
Translating a Visual Description Technique to a
Synchronous Language:
From DiCharts to PURR�

Th. Stauner
Technische Universität München

Institut für Informatik
(Prof. Dr. M. Broy)

Arcisstraße 21, 80290 München
email: stauner@in.tum.de

http://www4.in.tum.de/~stauner

K. Schneider, M. Huhn
Universität Karlsruhe

Institut für Rechnerentwurf und Fehlertoleranz
(Prof. Dr.-Ing. D. Schmid)

P.O. Box 6980, 76128 Karlsruhe, Germany
email: {schneide,huhn}@informatik.uni-karlsruhe.de

http://goethe.ira.uka.de/hvg

Abstract. We give a translation of the visual description technique DiChartsto
the synchronous language PURR. As a result, the design of a system can start
with a graphical description technique at a very high-level and can then be
automatically translated to the synchronous language PURR. This translation
allows the further synthesis of the system and in particular, its verification.

1 Introduction

Nowadays, visual description techniques like UML [13], ROOM [16], or Statecharts [8] are
widely accepted in the design of all kinds of hardware and software systems. They are used to
describe the architecture of a system and the behavior and the interaction of its components in a
well-structured manner. In particular, the requirement analysis benefits from visual techniques
since it improves the communication with the customer [3].

In the design of hardware circuits, formal verification is already considered as a useful means
for the validation of designs in early phases: Thus, essential properties of the system’s behavior
are formalized and proven to hold on the mathematical model of the system. In the past decade,
powerful tools for automatic verification, in particular for model checking temporal logics [12,
9] have been developed. Moreover, various enhancements of these model checking procedures,
as e.g. abstractions, allow to handle systems of industrial size and complexity.

To apply formal verification also for designs given in visual description techniques, a formal
semantics is indispensable. Moreover, if verification tools shall be used, a semantics according
to the system model of such tools is needed.

In this paper, we consider a visual description technique, namelyDiCharts [6], developed at
the Technische Universität München. DiCharts, the discrete time sublanguage of HyCharts [5],
are tailored for the specification of discrete time embedded systems. They can be understood as
a variant of of Statecharts, ROOMcharts or the state diagrams of UML.

We give a semantics of DiCharts in terms ofPURR programs [11, 14].PURR extends the
synchronous programming language Esterel [2] by nondeterminism and abstract data types. It

�Supported with funds of the Deutsche Forschungsgemeinschaft under reference numbers Sch 623/7 and Br
887/9 within the priority programDesign and design methodology of embedded systems.



was developed at the University of Karlsruhe as a modeling language for reactive embedded
systems and is the basis for the new verification system called C@S (read ‘Cats’) [15]. C@S
offers model checking procedures for different temporal logics like LTL, CTL or even CTL*,
but also for real-time systems and logics. Additionally, it builds a link to interactive theorem
provers as HOL [4]. Based on our translation, DiChart specifications of embedded systems can
be subject to all verification procedures provided by C@S, in particular model checking.

The outline of the paper is as follows: In the following two sections, we briefly list the syntax
and semantics of DiCharts andPURR. In Section 4, we present the translation of DiCharts to
PURR, and Section 5 contains some conclusions of our work.

2 DiCharts

DiCharts [6] is a graphical description technique that is modular and based on a clear computa-
tion model. DiCharts regard a system as a network of components communicating over directed
channels in a time-synchronous way. DiCharts come in two variants:DiACharts for the spec-
ification of the system architecture andDiSCharts for the specification of the behavior of the
system’s components. DiSCharts are very similar to the Statechart variant ROOMcharts [16].1

Each component is modeled by a Moore machine, consisting of a (time
extended) combinational part Com�, a register��z�, and the partOut that
generates the outputso (see figure 1). As usual in Moore machines, the
current statek�s (consisting in DiSCharts of the control statek and the data
states) contains also the current outputs, so thatOut is simply a projection.
Thecombinational part Com� instantaneously (and possibly nondetermin-
istically) maps the current inputi and the current statek�s to the next state.
The register��z� is used to store the current state and feeds it back to Com�

for the computation of the next state.
Besides the output, the data state also contains a copy of the input values

+

(z)∆

i k.s

Com

Out
o

Figure 1: The com-
putation model.

received in the previous computation, i.e. thelatched inputs. These latched inputs are updated
by the register before it feeds the state back to Com�. They allow the combinational part to
remember the input values from the previous point in time. As long as the global clock does not
tick, the state and the output of the machine remain stable. The arrival of a clock-tick updates
the register with the next state, which was previously computed by the combinational part, and
a new computation cycle begins. This concept ensures that components can only react to their
inputs with a delay of one time unit.

The combinational part is specified with DiSCharts, while the diagram in figure 1, which
defines the machine model, is a DiAChart. The interconnection of components is also specified
with DiACharts. From a syntactic point of view, DiACharts and DiSCharts are both constructed
from primitive nodes by the application of node operators and arrow operators, which we also
call connectors, to build ahierarchic graph. For DiACharts, these graphs are then given a
multiplicative interpretation while for DiSCharts the graphs are interpreted by anadditive in-
terpretation of the operators [6].

We briefly describe the syntax and the semantics of the operators: The syntax of the node
and the arrow operators of DiCharts can be given both in a graphical and in a textual manner

1Note that for the specification of hybrid, i.e. mixed discrete and continuous, systems there also is an exten-
sion of DiCharts, calledHyCharts, which is based on a dense time model and also permits the specification of
continuous behavior [5].



Basic Sequential Visual Feedback
Node Composition Attachment Loop

n1
A B n1 n2

B CA
n1 n2

A1

B2

A1

B1

n

A

B
C

n� � A� B n��n� � A� C n� � n� � A� � A� � B� � B� n�C � A� B

Figure 2: Graphical and Textual Representation of Node Operators

Identity Identification Ramification Transposition
A

A

A A

A

...
A

A A
...

A

A

B

B

IA �m
A �A

m
A
X
B

Figure 3: Graphical and Textual Representation of Connectors

and is depicted in figure 2 and figure 3, respectively. For example, the textual representation of
the DiAChart given in figure 1 is as follows:

MooreM�Com� z� � ���I

� � ImS�� �II � Com�����z���mS

� � �Out� ImS���
mS

where we writeI for the input space andmS for the (control and data) state space. There are
two semantics for the graphs: a multiplicative one for the DiACharts and an additive semantics
for the DiSCharts.

Multiplicative Semantics. In the semantics based on the multiplicative interpretation, each
node is seen as a input/output relation that nondeterministically maps an input stream to a non-
empty set of output streams. Relations are used instead of functions to be able to express
nondeterminism. In the following,AB denotes the set of all functions that map elements of the
setB to elements of the setA andA � B denotes the cartesian product of the setsA andB.
Then, the semanticsJnK�

�
of a noden � A � B is a relationJnK�

�
� AN � BN. We require

that the relation is total in its input, i.e. there is a�a� b� � JnK�
�

for every inputa � AN. For
the following, note that the set�A�B�N is isomorphic to the set�AN �BN�, so that we do not
distinguish between them. The semantics of the operators is then given as follows:

� JnK�
�

def
���n� for each primitive node, where��n� is a total relation of typeAN � BN, if n

has input streams inAN and output streams inBN.

� Jn��n�K�� def
�f�a� c� j 	b � BN ��a� b� � Jn�K�� � �b� c� � Jn�K��g

� Jn� � n�K�� def
�f��a�� a��� �b�� b��� j �a�� b�� � Jn�K�� � �a�� b�� � Jn�K��g



�
q
n�C

y�
�

def
�f�a� b� j 	c � CN ��b� c� � JnK�

�
�a� c�g, wheren � �A � C�� �B � C�

Hence,n��n� corresponds to sequential composition of relations,n��n� to independent parallel
execution, andn�C to a fixpoint calculation, i.e. recursion. Note thatJn� � n�K�� is of type
�A��A��

N��B��B��
N, so that� is interpreted as cartesian product. The semantics of the arrow

operators is as expected: We defineJIAK�� def
�f�a� a� j a � ANg, J�m

A K�� def
�f�am� a� j a � ANg

and
q
�A
m

y�
�

def
�f�a� am� j a � ANg, wheream denotes the function that mapst � N to the

m-tuple �a�t�� � � � � a�t��. The transposition is also clear:
q
A
X
B
y�
�

def
�f��a� b�� �b� a�� j �a� b� �

�AN �BN�g.

Additive Semantics. In the additive semantics, the graphs are viewed as control flow graphs.
The intuition is that at any point of time, the control resides inexactly one node of the graph.
Each node receives the control at one of its input arrows and forwards it on one of its output
arrows. As exactly one node should have the control, the semantics ofn� � n� is now defined
additively, as given below. Thecontrol is represented ask�s, wheres is the data state in the data
state spaceS andk � N (the program counter) denotes the control state.

As usual, the disjoint sumA�B is defined asA�B
def
�fl�a j a � Ag
fr�b j b � Bg, so that

elementsa � A 
 B are identified by the prefixl or r as belonging toA orB, respectively. For
multiple sumsA��� � ��Am, we use prefixes� � k � m to denote thata in k�a � A��� � ��Am

stems fromAk. Moreover, instead of addingm times the same setS, we simply writemS. Note
that elementsk�s � mS can be encoded as tuples�k� s� for k � f�� � � �mg ands � S.

A noden � A� B is interpreted in the additive semantics as a relationJnK�
�
� �I � �S��

mS, where�x� a� b� � JnK�
�

means that if the inputx � I is read in the controla, b can be the
next control. The semantics of the node operators is then:

� JnK�
�

def
���n� for each primitive node, where��n� is a relation��n� � �I � �S��mS.

� Jn��n�K�� def
�
n
�x� a� c� j 	b��x� a� b� � Jn�K�� � �x� b� c� � Jn�K��

o

� Jn� � n�K�� def
�f�x� l�a� l�b� j �x� a� b� � Jn�K��g 
 f�x� r�a� r�b� j �x� a� b� � Jn�K��g, where

l�a andr�a denote the left and right summand ofa, respectively.

�
q
n�C

y�
�

def
� Jnl�lK�� 


q
nl�r�n

�

r�r�nr�l
y�
�

wheren � �A � C�� �B � C�, Jni�jK�� def
�f�x� a� b� j

�x� i�a� j�b� � JnK�
�
g for i� j � fl� rg andJm�K�

�
is the arbitrary, but finite iteration of

JmK�
�

. Hence,n�C corresponds to a while-loop:n is repeated until is passes control
further on output arrowB.

Note thatA � B is now additively interpreted: Instead of interpreting it as productA � B, we
now interpret it as sum typeA�B.

The semantics of the connectors is then as follows:JIAK�� def
�f�x� a� a� j x � I � a � Ag,

J�m
A K�� def

�f�x� k�a� a� j x � I � a � A � � � k � mg and
q
�A
m

y�
�

def
�f�x� a� k�a� j x �

I � a � A � � � k � mg, wherek�a � mA as defined above. The transposition is also clear:q
A
X
B
y�
�

def
�f��x� l�a� r�a� j x � I � a � Ag 
 f��x� r�b� l�b� j x � I � b � Bg.

3 The Synchronous Modeling Language PURR

Synchronous languages like Esterel [2], graphical variants thereof as SyncCharts [1], and Lus-
tre [7] are well-suited for the description of complex control tasks with discrete time. These



languages have a small and clean formal semantics which lends themselves well for the formal
verification of specifications given in various formalisms. The semantics of these languages
allows to translate each program to a finite-state machine so that the verification of temporal
properties can be performed by means of finite-state machine traversals, which have become
known as model checking algorithms for temporal logics.

Recently a variant of Esterel calledPURR has been presented [10, 14].PURR extends Es-
terel by nondeterminism, the ability to define abstract data types, and the use of time constraints.
All these features makePURR more suited for the modeling of systems wrt. to a later verifica-
tion than Esterel, while Esterel has its focus on the efficient synthesis of hardware/software.

As already a verification system forPURR is under development, it is natural to develop a
translation from DiCharts toPURR so that DiCharts can also be verified. In the following, we
develop a translation from DiCharts toPURR based on a translation of the multiplicative and
additive interpretation of hierarchic graphs.

Due to lack of space, we can only mention some basic concepts ofPURR and some ba-
sic statements that occur in the paper: the main idea is that most statements do not consume
time and are therefore instantaneously executed. The time model is discrete, i.e., time is es-
sentially modeled by the natural numbers. The only (basic) statement that consumes time is
the pause statement, which consumes exactly one unit of time. Given statementsS� andS�,
S��S� denotes sequential composition andS� k S� denotes parallel composition. Note that in
S� k S�, the threadsS� andS� run synchronously to each other, i.e., they synchronize at their
pause statements. Communication is realized by the broadcast of signals. Signals can be either
present or absent and can be made present by an emission statementemit x. Signals may carry
a value which is denoted as	x and which is modified by an emission of the formemit x��� (� is
then the current value	x of x). Signal values are stored unless they are changed by an emission.
The signal status (being present or not) is however not stored, instead it is automatically reset at
the next point of time (unless there is a further emission which overrides this).

PURR has variables which can change their values more than once in a unit of time (note
that signals have for each point of time exactly one status and according to their type a value).
Therefore, assignments of the formx �� x � � are legal for variables, while emissions of the
form emit x�	x � �� make no sense (causality cycles), since there is no numbern that satisfies
n � n� �.

In our translation, we moreover use theloop S end statement that infinitely often executes
the statementS. As any statement, such a loop can however be aborted: it may be surrounded
by a trap statement of the formtrap t in S end if in S the trapt is called viaexit t.

Beneath these basic statements, we use the local signal and variable declarations and the
sustain x��� statement which is an abbreviation forloop emit x���� pause end. For the trans-
lation of DiSCharts, we moreover use the nondeterminism ofPURR that is given by the Hilbert
choice operator:
x � ��� chooses a value of type� that satisfies the property�. The nonde-
terminism ofPURR is completely based on the choice expressions.

4 Translating DiCharts to PURR

4.1 DiACharts

In the translation from DiACharts toPURR presented here, we assume that every primitive node
in a DiAChart is either a DiAChart as given in figure 1, i.e., a DiSChart and a register connected
in the depicted way, or aPURRmodule. Moreover, the types of the channels on which the nodes



operate all are primitive types ofPURR. We also do not consider the identification connectors
�m
A , which introduce synchronization between channels to DiACharts.2

The connectors,IA, �A
m and A

X
B are necessary for DiACharts, because DiACharts rely

on point-to-point communication without channel names. AsPURR uses the signal names to
address inputs and outputs and allows broadcast communication, the connectors are obsolete:
We handle the connectors by a suitable naming of signals. The translation from a DiAChart to
PURR therefore only involves the node operators and is defined recursively on the structure of
the DiAChart as follows:

Sequential Composition: Assumen� � A� � � � ��Ap � B� � � � ��Br andn� � B� � � � ��Br �

C� � � � � � Cq are given and we have already computedPURR statementsD �n�� with
the inputsI� � fi�,. . . , ipg and the outputsO� � fg�,. . . ,grg, and alsoD �n�� with the
inputsI� � fh�,. . . ,hrg, and the outputsO� � fo�,. . . ,oqg. Then, we defineD �n��n��
with inputsI� and outputsO� as follows:

D �n��n��
def
�

�
�

signal x� � B�� � � � � xr � Br in
D �n�� �g� � x�� � � � � gr � xr
 k D �n�� �h� � x�� � � � � hr � xr


end signal

�
A

wherex�� � � � � xr are fresh local signal names and�y � x
 denotes substitution of signal
names.

Visual Attachment: Assumen� � A� � B� andn� � A� � B� are given and we have already
computedPURR statementsD �ni� with inputsIi and outputsOi for i � f�� �g. Then we
defineD �n� � n��

def
�D �n�� k D �n�� with inputsI� 
 I� and outputsO� 
 O�.

Feedback Loops: Assumen � A�C � B �C is given and we have already computedD �n�

with inputsI � fa, cg and outputsO � fb, c�g. Then, we defineD
�
n�C

� def
�signal x �

C in D �n� �c� x� c� � x
 end signal with inputfag and outputfbg.

Primitive Nodes: Every primitive node must either be given by a DiAChart according to fig.
1 or by aPURR module. In the latter case, we setD �n� � n. If n is a DiSChart, we de-
fineD �n�

def
�D

���
�I

� � ImS

�
� �II � Com�� ���zInit���

mS

� � �Out� ImS�
�
�mS

�
(cf. fig-

ure 1), wherezInit � kInit �sInit � mS stands for the initial control with which the com-
putation starts.Com� refers to the (time extended) combinational part of componentn.
It is defined by the DiSChart that specifiesn. In Section 4.2 we will see how��z�, Out
andCom�, the components of our Moore machine model, are translated toPURR.

In the above translations, we always assume that the programs are well-typed, i.e. we choose
local signal variablesxi of the corresponding typeBi in PURR.

4.2 Connecting DiACharts and DiSCharts

In this section, we consider the translation of the components of our Moore machine model.
Such machines define the behavior of all those primitive node in DiACharts which are given by

2Identification connectors require to receivem equal input streams and identify them. It is unclear how sys-
tems containing identification connectors are realized operationally, because the connector imposes a very strong
requirement on the components sending the input streams to it. In fact, this connector has not been used in any
application of DiACharts so far.



DiSCharts (and not directly byPURR code). We providePURR code for the register��z�, the
output componentOut, and the time extension of the combinational partCom�. ThePURR
code for the hierarchic graphCom which is defined by the DiSChart is given in the next section.
The composition of these ingredients is covered by the translation for the primitive DiAChart
nodes given in the previous section.

module REG
input i � I� s � S� k � N �
output s� � S� k� � N �

emit s��sInit�� emit k��kInit��
loop

emit s���fst�	s�� 	i�� after ��
emit k��	k� after ��
pause�

end loop
end module

Figure 4: Code for��zInit �.

Theregister ��zInit� stores the current inputi � I and the
data it receives from the combinational part for one clock
tick, updates the latched inputs, and then passes control
and data state on its outputs where the modulesOut and
Com� can take them. ThePURR codeD ���zInit�� for
the register with the initial controlzInit � kInit �sInit is
given in figure 4. The channelsk andk� are used to trans-
mit the control state of the DiSChart, the channelss and
s� transmit its data state. As mentioned previously, the
latched inputs are a part of the data stateS. Therefore, we
can writeS as the set product of the state space of local
and output variablesL and the latched input variablesI,
i.e. S � L � I. The projectionfst�s� for s � S thus

yields the data state without the latched inputs. This is used in theemit statement for channels�

to perform the update of the latched inputs. Statementsemit x after � express that signalx is
emitted in the next clock cycle.

module Out
input s � S� k � N �
output o � O�

sustain o�proj�	s��
end module

module Com�

input i � I� s � S� k � N �
output s� � S� k� � N �

var sv � S� kv � N in
loop

sv ��	s� kv ��	k�
C �n� �
emit s��sv�� emit k��kv��
pause�

end loop
end var

end module

Figure 5: Code forOut andCom�.

Out performs a projectionproj. It receives
the current control statek and data states and
computes the current outputo as a projection
of s. ThePURR codeD �Out� for it is given
in figure 5. proj�s� projects the data state
stored ins to the output variables.
The time extended combinational partCom�

receives at each point of time the current in-
put i � I and the DiSChart’s state (i.e.k
ands) from the register. It immediately com-
putes the next states� andk� by thePURR
statementC �n� and forwards it as inputs to
��zInit�. C �n� consumes no time, i.e., the
computation is finished within a clock cycle.
The code forD �Com�� is given in figure
5, whereC �n� is the translation of the ad-
ditive hierarchic graphn into PURR. Note
thatC �n� only reads	i. Variableskv andsv
are read and possibly modified.

4.3 DiSCharts

It remains to define the translationC �n� of a DiSChart toPURR. At the user level, DiSCharts
look very similar to ROOMcharts or other Statechart variants and support preemption, state
entry and exit actions, and similar features of extended state machines. All graphic elements of
DiSCharts are macros built from the operators on nodes and arrows (Section 2). These macros



are defined in [6]. When the macros are expanded we end up with a hierarchic graph only
consisting of the operators of Section 2 and of primitive nodes which refer toactions. Actions
consist of aguard and abody. If the guard is true, the body is executed and possibly changes
the values of controlled variables in dependence on the current inputs. Only if the guard is true,
the action passes control further. In the context of ourPURR translation we demand that all
action guards are given as booleanPURR expressions and that all action bodies are sequences of
assignments, also given asPURR statements. Note that these expressions and assignments may
not containPURR statements that refer to signals, as the communication concept of DiSCharts
is implemented by the machine model.

According to the semantics of DiSCharts, computations that end, because an action is se-
lected which does not pass control further, do not appear in the set of possible executions.
Therefore, it would not be correct to translate them toPURR executions which are active for
some time and then pause forever. To solve this problem it is important to note that the defi-
nition of the macros ensures that actions are nondeterministically selected by the ramification
connectors. Without loss of generality we can assume that each outgoing arrow of a ramification
is followed by an action. (If necessary dummy actions with guard true and the identity as body
can be introduced.) This is used in the following translation of DiSCharts.

Relying on the macros in [6] it now suffices to define the translation of the operators on
nodes and arrows from Section 2 and of primitive nodes toPURR. As ramification is always
followed by actions, we do not consider� alone, but translate the whole construct�m� ��

m
i��ai�,

which means that each outgoing arrowi of �m is followed by an actionai.
Let n be a hierarchic graph. Its translation toPURR is defined as follows:

Sequential Composition: C �n��n��
def
�C �n�� �C �n��.

Visual Attachment: For a visual attachmentn� � n�, wheren� hasg input arrows andh
output arrows, we defineC �n� � n�� as given below, wherekv is the variable defined in
the translation ofCom� that encodes the current control state.

C �n� � n��
def
�

�
BBBBBB�

if kv � g then C �n��
else

kv �� kv 
 g�
C �n�� �
kv �� kv � h

end if

�
CCCCCCA

To understand the manipulation ofkv in detail, the reader is referred to [5]. The principle
is as follows: The name spaces for the input and output arrows of a node in a hierarchic
graph are the natural numbers. The names always start with�. When two hierarchic nodes
n� andn� are composed, the name space of the second one must be shifted in order to
still be able to refer to its arrows. This way input arrowi of n� gets numberg � i in the
composed noden� � n�, whereg is the number of input arrows ofn�.3

Feedback: Givenn with g� i input arrows andh� i output arrows, the translationC
�
n�iS

�
is given below, wherenewT is a new identifier. Note that termination of this loop is not
guaranteed. A non-terminating loop results if there is an infinite sequences of transient

3Note that the reduction of DiSCharts to hierarchic graphs by the macros leads to a mapping of states in the
DiSChart to a special kind of arrows in the graph, in [6] these arrows are calledwait-entry andwait-exit ports.
Variablekv actually stores arrow numbers.



states in the DiSChart. It is in the responsibility of the user to ensure that the design has
no such errors.

C
�
n�i
� def
�

�
BBBBBBBBBB�

trap newT in
loop

C �n� �
if kv � h then kv �� kv 
 h� l

else exit newT
end if

end loop
end trap

�
CCCCCCCCCCA

Identity: C �I�
def
�nothing

Identification: C ��m�
def
�kv �� �

�i� j�-ary Transposition: C �iXj�
def
�

�
�

if kv � i then kv �� kv � j

else kv �� kv 
 i

end if

�
A

Ramification: C ��m� ��
m
i��ai��

def
�

�
BBBBB�

kv �� 
i � N � � � i � m � guard�ai��
if kv � � then body�a��
...
elseif kv � m then body�am�
end if

�
CCCCCA

whereguard�ai� is thePURR code of the guard of actionai andbody�ai� is the code for
its body. The Hilbert operator
x � ����x� is a primitive ofPURR (see Section 3). We
use it here to nondeterministically select an enabled action.

Primitive Nodes: For any primitive node, which is an actiona as guaranteed by the macros
that generate the hierarchic graphs, we defineC �a� as:

C �a�
def
�

�
�

if guard�a� then body�a�
else halt
end if

�
A

Thus, the statement does not terminate, if the action guard is false. Typically, this can
occur if an action is followed by a second action which does not have guard true. We
require that the user ensures that the second action always is enabled if the first one was
taken. An alternative to this strategy is to disallow that the second action has a guard
different from true. This e.g. is done in many tools for Statecharts.

5 Conclusion

We gave a modular translation of DiCharts to the synchronous languagePURR. By handling
DiACharts describing the system’s architecture and DiSCharts for the behavioral part separately,
the structure of the specification is preserved in thePURR translation. This structure preserving



translation will be very helpful in verification: If errors are detected, they have to be traced in
the model, and the original specification, i.e., in the DiCharts.

In future we will compare thePURR semantics developed here to the original semantics of
DiCharts [6]. Additionally, we aim to validate our approach by verifying a DiChart specifica-
tion.

References
[1] Ch. Andre. Representation and analysis of reactive behaviors: A synchronous approach. research

report tr96-28, University of Nice, Sophia Antipolis, 1996.
[2] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors,Proof,

Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 1998.
[3] M. Broy and T. Stauner. Requirements Engineering für eingebettete Systeme.Informationstechnik

und technische Informatik, 2:7–11, 1999.
[4] M.J.C. Gordon and T.F. Melham.Introduction to HOL: A Theorem Proving Environment for Higher

Order Logic. Cambridge University Press, 1993.
[5] R. Grosu, T. Stauner, and M. Broy. A modular visual model for hybrid systems. InProceedings of

Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), volume 1486 ofLecture
Notes in Computer Science. Springer-Verlag, 1998.

[6] R. Grosu, Gh. Stefănescu, and M. Broy. Visual formalisms revisited. InProc. International Con-
ference on Application of Concurrency to System Design (CSD’98), 1998.

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language LUSTRE.Proceedings of the IEEE, 79(9):1305–1320, sep 1991.

[8] D. Harel. Statecharts: A visual formalism for complex systems.Science of Computing, pages
231–274, 1987.

[9] G. J. Holzmann and D. Peled. The state of SPIN. In Rajeev Alur and Thomas A. Henzinger, editors,
Conference on Computer Aided Verification (CAV), volume 1102 ofLecture Notes in Computer
Science, pages 385–389, New Brunswick, NJ, USA, July/August 1996. Springer Verlag.

[10] T. Kropf, J. Ruf, K. Schneider, and M. Wild. A synchronous language for modeling and verifying
real time and embedded systems. InGI/ITG/GME Workshop: Methoden des Entwurfs und der
Verifikation digitaler Schaltungen und Systeme und Beschreibungssprachen und Modellierung von
Schaltungen und Systemen, pages 11–20. HNI-Verlagsschriften, ISBN 3-931466-35-3, 1998.

[11] T. Kropf, J. Ruf, K. Schneider, and M. Wild. The synchronous system description language PURR.
In Open Project Workshop on System Design Automation (SDA98), Dresden, Germany, 1998.

[12] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts,
1993.

[13] Rational Software Corporation. Unified modeling language, version 1.1.http://www.
rational.com/uml/documentation.html, 1998.

[14] D. Schmid, K. Schneider, M. Huhn, G. Logothetis, and V. Sabelfeld. Formale Verifikation einge-
betteter Systeme.Informationstechnik und Technische Informatik (it+ti), 2:12–16, March 1999.

[15] K. Schneider and T. Kropf. The C@S system: Combining proof strategies for system verification.
In T. Kropf, editor,Formal Hardware Verification – Methods and Systems in Comparison, volume
1287 ofLecture Notes in Computer Science, pages 248–329. Springer Verlag, state of the art report
edition, August 1997.

[16] B. Selic, G. Gullekson, and P. T. Ward.Real-Time Object-Oriented Modeling. John Wiley & Sons
Ltd, Chichester, 1994.


