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Abstract

In this paper we provide a mathematical characterization of systems� that con	
tain analog components� as well as strongly time depended control components
and rather time independent information processing components� The presented
system model is based on the notion of streams and stream processing functions�
It is used to formalize and integrate the semantics of di
erent description tech	
niques that occur in disciplines like computer science� economics� electrical and
electronical engineering� and mechanical engineering�

In the paper we develop a hierarchy of models� We start with a core model
that allows us to describe both discrete and continuous� that is� hybrid behavior�
Abstractions and re�nements of this core model allow to connect to given models
for discrete timed and untimed systems� The system model presented here is
intended to be the base layer for other system models�
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Symbol Glossary

� N � the natural numbers

� R� � the non	negative real numbers

� x�t�� the value transmitted on dense stream or stream tuple x at time
t � R�

� x� t� the restriction xj���t� for the dense stream or stream tuple x

� x�n�� the n	th time derivative of function x

� C � the set of channel identi�ers

� M � the data universe

� M c � channel type for channel c � C with M c � M and M c �� �

� � � M � special value to denote the absence of a message

� SM � the mathematical model or system model

� SM �� SM �� previous versions of the system model

� SM �� the new version of the system model� discussed in this contribution

� ��c � M R�
c the set of dense streams of channel c that obeys the channel

typing

�
��
c � ��c the kind of channel c

�
��
C � fx � C � M R� j 	c � C � x�c� � M R�

c g� the set of named stream
tuples with domain C that in addition obey the channel typing

�
��
C � fx �

��
C j 	c � C � x�c� �

��
cg the set of named stream tuples with

channel kinds and domain C

�
��
I

�
�
��
O � the set of deterministic behaviors without delay

�



�
��
I

�
�
��
O � the set of delayed deterministic behaviors with delay �

�
��
I

dly
�

��
O � the set of delayed deterministic behaviors each with delay� but

no lower bound

�
��
I

�
�

��
O� the set of delayed deterministic behaviors with delay � that respects

the kind of its channels

� ��
��
I

�
�
��
O �� behaviors without delay

� ��
��
I

�
�
��
O �� delayed behaviors with delay �

� ��
��
I

�
�

��
O�� the set of delayed behaviors with delay � that respects the kind

of its channels

� �� positive real constant

� ��f� � supf� � R� j 	x� y �
��
I � t � R� �

x � t � y � t 
 f�x� � �t � �� � f�y� � �t � ��g� the maximal delay of
function f

� ��F � � inff��f� j f � Fg� the maximal delay that holds for behavior F

� �� the nested composition operator �k�KFk

� FlPJ � the behavior derived from behavior F with adapted interface ��
��
J

�
�

��
P �� that is� g � FlPJ �
 
f � F � 	x �

��
J � g�x� � f�xjI�jP � Input I is

extended to J � the output is restricted to P

� �BK � ��BK�l
On
I�
� the strict sequential composition

� � F � �fFglOI � the feedback of behavior F on channels common to input
and output of F

� D�x�� with D�x� � R� � the set of all points in time� where stream x is not
smooth� i�e� it exhibits a discontinuity

� M�� the set of all �nite sequences of messages in M

� M�� the set of all in�nite sequences of messages in M

� M� � M� �M�

� � � � �M� �M� �M�� the concatenation of two streams� i�e� the stream
which is obtained by putting the second argument after the �rst� � will
also be used to concatenate a single message with a stream

�



� � � M� � N � f�g� gives the length of a stream as a natural number or
�� if the stream is in�nite

� c� � ��M��M� �M�� the �lter	function� c��N� s� deletes all elements in
s which are not contained in set N

� rT � the operator to transform dense streams to �discrete� timed streams

� r� the operator to transform discrete timed streams to untimed streams

� c � M
�
c the set of untimed streams of channel c �abstraction� only for

certain kinds of channel types�

� �c � �M �
c �
� the set of timed streams of channel c �abstraction� only for

certain kinds of channel types�

� �I
n
� �O� the set of timed �discrete� stream processing functions with delay

n �natural number�

� I
utd
� O� the set of untimed �discrete� stream processing functions

� �
��
C � dC� the metric space of named stream tuples

� �
��
C� dC� the metric space of named stream tuples with channel kinds

�



�� What a System Model is about

What we call a system model is a model for software systems and their environ	
ment� Depending on the kind of system� the environment may be a hardware
device� a physical plant in the case of embedded systems� or an enterprise in the
case of business information systems� Usually a system model does not cover
all aspects of the modeled systems� Instead it is an abstract view representing
those aspects of the modeled systems that are considered to be relevant for their
functionality� The mathematical formulation of this view provides an unambigu	
ous semantics that leads to a better understanding of the entire system under
development�

���� Description Techniques and their Semantics

When describing software systems as well as hardware systems or combinations
like embedded systems a notation is necessary� Today lots of di
erent descrip	
tion techniques� including the ones de�ned by UML �Gro
�b�� Petri Nets �Rei
���
StateCharts �Har���� SDL �Hog�
�� MSC �IT
��� and for continuous systems dif	
ferential equations and the like� have been developed� Although these notations
usually do have an intuitive meaning� the intuition of the users of such notations
often di
ers signi�cantly in some points from the semantics of these description
techniques�

One of the best possibilities to improve this situation and to help to better un	
derstand the description techniques in detail is to de�ne a formal semantics for a
notation� However� we should not forget that such a formal semantics in itself is
by no means suited for comprehending and understanding a notation �Rum
���
In order to learn the usage of a notation it is necessary to grasp its intuitive mean	
ing� This can be achieved better by applying it to toy problems than by reading
mathematical formulae� Hence� the formal semantics is just a means to aid dif	
ferent users of a notation in having the same intuitive understanding� Moreover�
a formal semantics guarantees that this intuitive understanding coincides with
the operational behavior of those tools that implement the notation�






Tools could greatly bene�t from a precise semantics de�nition� because a seman	
tics allows to make precise statements on the way in which a syntactic trans	
formation in a speci�cation a
ects the behavior of the speci�ed system� Thus�
tools could provide a set of transformations� which guarantee that after each
application of a transformation� certain aspects of the system�s behavior will be
unchanged� This would enable the user not only to manipulate diagrams� but
also to manipulate them in a way that ensures that certain properties remain
valid� without having to prove this explicitly on the semantic level with com	
plicated formulae� A formal semantics is the prerequisite for applying� possibly
automated� techniques that ensure or check the correctness of a system�

So far� we have not explained what we understand by the notion of semantics�
The problem of giving a semantics to a syntactic language L has been tackled in
compiler theory� semantics of programming languages and especially the theory
of algebraic speci�cations �Wir
�� BFG�
�� for many years� Recently these ap	
proaches have also been applied to diagrammatic description techniques like the
UML �BHH�
�� FELR
�� FELR
���

According to the results of compiler theory� the de�nition of a semantics in a
denotational style for a language is given by�

�� de�ning the syntax L of the language�

�� choosing the semantics domain� i�e� the mathematical model �or system
model� which we will denote by SM � and

�� de�ning a semantics mapping ����� � L � SM �

For traditional programming languages� the language L is purely textual� and
can therefore be described by Chomsky grammars� These grammars can be used
to describe the concrete syntax as well as the abstract syntax �without syntactic
sugar� and� furthermore� to construct parsers�

Today� many of the description techniques used in practice apply a visual nota	
tion� They exhibit a two dimensional structure whose elements are attributed
with textual parts� At present� it is still a challenge to �nd an appropriate
technique to describe the syntax of such notations� Two important approaches
to this problem are graph grammars and meta	models� as e�g� used in UML
�Gro
�a�� Graph grammars are an extension of ordinary grammars� capturing
the two dimensional structure of a visual formalism� Their development is still
under progress� and unfortunately they are still not as conveniently usable as
their linear counterparts� A meta model is basically a Class Diagram that de	
scribes the abstract syntax of a notation� In UML meta models are used for two
reasons� First� the users of UML are familiar with Class Diagrams �as it is a
notation within UML� and therefore need not learn another notation� Second�
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the meta model is the principle implementation technique for tool vendors �and
UML developers are to a large extent tool vendors�� However� such meta models
have severe short	comings� For instance� it is hardly possible to de�ne context
conditions like �all relations are acyclic�� Furthermore� meta models are not
very abstract� and it is complicated to de�ne a mathematical semantics based on
them�

In this paper� we will neither assume a speci�c way to describe the syntax of a
language or description technique L nor will we further discuss graph grammars
and meta models� Instead� we will concentrate on elaborating a mathematical
model that is general enough to serve as a semantical basis for a broad variety of
description techniques�

A system model is therefore not intended to be given directly to the developer�
but only serves as implicit semantics for the notation the developer actually
manipulates�

���� How to Describe and Use a System Model

A system model describes the properties of the kind of systems in which we are
interested� For example� it precisely captures basic assumptions about�

� the communication style between the system components �asynchronous or
synchronous��

� the underlying object model and kind of inheritance �if any��

� the time model �continuous time� discrete time� or untimed��

� the system structure ��xed or dynamic��

Often� such assumptions are only made implicitly when a semantics is de�ned�
Therefore� it is rather di�cult to �gure out di
erences between various de�nitions
of a semantics� Hence� we decided to make such assumptions as explicit as possi�
ble� Apart from that� our aim was to �nd a proper set of basic assumptions that
is on the one hand rather free� allowing e�g� di
erent styles of communication� but
on the other hand also gives us a set of re�nement and composition techniques at
hand� These basic assumptions are given in Section �� in which the basic system
model is de�ned�

Please note once more that the system model is not intended to serve as toolbox
for software engineers to reason about their designs� Instead� it is intended to
allow method developers and tool vendors to reason about their methodical guide	
lines and tool manipulations and to improve those guidelines and manipulations
with respects to the result of this reasoning�
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The software engineer� who applies tools and methods based on the model� does
not need to understand the system model precisely� Based on his intuitive under	
standing of the kind of systems he develops� an informal� motivating description
su�ces� However� this description has to be precise enough to grasp the under	
lying ideas of the system model�

The basic properties of all systems we are interested in are captured in the follow	
ing chapter by de�ning axioms� Of course� the formalization of these properties
a
ects the development of systems� There is a trade	o
 between the idea of
de�ning everything as detailed as possible� with the e
ect that the system model
does not allow to de�ne the semantics of a certain description technique� or leav	
ing certain details unspeci�ed� Furthermore� the more sophisticated description
techniques are� the more complex their semantics usually is� A system model not
only has to capture input�output behavior of a system� but also structural and
datatype issues�

Formally� the system model SM is the set of systems that obeys the properties
de�ned in Chapter �� As this version of the system model originates from two
prior models and some further work as outlined in Section ���� we call it SM ��

SM � � fsys jSM ��sys�g�

We do not de�ne the characteristics for properties of SM � as one explicit predi	
cate� but formulate them as a set of axioms�

In principle� a system sys can be formalized as a tuple� whose components capture
information such as the identi�ers used in the system� IDsys� or the typing of the
variables in the system� A concrete speci�cation of a system or a set of systems
can be interpreted as an assignment of concrete sets� functions and relations
to the components of the tuple �comparable to the de�nition of �	algebras in
accordance with a signature ���

The axioms given in the next chapter formally speak about a system sys or
components of its characterizing tuple� respectively� For notational convenience�
we usually omit su�x sys when referring to the tuple�s components�

���� History of this System Model

It is a major aim of several research projects within our institute to de�ne a
coherent set of description techniques� like Class Diagrams� State Transition Di	
agrams and others� and to give them an integrated formal semantics� It is the
integration of the semantics that allows us to formulate precise context conditions
for heterogeneous documents� Moreover� a system model is the basis for provably
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correct translations of one document into another� for instance the generation of
code from state diagrams�

The system model presented in this paper results from a synthesis of the work on
object	oriented system models within the SysLab project� the work on embedded
real	time systems within the FORSOFT project and the work on hybrid �and real	
time� systems within the BeQuest project� The model is based on two earlier
versions developed within SysLab�

The �rst version for this system model was de�ned in �RKB
�� and contained a
strong motivational part� This system model was further improved in �KRB
���
From now on� we refer to this �rst version of the system model as SM ��

The second version� SM �� was de�ned in �GKR
��� It clari�es some details and en	
hances SM � by port automata� which were introduced in �GR
��� While �GKR
��
contains much technical details� it is nevertheless illustrated with two examples�
a dynamic queue and a RS��ip��op� Thus� it shows that the system model is
capable of formalizing highly dynamic processes as well as digital hardware sys	
tems� and combinations thereof� SM � also relaxes the communication between
components to a more general concept� allowing di
erent mechanisms ranging
from broadcasting to the point	to	point communication used hitherto� Both SM �

and SM � where combined and enhanced in �Rum
��� where the idea of using an
integrated system model to de�ne the semantics of several description techniques
also emerged�

In this paper� we de�ne SM � which is based on continuous and discrete commu	
nication and we relate this new model to the already existing ones by providing
appropriate abstraction functions� We also add an individual typing of channels
and introduce di
erent types or kinds of channels� These kinds include the timed
message channels used so far� but also allow signal channels� which contain sets
of messages at a time� and channels with continuously varying values as used in
control systems� In contrast to SM �� we do not include hierarchy and internal
states in the basic layer of SM �� Furthermore� SM � can be seen as an abstraction
from SM � to discrete streams�
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�� Specifying with Stream

Processing Functions

���� Motivation

As outlined in the introduction� the primary aim of this paper is to develop a
structured system model that is suitable both for integrating di
erent descrip	
tion techniques from a single application area as well as for integrating description
techniques from di
erent disciplines� The disciplines we have in mind are com	
puter science� economics� electrical and electronical engineering� and mechanical
engineering� In some of these areas time is dense in others people think in discrete
time steps and yet in others time is not considered at all� Likewise� in all these
areas system components exchange di
erent types of data�

Thus� in order to create a hierarchy of domain speci�c models� we chose a core
model with a dense time scale� i�e� time is a non	negative real number� and allow
arbitrary data domains� Dense time is used� because it is a very general model
of time� This way the core model can easily be adopted to more speci�c settings�

As noted already in the previous section� the following set of axioms characterizes
a set of systems� denoted as SM �� where each system sys � SM � consists of a
tuple of elements� like the set of channel identi�ers C sys � For reasons of clarity�
we omit the su�x in the following�

���� Preliminaries

We regard a distributed system as a network of components communicating via
directed channels� Communication occurs without delay� but the components
may exhibit delay� On every input or output channel data� e�g� messages or
signals� are received from or sent to the environment� Therefore� every channel
re ects an input or output communication history of the system� A determinis	
tic system can be described by one function for each component� Each function
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processes input histories and produces output histories according to its speci�	
cation� To describe under	speci�cation or nondeterminism we can specify each
component by a set of functions� called a behavior� instead of a single function�

���� Dense Communication Histories

A communication history can be modeled as a dense stream� i�e� as a total function
x � R� � M � where R� denotes the set of all non	negative real numbers and M

is the �potentially in�nite� non	empty data domain� At each moment of time t�
x�t� denotes the value transmitted on channel x at this time�

In order to enable one to describe real	time and hybrid reactive systems� which
continuously respond to stimuli from the environment� we use a dense time scale�
As reactive systems are not designed to terminate when any result is achieved�
but to stay continuously active after being started� we use whole R� � not just
a �nite interval� as the time scale� In Chapter �� several application speci�c
specializations of this general stream model will be introduced� In particular� we
will encounter the well	known discrete streams �Bro
�� BDD�
��� which use the
natural numbers N instead of R� as their underlying time scale�

In the following� we write MR� for the set of all dense streams over set M � For
every dense stream x we abbreviate the restriction xj���t� by x � t� Appendix A
shows that MR� is a complete metric space with respect to the metric de�ned
there� This result is needed to be able to deal with feedback loops in functional
speci�cations�

���� Named Stream Tuples

Usually� components not only have one input and one output channel� but several
ones� Therefore� we assume that there is a given set of channel identi�ers C � and a
given data universe M � As we use di
erent kinds of channels� we introduce types
for channels� Each channel c � C has its own channel type M c � M � M c �� ��

Given a set of channel names C � C a named stream tuple is a function C �
�R� � M � that assigns communication histories to channel names� We write
��
C for the set of named stream tuples with domain C that in addition obey the
channel typing� Therefore�

��
C � fx � C � M

R� j 	c � C � x�c� � M
R�
c g

For x �
��
C and C � � C� the named stream tuple xjC� �

��
C � denotes the restriction

of x to the channels in C ��

	c � C � � xjC��c� � x�c�

��
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Figure ����� Stream Processing Function�

Furthermore� we allow to add named stream tuples like functional adding by

�x � x��� provided x �
��
C and x� �

��
C � coincide on C � C �� i�e� xjC� � x�jC �

Moreover� �x � x���c� � x�c� if c � C and �x� x���c� � x��c� if c � C ��

Note that� due to currying� we regard the domains C � �R� � M � and R� �
�C � M � to be isomorphic and sometimes will make use of that� For instance we
may overload the cut	operator x� t to stream tuples in a pointwise style� resulting
in a mapping C � ���� t�� M �� which is abbreviated as

��
C ��� t�� We speak of the

time domain ��� t� resp� R� and of the channel domain C of such a function�

We overload channel restriction j and addition � of stream tuples to time re	
stricted streams� but require when adding two time restricted tuples that both
have the same time domain� Moreover� we extend our operators to sets of named
stream tuples� by applying them in an elementwise style� e�g� for a set S of named
stream tuples� S � t �

S
s�S s� t�

���� Stream Processing Functions

Components of real time or hybrid systems can be functionally speci�ed by stream
processing functions over dense streams �MS
��� First ideas in this area come from
system theory �MT���� Components are connected by directed channels to form a
network� An �I� O�	stream processing function with input channels I and output
channels O is a function f with the type�

f �
��
I �

��
O

The structure of a component including its interface can be pictured as shown in
Fig� ����

Our operational understanding that stream processing functions model interact	
ing components leads to a basic requirement for them� An interactive component
is not capable of undoing an output that it has sent already� This requirement
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can be ful�lled by a certain kind of stream processing functions� which we call
deterministic behaviors�

A stream processing function is said to be a deterministic behavior if its input
until time t completely determines its output until time t� It is said to be a
delayed deterministic behavior if its input until time t completely determines its
output until time t � � for an existing� time independent � � �� In other words�
a delayed deterministic behavior imposes a delay of at least an arbitrarily small
real value between input and output� Here� � denotes the delay of f �

It is quite realistic to assume components to be delayed because reactive systems
always need a certain time to react� However� it is not always useful to explicitly
deal with delay� E�g� there are system engineering techniques� that deal with
instantaneous reactions� disregarding any delay� until it comes to an implemen	
tation� It is therefore useful to de�ne and reason with non	delayed behaviors�
and later	on add delay if necessary� Another viewpoint� which leads to the same
methodical treatment is to disregard delays at �rst and just consider delay� when
appropriate�

De�nition � ��Delayed� Deterministic Behavior� An �I� O��stream pro�

cessing function f �
��
I �

��
O is called a deterministic behavior if

	x� y �
��
I � t � R� � x� t � y� t
 f�x�� t � f�y�� t

and a delayed deterministic behavior �with delay � � �� if

	x� y �
��
I � t � R� � x� t � y� t
 f�x���t � �� � f�y���t� ���

We denote the set of deterministic behaviors with input channels I and output

channels O by
��
I

�
�
��
O and the set of delayed deterministic behaviors with delay

� by
��
I

�
�
��
O �

Furthermore� the set of all delayed deterministic behaviors �without any lower

bound� is denoted as
��
I

dly
�

��
O � which can be characterized as

S
d��

��
I

�
�

��
O �

Unfortunately this kind of behaviors is not closed under certain operators� like
nested composition if in�nitely many components are involved� and will therefore
not be considered further�

For �� � �� it naturally holds that �
��
I

���
��
O � � �

��
I

���
��
O �� Therefore� maximal

delay ��f� can be attached to each behavior function f � Formally�

��f� � supf� � R� j 	x� y �
��
I � t � R� �

x� t � y� t
 f�x���t � �� � f�y���t� ��g

A function with ��f� � �� does not depend on its input at all and therefore
behaves like a constant function� i�e� it yields the same output stream for every
input stream�
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���� Sets of Stream Processing Functions

A stream processing function describes a deterministic behavior� for each single
input communication history exactly one output communication history is pro	
vided� In order to allow non	deterministic behavior of components� we do not
deal with single functions� but with sets of stream processing functions� The com	
ponent is then required to obey one of these functions� From an observational
point of view� it makes no di
erence� whether this choice takes place initially or
iteratively during runtime�

De�nition � ��Delayed� Behavior� A non�empty set of �I� O��stream pro�

cessing functions F � ��
��
I �

��
O � is called a behavior if each function f � F is

a deterministic behavior� It is called a delayed behavior �with delay � � �� if for
each function f � F � it holds that ��f� � �� We denote the set of behaviors by

��
��
I

�
�
��
O � and the set of behaviors with delay � � � by ��

��
I

�
�
��
O ��

Given a behavior F � we denote the maximal delay that holds for F by ��F ��
Formally� ��F � is the in�mum of the supremal delays of the f � F �

��F � � inf f��f� j f � Fg

A behavior with ��F � � �� does not depend on its input at all� but still has
the chance to behave di
erently in di
erent system runs� For example a random
number generator exhibits such a behavior�

Deterministic behaviors f �
��
I

�
�
��
O can be considered as implementation strate	

gies� whereas nondeterministic behaviors F � ��
��
I

�
�
��
O � can be seen as speci�	

cations�

Using sets of functions is a rather  exible� but �ne grained approach to describe
behaviors of components� Based on the experience gained so far� it is not rec	
ommended to the developer to use sets of stream processing functions directly�
Instead notations should be used that abstract away from several details� and
also from some of this complexity� One �rst simpli�cation would be the use of

relations of the kind F �
��
I

�
� ��

��
O �� However� even this abstraction hides some

important details� Namely it is the case that even if the relation F exhibits
some delay � � �� its deterministic descendants f � F need not �see Example
��� Therefore� as a further constraint an explicitly given delay is needed when
extracting functions from relations�

Example � �Relations and delay� Let R �
��
I

�
� ��

��
O � be the relation de	

�ned as R�i� � ��
��
O � for all i �

��
I � We could assign it a delay of ��R� � ��

as no reaction to the input is visible in this relation at all� As this is the full
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relation� any other relation is a subset of R� Therefore also the identity function
id� emitting instantly its inputs again� is a deterministic descendant of R� The
identity function� however� has a delay of ��id� � ��

In the functional world R would correspond to the set of functions F � ��
��
I

�
�

��
O � with a delay ��F � � �� �

�




�� Composition Operators

The de�nition of networks is the main structuring principle for distributed sys	
tems� To allow the hierarchical composition of components� it is necessary to
not distinguish between a single component and a network of components� A
network can be de�ned in two equivalent styles� either by recursive equations or
by special composition operators� We choose the second alternative and consider
a very general nested composition operator �� which was �rst introduced for
the discrete time layer in �PR
��� This operator can be adapted to at least three
common specializations� namely sequential and parallel composition and feedback�

Please note that � is a mathematical operator� i�e� it is de�ned in mathematical
terms� not a speci�cations operator� as we do not provide a concrete syntactic
notation here� which the operator could be part of� Nevertheless there is a spec	
i�cation methodology given in Focus that provides such operators �BDD�
���

���� Nested Composition

Nested composition � relies on the idea that a set of given components is con	
nected to form a subsystem by relating interfaces with common names� Let BK

be a set of behaviors

BK � fFk � ��
��
Ik

�k�
��
Ok� j k � Kg�

where K is a possibly in�nite index set and all components have disjoint output
channels� formally 	k� j � K � k �� j 
 Ok � Oj � ��

We compose these behaviors in parallel with implicit feedback� The signature of

the composition �BK � ��
��
I

�
�
��
O � is given as�

O �
S

k�K Ok� I � �
S

k�K Ik� nO

The set O of output channels is the union of all output channels and I is the
set of those input channels that are not connected to any of the components�
outputs� Thus� I are the remaining inputs� which are still part of the interface�
In particular I �O � ��
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Then the behavior �BK � ��
��
I

�
�
��
O � is characterized by the following mathe	

matical de�nition�

f � ��BK�� 	k � K � 
fk � Fk�

	i �
��
I � o �

��
O�

o � f�i�
 ojOk � fk��i � o�jIk�

The composition is not well de�ned for all cases� If no delay is involved� instanta	
neous feedback may occur and lead to an undesirable result� As we characterized
composition in a functional style� the resulting set of functions does not need to
be a behavior at all� It may be empty or it may include behaviors that are more
or less chaotic after some singularitan point has been reached�

A requirement that is clearly su�cient for the resulting behavior �BK to be
meaningful� is that all composed behaviors are delayed with the in�mum of their
delays inf f��Fk�jk � Kg being greater than � �see Appendix B���� This is not
really a restriction� as instantaneous behavior does not occur in reality� but is
only an abstraction that allows to simplify some thoughts and arguments about
such systems� Statecharts� for instance� do not speak about time delay� but
use a concept of micro	 and macro steps instead �vdB
��� Nevertheless� weaker
conditions� i�e� less delayed behaviors� are possible� It is for example already
su�cient to ensure that no feedback loop without delay occurs� In the subsequent
sections three specializations of � are introduced and we will see that a delay is
necessary for one of them only� namely for the feedback operator�

If all behaviors in BK are delayed and the in�mum of their delays inf f��Fk�jk �
Kg is greater than �� we can prove that the resulting behavior �BK is delayed
with ���BK� � inf f��Fk�jk � Kg �see Appendix B����

Please note that nested composition is rather general� It allows one behavior to
be composed �simple feedback�� as well as an in�nite number of behaviors to be
composed� Furthermore� it allows channels to be shared among several readers�

For deterministic stream processing functions� we can provide the same operator
using nearly the same de�nition� If delayed stream processing functions whose
in�mum of their delays is greater than zero are composed� the result is a deter	
ministic stream processing function again� �See the proof in Appendix B����

In fact� if we select a function fk from each behavior Fk� then the composed
function implements the composed behavior� �bK � �BK � where bk � ffkjk �
Kg� This immediately results from the fact� that the composition � is monotonic
versus re�nement� For BK � fFkjk � Kg and DK � fGkjk � Kg� if for all k � K

it holds that Fk � Gk then �BK � �DK � �See the proof in Appendix B����
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���� Renaming

A renaming operator is necessary if we want to compose behaviors with sequential
composition� parallel composition and feedback instead of using nested compo	
sition� This may be desirable if not all of the behaviors to be composed are
delayed�

In order to de�ne renaming� we need an injective renaming function R � C � C

on the channel identi�ers C that obeys the channel typing�

	c � C � M c � M R�c�

R is then overloaded to several other constituents� like stream tuples� behaviors�

etc� A renamed set of named stream tuples is denoted as
����
R�C�� where R is

extended to sets of channel identi�ers in a pointwise manner�

For a named stream tuple x �
��
C the renamed tuple R�x� �

����
R�C� is de�ned

by R�x��R�c�� � x�c�� The renaming functions on named stream tuples may
not identify di
erent channels in the stream tuple� This is guaranteed by the
injectivity of the renaming function�

For a tuple R � �RI � RO�� consisting of a renaming function for the input channels

and one for the output channels of behavior F � ��
��
I

�
�

��
O �� the renamed

behavior R�F � � ��
����
RI�I�

�
�
�����
RO�O�� can be de�ned as�

R�F ��RI�x�� � RO�F �x��

���� Interface Adaption

Besides renaming there is another helpful operator that allows to adapt the in	
terface of behaviors� Interface adaption allows to hide output channels that are
not needed anymore and to add input channels that have not been used so far�
Hiding is a commonly used technique to allow encapsulation� The opposite is
done by interface extension� which allows to plug in new information and reduce

nondeterminism that the behavior had before� Given a behavior F � ��
��
I

�
�
��
O �

and an extension J � I� as well as a restriction P � O� then by F lPJ we denote

the new behavior with adapted interface ��
��
J

�
�
��
P �� It is de�ned by�

g � F lPJ � 
f � F � 	x �
��
J � g�x� � f�xjI�jP

The de�nition is given in such a way that newly added input channels do not
contribute to the component�s current behavior� but can be used for later con	
sideration�
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���� Sequential Composition

Sequential composition in this setting resembles functional composition of behav	
iors� However� we generalize sequential composition by allowing that the output
of one component need not be directly fed into the next one�

...
...

...

...

...

...

...

...Fj

Fk

Figure ����� Sequential composition of behaviors�

Given a set of behaviors BK � the behavior �BK is called the sequential composi�
tion of the behaviors in BK � exactly if�

� K is an ordered set w�r�t� a linear order 	 such that �K�	� is well	founded�
i�e� every non	empty subset of K has a minimal element�

� Any behavior Fk � BK only depends on the outputs of preceding behaviors
Fj with j 	 k or on an input of the composed behavior� Formally� Ik�Ol � �
for every l � k�

As no feedback occurs in sequential composition� it is not necessary that any
behavior is delayed in order to ensure that �BK is well	de�ned� �See the proof
in Appendix B����

Strict sequential composition is a specialization of the above� where there is a
�nite chain of components so that each component�s input is the output of its
predecessor� Formally� we have the following constraints�

� K is �nite� For simplicity it is a set of naturals f�� � � � � ng�

� For k � � it holds that Ik � Ok���

To get strict sequential composition� the intermediate channels are hidden� We
de�ne

�BK � ��BK� l
On
I�

�

The resulting delay is at least the sum of the delays of the individual behaviors�
�The proof is given in Appendix B����
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���� Parallel Composition

Putting a set BK of behaviors in parallel yields a behavior whose input�output
channels consist of all input�output channels of the composed behaviors� I �S

k�K Ik andO �
S

k�K Ok� More precisely� �BK is called the parallel composition
of the behaviors in BK � exactly if the input and output channels of all behaviors
are disjoint� i�e� exactly if

S
k�K Ik �

S
k�K Ok � ��

...
...

... ......

... ......

... ......
...

...

Fj

Fk

Figure ����� Parallel composition of behaviors�

Note that for parallel composition� as for sequential composition� it is not nec	
essary that any behavior is delayed� The resulting delay is the in�mum of the
delays of the individual behaviors� �The proofs are given in Appendix B����

���� Feedback

The feedback of a behavior F � ��
��
IF

�
�
��
OF � is obtained by connecting its inputs

with its compatible outputs�

......

...

F

Figure ����� Feedback composition of a behavior�

We obtain the feedback composition �F of F by applying nested composition to
F and hiding the feedback channels CF � IF � OF �

�F � �fFg lOI
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where I � IF n OF and O � OF n IF � If the set of feedback channels of F is
empty� then the original behavior is resulting again�

For the feedback to be well	de�ned� it is necessary that the behavior F is delayed
on the feedback channels� Formally� this means that the restriction of F to the
feedback channels F �x�jCF must be delayed� The delay of �F then is at least that
of F � �The proofs are given in Appendix B����
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�� Relevant Specializations of

Streams

In the previous sections� we have used a very general kind of streams� Each
channel c � C was assigned to a dense stream in MR�

c � which is in general an
arbitrary mapping from R� into a set of messagesMc� The setMc can be regarded
as type of the data on channel c�

However� not each of these mappings
��
C is of practical interest� Instead� we want

some channels to be �piece	wise� continuous� others are signal based and therefore
carry sets of signals� and others still are message based� where each message is
transmitted in a single time instant�

All these kinds of streams are specializations of the general de�nition we have
given in the previous section� The main purpose of this section is to de�ne an
infrastructure for these specializations� and to show important properties� like
closedness under certain operations�

In particular� we will de�ne the following three main kinds of streams and examine
their properties�

Hybrid Streams are streams that are piece	wise smooth� Informally smooth
means that there are no abrupt changes in the stream� A formal de�ni	
tion is given later on� Their general form allows arbitrary values at points
of discontinuity� However� the points of discontinuity may not be dense in
R� � Often� but not necessarily� the range of a hybrid stream is R� to de	
note analog values� They are particularly appropriate for modeling physical
systems and analog hardware structures �GSB
���

Signal�set streams are streams with a range ��S�� which is the powerset over
signals S� Each signal may occur independently of all others� but must
be present for an entire interval I � R� � not only a point in time� These
streams model discrete hardware structures� Furthermore� they are the
basis for many synchronous languages such as Esterel �Ber
�� and 
	Charts
�Sch
���
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Message streams are streams where messages� which are present only for an
instant of time� occur sporadically� The time instances at which messages
occur may not be dense� Message streams model the transmission of a
message over a given channel that happens at a certain point in time� The
range of these streams includes the dummy element � � M to denote the ab	
sence of messages� These streams model communication between software
components�

Each channel c � C therefore has not only a type Mc� but also a kind describing
to which of these specializations the channel belongs�

���� Classi�cation of Streams

For I � R and M � R a function f � I � M is called smooth if it is in�nitely
often di
erentiable� For M �� R� f is called smooth� if it is constant on I�� A
tuple�set of functions is smooth if all its components�elements are�

Given a single stream x � ��c � we denote by D�x� � R� the set of all points
in time� where stream x is not smooth� i�e� where it exhibits a �higher	order�
discontinuity� We may classify x by enforcing�

A�� D�x� may not be dense� In other words each �nite interval can be parti	
tioned into �nitely many subintervals in such a way that x is smooth on
every subinterval� We also say that x is piecewise smooth�

A�� Points of �higher	order� discontinuity are equidistant� This means there
exists a timing distance � � � so that D�x� consists of multiples of ��
D�x� � fn�jn � Ng

A�� D�x� � �� No �higher	order� discontinuity exists�

Another classi�cation goes along with the question what happens at points t �
D�x� of �higher	order� discontinuity�

B�� The points with discontinuities exhibit arbitrary values�

B�� The values for point t are de�ned in such a way that x is smooth at time
t with respect to an interval to the right� i�e� there is an � � � so that x
restricted to �t� t � �� is smooth on this interval�

�This corresponds to using the discrete topology on the set M � Variants of this de�nition

based on other topologies for M � and hence on other notions of continuity� are conceivable�
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B�� The values for point t are de�ned in such a way that x is smooth at time
t with respect to an interval to the left� i�e� there is an � � � so that x
restricted to �t� �� t� is smooth on this interval�

Figure ��� shows some examples for these kinds of streams�

a

c

b

time

Figure ����� Hybrid streams�

A third criterion for classi�cation results from the question� what is happening
within the smooth intervals�

C�� The values may vary arbitrarily�

C�� The values are constant in this interval�

C�� The values are constantly set to the special message � � M indicating the
absence of any message� Correspondingly� only the points of discontinuity
may carry messages�

Not all combinations of these classi�cations are of equal practical interest� In the
following section� we will mention just the most interesting ones�

Given a channel c � C we denote with
��
c the set of streams that we want to allow

on this channel� This set of streams is a subset of all streams�
��
c � ��c � We regard

��
c to be the kind of channel c� We extend this notation to tuples of streams C � C

by�
��
C � f x �

��
C j 	c � C � x�c� �

��
c g

In the following we will use the three enumerations from above to refer to the
di
erent kinds of streams� We will write Mabc for a� b� c � f�� �� �g to refer to the
streams in R� �M that are in kind a of the classi�cation criterion A from above�
in kind b of the criterion B and in kind c of the criterion C� For instance� M���

denotes the set of piecewise smooth streams R� � M that may have arbitrary
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values at the points of discontinuity and that may vary� Sometimes we may also
use asterixes to refer to all kinds of the associated classi�cation criterion�

The set of delayed behaviors with at least delay � for a given � � � and which op	
erate on the kinds of streams presented above� i�e� onM���� is closed with respect
to nested composition� parallel composition� sequential composition� feedback�
renaming and interface adaption� This is a consequence of the more general
theorem in Appendix C�

���� Hybrid Streams

Hybrid systems are typically characterized by a non	trivial mixture of discrete
and continuous aspects� Examples of hybrid systems are embedded real	time
controllers in their physical environment or the environment itself� Due to the
increasing importance of embedded real	time systems� hybrid systems are an
increasingly active area of research�

In our view� the interface behavior of hybrid system components is determined
by time periods in which no discrete actions occur� i�e� the values at the interface
only change smoothly� and by time instances at which discrete actions take place
and �possibly� cause discontinuities in a component�s output�

A realistic component cannot perform discrete actions at arbitrary frequency as it
is not in�nitely fast� Hence� we demand that a stream x in a hybrid system only
has �nitely many discontinuities during any �nite interval I � R� � Correspond	
ingly� we are interested in the piecewise smooth streams here� In the context of
hybrid systems we often refer to piecewise smooth streams as hybrid streams�

Example � �Three kinds of hybrid streams� Figure ��� shows three partic	
ular examples of hybrid streams�

Kind M���� For stream a� every �nite open interval can be partitioned into
�nitely many open intervals and a �nite set T containing the intervals�
boundary points so that a is smooth on each interval�

Kind M���� For stream b� every �nite leftclosed� rightopen interval can be
partitioned into �nitely many leftclosed� rightopen intervals so that b is
smooth on each interval�

Streams of this class are the basis for the model in �GSB
��� In the
automata	based description technique developed there� discrete actions cor	
respond to transitions in automata� This particular partitioning of the
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streams is selected� because transitions in this model are taken instanta	
neously when they become enabled �therefore the intervals in the partition	
ing are rightopen� and determine the start values for the next period of
smooth evolution �therefore the intervals are leftclosed��

Kind M���� For stream c� every �nite leftopen� rightclosed interval can be
partitioned into �nitely many leftopen� rightclosed intervals so that c is
smooth on each interval�

The demand that the output of behaviors may not depend on future inputs
leads to a fundamental di
erence between the above kinds of streams� Assume a
behavior with delay � � � to be given� For kind M��� and M��� the behavior can
use the limit from the left limx�t of an input stream to get the expected value of
the stream at time t� By comparing this value with the actual value at time t
it can detect discrete changes� or events� in the input and react to them at time
�t � ��� If� however� the input streams are smooth on rightclosed intervals� like
for kind M���� the limit from the left does not permit the detection of changes�
The limit from the right limx�t may not be used� as it would in uence the output
in time �t � �� and therefore violate the delay assumption� Note that for kind
M���� a possible discrete change from time t to the time just after t also cannot
be detected because of the same reason� �

���� Signal�set Streams

Communication using signal	set streams can mainly be found in discrete hardware
structures� To allow the detection of discrete signals they must be present for
entire time intervals�

For signal	set streams the powerset over a set of signals S is used as the range of
the streams� i�e� M � ��S�� Each signal may occur independently of all others�
but it must be present for an entire time interval� not only for one instance�
Therefore� piecewise constant streams with equidistant points of discontinuity
can be used to model this kind of streams� These streams are of kind M���� It
is to some extent arbitrary what the streams do on points of discontinuity� but
using kind M��� is certainly a good choice�

For asynchronous hardware structures it may furthermore be appropriate to allow
points of discontinuity that are not equidistant and use streams of kind M���

instead of M����
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���� Message Streams

Message based communication is mainly useful for the software part of a system�
but can equally well be used to model business enterprise processes� where not
information but letters� or even goods  ow on the channels� Furthermore� message
streams can be used as a discrete event abstraction of continuous processes�

In this model� we assume messages to be transmitted in one instant of time�
Based on the above given classi�cation� we regard a channel c � C to be message
based if its streams are of the kind M��� with � �M �

As messages are produced and processed in a discrete manner� we only allow
a �nite number of messages during any �nite time interval� Assuming the pro	
duction of a message takes some minimum amount of time� permitting in�nitely
many messages in a �nite interval would require the producing unit to work faster
than this minimum amount�

In Section ��� we will transform these dense message streams into timed and even
untimed message streams� They allow to disregard detailed timing� if �or� as long
as� we do not want to talk about it�

���� Kind Respecting Behaviors

Having now a more accurate de�nition of what kinds of streams are of real inter	
est� the de�nition of stream processing functions must be revisited� In particular�
we want to identify those behaviors that always operate on the same kinds of
streams� i�e� respect the type of their channels�

De�nition � �Kind respecting functions and behaviors� For a function

f �
��
I

�
�

��
O with a delay � � � we say f respects the kind of all it chan	

nels� if for all streams x �
��
I it holds that f�x� �

��
O� A behavior respects the kind

of all its channels if all its contained functions do� As we disregard the output

upon inputs in
��
I n

��
I� we restrict kind respecting behaviors to inputs in

��
I and

therefore describe these behaviors by the set
��
I

�
�

��
O� which describes component

kinds�

Note that although
��
I

�
�
��
O and

��
I

�
�

��
O do have di
erent domains and ranges�

each function in
��
I

�
�

��
O can easily be extended to a function in

��
I

�
�
��
O �

One important property of the composition operators de�ned in Chapter � is that
if a set of kind respecting behaviors is composed� then the result will also be of
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the appropriate kind� In more detail� the set of delayed kind respecting behav	
iors �and functions� which at least have delay � � � for a given � is closed with
respect to nested composition� sequential composition� parallel composition� feed	
back� renaming and interface adaption� The proof is given in Appendix C� Note
that renaming of channels now must not only respect the type of the underlying
messages Mc but also the kind of the channels�
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�� Discrete Layer of Time

For some kinds of dense streams x �
��
c we can de�ne abstractions that allow us

to use the work that has been done for discrete streams�

Before we de�ne the connection between the discrete and the continuous stream
layers� we will introduce the discrete stream theory brie y�

���� De�nitions

As the de�nitions for discrete streams are to a large extent very similar to the
already given ones� we just mention the existing operations and di
erences to the
previous ones�

An untimed stream is a �nite or in�nite sequence of messages� If M denotes a
set of messages� M� denotes the set of all �nite sequences of messages and M�

the set of all in�nite sequences of messages� for the set of all streams over M �
denoted by M�� we de�ne�

M� �M� �M�

We will use the following operations on streams�

� � � � �M� �M� �M� denotes the concatenation of two streams� i�e� the
stream which is obtained by putting the second argument after the �rst�
� will also be used to concatenate a single message with a stream�

� � � M� � N � f�g gives the length of a stream as a natural number or
�� if the stream is in�nite�

� c� � ��M� � M� � M� denotes the �lter	function� c��N� s� deletes all
elements in s which are not contained in set N �
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Let us denote by c the set of untimed streams over Mc� Formally such streams
are in M�

c � denoting an in�nite or �nite sequence of messages�

Let us furthermore denote by �c the set of �discrete� timed streams over Mc� For	
mally such streams are in �M�

c �
�� denoting an in�nite sequence of �nite intervals�

where each interval contains the �nite sequence of messages that occurred in that
interval of time� All time intervals are of the same length�

For every timed stream x we abbreviate the selection of the n	th time interval by
x�n�� where the �rst interval is selected with index �� For every timed stream x

we abbreviate the restriction to the �rst n intervals by x�n�

For every untimed stream x we abbreviate the selection of the n	th message �if
it exists� by x�n�� For every untimed stream x we abbreviate the restriction to
the �rst n elements by x�n� As before� we carry this operations over to named
stream tuples�

For named stream tuples we use the same restriction and combination operators� j
and �� as before� Furthermore we extend these operators and the above selections
to sets of streams in a pointwise style�

Timed stream processing functions are denoted by f � �I
n
� �O where the natural

number n � � tells us about the delay of the function� It holds that�

	x� y � �I� k � N � x�k � y�k 
 f�x���k � n� � f�y���k � n�

Again each timed function f can be attached the maximal delay time that it has
by ��f�� which is now a natural number�

For untimed stream processing functions there is no notion of delay� they just
have to be continuous in the sense of Scott�s domain theory �SG
�� Win
��� In
our terminology� the set of untimed stream processing functions is denoted by

I
utd
� O�

Again we extend the de�nitions to sets of functions in the same way we used in
Section ��� for sets of �dense� stream processing functions�

���� Transformation Between Dense	 Timed and

Untimed Behaviors

Timed streams are an abstraction of the continuous message based streams� Un	
timed streams in turn are an abstraction of timed streams�

Therefore� we can de�ne an operator r to transform dense streams to �discrete�
timed ones and to transform �discrete� timed streams to untimed streams� Some
variants of r are given in the following sections� Others are possible�

��



For example� in �Bro
�� a version of r is de�ned that transforms streams of
kind M���� i�e� streams that are piecewise constant and right	continuous� to an
equivalent of message streams�

������ From Message Streams to Timed Streams

When abstracting from a dense stream MR� to a discrete timed stream of kind
�M��� a duration of the time unit T � � has to be introduced� This duration
T for example corresponds to a global clock ticking in a system� and can also be
seen as sampling period�

For message streams M��� �Section ���� we have a special � � M denoting the
absence of a message and the r operator with time unit duration T � � is de�ned
as follows�

rT � M��� � �M���

rT �x� � fy � �M��� j
	n � N � y�n� � 
��n����T��n�T ���x�g�

where 
I�x� extracts all messages from the interval I in x into a sequence that
preserves the ordering� Formally�

	t � I � x�t� � � 
 
I�x� � � �

t� t � minft � Ijx�t� �� �g 
 
I�x� � x�t� � 
I��t����x��

where � for timed streams denotes the empty list� The minimum exists� because
we did only allow �nitely many discontinuities within any �nite interval�

If the distance between any two messages is greater than the duration of the time
unit T � then the resulting timed stream is furthermore an element of M�� with
� �M denoting the absence of any message in a time interval�

������ From Step Streams to Timed Streams

The notion step streams refers to streams of kind M���� i�e� to dense streams
where discontinuities may only occur at times n � T for n � N and a constant
T � �� Between those time points the streams are right	continuous and constant�

For stream x �M��� with discontinuities at n � T � rT is de�ned as follows�

rT � M��� � �M���

	n � N � �rT �x���n� � �x�n � T ��

where �x�n � T �� denotes a one	element list with element x�n � T �� Note that a
new message occurs in the timed stream even if the value of the dense stream
does not change between consecutive intervals�
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������ From Timed to Untimed Streams

The abstraction r�x� from timed to untimed streams results from concatenating
all sequences in stream x �Bro
��� It is inductively de�ned as follows�

r � �M��� �M�

r�a � x� � a � r�x�

for a �M� and x � �M����

������ Abstraction of Behaviors

Based on the abstraction operators rT � M ��� � �M ��� for streams from above�
abstraction rT can be extended to sets of stream processing functions� The
extended operator abstracts from dense stream processing functions to �discrete�
timed stream processing functions�

It is quite common that abstraction results in a loss of information� In the context
of functions the abstraction of the input streams leads to a loss of information the
function can rely on� This loss becomes apparent� when e�g� two dense streams
x and y with rT �x� � rT �y� but rT �f�x�� �� rT �f�y�� are considered� In this
case a naive abstraction rT �f� of function f de�ned by 	x� rT �f��rT �x�� �
rT �f�x�� is contradictory� no such function rT �f� exists�

Therefore� we choose a set based approach which allows the abstraction from
dense to discrete timed functions to introduce underspeci�cation� In order to
ensure that the discrete timed functions again are behaviors� each function g �

rT �f� is de�ned in dependency of a set X �
��
I which is the inverse image of the

set of timed streams �I and guarantees that streams in �I with equal pre�xes have
inverse images in X with equal pre�xes of corresponding length� Formally� we
de�ne�

rT � ���
��
I

�
�

��
O��� ����I

n
� �O��

g � rT �F �� 
f � F� 
X � TrT
�
��
I�� 	x � X� g�rT �x�� � rT �f�x��

where selecting a subset X � TrT
�
��
I� guarantees that rT is bijective on X � �I�

This ensures that for a given X and given f � F the resulting function g is
uniquely determined on each input� but not overspeci�ed�

TrT
�
��
I� � f X �

��
I j rT �X� � �I �

	x� y � X� 	n� rT �x��n � rT �y��n

x��n � T � � y��n � T � g
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For the rT operators from above we can easily prove that TrT
�
��
I� is non	empty

and that rT �F � is non	empty provided F is non	empty �Appendix D��

Depending on the concrete choice of rT and T the exact delay of the functions in
F need not be preserved in the abstraction� However� the delay n of the discrete
time functions can be chosen as the largest natural number with n � T � �� �The
proof is given in Appendix D�� In the worst case� only n � � is valid� This
happens� if the chosen sampling time T is greater than the smallest occurring
delay ��

From a methodical point of view it is also interesting to have the converse oper	
ation� where the abstract behavior G is given� and a translation into the set of
dense stream processing functions is desired� We de�ne this converse operation
as r��

T �G� � ff j 
g � G� g � rT �ffg� g� As we can see from the de�nitions�
the operation is monotonic with respect to set inclusion� We can therefore use
the already well established re�nement and composition techniques on discrete
timed streams as long as the continuous parts are not considered� When the
continuous parts become important� a transformation with r��

T is possible and
still all re�nement arguments are valid�

G

F F �

G�

�

r��
T

�

r��
T

Figure ����� Reasoning with di
erent time models�

In other words� we can work with the abstract and more easily tractable discrete
time system G using re�nement and composition techniques on discrete timed
streams e�g� to obtain G� � G� Using the inverse relation we can derive F �
r��

T �G� and F � � r��
T �G�� with F � � F � thus translating the abstract� discrete

derivation into the theory of dense steams� Figure ��� depicts this method as a
commuting diagram�
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�� An Example

As an example for the usage of the stream kinds and time models presented
in the previous chapters we consider an abstract model of the controller of a
production cell �Fig� ����� The controller operates on di
erent kinds of streams
and we will employ di
erent time models in order to model its communication to
other components on an appropriate level of abstraction�

... ...

...
...

...
...

production cell
controller

user interface

actuators

sensors

product planning
system and product
database

Figure ����� The production cell�s controller�

On the one hand the controller communicates with a product planning system
and a product database� From the product planning system it receives orders
and from the product database it gets the information telling it how to ful�ll
the order� After a product is �nished information about the product�s quality
and manufacturing costs is sent to the responsible product planning system� The
product planning system is essentially a business information system and there	
fore the communication to it does not rely heavily on real	time communication�
Hence� this kind of communication is a good candidate for channels with untimed
message streams�

Furthermore� the controller communicates with actuators and sensors of the pro	
duction cell� This communication is partly event based� telling for example the
arrival of certain goods at certain places� However� time plays a certain role here�
This part is modeled best as communication over channels with timed message
streams�

Another part of the communication involves the continuous transmission of ana	
log information� For example� sensors that permanently measure the present
temperature in an oven of the production cell produce such information� The
controller is obliged to continuously adjust the amount of energy emitted by the
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heating inside the oven so that a certain temperature trajectory is obtained in the
oven� In an implementation� this is typically discretized using appropriate sam	
pling techniques� However� for a treatment in a speci�cation� it is more natural
to handle this by analog streams of kinds M����

Furthermore� the controller is obliged to communicate its current operational
mode and status to a primitive user interface� which merely consists of a set of
lamps� It continuously sends sets of signals to this interface in order to light ap	
propriate lamps� These signals can conveniently be modeled as signal set streams�

The controller is a good example for a component with di
erent kinds of commu	
nication channels� In principle all communication could have been handled using
the basic kind of streams we de�ned at �rst� However� it is much more convenient
to use di
erent kinds of streams for di
erent purposes� For example� it is not
necessary to work in a dense time model when elaborating the interaction of the
controller with business information systems� Here an untimed model usually
su�ces�

The abstraction operators from Section ��� support this methodology� The idea
behind them is to allow system development in the time model which is most
appropriate for the problem at hand and switch� when appropriate�
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�� Conclusion

Based on streams and stream processing functions we introduced an abstract
mathematical model in this paper that describes dense nondeterministic behavior
on dense input and output streams and that is suitable for integrating discrete
and continuous system views�

Motivated by time critical application areas� like hybrid systems and discrete
hardware structures� and by areas like information systems where timing is not
critical we have identi�ed several important classes of hybrid streams�

Furthermore� we presented a set of very general composition operators� A nested
composition operator allows to compose arbitrary� including uncountable in�nite�
sets of components that may communicate over very general� even uncountable
in�nite� sets of channels�

Please note that it was not the purpose of this paper to introduce a practical
speci�cation language� Instead it aims at providing a very general� sound mathe	
matical model that can serve as semantic foundation for a variety of speci�cation
languages�
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A� Mathematical Treatment of

Dense Streams

A mathematical treatment of functional speci�cations requires dealing with feed	
back loops� In the discrete case the semantics of such loops has been successfully
described as least �xed points of functions over domains �Bro
�� BDD�
��� The
underlying mathematical model is Scott�s domain theory �SG
�� Win
��� Fixed
points of stream processing functions over dense streams� however� are more nat	
urally and elegantly described by the �xed point theory of Banach�

In order to specify feedback loops of stream processing functions in Chapter ��
we therefore introduce the main concepts of metric space theory�

A��� The Metric Space of Dense Streams

De�nition � �Metric Space� A metric space is a pair �D� d� consisting of a
nonempty set D and a mapping d � D �D � R� � called a metric or a distance�
which has the following properties�

��� 	x� y � D � d�x� y� � � � x � y

��� 	x� y � D � d�x� y� � d�y� x�
��� 	x� y� z � D � d�x� y� � d�x� z� � d�z� y� �triangle inequality�

For dense streams� we use the following metric�

De�nition � �The Metric of Streams� The metric space of dense streams
�MR� � d� is for all x� y � MR�� M �� �� de�ned as follows�

d�x� y� � inf f��t j t � R� � x� t � y� tg

It is easy to prove that d is indeed a metric� It closely resembles the Baire metric
de�ned in �Eng���� but is not equivalent to it�

Please note� that we do not use any implicit structure of the set of messages M �
instead we assume M to be a  at set of messages �in the words of the domain
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theory �SG
���� We use the same metric for the subspaces M��� of MR� which
were de�ned in Section ����

From this de�nition of the Baire metric for single streams a metric dC for named
tuples of streams

��
C can be easily derived� For a set C of channel names and

named stream tuples x� y �
��
C we de�ne dC as�

dC�x� y� � supfd�x�c�� y�c�� j c � Cg

Theorem � dC is a metric on
��
C �

Proof � dC is well	de�ned� because for every c � C and x� y �
��
C value d�x�c��

y�c�� is bounded above by �� With using the de�nition of sup� the rest of the
proof is straightforward� �

This metric de�nition works for arbitrary� including uncountable in�nite� channel
sets C�

We call �
��
C � dC� the metric space of named stream tuples� In the following we will

only write d instead of dC when the context makes clear that we are operating
on named stream tuples�

Obviously� dC is also a metric on the named stream tuples with channel kinds
��
C�

We therefore call �
��
C� dC� the metric space of named stream tuples with channel

kinds�

A��� Completeness

In order to derive the desired results� namely the unique existence of �xed points
for feedback loops� we need to introduce the notion of sequences and their limits�

De�nition 	 �Convergence� A sequence of elements �ai� in a metric space
�D� d� is converging to a � D� if for every � � � there exists a number k � N

such that d�ai� a� � � for all i � k �Eng		
�

A sequence of streams� for example� converges to a certain stream� if the coinci	
dent pre�xes become increasingly larger� The following yields a helpful technique
for proving the convergence of a sequence�

De�nition 
 �Cauchy Sequence� For a metric space �D� d� a sequence of el�
ements �ai� in D is called a Cauchy sequence� if for every � � � there exists a
number k � N such that d�ai� ak� � � for all i � k �Eng		
�
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De�nition � �Complete Metric Space� A metric space �D� d� is called com	
plete� if every Cauchy sequence in D converges to an element in D �Eng		
�

Theorem � The metric spaces �MR�� d� and �M���� d� are complete�

Proof � Let �ai� be a Cauchy sequence in one of the above spaces�

We de�ne the �xed point a of �ai� as follows� For each t � R� we choose a k such
that 	i � k� ai � t � ak � t and de�ne a � t � ak � t� Such a k exists� because of
the de�nition of the Baire metric and of Cauchy sequences� Clearly� the sequence
�ai� converges to a�

As a is a function from R� to M we immediately conclude a � R� �M �MR� �

The kinds M ijk for i� j� k � f�� �� �g of dense streams are all characterized by
some property that� if falsi�ed by a stream� is already falsi�ed by a �nite pre�x
of it �this can be easily veri�ed�� Therefore� if a is not in M ijk there must be a
time t where a fails to satisfy the characterizing property� Due to construction
this implies that some of the �ai� must already have failed being in M ijk� Thus
all M ijk are closed� �

Theorem � For arbitrary C � C the metric space of named stream tuples
��
C is

complete� The limit a of a Cauchy sequence �ai� is given by pointwise application�
a�c� � limn	�an�c��

Proof � Let �ai� be a Cauchy sequence in
��
C � Then the component sequences

�ai�c�� in M R�
c are Cauchy sequences� too� Let a �

��
C be the function resulting

from pointwise construction� It exists� because every M
R�
c is a complete metric

space�

The Cauchy de�nition gives us�

	� � �� 
k � N� 	i � k� d�ai� ak� � �

Expanding the de�nition of d� we get�

	� � �� 
k � N � 	i � k� c � C� dc�ai�c�� ak�c�� � �

Note that this is stronger than having a Cauchy sequence on each channel� because
the k only depends on � and is guaranteed to exist universally for all channels�

As for each channel c the distance between ai�c� and ak�c� is limited by �� so is
the distance between ak�c� and a�c�� which can easily be shown using that every
M R�

c is a complete metric space� Therefore�

	� � �� 
k � N � 	c � C� dc�ak�c�� a�c�� � �
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By de�nition of d as supremum over the channels� we derive�

	� � �� 
k � N � dC�ak� a� � �

and therefore �ak� converges to a� �

Note that the proof is not restricted to �nite or countable sets of channels� but
C may have arbitrary size�

A similar proof shows that the metric space of named streams with channel kinds
��
C is complete�

A��� Contractive Functions and Fixed Points

Before reasoning about the existence of �xed point solutions for composition with
feedback� we need to introduce the notion of Lipschitz functions and contractive
functions�

De�nition � �Lipschitz functions� Let �D�� d�� and �D�� d�� be metric spaces
and let f � D� � D� be a function� We call f Lipschitz function with constant
c � � if the following condition is satis�ed�

d��f�x�� f�y�� � c � d��x� y�

If c � � we call f non	expansive� If c 	 � we call f contractive�

Theorem � The composition of two Lipschitz functions f � D� � D� and
g � D� � D� with constants c� and c� is a Lipschitz function with constant
c� � c��

Proof � d�g�f�x���� g�f�x��� � c� � d�f�x��� f�x��� � c� � c� � d�x�� x�� �

Corollary � The composition of a contractive and a non�expansive function is
contractive� The composition of two non�expansive functions is non�expansive�
Identity is non�expansive�

The main tool for handling recursion in metric spaces is Banach�s �xed point
theorem� It guarantees the existence of a unique �xed point for every contractive
function�
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Theorem � �Banach�s �xed point theorem� Let �D� d� be a complete metric space
and f � D � D a contractive function� Then there exists an x � D� such that
the following holds�

��� x � f�x� �x is a �xed point of f�
��� 	y � D � y � f�y�
 y � x �x is unique�
��� 	z � D � x � limn	�f

n�z� where
f ��z� � z

fn���z� � f�fn�z��

Proof � See �Eng��� or �Sut���� �

Usually we want to use a parameterized version of this theorem�

De�nition �
 �Parameterized �xed point� Let f � D � !D � D be a function
of complete metric spaces that is contractive in its �rst argument� We de�ne the
parameterized �xed point function 
f as follows�

�
f� � !D � D

�
f��!y� � x

where x is the unique element of D such that x � f�x� !y� as guaranteed by Ba�
nach�s �xed point theorem�

Theorem 	 If f is contractive with constant c so is 
f �

Proof 	 The theorem follows immediately from �MPS��� pages ���"���� �

Please note that 
f may even have a contractivity higher that f � but the original
contractivity c is at least guaranteed�

A��� Delayed Behaviors and Contractivity

Before we come to the composition operators we need to establish the connection
between �delayed� deterministic behaviors and contractive functions�

Theorem 
 A stream processing function is delayed with delay � � � exactly if
it is a Lipschitz function with constant � � c � ��� � � with respect to the metric
space of named stream tuples� Therefore� it is contractive �c 	 �� exactly if � � ��

��



Proof 
 First� we prove the only	if	direction� Assume f is delayed with delay
� � � and two stream tuples x and y are given which di
er from time point
t�� Therefore d�x� y� � ��t� � It holds that x � t� � y � t� which by delay of f
leads to f�x� � t� � � � f�y� � t� � �� By de�nition of d� we get d�f�x�� f�y�� �
��t��� � ��� � d�x� y�� Hence� f is a Lipschitz function with constant c � ����
For deterministic behaviors without delay� i�e� for � � � we get c � ��

Now� we prove the if	direction� Assume f is a Lipschitz function with constant
� � c � � and two stream tuples x and y are given which di
er from time point
t�� Again� d�x� y� � ��t� which implies that x � t� � y � t�� From the Lipschitz
condition it follows that d�f�x�� f�y�� � c � d�x� y�� which implies f�x� � t� �
f�y� � t� for t� � �ld�c � d�x� y�� � �ld c � t�� Hence f is delayed with delay
� � t� � t� � �ld c � �� �For c � �� we take ld c � �� and get � � ��� For
c � � we get � � �� i�e� f is a deterministic behavior without delay� �

Corollary � A stream processing function is non�expansive exactly if it is de�
layed with delay � � �� It is contractive exactly if it is delayed with delay � � ��
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B� Proofs About the Composition

Operators

In the following proofs we will only regard the metric space of named stream
tuples� Nevertheless� the proofs also hold for the other kinds of streams M���� for
tuples consisting of di
erent kinds of streams and also for named stream tuples
and named stream tuples with channel kinds� as all we need here are complete
metric spaces�

B��� Nested Composition

Theorem � If all behaviors in BK are delayed with � � inf f��Fk�jk � Kg � ��

then �BK � ��
��
I �

��
O � is well�de�ned� where O �

S
k�K Ok and I � �

S
k�K Ik�n

O�

Proof � Let In �
S

k�K Ik� By de�nition of �BK each function of the result
exhibits correct behavior� We therefore need to prove that there is at least one
deterministic behavior f in �BK �

For this� we select a deterministic behavior fk � Fk for each k � K and de�ne a
new function g �

��
In�

��
O with the unique characterization as follows�

	k � K � g�i�jOk � fk�ijIk�

This function can be seen as a relative of �BK where no outputs are fed back
to inputs� The delay of g is ��g� � inf f��fk�jk � Kg which is greater than �
because of the assumption�

We now adapt the interface of g by extending its input interface to obtain g� �
��
O �

��
I �

��
O � It is de�ned by g��x� i� � g��x� i�jIn�� i�e� inputs on OnIn are now

fed in� but ignored in the behavior� Hence� g� is also delayed with ��g�� � ��g� � ��

Finally� we de�ne function f �
��
I �

��
O to be the parameterized �xed point of g��

f � 
g�� Since g� is delayed and hence contractive� f is well	de�ned� Furthermore
it is delayed� because of Theorem �� By the construction of f and the de�nition
of �BK one can easily show that f � �BK � �

��



Note that by construction of f in the proof� it follows that any combination of
deterministic behaviors fk contributes to the resulting composition� Therefore�
the composition of BK does not impose any assumption on the behavior of its
composed elements� Especially it does not restrict the behavior of any component
to conform subset behavior� This is in contrast to typical relational and trace
composition operators� where through composition a component�s behavior is
synchronized and therefore implicitly restricted� Therefore� re�nement of the
components independently of their context is possible� which gives much greater
modularity�

Theorem � If all behaviors in BK are delayed with inf f��Fk�jk � Kg � �� then
�BK is delayed with ���BK� � inf f��Fk�jk � Kg�

Proof � From the construction of �BK it follows that each f � �BK is con	
structed using deterministic component behaviors fk � Fk� As ��fk� � ��Fk�
the parallel construction yielding g resp� g� like in Proof � also exhibits ��g�� �
��g� � inf f��fk�jk � Kg� By Theorem � with f � 
g� we get�

��f� � ��g�� � inf f��fk�jk � Kg

Using this� the theorem follows in a straightforward way� �

Actually the existence of a lower bound inf f��Fk�jk � Kg � � is not really
necessary for a well	de�ned nested composition� Instead it can be weakened to
the constraint� that each Fk needs to be delayed� without having a global lower
bound� In this case the composition is well	de�ned� but the result may not be
delayed with � � � anymore if in�nitely many components are involved� However�
to prove this the given proof cannot be used� as the construction of the �xed point
needs to cope with individual delays for each component�

Also note that even this constraint is still not the most general one� As the
construction of g and g� shows� it is only necessary to have a delay � � � in
each feedback loop� If individual delays exist for each input�output channel	
pair �i� o� in each feedback loop� the total delay in the loop is given by the sum
of the individual delays

P
��i� o�� To guarantee well	de�nedness at least one

delay ��i� o� � � must be involved� In case of in�nitely many components to be
composed� or components with in�nitely many channels� no global delay � � �
must exist�

However� this still is not the most general approach� as it is su�cient to de	
mand delays for di
erent input�output channel	pairs �i� o� of a feedback loop at
di
erent points of time� It then su�ces that at each point of time t� there is
one input�output channel	pair in the loop with a delay ��t� i� o� � �� For this
kind of restriction� � should be smooth in its argument t and t� ��t� i� o� should

��



never decrease� as a decrease would allow that the future predicts the past� This
requirement can be expressed as d

dt
��t� i� o� � ���

All these approaches are rather sophisticated and unless hard real	time con	
straints with non delayed components are involved� it usually su�ces to restrict
to delayed behaviors with appropriate delay � � ��

Theorem �
 Let bK be delayed deterministic stream processing functions with
inf f��bk�jk � Kg � �� Then �bK again is a deterministic stream processing
function�

Proof �
 We need to prove that�fbKg contains exactly one element� Revisiting
the proof for the well	de�nedness of � we encounter that now there is only one
choice for selecting deterministic functions from the fbkg� namely the bk them	
selves� Following the proof further we get a function f � �fbKg� f is the �xed
point of a function g� that was uniquely constructed from the bk� Banach�s �xed
point theorem guarantees that this �xed point is unique� hence �fbKg � ffg�
This means that the nested composition of bK again is deterministic� Further	
more� it is delayed due to the previous theorem� �

Theorem �� � is monotonic w�r�t� re�nement�

Proof �� We have to show that if for all k � K with Fk � BK and Gk � DK it
holds that Fk � Gk� then �BK � �DK� This follows easily from the de�nition
of �� �

B��� Sequential Composition

Theorem �� The sequential composition �BK of the behaviors in BK is well�
de�ned�

Proof �� Using the assumptions in the de�nition of sequential composition �Sec	
tion ���� we have to prove that there is at least one deterministic behavior
f � �BK �

First we select a deterministic behavior fk � Fk for every k � K� Then� we de�ne
f as follows� For all k � K f�i�jOk � ok� where ok is the unique element in Ok

such that ok � fk��i � �j�koj�jIk�� Using well	founded induction over K we can
prove that for every k � K� such a unique ok exists� Hence� f is well	de�ned�

Again with well	founded induction and by de�nition of f we can show that for
given i� t � i� � t it holds that f�i�� t � f�i��� t� Therefore� f also is a behavior�

�




From the de�nition of � and the restrictions on the dependencies between be	
haviors Fk and Fj for j� k � K� which are imposed by sequential composition� it
follows that f � �BK � �

Theorem �� The strict sequential composition ��BK� of the behaviors in BK has
a delay ���BK� � �k�K��Fk��

Proof �� We show that for all f � ��BK�� ��f� � �k�K��Fk�� Let f be in �BK

and let fk � Fk be those functions from which f is constructed by the de�nition
of �BK� Furthermore� let g � �BK be that function from which f results by
interface adaption� i�e� f � g lOnI� � By induction we can prove that if o � g�i�
and o� � g�i�� then for all k � K � f�� � � � � ng� it holds that

ojOk ��t� �k
j	���fj�� � o�jOk ��t� �k

j	���fj��

if ijI� � t � i�jI� � t� �

Note that in a sequential composition the predecessor of a component need not
produce all possible outputs �i�e� it may may not be surjective� and therefore the
sequential composition may exhibit more delay than the sum of the delays of its
elements�

B��� Parallel Composition

Theorem �� The parallel composition �BK of the behaviors in BK is well�
de�ned�

Proof �� Using the assumptions in the de�nition of parallel composition �Sec	
tion ���� we have to prove that there is at least one deterministic behavior
f � �BK �

For every k � K let fk be in FK � We de�ne f as follows� f�i� � o exactly if for
all k � K ojOk � fk�ijIk�� f is well de�ned as all the output channels of the fk are
disjoint� With the assumptions imposed on the Fk by the de�nition of parallel
composition� we immediately get f � �BK �

From the construction of f we can easily derive that f is a behavior� because all
the fk are behaviors by de�nition� �

Theorem �� The delay of the parallel composition of the behaviors in BK is
���BK� � inf f��Fk�jk � Kg�
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Proof �� First� observe that every f � �BK can be constructed from some
fk � FK in the same way as in the previous proof� From this construction we
easily derive that f has delay � if every fk is delayed with �� Hence� ��f� �
inf f��fk� j k � Kg� As parallel composition uses each composed function in all
its arguments and no hiding occurs� inf f��fk� j k � Kg is indeed a sharp bound
for the parallel composition f �

Using this result it is easy to derive that the above equality holds� �

B��� Feedback

Theorem �	 The feedback �F of behavior F � ��
��
IF �

��
OF � is well�de�ned if F

is delayed on the feedback channels�

Proof �	 The theorem only demands that F is delayed on the feedback channels
C � IF � OF � i�e� that there is a � � � such that for all i� i� with ijC � t � i�jC � t
and ijIF nC ��t��� � i�jIF nC ��t��� it holds that F �i�jC ��t��� � F �i��jC ��t����
It need not be delayed on the other channels�

To show that �F is nonempty we select a deterministic behavior g � F � The rest
of the proof now follows the proof of Theorem �� with the only di
erence that the
function from which the parameterized �xed point f is now constructed is only
delayed in its �rst argument and not in all inputs� Nevertheless� this is all that
is needed to ensure the existence of the parameterized �xed point on a complete
metric space� Again we get that ��f� � ��g��

By construction f � �fFg� Thus� f lOI � �F � f l
O
I is a behavior with ��f lOI � �

��g�� because interface adaption can only increase the delay� �

Theorem �
 ���F � � ��F �

Proof �
 is quite similar to previous arguments and therefore left to the reader�
�

��



C� Kind Respecting Behaviors

Theorem �� The set of delayed� kind respecting behaviors with at least delay �
for a given � � � is closed with respect to nested composition� parallel composition�
sequential composition� feedback� renaming and interface adaption�

Proof �� As
��
C �

��
C and all functions in

��
I

�
�

��
O can be extended to functions

in
��
I

�
�

��
O � all the above mentioned operations carry over to kind respecting

behaviors� It therefore su�ces to prove the closedness of the operations� i�e� we
have to prove that the composition of kind respecting behaviors with at least
delay � � � is again a kind respecting behavior with at least delay ��

For renaming and interface adaption� this is clear from the context conditions�
As feedback� sequential and parallel composition are special cases of nested com	
position� it su�ces that nested composition is closed�

We have already proven that the result of a nested composition has a delay which
is at least the in�mum of the delays of its components �see Theorems � and 
��

Now let a system of components B

K � fF 


k jk � Kg with delayed kind respecting

behaviors F 

k � ��

��
Ik

�
�

��
Ok� with � � � be given� These functions can be extended

to a system of functions BK � fFkjk � Kg with delayed behaviors Fk � ��
��
Ik

�
�

��
Ok� in a pointwise manner� Fk is precisely characterized by Fkj��

Ik

� F 

k � Please

note the equality which essentially says that each function in F 

k can be extended

in at least one way�

We can now apply the nested composition operation �� By the de�nition of
�BK we get that each f � �BK is constructed from some fk � Fk for all k � K�
According to the construction of Fk there exist according functions f



k � F 


k that
are appropriate restrictions� i�e� f 
k � fkj��

Ik

�

De�ning f 
 � f j��
I
as the restriction of f to inputs of the right kind� we have to

prove that f 
 is kind respecting� In the following we use induction over time t in
order to do so�

��



Let us assume the kind respecting input i �
��
I be given� The induction assumption

is that up to time t � R� �t exclusive� no violation of a channel kind happened
on any output channel�

This is certainly true for t � � as the channel kinds we de�ned can only be
violated in a nonempty time interval� not in an empty one�

As all components fk are kind respecting and delayed with � it follows that all
channels controlled by any of these components are kind respecting up to time
t� ��

This indeed ensures that no violation happens in �nite time� As channel kinds
are de�ned in such a way that their violation can already be detected on a �nite
interval� this means the resulting composition f is kind respecting which implies
that �BK is kind respecting�

It is also possible to prove that �BK is kind respecting by going back to the

de�nition of � and using that
��
I and

��
O are complete metric spaces �Section A����

As in proof � we construct functions g and g� and de�ne f � � 
g� for any function
f � �BK � By the de�nition of nested composition it is easy to show that f�i� �

f ��i� for i �
��
I � We now de�ne g�
 as the restriction of g� to

��
O �

��
I� The way

g� was constructed from kind preserving functions fk ensures that g�
 is delayed

and kind respecting� i�e� g�
 �
��
O �

��
I �

��
O� Hence� it is a delayed function on

complete metric spaces which implies that for all i �
��
I there uniquely exists an

o �
��
O such that o � 
g�
�i�� Furthermore� we know that 
g�
� 
g�� f and f 


coincide for inputs in
��
I� Therefore� f 
�i� �

��
O for all i �

��
I which implies that

�BK is kind respecting� �

Note that the set of kind respecting behaviors with delays � � � is also closed
w�r�t� parallel composition� sequential composition� renaming and interface adap	
tion�
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D� Abstraction of Behaviors

Theorem �� The set TrT
�
��
I� is non�empty for the rT operators de�ned in Sec�

tions ��
�� and ��
�
�

Proof �� For each of the rT operators from Sections ����� and ����� we de�ne

a construction c � �I �
��
I such that c��I� is in TrT

�
��
I�� The construction c can

be regarded as a inverse function of rT that selects one speci�c y �
��
I with

rT �y� � x�

First we consider the abstraction operator from message streams to timed streams

�Section ������� For every discrete timed stream x � �I we de�ne c�x� �
��
I such

that the restriction of c�x� to the interval �n � T� �n� �� � T � contains exactly the
messages in the list x�n� ��� in the same order� The time instance at which the
m	th message of the list x�n� �� occurs is de�ned as tn�m � n � T ��m

k	��
T

��T
�k�

Note that tn�m 	 �n � �� � T for m 	 �� because of the limit value of the given

series� With this de�nition of c�x� is is easy to show that c��I� � TrT
�
��
I��

Now we consider the abstraction operator from step streams to timed streams
�Section ������� Here� we de�ne c�x��t� � x�b t

T
c� if t � T and c�x��t� � e if

t 	 T � where e is some element in I� Again it is easy to prove c��I� � TrT
�
��
I�� �

Lemma � The abstraction operators rT of Sections ��
�� and ��
�
 preserve
equal pre�xes� x� � t � x� � t
 rT �x���b

t
T
c � rT �x���b

t
T
c

Proof �
 The proof is obvious� �

Theorem �
 If behavior F is delayed with � � � then its discrete time abstrac�
tion G � rT �F � is delayed with maxfn j n � T � � g for rT as de�ned in
Section ��
�� or ��
�
�

Proof �� Let g be an arbitrary element of rT �F � and y�� y� � �I two timed
streams with equal pre�xes� y� � n � y� � n for n � N � By de�nition g is

��



constructed from some f � F and X � TrT
�
��
I�� As rT � X � �I is surjective�

there are xi � X with yi � rT �xi�� i � f�� �g� Due to the de�nition of TrT
�
��
I� it

follows that x� ��nT � � x� ��nT �� Thus� f�x����nT��� � f�x����nT��� holds�
which implies f�x����nT�mT � � f�x����nT�mT � form � maxfk j k �T � � g�
Applying the abstraction operator and the previous lemma yields g�y����n�m� �
g�y����n�m�� �

Corollary � The �discrete� time abstraction of a �non�empty� behavior F �

��
��
I

�
�

��
O� is non�empty�

Proof �� The corollary is a consequence of the preceding theorems� �
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