
Towards Requirements Engineering for Context Adaptive Systems

Wassiou Sitou, Bernd Spanfelner
Technische Universität München, Department of Informatics,

Boltzmannstr.3, 85748 Garching/Munich, Germany
{sitou|spanfeln}@in.tum.de

Abstract

Building realistic end user scenarios for ubiquitous
computing applications entails large up-front investments.
Many context adaptive applications so far fail to live up to
their expectations. Firstly, this is due to poorly conceived
development tools and methods compared to other, more
mature domains. And secondly, they seem to be particu-
larly prone to problems related to a discrepancy between
user expectation and systems behavior. This unwanted be-
havior prevents the vision of an emerging trend of context
aware and adaptive applications in ubiquitous computing to
become reality. A good understanding of business and cus-
tomer’s requirements may be of immense importance. This
paper presents a model-based requirements engineering ap-
proach to systematically analyze and specify the basic sys-
tem behavior as well as the adaptation behavior starting
from customer and business needs.

1. Introduction

The increasing technological progress and the associ-
ated integration of software systems in a wider range into
our everyday life require for more flexibility and multi-
functionality of the systems. We expect in the near future
that the systems primarily adapt to the needs and wishes of
the users. These expectations are often described as impor-
tant challenges for the emerging field of ubiquitous com-
puting [34, 10, 27, 13]. Ubiquitous computing so far has
many different definitions. In fact they are all based on a
substantially more flexible system understanding where the
needs and wishes of the user are in the foreground. Ubiq-
uity in this sense means enhancing usability of a function-
ality in as many situations as possible e.g. to overcome cer-
tain restrictions which depend on the current situation like
limited interaction capabilities or technical resource con-
straints. The concept of adaptation is used as enabling tech-
nology to archive this goal. We denote context adaptive
systems - CAS as computer-based systems that are capable

of recognizing changes in the domain they share an inter-
face with, and at the same time being able to change their
behavior to adapt to the changing conditions without nec-
essary direct user interaction. The domain is characterized
in terms of perceivable information that is relevant to the
adaptation. This characterization is a model of the systems
environment and commonly called context.

Many CAS so far fail to live up to their expectations.
While performing well in controllable laboratory environ-
ments, they seem to be particularly prone to problems re-
lated to a discrepancy between user expectation and systems
behavior when released into the wild [12]. A reason for this
lack is the fact that development methods and tools for such
systems are still in an early stage [7]. The characteristics
of CAS (context-awareness, pro activeness, changing op-
erational context, changing participants, varying activities
etc...) raise the need of defining new methods to suitably
elicit, analyze and specify requirements for this kind of sys-
tems. In this work, we propose a methodological approach
to requirements engineering (RE) for CAS.

In the remainder of this paper, we discuss some related
work with a focus on RE approaches for context and adap-
tivity (section 2). A brief discussion of the conceptual archi-
tecture for CAS with its separation of basic functionalities
from adaptation behavior is presented in section 3. Then we
describe our approach to RE for CAS and discuss its ben-
efits for the development of CAS (section 4). Furthermore
we present as proof of concept a long term case study. The
paper ends with conclusion in section 6.

2. Related work

Requirements engineering (RE) is considered as an itera-
tive, systematical and interdisciplinary process, coordinated
with all involved stakeholders, aiming at providing specifi-
cations that satisfy the goals of the majority of users [21].
Although the concept of establishing subsets of require-
ments matched to different stakeholder groups has been ad-
vocated in the viewpoint tradition of RE [19, 25, ], the con-
cept of analyzing requirements for individual users and con-



text awareness has not been explored.

With the emerging field of ubiquitous and context aware
computing, requirements may not only vary by users, but
also by the performed activities and the operational envi-
ronment. E.g. in location-aware systems, requirements may
often change over space and time [5, 1]. The impact of lo-
cation on requirements was initially explored in the Inquiry
Cycle approach [22], where the acceptance of the system’s
output is stated to be influenced by the location. Change
over time is not explicitly modeled apart from concerns over
requirements creep and evolution. Of course the impor-
tance of goal-oriented methods in RE for CAS should not
be neglected. In [18] three RE methods that belong to Goal-
Oriented RE (GORE) [33], namely KAOS [6], GBRAM [3]
and I* [36], were compared to each other and their appli-
cability in the field of ubiquitous computing were assessed.
As expected, it results from this assessment that GORE ap-
proaches are certainly interesting for CAS, but definitively
not adequate enough to capture, analyze and specify context
aware applications. A more advanced step toward a sys-
tematic treatment of deferred requirements [15] and also of
contextual influences on requirements were introduced by
the Clinical RE [14] and the Personal and Contextual RE
methods [29]. In software product line engineering a simi-
lar problem arises while building systems configurations. In
contrast to that area, where only “design time adaptability”
is researched, in requirements scoping for CAS the main
focus is on the “run time adaptability”. This kind of adapt-
ability also includes policy based design for runtime adapt-
ability.

As often stated in the community of context aware com-
puting, context is not only a matter of location. Schmidt et
al. stated more explicitly that there is more to context than
location [28]. An important aspect of context is the cultural
aspect. Although it is recognized that the cultural effects on
products are important [20], understanding cultural impact
on requirements is still in its infancy. Ethnographic stud-
ies suggest that very different requirements arise in situ.
Privacy requirements for automatic teller machines for in-
stance are very different between eastern and western so-
cieties [8]. Aspects of context regarding user and user
groups, their tasks and goals, and the operational environ-
ment should not remain unstudied during the RE process for
context adaptive systems. Since all these aspects of context
and their change over time are not systematically investi-
gated, context adaptive systems will probably often fall into
the trap of unwanted behavior [12]. These and other con-
textual aspects have to be fully explored in requirements
elicitation, analysis and specification for CAS.

3. A common architecture for CAS

CAS are conceptually characterized by the fact that,
apart from the basic functionality – a.k.a. system core, the
system environment and the user interface for bridging the
gap between the system and its environment, they also con-
tain an adaption subsystem, responsible for the enrichment
of the basic functionality with further situational functional-
ity [32]. Sometimes they may contain a calibration subsys-
tem responsible for the adjustment of the adaptation logic
to fit to new environment conditions [11]. These concep-
tual parts of CAS are semantically correlated as illustrated
in figure 1.

System Environment

Adaptation 
Logic

System Core

Calibration

User 
Interface

Adaptation Layer

System Environment

Adaptation 
Logic

System Core

Calibration

User 
Interface

Adaptation Layer

Figure 1. A multi-layered architecture

System Core: It represents the minimal necessary sys-
tem functionality. Such functionalities are situation inde-
pendent and their availability is always guaranteed. The
system will therefore be able to provide these functionali-
ties in any possible usage situation.

Adaptation Logic: It aims at bridging the gap between
the system and its environment including the user. Thus, it
is responsible for the communication between both worlds.
The adaptation logic can be regarded as a universal filter
mediating any kind of communication observable at the in-
terfaces between the system and its environment. It is com-
posed of:

a) User Interface: The UI is an essential element in each
interactive systems. It represents all aspects of the system
which can be seen (heard or otherwise perceived) by the hu-
man user, and the commands and mechanisms the user may
utilize to control its operation and input data. In CAS, the
UI is responsible for any direct (sometimes also conscious)
communication between the user and the system.

b) Adaptation: It realizes the adaptation logic needed
for the enrichment of the basic functionality. The decision,
whether and how an adaptation of the system is to be ac-
complished and under which conditions it should take place,
is specified in the adaptation logic.

c) Calibration: This optional part of the system is re-



sponsible for the retrospectively adjustment of the adapta-
tion logic. It is often defined as a manual adaptation of the
adaptation logic. Manual because it requires additional user
expertise, and it is not stimulated by the system itself.

System Environment: It is source of important informa-
tion needed to characterize the system’s situation. Fluctuat-
ing components used to extend systems functionalities are
contained in the environment.

4. The RE-CAWAR methodology

RE-CAWAR is a model-based approach to RE for CAS.
It aims at eliciting, analyzing and specifying the different
conceptual parts of CAS as presented in section 3, starting
from the user and business needs. Thereby the proposed
approach explicitly elaborates an integrated model of the
usage context (operational context or context of use) espe-
cially needed for elicitation and system scoping (setting sys-
tem’s boundaries and limitations).

4.1. Integrated model of usage context

In ubiquitous computing, the notion of context is often
equated with location. In fact there is more to context than
location. Tarasewich argues that context is actually com-
plex by analyzing the concept from different perspectives
[30]. He considers almost all appreciable taxonomies in-
cluding Schilit et al. [26], Schmidt et al. [28] and Dey [9].
He states that aspects such us participants, activities and en-
vironments should not be neglected in context modeling.
Time may also play an important role in that taxonomy.

The integrated model of the usage context in RE-
CAWAR is quite close to Tarasewichs taxonomy. We dis-
tinguish three dimensions of the usage context and model
their interrelated change over time (fig. 2). The time aspect
is important for prediction issues in context-awareness.

Operational 
Environment

Participants Activities

Time

Operational 
Environment

Participants Activities

Operational 
Environment

Participants Activities

Operational 
Environment

Participants Activities

Time
Time

Operational 
Environment

Participants Activities

Operational 
Environment

Participants Activities

Operational 
Environment

Participants Activities

Figure 2. Context as dynamic construct

Changing Participants: This dimension encloses as-
pects regarding location and orientation of participants,

their personal properties (e.g. age, education), their men-
tal (e.g. mood, anger, stress) and physiological states (e.g.
pulse, blood pressure), their personal expectations and their
social dependencies.

Changing Activities: This dimension concerns tasks and
goals of participants influenced by events in the environ-
ment (e.g. weather is fine, so go to work by bicycle).

Changing Operational Environment: This dimension
includes aspects such as location of the application, net-
work conditions, devices and communications quality and
availability, orientation of entities, physical factors such as
temperature, light, humidity and noise.

A thorough exploration of these different aspects of con-
text resulted in the necessity to provide a systematic for con-
text handling. We therefore provide an integrated model for
the usage context. This integrated model as such consists
of the user model, the task model, and the domain model
representing the tree aspects of the usage context, and or-
thogonally also the platform model, the dialog model and
the presentation model supporting the early three models.

• The User Model represents the participants aspect. It
characterizes the users and the user groups. Stereo-
types are often included in the user model.

• The Task Model represents the activities aspect. The
task model is responsible for identifying which task
and which interactions are needed to perform it.

• The Domain Model represents the operational environ-
ment aspect. It consists of any user visible, -accessible
and -manipulable objects in the applications domain.

• The Platform Model represents the physical infrastruc-
ture and the relationship between the involved devices.

• The Dialog Model represents the interaction between
user and system.

• The Presentation Model represents visual, haptic and
audio elements needed for the interaction.

All these models serve as an integrated template for elic-
iting requirements not only for the system core and the
UI, but also for the identification of contextual (situational)
needs. These needs are to be automatically identified by the
system at runtime [31, 4] leading to an adaption of the sys-
tem. The models may also serve as checklists for preserving
from omitting important aspects of the usage context.

4.2. The core of the methodology

RE-CAWAR iteratively specifies context adaptive sys-
tems starting from the user’s and business needs and inte-
grates them from the beginning on (fig.3). It is based on ap-
proved methods from traditional and model-based RE such



as scenario- and goal-based approaches. These methods are
enriched with further methods from Usability Engineering
and User Modeling. Doing so as much as possible usage
situations are made foreseeable for the system while keep-
ing the user informed about the limitations of the system’s
use. Since the calibration of a system always requires ad-
ditional interaction and to some extent also a technical ex-
pertise [13], a reduction of the calibration subsystem to the
absolute minimum is aimed at.

Needs Requirements

Situational 
Needs

Not Automatically 
Identifiable

Automatically 
Identifiable

Identification 
Check

Stability 
Check

Methodology Part II
- Usability Engineering
- Paper Prototyping
- Design Guidelines

Methodology Part I
- Combination of Methods

from Traditional RE
- Personal & Contextual RE
- User & Context Modeling

Calibration Subsystem

Adaptation Subsystem

UI & System Core

Needs Requirements

Situational 
Needs

Not Automatically 
Identifiable

Automatically 
Identifiable

Identification 
Check

Stability 
Check

Methodology Part II
- Usability Engineering
- Paper Prototyping
- Design Guidelines

Methodology Part II
- Usability Engineering
- Paper Prototyping
- Design Guidelines

Methodology Part I
- Combination of Methods

from Traditional RE
- Personal & Contextual RE
- User & Context Modeling

Methodology Part I
- Combination of Methods

from Traditional RE
- Personal & Contextual RE
- User & Context Modeling

Calibration Subsystem

Adaptation Subsystem

UI & System Core

Figure 3. An overview of RE-CAWAR

Part I: Stability Check
The main objective of this part consists of eliciting, ana-

lyzing and specifying requirements for both the system core
and the user interface. Scenario-based approaches are con-
sidered to be very promising methods in the development
of systems with expected changing context at deployment
time [2, 17]. They are expected to bridge the gap between
users and requirements engineering. We absolutely confirm
this expectation based on own experiments in the CAWAR
research group during the last seven years, where we devel-
oped several prototypes for context aware and ubiquitous
applications. Based on the developed templates for the us-
age context, we recommend to formulate scenarios to deter-
mine the basic functionality of the system, and its interfaces.
RE done at this stage correspond to the level 1 RE defined
in [4], where the basic functionality of the system is de-
termined. During the development of scenarios the gained
insight information is used to enrich the integrated model
of the usage context. Goal-based approaches should help
to develop the tasks that are to be performed using the sys-
tem. We recommend the GRAM approach [3]. To model
tasks concur task tree (CTT) and derivate are common [23].
CTTs are in fact very close to goal graphs, so their use in
conjunctions with goal-based approaches should be straight
forward. User modeling techniques [16] may help to de-
velop solid user models needed to represent the participant
aspect of the usage context. For the elaboration and de-
velopment of the other models integrated into the model of
usage context, we actually recommend the use of scenario-

based approaches as described above. The PC-RE approach
[29] for instance should be helpful to capture elements be-
longing to the domain model. After developing all these
models, one should integrate them by means of require-
ments chunks, thus characterizing which requirements are
obviously common to all or most instances of the usage con-
text. These are extracted from the stable needs (needs that
remain valuable in several usage context). After this sta-
bility check, needs that are classified as strongly depending
on the usage context (situational needs) are gathered. They
serve as input for the second part.

Part II: Identification Check
This part aims at identifying needs that could be auto-

matically recognized by the system at runtime and at con-
verting them into adaptation requirements. RE done at this
stage is to prepare the level 2 RE defined in [4], where the
system should determine which adaptation is appropriate
for a given situation. Also adaptation elements, that will
allow the system to adapt to changing conditions, are to be
defined in this part of RE-CAWAR. It corresponds to level
3 RE in [4]. Making things automatic (as often done by
context adaptation), it is very likely that usability problems
occurs. Therefore we recommend to highly consider us-
ability aspects in this part of the methodology. Usability
methods such as contextual inquiry, focus groups, use case
definition and card sorting may be helpful. Principles such
as task analysis and user analysis, known from usability en-
gineering, should be integrated into the analysis activities,
specially into activities related to the problem understand-
ing, modeling of the context of use and also the elicitation.
This is also valuable for the first part of RE-CAWAR. Fur-
thermore, synchronization approaches based on the princi-
ple of learning are pursued. On the one hand the system
will explain the adaptation behavior to the user, e.g. by pro-
viding appropriate feedback to the user. On the other hand
certain adaptations might not occur, since the differentia-
tion of the situation is not obvious, otherwise the user will
only be confused. Last but not least, guidelines based on
the principle of understanding and the execution should be
considered. Carefully designed feedback over possible and
actual information flow may help the user to better under-
stand the behavior of the system after an adaptation. Early
prototypes may also help.

5. Proof-of-concept

As mentioned in the introduction of this paper, a pro-
totype system was developed for evaluating the introduced
concepts. It is about an autonomous task scheduler (the
Context Aware Task Scheduler). Appointments, events
and other personal tasks of a user can thereby be imported
into the application context from different sources such as
email, online calendar or even public event repositories.



The CATS furthermore provides some basic functionality
for managing this data. Several forms of adaptive notifica-
tion functionalities were implemented, which for instance
inform about rearranged or conflicting schedules and re-
mind users of upcoming appointments. The type of a notifi-
cation is context aware: the application for instance realizes
if the user is currently in a meeting and in consequence in-
forms him unobtrusively or not at all, if the notification is
rated as less important. Besides the functionality of manu-
ally rearranging schedules or setting filter rules concerning
unwanted events gathered from public repositories, a mech-
anism for the automatic rearrangement of timely overlap-
ping events and appointments is provided. This example
is not new (e.g. [24] or [35]). We chose this case study
because it has been considered many times and therefore
results can easily be compared.

Figure 4. Initial model of the usage context

According to the RE-CAWAR-methodology the devel-
opment of an integrated usage context is crucial for the de-
velopment of context aware applications. This model is
used as a checklist during the elicitation and analysis of
requirements. Figure 4 illustrates an initial model of the
usage context. During the elicitation and analysis of user
needs the model may be enriched by further details. The
integrated method may be useful, not only for the first part
of RE-CAWAR where the systems basic functionality is de-
termined, but also for the second part where the adaptation
behavior of CATS is specified.

To satisfy the goal that the user may prefer to be notified
silently anytime he is in a meeting, the system should not
only be able to notify the user in a silent mode, but also it
may be aware of the current usage situation (see figure 5).
Table 1 summarizes corresponding requirements chunk.

The adaptive behavior of the system is modeled by me-
and of the K-Model[11]. It is used for a first tentative de-
scription of the functionalities of CATS. This model is capa-
ble of being iteratively enriched and refined by information
gained from scenario analysis and prototyping.

Notify via vibration alarm Notify via display popup Notify via massenger

Delayed notification

((Very important OR short 
after) AND user occupied) 

OR user not occupied

(Less important OR much 
after) AND user occupied

User not occupied User occupied Costs matter Assurance of recipience 
matters

User Notification

Notify via audio signal

Sudden notification

Figure 5. A cut-out of the goal graph of CATS

Requirements R12
use vibration alarm for user notification
Context C12
1. User is occupied.
2. Notification is due.
3. User can interact with the system at anytime.
Scenario Sc28
Mr. William is currently in a meeting as the cancella-
tion of the planned press conference is published. Ac-
cording to the specified user profile, the CATS client
classifies this event as interesting for Mr. William
and decides to notify him. In order to not disturb
other meetings participants, the system notifies him
by means of silent mode.

Table 1. A cut-out of requirements chunk

6. Conclusion and further works

In this paper we presented the RE-CAWAR approach.
RE-CAWAR is a methodology that aims at augmenting the
RE process for context aware and adaptive systems. The
core of the methodology is an integrated model of the usage
context. Since context is more than location, the integrated
model enriches the notion of context with the aspects of par-
ticipants, activities and operational environment including
their changes over time. An iterative process enables the
identification of stable needs and such that may change ac-
cording to the context. Stable needs result in the basic func-
tionality of the system and are implemented in the system
core and the user interface. The situational needs are further
analyzed and used to specify the adaptation logic.

As next steps we will refine the methodology part one
and part two. The integrated model was made up ad-hoc
in past projects and will be systematized. A common inter-
face will be defined to allow for seamless integration of new
methods into the methodology.

References

[1] G. Abowd and E. Mynatt. Charting Past, Present, and Future
Research in Ubiquitous Computing. ACM Transactions on
Computer-Human Interaction, 7(1):29–58, 2000.



[2] C. B. Achour, C. Souveyet, and M. Tawbi. Bridging the gap
between users and requirements engineering: the scenario-
based approach. Intl. Journal of Computer Systems Science
and Engineering, 14(6):379–406, 1999.

[3] A. Antón. Goal Identification and Refinement in the Specifi-
cation of Software-Based Information Systems. PhD thesis,
Georgia Institute of Technology, 1997.

[4] D. M. Berry, B. H. Cheng, and J. Zhang. The Four Levels
of Requirements Engineering for and in Dynamic Adaptive
Systems. In 11th Intl. Workshop on Requirements Engineer-
ing: Foundation for Software Quality, 2005.

[5] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Ef-
stratiou. Developing a Context-Aware Electronic Tourist
Guide: some Issues and Experiences. In SIGCHI Conf. on
Human Factors in Computing Systems, pages 17–24. ACM
Press, 2000.

[6] R. Darimont, E. Delor, P. Massonet, and A. van Lam-
sweerde. GRAIL/KAOS: An Environment for Goal-Driven
Requirements Engineering. In 19th Intl. Conf. on Software
Engineering, 2001.

[7] N. Davies, J. Landay, S. Hudson, and A. Schmidt. Rapid
Prototyping for Ubiquitous Computing. Pervasive Comput-
ing, 4(4), 2005.

[8] A. De Angeli, U. Athavankar, A. Joshi, L. Coventry, and
G. Johnson. Introducing ATMs in India: a Contextual In-
quiry. Interacting with Computers, 16(1):29–44, 2004.

[9] A. Dey. Understanding and Using Context. Personal and
Ubiquitous Computing, 5(1):4–7, 2001.

[10] A. K. Dey. Providing Architectural Support for Building
Context-Aware Applications. PhD thesis, College of Com-
puting, Georgia Institute of Technology, 2000.

[11] M. Fahrmair, W. Sitou, and B. Spanfelner. An Engineer-
ing Approach to Adaptation and Calibration. In T. R. Roth-
Berghofer, S. Schulz, and D. B. Leake, editors, Modeling
and Retrieval of Context: MRC 2005, volume 3946, pages
134 – 147. Springer, 2006.

[12] M. Fahrmair, W. Sitou, and B. Spanfelner. Unwanted behav-
ior and its impact on adaptive systems in ubiquitous comput-
ing. In ABIS 2006: 14th Workshop on Adaptivity and User
Modeling in Interactive Systems, Hildesheim, Germany, Oc-
tober 2006.

[13] M. R. Fahrmair. Kalibrierbare Kontextadaption für Ubiq-
uitous Computing. PhD thesis, Department of Informatics,
Technische Universität München, Germany, 2 2005.

[14] S. Fickas. Clinical Requirements Engineering. In 27th Intl.
Conf. on Software Engineering, St. Louis, May 2005.

[15] S. Fickas, W. Robinson, and M. Sohlberg. The Role of
Deferred Requirements in a Longitudinal Study of Email-
ingl. In 13th IEEE Intl. Conf. on Requirements Engineering,
2005.

[16] G. Fischer. User Modeling in HumanComputer Interaction.
User Modeling and User-Adapted Interaction, 11(1-2):65–
86, 2001.

[17] L. Kolos-Mazuryk, G.-J. Poulisse, and P. van Eck. Re-
quirements Engineering for Pervasive Services. In OOP-
SLA’05 Workshop on Creating Software for Pervasive Ser-
vices, 2005.

[18] L. Kolos-Mazuryk, P. A. T. van Eck, and R. J. Wieringa. A
survey of requirements engineering methods for pervasive
services. Deliverable TI/RS/2006/018, Freeband A-MUSE,
Enschede, 2006.

[19] G. Kotonya and I. Sommerville. Requirements Engineering:
Processes and Techniques. Wiley, John & Sons, 1998.

[20] D. A. Norman. Emotional Design: Why We Love (or Hate)
Everyday Things. Basic Books, 2004.

[21] B. Nuseibeh and S. Easterbrook. Requirements engineering:
a roadmap. In ICSE ’00: Conf. on The Future of Software
Engineering, pages 35–46. ACM Press, 2000.

[22] C. Potts, K. Takahashi, and A. Anton. Inquiry-based Re-
quirements Analysis. Software, IEEE, 11(2):21–32, 1994.

[23] C. Pribeanu, Q. Limbourg, and J. Vanderdonckt. Task Mod-
elling for Context-Sensitive User Interfaces. In 8th Work-
shop of Design, Specification and Verification of Interactive
Systems, 2001.

[24] B. Rhodes. The wearable remembrance agent: A system for
augmented memory. Personal Technologies Journal Special
Issue on Wearable Computing, 1:218–224, 1997.

[25] S. Robertson and J. Robertson. Mastering the Requirements
Process. ACM Press/Addison-Wesley, NY, USA, 1999.

[26] B. Schilit, N. Adams, and R. Want. Context-Aware Comput-
ing Applications. In Workshop on Mobile Computing Sys-
tems and Applications, pages 85–90. IEEE Computer Soci-
ety, 1994.

[27] A. Schmidt. Ubiquitous Computing - Computing in Context.
PhD thesis, Computing Department, Lancaster University,
U.K., 2002.

[28] A. Schmidt, M. Beigl, and H. Gellersen. There is more to
context than Location. Computers & Graphics, 23(6):893–
901, 1999.

[29] A. Sutcliffe, S. Fickas, and M. Sohlberg. PC-RE: a Method
for Personal and Contextual Requirements Engineering with
some Experience. Requirements Engineering, Vol. 11(No.
4):157–173, 2006.

[30] P. Tarasewich. Towards a Comprehensive Model of Context
for Mobile and Wireless Computing. In Americas Confer-
ence on Information Systems - AMCIS, 2003.

[31] M. Trapp. Modeling the Adaptation Behavior of Adap-
tive Embedded Systems. PhD thesis, University of Kaiser-
slautern, 2005.

[32] M. Trapp and B. Schürmann. On the Modeling of Adap-
tive Systems. In Intl. Workshop on Dependable Embedded
Systems, Italy, 2003.

[33] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In 5th IEEE Intl. Symposium on Re-
quirements Engineering, page 249. IEEE Computer Society,
2001.

[34] M. Weiser. The Computer for the 21st Century. Scientific
American, 3(265):94–104, September 1991.

[35] J. Wohltorf, R. Cisse, A. Rieger, and H. Scheunemann.
BerlinTainment: An Agent-Based Serviceware Framework
for Context-Aware Services. In MobiSys Workshop on Con-
text Awareness, 2004.

[36] E. S. K. Yu. Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering. In 3rd IEEE Intl.
Symposium on in Requirements Engineering, pages 226–
235, 1997.


