is used: Com-
ponents are driven by the ticks of local clocks, but all
these clocks are synchronized with respect to a global
clock. This allows to model different execution speeds
in a system. Synchronous execution models are widely
used in industrial practice: For example, they are used
in the Case tools Matlab/Stateflow [37, 38] and Ascet-
SD [2], but also in popular implementation platforms
based on Programmable Logical Controls (PLCs): The
visual programming language Higraph [1] uses the syn-
chronization model described above.

It is sometimes criticized that synchronous execu-
tion models are inappropriate for the development of
distributed systems. The major reason is that they do
not express delays in communication. Because of mat-
ters discussed below, we agree to this opinion in the
sense that they are inadequate fordevelopment steps
in the early design of a system. However, they are
quite well suited for theanalysis of implementation ori-
ented models since they ease the prediction of execu-
tion times. Synchronous execution models are typi-
cally combined with unbuffered communication or at
least with bounded buffering. Together with the restric-
tion of interleaving through clock ticks, this enables the
analysis of models by fully automatic techniques like
model checking, successfully used e.g. in the AUTOFO-
CUS Case tool [17, 39, 4]. Further, the absence of ex-
pressing delay in communication is not really a disad-
vantage: If we are interested in the characteristics of a
communication medium, we can model it as a compo-
nent. Since the characteristics of communication medi-



ums differ widely, they can not be commonly expressed
by a single semantics. Thus we will probably be forced
to do quite the same using any other execution model.

However, synchronous execution models do not allow
time independent specifications: Since each transition is
taken at a tick of the global clock, the relative execu-
tion time of computations is always implicitly specified
by the number of transitions. As an example, the com-
ponentproducer in Figure 3 is twice as fast than the
refined componentproducer’. As a consequence, the
componentcustomer will work well with producer
but not withproducer’. Although the situation above
could be easily avoided, it is hard to avoid such effects
in general. Especially, these effects prevent the defini-
tion of simple refinement rules for components.

A semantics for logical design

The effects shown above arising from a too close cou-
pling of components by synchronous execution can be
avoided byasynchronous execution models. In this ap-
proach, the time instant at which a component reacts to
a received message is left unspecified. It is only defined
that the reaction happens after the receipt. Although this
approach abstracts from execution times of actions, it is
successfully used in the development of real-time sys-
tems: The ROOM [35] method provides timer facilities
which allow to introduce timed behaviour like delay or
timeouts. These concepts seem also to be adopted in the
standardization process of the UML profile for Schedul-
ing, Performance and Time. Although system develop-
ment makes use of simulation facilities, the scheduling
algorithm of the underlying ROOM virtual machine is
not explicitly defined in order to keep the modeling lan-
guage independent from platform dependent implemen-
tations. Asynchronous execution models facilitate the
definition of refinement calculi. However, since the anal-
ysis of real-time properties requires assumptions on the
scheduling of actions, and asynchronous execution also
complicates automatic reasoning using techniques like
model checking, we suggest to use both synchronous and
asynchronous execution in the development process.

Introducing time as a refinement

To provide a most appropriate semantics for both lev-
els of abstraction, we propose to use the asynchronous
model at the beginning of the development and switch to
the synchronous model later on. This step can be quite
easily understood as a sensible refinement step: It is a
restriction oftimed nondeterminism in the sense that the
time instant at which a transition is taken is left unspec-
ified before the refinement and is fixed afterwards. This
can be easily formulated if asynchronous execution are
formulated in a logical model using time ticks

�
: A trace

in an asynchronous model

��
��� � � �

���� ���

corresponds to the set of traces

��
��

�� ��� �
��
��

�
��
���� ���

��

Therefore, switching from asynchronous to syn-
chronous execution complies with the classical notion
of refinement and can be formalized on a simple math-
ematical basis. It also complies with the practical de-
velopment process in ROOM which requires to develop
a scheduler in the course of implementing models. For
that reason, it is surprising that this step is not treated in
the literature4.

4.3. Further refinements and future work

We expect the refinement principles discussed above
to be quite useful in practice. Yet, they form only a step
in the development of a refinement calculus for the de-
velopment of time critical distributed systems. Our work
on these principles is far from being complete: To gain
more experience, more real life applications need to be
tried using the approaches. Further, we intend to for-
malize the principle using the logical framework FOCUS

[8, 9] in order to give a formal proof that it coincides
with common notions of refinement.

Both principles need also be accompanied by fur-
ther rules. The switch from an asynchronous to a syn-
chronous execution model mainly incorporates time in
terms ofspeed into models. It is also necessary to sup-
port the development process by refinement rules which
allow the introduction and adaption of timers into mod-
els. Another interesting issue is the treatment of partial
transition relations in Statecharts. Whereas most Case
tools provide a default completion (typically ignoring
messages), approaches like [31, 34] define a closure al-
lowing arbitrary behaviour, which nicely combines with
refinement principles. Also an issue of practical interest
is the abstraction from communication paths in a system
at some stages of development.

5. Conclusion

We have argued that although Case tools used in in-
dustrial practice today provide a valuable support for
presentation and analysis of models, there is a lot of
improvement needed to support consistent development
steps. Notions of refinement are well suited to cope with
this challenge. We have shown that there exist a huge
number of refinement principles originating from theo-
retical approaches, which provide a firm basis but need
to be accompanied by additional refinement principles
which support development steps important in practice.
In particular, we have presented two principles for in-
terface refinement and for the introduction of time into
models. These principles are based on simple mathe-
matical concepts and are compatible with industrial Case

4Only synchronous and asynchronous communication is treated,
see Section2.



tools and implementation platforms. They work well
with, but are not limited to, the notations of UML-RT.
It is our hope that notions of refinement will be taken up
by Case tools in the future to support a methodologically
founded development process.

Acknowledgments: The author owes thanks to In-
golf Krüger, Bernhard Rumpe and Michael van der
Beeck for intensive discussions on refinement rules.
Heiko Lötzbeyer and Wolfgang Prenninger read previ-
ous drafts of this text and provided valuable comments.

References

[1] SIMATIC Software - Higraph für S7-300/400 Zustands-
graphen programmieren - Handbuch. Siemens, 1997.

[2] Ascet- SD 4.0 Users Guide. ETAS-Engineering Tools,
Stuttgart, 2000.

[3] A. Beneviste, B. Caillaud, and P. L. Guernic. From syn-
chrony to asynchrony. In J. M. Baeten and S. Mauw, ed-
itors,CONCUR99 (Concurrency Theory), volume 1664,
pages 162–177, Eindhoven, The Netherlands, aug 1999.
Springer Verlag, LNCS.

[4] P. Braun, H. Lötzbeyer, B. Sch¨atz, and O. Slotosch. Con-
sistent integration of formal methods. InProc. 6th Intl.
Conf on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’00), volume 1787. Springer
Verlag, LNCS, 2000.

[5] M. Broy. Compositional refinement of interactive sys-
tems. InDIGITAL Systems Research Center SRC 89,
1992.

[6] M. Broy. (Inter-)Action Refinement: The Easy Way.
Program Design Calculi, Series F: Computer and Sys-
tem Sciences. Vol. 118., 1993.

[7] M. Broy. Refinement of time. InARTS’97. to appear,
1997.

[8] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F.
Gritzner, and R. Weber. The Design of Distributed Sys-
tems – An Introduction toFOCUS. Technical Report SFB
342/2/92 A, Technische Universit¨at München, 1992.

[9] M. Broy and K. Stølen. Focus on system development.
Book manuscript, January 2000.

[10] R. Cleaveland and G. Smolka. Process algebra.Encyclo-
pedia of Electrical Engineering, 1999.

[11] C. Fischer and W. Janssen. Synchronous development
of asynchronous systems. In U. Montanari and V. Sas-
sone, editors,CONCUR96 (Concurrency Theory), vol-
ume 1119, pages 735–750, Amsterdam, The Nether-
lands, aug 1996. Springer Verlag, LNCS.

[12] M. Große-Rhode. A compositional comparison of spec-
ifications of the alternating bit protocol in ccs and
unity based on algebra transformation systems. In
K. Araki, A. Galloway, and K. Taguchi, editors,1st
International Workshop on Integrated Formal Methods
(IFM’99), pages 253–272, York, UK, jun 1999. Springer
Verlag.

[13] D. Harel. On visual formalisms.Communications of the
ACM, 31(5):514–530, 1988.

[14] D. Harel, H. Lachover, A. Naamad, A. Pnuel, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot.
Statemate: A working environment for the development
of complex reactive systems.IEEE Transactions on Soft-
ware Engineering, 16(4):403–413, 1990.

[15] M. Hennessy.Algebraic Theory of Processes. The MIT
Press, Cambridge, Mass., 1988.

[16] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1986.

[17] F. Huber, S. Molterer, B. Sch¨atz, O. Slotosch, and A. Vil-
big. Traffic Lights - An AutoFocus Case Study. In1998
International Conference on Application of Concurrency
to System Design, pages 282–294. IEEE Computer Soci-
ety, 1998.

[18] ITU-T. Z.120 – Message Sequence Chart (MSC). ITU-T,
Geneva, 1999.

[19] C. Klein. Anforderungsspezifikation durch Transition-
ssysteme und Szenarien. PhD thesis, Technische Univer-
sität München, 1998.

[20] I. Krüger. Distributed System Design with Message
Sequence Charts. PhD thesis, Technische Univerit¨at
München, 2000.

[21] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs
to Statecharts. InProceedings of DIPES’98, 1999.

[22] A. Lyons. UML for Real-Time Overview.Objectime
Ltd., April 1998. http://www.objectime.on.
ca/otl/technical/umlrt.html.

[23] M. Main. Trace, failure and testing equivalences for
communicating processes.Int. Journal of Prallel Pro-
gramming, 16(5):383–400, 1987.

[24] M.v.d.Beeck. Behaviour specifications: Semantics,
equivalence and refinement. submitted for publication,
2000.

[25] OMG. Response to the OMG RFP for Scheduling,
Performance, and Time.http://www.omg.org/
techprocess/meetings/schedule/UML_
Profile_for_Scheduling_RFP.html, 1999.

[26] OMG. UMLTM Profile for Scheduling, Performance,
and Time - Request for Proposal.http://www.omg.
org/techprocess/meetings/schedule/
UML_Profile_for_Scheduling_RFP.html,
1999.

[27] J. Philipps and B. Rumpe. Refinement of pipe-and-
filter architectures. In J. M. Wing, J. Woodcock, and
J. Davies, editors,FM’99 – Formal Methods, Proceed-
ings of the World Congress on Formal Methods in the
Development of Computing System. LNCS 1708, pages
96-3115. Springer, 1999.

[28] Rational. UML Notation guide, version
1.3. http://www.rational.com/uml/
resources/documentation, June 1999.

[29] Rational. UML Semantics, version 1.3. http:
//www.rational.com/uml/resources/
documentation, June 1999.

[30] Rational. UML Summary, version 1.3. http:
//www.rational.com/uml/resources/
documentation, June 1999.

[31] B. Rumpe. Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. PhD thesis, Technische Uni-
verität München, 1997.

[32] B. Schätz. Ein methodischer Übergang von asynchron
zu synchron kommunizierenden Systemen. PhD thesis,
Technische Univerit¨at München, 1998.

[33] D. Scholefield, H. Zedan, and H. Jifeng. A specification-
oriented semantics for the refinement of real-time sys-
tems. Theoretical Computer Science, 131:219–241,
1994.

[34] P. Scholz. Design of Reactive Systems and their Dis-
tributed Implementation with Statecharts. PhD thesis,
Technische Univerit¨at München, 1998.



[35] B. Selic, G. Gullekson, and P. T. Ward.Real-Time
Object-Oriented Modeling. John Wiley and Sons, Inc.,
1994.

[36] B. Selic and J. Rumbaugh. Using UML for mod-
eling complex real-time systems. Available under
http://www.objectime.com/uml, April 1998.

[37] The MathWorks Inc. Stateflow. http://www.
mathworks.com/products/stateflow, 1999.

[38] The MathWorks Inc. MATLAB. http://www.
mathworks.com/products/matlab, 2000.

[39] G. Wimmel, H. Lötzbeyer, A. Pretschner, and
O.Slotosch. Specification Based Test Sequence Gener-
ation with Propositional Logic.J. Software Testing, Ver-
ification & Reliability (STVR): Special Issue on Specifi-
cation Based Testing, 2000. To appear.


