
Software Quality Economics for Defect-Detection
Techniques Using Failure Prediction∗

Stefan Wagner and Tilman Seifert
Technische Universität München

Boltzmannstr. 3
85748 Garching, Germany

{wagnerst|seifert}@in.tum.de

ABSTRACT
Defect-detection techniques, like reviews or tests, are still
the prevalent method to assure the quality of software. How-
ever, the economics behind those techniques are not fully un-
derstood. It is not always obvious when and for how long to
use which technique. A cost model for defect-detection tech-
niques is proposed that uses a reliability model and expert
opinion for cost estimations and predictions. It is detailed
enough to allow fine-grained estimates but also can be used
with different defect-detection techniques not only testing.
An application of the model is shown using partly data from
an industrial project.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management; D.2.8 [Software
Engineering]: Metrics; D.2.5 [Software Engineering]:
Testing and Debugging

General Terms
Economics, Reliability

Keywords
Software quality costs, reliability model

1. INTRODUCTION
Quality assurance is a costly part of software develop-

ment. Some estimates [13] relate up to 50% of the develop-
ment costs to testing. Defect-detection techniques are the
mostly used method to achieve quality in software. There-
fore, we need to understand the relations between costs and
benefits regarding those techniques, especially when aiming
to compare them. Based on the understanding of those re-
lationships and the characteristics of different techniques,

∗This research was supported in part by the Deutsche
Forschungsgemeinschaft (DFG) within the project InTime.

c© ACM, 2005. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proc. 3rd Workshop on Software Quality
(3-WoSQ), May 17th, 2005.

we can optimise the usage of the techniques. Hence, for a
cost-effective use we need a cost model of defect-detection
techniques.

In an earlier paper [18] we concentrated on the usage of
efficiency metrics for the determination of the costs. This
paper extends this idea by incorporating software reliability
models to predict the operational failure behaviour of the
software. For this we use a existing reliability models to
predict the number of external failures of the software and
hence the external costs. The other costs are determined
based on expert estimations and direct measurements.

1.1 Problem
The underlying problem is the question of how to use the

existing resources for quality assurance in the most cost-
effective way. Because this cannot be solved in a single step
we concentrate at first on how defect-detection techniques
can be evaluated and compared on an economical basis.

1.2 Contribution
This paper proposes a structured approach to the evalua-

tion of a defect-detection technique based on expert opinion
and predicted failure behaviour. It allows a more precise
cost analysis than similar approaches and has the specific
advantage over other approaches based on reliability models
that it can be used not only for testing but also for other
techniques and considering different efficiencies.

1.3 Outline
We start in Sec. 2 with the introduction of the types of

costs that we consider in our approach and describe the cost
model in Sec. 3. The model is applied to project data in
Sec. 4 and related work is discussed in Sec. 5. Finally, we
finish with conclusions and future work in Sec. 6.

2. TYPES OF COSTS
An area that is under research in various domains are the

costs of quality. We understand them as the costs that are
associated with preventing, finding, and correcting defective
work. These costs are divided into conformance and non-
conformance costs, also called control costs and failure of
control costs. We can break down the costs further to the
distinction between prevention, appraisal, and failure costs
which gives the model the name PAF model. The basic
model was derived from the manufacturing industry but has
been used repeatedly for software quality as well [8, 9, 16].
A graphical overview is given in Fig. 1.

cost of quality

appraisal costsprevention costs external failure

nonconformanceconformance

internal failure

executionsetup fault removal compensationsupport

Figure 1: Cost types

2.1 Conformance Costs
The conformance costs comprise all costs that need to be

spent to build the software in a way that it conforms to
its quality requirements. This can be further broken down
to prevention and appraisal costs. Prevention costs are for
example developer training, tool costs, or quality audits,
i.e. costs for means to prevent the injection of faults. The
appraisal costs are caused by performance of various types
of tests and reviews.

We added in Fig. 1 further detail to the PAF model by
introducing the main types of concrete costs that are im-
portant for defect-detection techniques in our current cost
model. Note that there are more types that could be in-
cluded, for example, maintenance costs. The appraisal costs
were detailed to the setup and execution costs. The former
constituting all initial costs for buying test tools, configuring
the test environment, and so on. The latter means all the
costs that are connected to actual test executions or review
meetings, mainly personnel costs.

2.2 Nonconformance Costs
The nonconformance costs come into play when the soft-

ware does not conform to the quality requirements. These
costs are divided into internal failure costs and external fail-
ure costs. The former contains costs caused by failures that
occurred during development, the latter describes costs that
result from failures at the client.

On the nonconformance side, we have fault removal costs
that can be attributed to the internal failure costs as well
as the external failure costs. This is because if we found a
fault and want to remove it, it would always result in costs
no matter whether caused in an internal or external fail-
ure. Actually, there does not have to be a failure at all.
Considering code inspections, faults are found and removed
that have never caused a failure during testing. It is also
a good example that the removal costs can be quite differ-
ent regarding different techniques. When a test identifies a
failure, there needs to be considerable effort spent to find
the corresponding fault. During an inspection, faults are
found directly. Fault removal costs also contain the costs
for necessary re-testing and re-inspections.

External failure also cause support costs. These are all
costs connected to customer care, especially the effort from
service workers identifying the problem. Finally, compensa-
tion costs could be part of the external failure costs, if the
failure caused some kind of damage at the customer site. We
might also include loss of sales because of bad reputation in
the external failure costs but do not especially look at it in

this paper because it is out of scope.

2.3 Period
A further concept we need to introduce is that of a period.

It denotes a specific time interval in the life cycle. It does
not have to correspond to a classical waterfall phase and
can be used with an iterative process as well. The point
is only to be able to (1) estimate the fault removal costs
depending on the point in time and (2) have a basis for the
calculation of the present net values. The first is important
because the additional work increases the later the fault is
removed. For example if a design fault is detected early
only the design documents need to be changed, later also
the code and test cases have to be adapted. This is also
shown, for example, by Jones [6]. The latter is important
because to be able to compare costs the cash flows need to
be analysed in dependence of the point in time when they
occur. We depict a typical change in nonconformance costs
during time in Fig. 2.

Time

OperationDevelopment and
quality assurance

Nonconformance
costs

Figure 2: Change of nonconformance costs per fail-
ure over time

3. COST MODEL
The basis for the analysis of the quality costs is the net

present value of the cash flows (NPVCF), i.e. the revenues
and costs during the life cycle of the software that are related
to quality. This metric is sufficient to judge the earning
power and also to compare different defect-detection tech-
niques. For further analyses other metrics, such as return
on investment (ROI) or SQPI can be used [16].

3.1 Directly Measurable Costs
In this first part of the quality costs, we want to clas-

sify those costs that can be directly measured or at least be
estimated accurately during the usage of the defect-detec-
tion technique. For a specific defect-detection technique we
have fixed initial investments called setup costs (csetup) that
contain for example tool or workstation costs. We assume
them to emerge at the start of development and therefore
have already the net present value. Furthermore, we have
the dynamic part of the appraisal costs, e.g. personnel for
tests and inspections, that we call execution costs (cexec).
Furthermore, the fault removal costs for faults that were

found during the defect-detection technique under consider-
ation can be measured directly. We call this cremv(p) which
denotes the fault removal costs at the period p.

With this information we can determine the direct costs
(cdirect) of the defect-detection technique by adding up the
execution and fault removal costs for all periods where we
have direct measurements and the setup costs. The periods
that we look at here are typically the periods in which the
defect-detection technique was used. The costs now need to
be discounted to the net present value using the discount
factor D that represents the average cost of capital. This
results in the following equation.

cdirect = csetup +

nX

p=0

cexec(p) + cremv(p)

(1 +D)p
. (1)

3.2 Prediction Using a Reliability Model
One of the main deficiencies of the predecessor model in

[18] is that it has no means to predict the total number of
residual faults or even better the failure behaviour of the
software during operation. We want to fill this gap by using
software reliability models.

It is important to note that not only the occurrence of
failures is interesting to predict but also their severity. There
are two basic possibilities to do this: (1) Either analyse the
failure behaviour separately for each severity class or (2)
estimate the fraction that each severity class constitutes of
the whole number of failures. We use the second approach
because it is easier to use and gives us more sample data for
the reliability prediction.

We basically can use any existing reliability model that
can yield the mean number of failures experienced up to
time t (often denoted by µ(t)). The number of experienced
failures in each period p is than

f(p) = µ(tp)− µ(tp−1), (2)

where tp is the time to the end of period p and tp−1 is
the end of period p − 1. This means that we subtract the
cumulated number of failures at the last period from the
cumulated number of failures at this period which leaves us
with the number of failures experienced in this period. Note
that many models use execution time whereas the periods
are measured in calendar time. Hence, a conversion might
be necessary.

Having the number of failures the fractions of severity and
estimates of costs per severity class are needed. They are
used to determine how many of the failures belong to which
severity class. Then the number can be multiplied with the
estimated costs per severity class.

This gives as the following equation for the future costs.

cfut =
uX

i=n

PS
s=1 f(i)P (s)cext(s)

(1 +D)i
, (3)

where n is the period in which we start the prediction, u is
the upper limit of the prediction periods, S is the highest
severity class, P (s) is the fraction or probability of severity
class s, and cext(s) are the estimated external costs for a
failure of severity class s.

3.3 Estimation Using Expert Opinion
Finally, we want to estimate the revenues that we have be-

cause of the usage of the defect-detection technique. These

are the external failure costs that we saved by finding and re-
moving faults before releasing the software to the customer.
Therefore we can use the same cost categories as above,
i.e. fault removal, support, and compensation costs. The
main difference is that we do not have an empirical basis to
estimate the occurrence of the faults. Therefore, we use ex-
pert opinion to estimate the mean time to failure (MTTF)
of each fault and the severity of the corresponding failure.

All the revenues have to be discounted to the present
value. For this we need the discount factor D again that
represents an average cost of capital. It is difficult to esti-
mate the time until an external failure will occur and will
result in further costs. This can be estimated based on the
MTTF estimated earlier. All this assumes that we have a
fixed granularity for the periods that is used also for the es-
timate of time periods for external failures. The severity is
finally used again to estimate compensation costs.

Based on this the following equation can be used to cal-
culate the net present value of the revenues.

r =
uX

i=n

cremv(i) + csup(i) + ccomp(i)

(1 +D)i
, (4)

where n is the period after the usage of the defect-detec-
tion technique, u is the upper limit of the estimation peri-
ods, cremv are again the fault removal costs, csup the support
costs, and ccomp possible compensation costs.

3.4 Quality Economics
By having established the metrics above, we can combine

them in an equation for quality economics for defect-detec-
tion techniques. We have the direct measurable costs from
the defect-detection technique usage, the predicted future
costs from the failure behaviour of the software and we esti-
mated the revenues based on MTTF and severity estimates
for the found faults. Hence, we can give the equation for the
net present value of the cash flows.

NPVCF = r − cdirect − cfut. (5)

This means that we subtract the directly measurable costs
and the future costs from the revenues to get the net present
value of the defect-detection technique which represents the
benefit from the usage of the technique.

3.5 Characteristics for a Technique
The future costs can have costs for different techniques

mingled together in case not only one technique was used
because it is not clear which technique is responsible for the
failures. Therefore the revenues and the direct costs con-
stitute the characteristic cash flows for a specific technique.
Most interesting is the characteristic curve of the cash flows
in relation to the effort spent for the technique. Follow-
ing the intuition each technique starts with negative cash
flows as we have initial investments. With further usage of
the technique the cash flows become positive rapidly until it
reaches an area of satisfaction where less and less faults are
found. Finally, with still more effort only the costs rise but
no revenues are generated because only few or no new faults
are found. Hence, the sum of the cash flows decreases. An
example curve following this intuition is depicted in Fig. 3.

The shape of this curve is also justified by the so-called
S-curve of software testing [7, 4] that shows that the search

Effort

Cash Flows

Figure 3: Typical characteristic cash flows for a tech-
nique

for defects becomes less effective with more amount of time
spent.

The establishment of such characteristic curves for several
techniques requires extensive measurement experiments. How-
ever, having such curves allows the early planning of quality
assurance using optimisation techniques. For this it might
be necessary to normalise different curves from different
projects and techniques by dividing each axis by a size met-
ric like lines of code (LOC) to be able to compare different
curves. We also need to investigate on which factors the
curves depend. It might be the case that the curves are dif-
ferent in different domains or depending on the experience
of the test engineers.

4. APPLICATION
We use the above developed cost model for an example

evaluation of black-box system testing using the data from
a field study [17]. This study analysed the efficiency of de-
fect-detection techniques in a project of a German software
and systems company. It was a project in the military sector
lasting three years and resulting in a military information
system.

The development in general followed the iterative and in-
cremental process model Rational Unified Process (RUP)
[10]. We analyse a late phase of system testing before a re-
lease to the users and use the later defect reports as basis
for the prediction of the future reliability. Also the number
of found defects by the testing technique is taken directly
from the project data. However, we have no real data about
testing and failure costs from the project. Therefore, we use
hypothetical data for the sake of the example.

4.1 Direct Costs
First we need to calculate the direct measurable costs of

the functional tests that we want to analyse. As we use
highly automated test execution, we have considerable setup
costs of 50, 000 currency units. The system test ran for four
weeks, whereas three testers worked on it in the first two
weeks and five test engineers in the second two weeks. We

Year Failures
1 1.95
2 0.62
3 0.38
4 0.28
5 0.22
6 0.18
7 0.15
8 0.13
9 0.12

10 0.10

Table 1: Predicted number of failures for each year
of operation

calculate with 500 currency units per person per day. Fi-
nally, 8, 9, 8, and 14 faults were found in each week, respec-
tively. We use an average of 200 units per fault for the fault
removal. Using Eq. 1 and a discount factor of 5% this gives
us the following direct costs:

cdirect = 50, 000 +
44, 800

1.051
= 92, 666.67 (6)

4.2 Future Costs
The next costs we want to predict are the future costs

based on the prediction of a reliability model. For this we
first need to define the fractions of the different severity
classes or how probable each class is and how much a failure
of each class will cost. For the sake of the example we define
the following with severity 1 being the lowest and 5 the
highest.

1. 0.9, 500

2. 0.05, 500

3. 0.03, 20,000

4. 0.019, 500,000

5. 0.001, 1,000,000

We then used the software reliability tool SMERFS [3] to
predict the number of failures in each year of operation. For
this we used the last 150 time between failure data and per-
formed a maximum likelihood method inside the tool to es-
timate the model parameters and determine also the model
that best fits the data. We chose to use the Musa-Okumoto
logarithmic Poisson model [12] because the similarity mea-
sure KS distance recommended the usage of this model. Fur-
thermore, we assume a usage of over 2400 CPU-days per
year. This gives us the number of failures occurring each
year in Tab. 1.

Using Eq. 3 yields future costs of 39, 885.76.

4.3 Revenues
Finally, we determine the revenues that were generated by

the functional tests. We evaluate each of the 39 found faults
during the tests and estimate its MTTF and the severity
of its impact. Based on this the expected period of the oc-
currence of the fault and subsequently the removal, support
and possible compensation costs can be estimated. As the
estimates for all the faults are too large for this paper we

Fault MTTF Severity Exp. Period cremv csup ccomp

1 1,000 1 1 200 10,000 0
2 10 1 1 100 1,000 0
3 100 1 1 200 2,000 0
4 2,000 3 1 200 1,500 10,000
5 100 1 1 300 1,000 0
6 5,000 5 3 200 2,000 100,000
7 100 1 1 100 5,000 0
8 500 1 1 200 1,000 0

Table 2: Matrix of the failure costs for the application

only show the first eight faults that were found in the first
week in Tab. 2. Note that the MTTF is given in CPU-days
and we calculate with 2430 CPU-days/year.

Using the estimated costs from all weeks in Eq. 4 results
in total revenues of 173, 417.63.

4.4 Quality Economics
For a comprehensible evaluation of the quality costs and

revenues, we finally calculate the net present values of the
cash flows. Using Eq. 5 this gives the following:

NPVCF = 173, 417.63 − 92, 666.67 − 39, 885.76
= 40, 865.20

(7)

Hence, the system tests yielded over 40, 000 currency units
by avoiding failures to occur in the field.

4.5 Characteristics
We also want to analyse the characteristic curve of this

technique by analysing it week by week and evaluating the
change in cash flows. The result can be seen in Fig. 4.

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 0 2 4 6 8 10 12 14 16

To
ta

l C
as

h
Fl

ow
s

Effort in Person Weeks

Figure 4: The characteristic cash flows for the test-
ing technique

As we only have five sample points including the start
of the tests, the curve is not directly the same as the one
in Fig. 3 but resembles the general appearance. Note that
the curve still increases what indicates that we used the
technique not necessarily to its optimum but we might have
benefited from investing more effort.

5. RELATED WORK

Based on experience from the manufacturing area quality
cost models have been developed explicitly for software [8,
16, 9] which stay rather abstract. If calculations are possible
at all, only coarse-grained estimates such as defect densities
are used by these models.

Humphrey presents in [5] his understanding of software
quality economics. The defined cost metrics do not represent
monetary values but only fractions of the total development
time. Furthermore the effort for testing is classified as failure
cost instead of appraisal cost.

Collofello and Woodfield propose in [2] a metric for the
cost efficiency but do not incorporate fault MTTFs and
severities explicitly. Furthermore the metric lacks consid-
eration of the cost of capital and therefore the net present
value is not used.

Pham describes in [14] various flavours of a software cost
model for the purpose of deciding when to stop testing. It
is a representative of models that are based on reliability
models. The main problem with such models is that they
are only able to analyse testing, not other defect-detection
techniques and that the differences of different test tech-
niques cannot be considered. However, they are highly use-
ful as they allow a mathematical optimisation of the test
time which is currently not possible with our model.

Based on the general model for software cost estimation
COCOMO, the COQUALMO model was specifically devel-
oped for quality costs in [1]. This model is different in that
it is aiming at estimating the costs beforehand and that it
uses only coarse-grained categories of defect-detection tech-
niques. In our work, we want to analyse the differences
between techniques in more detail.

Holzmann describes in [4] his understanding of the eco-
nomics of software verification. He describes some trends
and hypotheses that are similar to ours and of which we can
support most ideas although they need empirical justifica-
tion at first.

6. CONCLUSIONS
We finally want to summarise the presented model and

finish with directions for further research.

6.1 Summary
We present a model for quality economics of defect-detec-

tion techniques. It is based (1) on the experience from the
manufacturing area that has been brought to the software
domain and (2) on software reliability models to predict the
future failure behaviour.

Moreover, our model improved and refined existing mod-

els by using expert opinion on the revenues caused by the
faults that were found by the technique. We use the effi-
ciency metrics MTTF and severity to improve and detail the
cost estimates. An reliability model is used to analyse the
future failure behaviour and therefore to predict such costs.
These are brought together with directly measured costs of
the technique to calculate the net present value of the cash
flows which represents the benefit from the defect-detection
technique.

We also showed using data from an industrial project how
the model can be used to analyse the costs and revenues of a
technique. Very interesting is furthermore the characteristic
cost curve of the test technique which already allows first
evaluations of the optimal usage.

6.2 Future Work
Firstly, there are many ways in which the model can be

extended. We want to use the theoretical model of combin-
ing diverse techniques from [11] to incorporate those effects
in our cost model. This obviously aims mainly on the mech-
anisms of finding faults that could potentially be found by
several techniques.

Another point for further research is the incorporation of
all types of maintenance costs into the cost model. Espe-
cially for software the maintenance costs are important be-
cause software is in general changed easily. Therefore adap-
tive, preventive, and perfective maintenance need their place
in the cost model as well. This means that these activities
would be added to the cost side but also the resulting rev-
enues when corresponding changes are simpler have to be
included.

Furthermore, it is important to find a means to quantify
and predict possible opportunity costs. That are mostly lost
sales because of a image loss or annoyed customers. Also the
time to market has to to be considered.

On the basis of the characteristic curves for different tech-
niques it should be possible to mathematically optimise the
usage of different techniques at the planning stage of a project.

However, for all of this to yield solid information, we need
to assess the impact of model uncertainties. This is impor-
tant as the whole revenues are based only on expert opinion
which are unreliable. Sensitivity analysis or Monte Carlo
simulation are approaches we currently investigate for this.

Secondly, we want to detail the model to more specific
types of defect-detection techniques, for example considering
the details of inspections or automated testing.

Based on the evaluation of model-based testing in [15]
a further study is planed that emphasises the cost aspects
of the technique. In this study the developed quality cost
model will be used for the evaluation.

A further application example will be to evaluate static
analysis tools, also called bug finding tools, based on their
costs using this cost model. First experiences with this tools
are documented in [19].

7. REFERENCES
[1] S. Chulani and B. Boehm. Modeling Software Defect

Introduction and Removal: COQUALMO
(COnstructive QUALity MOdel). Technical Report
USC-CSE-99-510, University of Southern California,
Center for Software Engineering, 1999.

[2] J. Collofello and S. Woodfield. Evaluating the
Effectiveness of Reliability-Assurance Techniques.

Journal of Systems and Software, 9(3):191–195, 1989.

[3] W. Farr and O. Smith. Statistical Modeling and
Estimation of Reliability Functions for Software
(SMERFS) Users Guide. Technical Report NAVSWC
TR-84-373, Naval Surface Weapons Center, 1993.

[4] G. Holzmann. Economics of Software Verification. In
Proc. 2001 ACM SIGPLAN–SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering
(PASTE’01), pages 80–89. ACM Press, 2001.

[5] W. Humphrey. A Discipline for Software Engineering.
The SEI Series in Software Engineering.
Addison-Wesley, 1995.

[6] C. Jones. Applied Software Measurement: Assuring
Productivity and Quality. McGraw-Hill, 1991.

[7] S. Kan, J. Parrish, and D. Manlove. In-Process
Metrics for Software Testing. IBM Systems Journal,
40(1):220–241, 2001.

[8] S. Knox. Modeling the costs of software quality.
Digital Technical Journal, 5(4):9–16, 1993.

[9] H. Krasner. Using the Cost of Quality Approach for
Software. CrossTalk. The Journal of Defense Software
Engineering, 11(11), 1998.

[10] P. Kruchten. The Rational Unified Process. An
Introduction. Addison-Wesley, 2nd edition, 2000.

[11] B. Littlewood, P. Popov, L. Strigini, and N. Shryane.
Modeling the Effects of Combining Diverse Software
Fault Detection Techniques. IEEE Transactions on
Software Engineering, 26(12):1157–1167, 2000.

[12] J. Musa and K. Okumoto. A Logarithmic Poisson
Execution Time Model for Software Reliability
Measurement. In Proc. Seventh International
Conference on Software Engineering (ICSE’84), pages
230–238, 1984.

[13] G. Myers. The Art of Software Testing. John Wiley &
Sons, 1979.

[14] H. Pham. Software Reliability. Springer, 2000.

[15] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel,
M. Baumgartner, B. Sostawa, R. Zölch, and
T. Stauner. One Evaluation of Model-Based Testing
and its Automation. In Proc. 27th International
Conference on Software Engineering (ICSE’05), 2005.

[16] S. Slaughter, D. Harter, and M. Krishnan. Evaluating
the Cost of Software Quality. Communications of the
ACM, 41(8):67–73, 1998.

[17] S. Wagner. Efficiency Analysis of Defect-Detection
Techniques. Technical Report TUMI-0413, Institut für
Informatik, Technische Universität München, 2004.

[18] S. Wagner. Towards Software Quality Economics for
Defect-Detection Techniques. In Proc. 29th Annual
IEEE/NASA Software Engineering Workshop, 2005.

[19] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger.
Comparing Bug Finding Tools with Reviews and
Tests. In Proc. 17th International Conference on
Testing of Communicating Systems (TESTCOM’05),
volume 3502 of LNCS, pages 40–55. Springer, 2005.

