
SLAP 2005 Preliminary Version

Improving Constructiveness in Code
Generators

Klaus Schneider, Jens Brandt, Tobias Schuele, and Thomas Tuerk

University of Kaiserslautern

Department of Computer Science

Reactive Systems Group

P.O. Box 3049, 67653 Kaiserslautern, Germany

http://rsg.informatik.uni-kl.de

Abstract

Perfectly synchronous systems immediately react to the inputs of their environment. These

instantaneous reactions may result in so-called causality cycles between the actions of a

system and their preconditions. Programs with causality cycles may or may not have con-

sistent and unambiguous behaviors. For this reason, compilers have to perform a causality

analysis before code generation. In this paper, we analyze the impact of different code

generation schemes on causality analysis and propose translations that yield different de-

grees of causality. To this end, we first translate the program to an equation system as

an intermediate representation, which may alternatively be viewed as a hardware circuit.

The second step then analyzes the equation system as known from ternary simulation of

hardware circuits with combinational feedback loops. In particular, we consider alternative

ways to obtain logically equivalent equation systems that show, however, different results

in causality analysis.

Key words: synchronous programming languages, programming

language semantics, ternary simulation, causality analysis

1 Introduction

The semantics of synchronous languages [1,17,2,12] is based on the paradigm of

perfect synchrony, which means that actions are executed as micro steps in zero

time. Hence, actions immediately change the values of affected variables. As a

consequence, causality cycles may arise due to cyclic dependencies between pre-

conditions of actions and the modifications that take place due to their execution.

To analyze causality cycles, one has to check whether the considered program

has a consistent and unambiguous behavior for all inputs and all reachable states.

To this end, typically a formula of type ∀x.∃1y.Φ(x,y) has to be proved, which

expresses that for all inputs and current states, there must be uniquely determined

values for the next states and the current outputs. In the worst case, this requires to

consider the program for all inputs, outputs, and all reachable states, which makes

this problem highly complex 1 .

In order to establish more goal-oriented procedures for causality analysis, re-

lated problems have been found in many areas of computer science, and the so-

lutions used there have been successfully transferred to causality analysis of syn-

chronous programs. The most interesting relationship is probably the equivalence

to the stabilization of hardware circuits with combinational feedback loops. The

reduction to this problem is natural, since most synchronous programming lan-

guages offer simple translations to hardware circuits. As expected, programs with

causality cycles then correspond to hardware circuits with combinational feedback

loops. Hardware circuits with combinational feedback loops have been considered

in detail in [15,14,22,18,19,29,28]. It is well-known that ternary simulation as in-

troduced by Yoeli and Rinon [31] and Eichelberger [11], and further refined by

Brzozowski, Bryant, and Seger [7,8,6,9] can be used to analyze the propagation of

signal values in these circuits. In particular, the analysis checks whether the signals

stabilize for arbitrary gate delays.

Besides ternary simulation, there are many other problems that are equivalent

to causality analysis. The following theorem lists some of the most important char-

acterizations and applications (see also [3]):

Theorem 1.1 (Equivalent Characterizations of Causality) The following prob-

lems are all equivalent and can be reduced to each other in polynomial time:

Causality Analysis of Synchronous Programs [3]:

Given a synchronous program, check without speculative reasoning whether

there are unique outputs for all inputs.

Stabilization of Hardware Circuits with Combinational Feedback Loops [27,9]:

Given a combinational hardware circuit, check whether all outputs stabilize for

all inputs after some finite time, independently of the delays of the used gates.

Evaluation of Formulas in Intuitionistic Logic [28,21,20,3]:

Given a propositional formula, check whether incomplete truth assignments can

be consistently completed by proof rules of intuitionistic logic.

Type Checking [13]:

Check for a given functional program with certain data types whether it is cor-

rectly typed.

Existence of Dynamic Schedules [3,10]:

Given a set of mutually dependent guarded actions, check whether there is a dy-

namic schedule to execute these actions without deadlocks in all possible cases.

Moreover, it is well-known that these problems are co-NP-complete [18].

Note, however, that the above problems do not solve the more general problem to

check the validity of a (propositional) formula of type ∀x.∃1y.Φ(x,y). Instead,

1 Actually, the precise complexity class is not known. However, the problem is at least in co-NP

and at most in PSPACE.

causality analysis may be viewed as a heuristic to solve this problem in the fol-

lowing sense: if causality analysis can prove that there are unique outputs for all

inputs, the validity problem has been solved. However, if causality analysis fails, it

may still be the case that ∀x.∃1y.Φ(x,y) is valid. For this reason, programs with

successful causality analysis, which are called constructive programs, form a strict

subset of programs that have a unique behavior (these are called logically correct

programs in [3]).

Moreover, causality is a structural property: Whether a program is causally

correct or not depends on its syntax, and not only on its semantics. In the same

way, there are logically equivalent hardware circuits where one has stable signal

wires, while the other one may oscillate for some inputs and gate delays. Since

causality depends on the syntax of a program, one may ask whether there are rea-

sonable program transformations that turn non-constructive programs to equivalent

constructive ones. Another way to achieve this is to directly integrate the mentioned

transformations in the code generation.

In this paper, we will answer these questions. To this end, we reconsider

Boussinot proposals [5] to improve causality analysis. The problem with these

proposals is that they are only given at the level of causality analysis and there-

fore destroy the equivalences of Theorem 1.1, which is obviously not desired. The

main contribution of this paper is to show how Boussinot’s improvements can be

integrated in the code generation so that Theorem 1.1 is maintained. This means

that we can modify the intermediate code generation in such a way, that the usual

causality analysis of this modified code becomes exactly the causality analysis that

Boussinot proposed. The advantage of our approach is clear: we maintain the

equivalences of Theorem 1.1, but are nevertheless able to analyze and to compile

a broader class of programs. This suggests to have several degrees of causality,

instead of only declaring a program to be constructive or not. Moreover, in [26],

we proved that there is even a maximal causality analysis.

The paper has the following outline: in the next section, we consider the basics

of equational code generation of Esterel and Quartz programs. To this end, we only

consider the computation of the surface actions, since this is sufficient for our pur-

pose. In Section 3, we define the ‘can’ and ‘must’ approximations by interpreting

the data flow in three-valued logic. Section 4 considers these definitions and their

consequences in more detail, which is required to explain Boussinot’s proposals in

Section 5. We also show there how these proposals can be implemented in the code

generation so that the usual ternary analysis implements Boussinot’s proposals.

2 Computing Actions and Instantaneous Statements

The ideas presented in this paper do not depend on the chosen set of statements.

In particular, most proposals consider conditional statements and sequences, which

appear in all kinds of imperative programming languages. Nevertheless, to be self-

contained, we consider the following set of statements, whose semantics can be

found in [4,23,24]:

nothing (empty statement)

ℓ : pause (separation of macro step)

emit x, emit next(x) (signal emission)

x := τ, next(x) := τ (assignment)

if σ then S1 else S2 end (conditional)

S1; S2 (sequence)

S1 ‖ S2 and S1 9 S2 (synch./asynch. concurrency)

do S while σ (loop)

[weak] abort S when [immediate] σ (process abortion)

[weak] suspend S when [immediate] σ (process suspension)

Of course, macros like while σ do S end :≡ if σ then do S while σ end can be

used to define further statements [4,23,24]. Further basic statements like local dec-

larations are neglected in the following to keep the presentation as readable as pos-

sible.

In the following, all basic statements that may change variables are called ac-

tions. Hence, actions are of the form emit x, emit next(x), x := τ , or next(x) :=
τ , where τ is an arbitrary expression. Causality cycles arise due to the immediate

effect of actions whose preconditions depend on variable values that are modified

by the actions. To explain this in more detail, we have to define the condition when

a statement is instantaneously executed.

Definition 2.1 [Instantaneous Execution] The execution of a statement S is instan-

taneous iff the predicate Inst (S) as defined below is satisfied:

• Inst (nothing) := true

• Inst (ℓ : pause) := false

• Inst (α) := true for all actions α
• Inst (if σ then S1 else S2 end) := σ ∧ Inst (S1) ∨ ¬σ ∧ Inst (S2)
• Inst (S1; S2) := Inst (S1) ∧ Inst (S2)
• Inst (S1 ‖ S2) := Inst (S1) ∧ Inst (S2)
• Inst (do S while σ) := false

• Inst (while σ do S end) := ¬σ
• Inst ([weak] abort S when σ) := Inst (S)
• Inst ([weak] abort S when immediate σ) := σ ∨ Inst (S)
• Inst ([weak] suspend S when σ) := Inst (S)
• Inst (ℓ : [weak] suspend S when immediate σ) := ¬σ ∧ Inst (S)

The above predicate is used to define the situations where the execution of the con-

sidered statement takes no time. This is required to define the actions that a state-

ment can execute at the current point of time as shown below. Of course, to compile

a program, one has to compute all actions of the program, but the improvements

proposed in this paper can already be described with the ‘surface’ actions.

Definition 2.2 [Surface Actions] For a given statement S and a precondition ϕ,

the following recursive definition can be used to compute a set of guarded actions

(γ, α) such that action α is immediately executed whenever γ currently holds:

• ActSf (ϕ, nothing) := {}
• ActSf (ϕ, ℓ : pause) := {}
• ActSf (ϕ, α) := {(ϕ, α)} for actions α
• ActSf (ϕ, if σ then S1 else S2 end) := ActSf (ϕ ∧ σ, S1) ∪ ActSf (ϕ ∧ ¬σ, S2)
• ActSf (ϕ, S1; S2) := ActSf (ϕ, S1) ∪ ActSf (ϕ ∧ Inst (S1) , S2)
• ActSf (ϕ, S1 ‖ S2) := ActSf (ϕ, S1) ∪ ActSf (ϕ, S2)
• ActSf (ϕ, do S while σ) := ActSf (ϕ, S)
• ActSf (ϕ, while σ do S end) := ActSf (ϕ ∧ σ, S)
• ActSf (ϕ, [weak] abort S when σ) := ActSf (ϕ, S)
• ActSf (ϕ, weak abort S when immediate σ) := ActSf (ϕ, S)
• ActSf (ϕ, abort S when immediate σ) := ActSf (ϕ ∧ ¬σ, S)
• ActSf (ϕ, [weak] suspend S when σ) := ActSf (ϕ, S)
• ActSf (ϕ, ℓ : weak suspend S when immediate σ) := ActSf (ϕ, S)
• ActSf (ϕ, ℓ : suspend S when immediate σ) := ActSf (ϕ ∧ ¬σ, S)

module P2 :
output o1, o2;

S2 :=







































emit o2;
if o1 then

if o2 then

ℓ : pause

end;
emit o1

end

end module

Figure 1. Program P2

As an example, for the statement S2 given in Figure 1, we obtain Inst (S2) =
¬o1 ∨¬o2 and ActSf (true, S2) = {(true, emit o2), (o1 ∧¬o2, emit o1)}. As can be

seen, the precondition γ of a guarded action (γ, α) may depend on values that are

changed by the corresponding action α. For example, precondition o1 ∧ ¬o2 de-

pends on o1, which is set by the corresponding action emit o1. Such dependencies

are called causality cycles.

3 Causality Analysis Based on Three-Valued Logic

Causality analysis can be explained in several ways, since the problem and its re-

lated algorithms are fundamental for many areas of computer science. In the fol-

lowing, we use three-valued logic to describe the problem and ternary simulation

as a method to solve it. To this end, we extend the Boolean values false, true by a

third truth value ⊥ and define a partial order on these three values as follows:

x ⊑ y :⇔ x = ⊥ ∨ x = y

It is easily seen that the set {⊥, false, true} ordered by ⊑ is a (semi-)lattice, since we

have a greatest lower bound for all x, y ∈ {⊥, false, true}. The same holds for the

product space {⊥, false, true}n, when ⊑n is defined as the componentwise applica-

tion of ⊑. In the following, we have to consider environments E , which are func-

tions that map (input, output, and location) variables to values of {⊥, false, true}.

We also establish a partial order on these environments as follows:

E1 � E2 :⇔ for all variables x, E1(x) 6= ⊥ implies E1(x) = E2(x).

Boolean functions can be represented as propositional logic formulas. Moreover,

it is well-known that the operators ¬, ∧, ∨ are sufficient for that purpose. Hence,

it is sufficient to extend the basic Boolean functions represented by ¬, ∧, ∨ to the

ternary domain. Other Boolean functions are then simply obtained by composition

of these basic functions (see [25,26] for a discussion of these definitions).

∧ ⊥ 0 1

⊥ ⊥ 0 ⊥
0 0 0 0

1 ⊥ 0 1

∨ ⊥ 0 1

⊥ ⊥ ⊥ 1

0 ⊥ 0 1

1 1 1 1

x ¬x

⊥ ⊥
0 1

1 0

Figure 2. Ternary extension of basic Boolean functions

Ternary extensions of the basic Boolean operations are given in Figure 2. As can

be seen, these functions are monotonic for the above mentioned partial order ⊑.

For this reason, the Tarski-Knaster theorem can be applied [30,16,25], which guar-

antees the existence of least fixpoints of monotonic functions. Moreover, the least

fixpoint can be computed by the Tarski-Knaster fixpoint iteration.

To do so, we must identify the function whose fixpoint is to be computed. To

this end, we give the following definition of pessimistic and optimistic estimations

of actions of the surface:

Definition 3.1 [Estimating Executed Actions]Given a statement S, the set of ac-

tions of its surface that can and must be executed under a precondition ϕ, respec-

tively, are defined as follows:

CanAct (E , S) := {α | ∃γ.(γ, α) ∈ ActSf (ϕ, S) ∧ E(γ) 6= false}
MustAct (E , S) := {α | ∃γ.(γ, α) ∈ ActSf (ϕ, S) ∧ E(γ) = true}

Note that CanAct (E , S) = MustAct (E , S) holds iff all guards γ of the surface

actions (γ, α) ∈ ActSf (ϕ, S) have Boolean values E(γ) under the current envi-

ronment E , i.e., if the guards have been determined. By the above definition, we

moreover have the following consequences:

Lemma 3.2 (Properties of Can and Must) For every statement S and every envi-

ronment E , we have MustAct (E , S) ⊆ CanAct (E , S). Moreover, for environments

E1 and E2 with E1 � E2, we have

• E1(Inst (S)) ⊑ E2(Inst (S))

• CanAct (E1, S) ⊆ CanAct (E2, S)

• MustAct (E1, S) ⊆ MustAct (E2, S)

Causality analysis starts with the three-valued environment E0, where E0(x) = ⊥
holds for all output variables x, and where E0(x) ∈ {true, false} holds for all other

variables x. In the following, the environment is updated so that a monotonic se-

quence E0 � E1 � E2 . . . is obtained. This update is defined as follows: given en-

vironment Ei, we compute Dcan := CanAct (Ei, S) and Dmust := MustAct (Ei, S).
According to the above lemma, one of the following cases must hold for every

action emit x (we neglect delayed emissions [25] and assignments here):

• if emit x ∈ Dmust holds, then we change the value of x to true

• if emit x 6∈ Dcan holds, then we change the value of x to false

• if emit x ∈ Dcan \ Dmust holds, then we cannot change the value of x

It can be easily seen that the environments Ei obtained by the above iteration form

a monotonic sequence, so that after finitely many steps a fixpoint Ě is reached. If

the values of all output variables have been determined, then the reaction of the

program has been constructively determined.

function ComputeOutputs(E0, S,Vout)
E = E0;
do

Eold := E ;
Dcan := CanAct (E , S) ;
Dmust := MustAct (E , S) ;
for all x ∈ Vout do

if emit x ∈ Dmust then E := E true

x
end;

if emit x 6∈ Dcan then E := E false

x
end

end

while Eold 6= E
return (Dcan, E)

end

Figure 3. Causality analysis

Figure 3 shows the entire algorithm that computes the outputs and the actions for

given inputs (encoded in E0). The argument E0 is thereby the initial environment,

S is the considered statement, and Vout is the set of declared output signals. Ev

x

means that the value of E(x) is changed to v, while all other values are maintained.

Note that the computations of Dcan and Dmust can be based on a precomputation of

ActSf (ϕ, S) so that only the guards have to be re-evaluated. Finally, the procedure

has to be repeated for all reachable states and must, moreover, be generalized to

delayed actions [28,25].

4 Problematic Cases for Causality

The algorithm described in the previous section is the essence of standard proce-

dures for causality analysis. In the next section, we will discuss several proposals

to refine the definition of the surface actions so that the standard causality analysis

becomes more powerful. To this end, we first consider in this section the conse-

quences of the previous definition of CanAct (E , S) and MustAct (E , S).

Lemma 4.1 (Recursive Definition of CanAct (E , S)) For every statement S and

every environment E , the following propositions hold:

• CanAct (E , nothing) = {}

• CanAct (E , ℓ : pause) = {}

• CanAct (E , α) = {α} for all actions α

• CanAct (E , if σ then S1 else S2 end)

=







CanAct (E , S1) : if E(σ) = true

CanAct (E , S2) : if E(σ) = false

CanAct (E , S1) ∪ CanAct (E , S2) : if E(σ) = ⊥

• CanAct (E , S1; S2)

=

{

CanAct (E , S1) : if E(Inst (S1)) = false

CanAct (E , S1) ∪ CanAct (E , S2): if E(Inst (S1)) ∈ {⊥, true}

• CanAct (E , S1 ‖ S2) = CanAct (E , S1) ∪ CanAct (E , S2)

• CanAct (E , do S while σ) = CanAct (E , S)

• CanAct (E , while σ do S end) =

{

{} : if E(σ) = false

CanAct (E , S) : if E(σ) ∈ {⊥, true}

• CanAct (E , abort S when σ) = CanAct (E , S)

• CanAct (E , [weak] abort S when σ) = CanAct (E , S)

• CanAct (E , weak abort S when immediate σ) = CanAct (E , S)

• CanAct (E , abort S when immediate σ) =

{

{} : if E(σ) = true

CanAct (E , S) : otherwise

• CanAct (E , suspend S when σ) = CanAct (E , S)

• CanAct (E , [weak] suspend S when σ) = CanAct (E , S)

• CanAct (E , weak suspend S when immediate σ) = CanAct (E , S)

• CanAct (E , suspend S when immediate σ)

=

{

{} : if E(σ) = true

CanAct (E , S) : otherwise

The above lemma shows that the recursion of CanAct (E , S) is straightforward,

which is the preferred definition in [3]. The same holds for MustAct (E , S) with

the exception of conditionals as will be discussed in the next section:

Lemma 4.2 (Recursive Definition of MustAct (E , S)) For every statement S and

every environment E , the following propositions hold:

• MustAct (E , nothing) = {}

• MustAct (E , ℓ : pause) = {}

• MustAct (E , α) = {α} for all actions α

• MustAct (E , if σ then S1 else S2 end) =







MustAct (E , S1) : if E(σ) = true

MustAct (E , S2) : if E(σ) = false

{} : if E(σ) = ⊥

• MustAct (E , S1; S2)

=

{

MustAct (E , S1) ∪ MustAct (E , S2): if E(Inst (S1)) = true

MustAct (E , S1) : if E(Inst (S1)) ∈ {⊥, false}

• MustAct (E , S1 ‖ S2) = MustAct (E , S1) ∪ MustAct (E , S2)

• MustAct (E , do S while σ) = MustAct (E , S)

• MustAct (E , while σ do S end) =

{

MustAct (E , S) : if E(σ) = true

{} : otherwise

• MustAct (E , abort S when σ) = MustAct (E , S)

• MustAct (E , [weak] abort S when σ) = MustAct (E , S)

• MustAct (E , weak abort S when immediate σ) = MustAct (E , S)

• MustAct (E , abort S when immediate σ)

=

{

MustAct (E , S) : if E(σ) = false

{} : otherwise

• MustAct (E , suspend S when σ) = MustAct (E , S)

• MustAct (E , [weak] suspend S when σ) = MustAct (E , S)

• MustAct (E , weak suspend S when immediate σ) = MustAct (E , S)

• MustAct (E , suspend S when immediate σ)

=

{

MustAct (E , S) : if E(σ) = false

{} : otherwise

The above recursive characterizations of CanAct (E , S) and MustAct (E , S) are di-

rect consequences of the three-valued version of ActSf (ϕ, S). Ignoring this origin,

one may think of the following alternative definition of MustAct (E , S) (with the

abbreviations M1 := MustAct (E , S1) and M2 := MustAct (E , S2)):

MustAct (E , if σ then S1 else S2 end) =







M1 : if E(σ) = true

M2 : if E(σ) = false

M1 ∩ M2 : if E(σ) = ⊥

This has already been discussed by Berry in [3] (page 81). He rejects this modifica-

tion, since it ‘performs speculative reasoning’. In his view, this modification would

allow ‘backward information flow’. However, in our opinion, this view is a bit in-

consistent, since the definition of CanAct (. . .) also allows a backward information

flow for conditionals. Hence, although we agree that the modification can not be

simply used with the normal code generation, we think that the reason to reject it is

simply the incompatibility with code generation. In this paper, we show how code

generation can be made compatible so that the modification can be perfectly used

in compilers.

Boussinot proposed further alternatives for the definition of CanAct (E , S) and

MustAct (E , S) [5]. Again, just changing the above estimations for causality anal-

ysis without corresponding changes of the code generation is not acceptable, since

Theorem 1.1 would no longer hold! Thus, the compilers would succeed with the

causality analysis, but the generated hardware circuits would possibly not stabilize

or the generated software code would suffer from deadlocks. Using the above mod-

ification of the must-approximation of the conditional would allow us, for example,

to prove the causality of program P12 given in Figure 5. However, a circuit derived

from that program which is based on the definition of ActSf (true, ϕ) would not

stabilize.

Hence, our aim is not to directly change CanAct (E , S) and MustAct (E , S) to

improve causality analysis. Instead, our aim is to retain Definition 3.1, and instead

to improve the definition of the surface actions, so that Theorem 1.1 still holds. Of

course, this also changes the sets that were obtained by computing CanAct (E , S)
and MustAct (E , S). However, this is consistent with the generated code.

5 Implementing Boussinot’s Improvements

We now show how the circuit code generation, in particular, the definition of

ActSf (ϕ, S) can be changed such that the standard causality analysis is able to

handle more cyclic programs. To this end, we show that Boussinot’s improvements

[5] can be implemented by appropriate changes in the circuit code generator and

by the standard causality analysis.

5.1 Proposal 1: Attempt to Refine CanInstant (E , S)

Recall that the definition of ActSf (ϕ, S) depends on the definition of Inst (S). To

be precise, the definition of the surface actions of sequences depends on Inst (S):

CanAct (E , S1; S2) =

{

CanAct (E , S1) : if E(Inst (S1)) = false

CanAct (E , S1) ∪ CanAct (E , S2): otherwise

One might think of introducing a new predicate CanInstant (E , S) which is used

instead of E(Inst (S1)) such that CanAct (E , S1; S2) becomes a smaller set. Hence,

CanInstant (E , S1) should be more often false than E(Inst (S1)). To this end, we

may try the following definition:

CanInstant (E , if σ then S1 else S2 end) =







inst1 : if E(σ) = true

inst2 : if E(σ) = false

fi(inst1, inst2): if E(σ) = ⊥

with insti := CanInstant (E , Si) and one of the following functions fi:

• f0(inst1, inst2) := ⊥

• f1(inst1, inst2) := ⊥ ∧ inst1 ∨ ¬⊥ ∧ inst2

• f2(inst1, inst2) := ⊥ ∧ inst1 ∨ ¬⊥ ∧ inst2 ∨ inst1 ∧ inst2

• f3(inst1, inst2) := inst1 ∨ inst2

It can be proved that E(Inst (S)) = CanInstant (E , S) holds if we use function f1.

However, as ⊥ and true are not distinguished in the definition of CanAct (E , S1; S2)
above, the versions of CanInstant (E , S) with f1, f2, and f3 are all equivalent, which

can be easily seen by inspecting the truth tables below. Thus, this proposal does

not lead to improvements for causality analysis.

f0 ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ ⊥ ⊥
1 ⊥ ⊥ ⊥

f1 ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥
1 ⊥ ⊥ ⊥

f2 ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥
1 ⊥ ⊥ 1

f3 ⊥ 0 1

⊥ ⊥ ⊥ 1

0 ⊥ 0 1

1 1 1 1

5.2 Proposal 2: Attempt to Refine MustInstant (E , S)

In a similar way as in the previous section, we could try to improve the definition

of MustAct (E , S1; S2). Recall that the current definition leads to the following

recursion:

MustAct (E , S1; S2) =







MustAct (E , S1)
∪MustAct (E , S2): if E(Inst (S1)) = true

MustAct (E , S1) : otherwise

With the same arguments as in the previous section, one might think of a new

predicate MustInstant (E , S) such that MustAct (E , S1; S2) becomes a larger set.

Hence, MustInstant (E , S) should be more often true than E(Inst (S1)). Again, the

only interesting case where the definition can be changed is for conditionals, and

similar as in the previous section, we consider now the following definition with

insti := MustInstant (E , Si):

MustInstant (E , if σ then S1 else S2 end) =







inst1 : if E(σ) = true

inst2 : if E(σ) = false

gi(inst1, inst2): if E(σ) = ⊥

with one of the following functions gi:

module P10 :
output o;

if o then nothing end;
emit o

end module

Figure 4. Program P10

• g0(inst1, inst2) := ⊥

• g1(inst1, inst2) := ⊥ ∧ inst1 ∨ ¬⊥ ∧ inst2

• g2(inst1, inst2) := ⊥ ∧ inst1 ∨ ¬⊥ ∧ inst2 ∨ inst1 ∧ inst2

• g3(inst1, inst2) := inst1 ∧ inst2

Considering the definition of MustAct (E , S1; S2), it is clear that improvements of

MustAct (E , S1; S2) are only found when some functions gi differ between ⊥ and

true. Hence, g0 and g1 lead to the same definition of MustAct (E , S1; S2), and for

the same reason, also g2 and g3 have the same effect, which can be seen by the truth

tables below. However, there are relevant differences between g1 and g2.

g0 ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ ⊥ ⊥
1 ⊥ ⊥ ⊥

g1 ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥
1 ⊥ ⊥ ⊥

g2 ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥
1 ⊥ ⊥ 1

g3 ⊥ 0 1

⊥ ⊥ 0 ⊥
0 0 0 0

1 ⊥ 0 1

The problem is now that we have to change the definition of Inst (S) to mimic the

above effects. It is easily seen that all we have to do is the following change:

Inst (if σ then S1 else S2 end) :=





σ ∧ Inst (S1) ∨
¬σ ∧ Inst (S2) ∨

Inst (S1) ∧ Inst (S2)





Note that using the above modification of Inst (S) will also generate software and

hardware code such that Theorem 1.1 remains valid. However, more programs can

now be compiled: For example, program P10 given in Figure 4 will become now

constructive. Using the original definition, we would obtain the surface actions

{(o∨¬o, emit o)} which lead to the equation (hardware circuit) o = o∨¬o which

turns out not to be constructive (since in intuitionistic logic o ∨ ¬o can not be

proved). Using the modified definition, we obtain the surface actions {(o ∨ ¬o ∨
true, emit o)}, i.e., {(true, emit o)} which leads to the acyclic equation (hardware

circuit) o = true.

5.3 Proposal 3: Refine MustAct (E , if σ then S1 else S2 end)

The next proposal modifies the definition of MustAct (E , if σ then S1 else S2 end).
If the same actions appear in both MustAct (E , S1) and MustAct (E , S2), it is clear

module P12 :
output o;

if o then emit o

else emit o

end

end module

Figure 5. Program P12

that these have to be executed, regardless what the value of E(σ) is. Hence, we

would like to use the following definition (with Mi := MustAct (E , Si)):

MustAct (E , if σ then S1 else S2 end) =







M1 : if E(σ) = true

M2 : if E(σ) = false

M1 ∩ M2 : if E(σ) = ⊥

We already discussed this modification at the end of the previous section. Ob-

viously, MustAct (E , S) becomes a larger set, and therefore, this leads to a more

powerful definition of causality. Again, we have to change the code generation

correspondingly, i.e., the definition of ActSf (ϕ, S), such that together with Defi-

nition 3.1, we obtain the above recursive definition. To this end, we propose the

following changes for the definition of ActSf (ϕ, S) with Ai := ActSf (ϕ, Si):

ActSf (ϕ, if σ then S1 else S2 end)

:=





{(γ1 ∧ σ, α) | (γ1, α) ∈ A1}∪
{(γ2 ∧ ¬σ, α) | (γ2, α) ∈ A2}∪
{(γ1 ∧ γ2, α) | (γ1, α) ∈ A1 ∧ (γ2, α) ∈ A2}





The idea is as follows: if an action α appears in both A1 and A2 with guards γ1

and γ2, then the condition γ1 ∧ σ ∨ γ2 ∧ ¬σ is responsible for the execution of α.

However, if σ can not be determined, then causality analysis may fail. It is easily

seen that γ1 ∧σ∨ γ2 ∧¬σ is equivalent to γ1 ∧σ∨ γ2 ∧¬σ∨ γ1 ∧ γ2, and therefore

we are allowed to add these guarded actions. Even if σ can not be determined,

causality analysis may now succeed if γ1 ∧ γ2 holds.

Again, this modification of ActSf (ϕ, S) will retain Theorem 1.1. However,

more programs can now be compiled: For example, program P12 given in Figure 5

becomes constructive: Using the original definition, we would obtain the surface

actions {(o, emit o), (¬o, emit o)} which lead to the equation (hardware circuit)

o = o ∨ ¬o which is not constructive. Using the modified definition, we obtain

(with propagation of Boolean constants) the surface actions {(true, emit o)} which

leads to the acyclic equation (hardware circuit) o = true.

module P16 :
output o;

if o then

if o else emit o end

end

end

Figure 6. Program P16

5.4 Proposal 4: Refine MustAct (E , if σ then S1 else S2 end)

Boussinot also proposed to update the environment E whenever a program part is

analyzed which requires that some particular values of the environment must hold.

In particular, he proposed to modify MustAct (E , S) as follows:

MustAct (E , if σ then S1 else S2 end)

=







MustAct (E true

σ
, S1) : if E(σ) = true

MustAct
(

E false

σ
, S2

)

: if E(σ) = false

MustAct (E , S1) ∩ MustAct (E , S2) : if E(σ) = ⊥

and similarly for CanAct (E , if σ then S1 else S2 end). Also these modifications

can be brought to the code generation level with the following changed definition

(with Ai := ActSf (ϕ, Si)), where [γ]τ
σ

means to replace every occurrence of σ in γ

with τ :

ActSf (ϕ, if σ then S1 else S2 end)

:=





{([γ1]
true

σ
∧ σ, α) | (γ1, α) ∈ A1}∪

{([γ2]
false

σ
∧ ¬σ, α) | (γ2, α) ∈ A2}∪

{(γ1 ∧ γ2, α) | (γ1, α) ∈ A1 ∧ (γ2, α) ∈ A2}





In a similar way, we can also use updated environments for other statements, in

particular for abortion and suspension:

• ActSf (ϕ, abort S when immediate σ)
:= {([γ]false

σ
∧ ¬σ, α) | (γ, α) ∈ ActSf (ϕ, S)}

• ActSf (ϕ, suspend S when immediate σ)
:= {([γ]false

σ
∧ ¬σ, α) | (γ, α) ∈ ActSf (ϕ, S)}

Again, the above modification of ActSf (ϕ, S) will retain Theorem 1.1. However,

more programs can now be compiled: For example, program P16 given in Figure 6

will now become constructive. Using the original definition, we obtain the surface

action {(o∧¬o, emit o)} which leads to the non-constructive equation o = o∧¬o.

Using the modified definition, we obtain the surface action {([¬o]true

o
, emit o)},

i.e., {(false, emit o)} which leads to the acyclic equation o = false.

module P17 :
output o1, o2;

if o1 then

emit o2;
if o2 else emit o1 end

end

end

Figure 7. Program P17

5.5 Proposal 5: Refine MustAct (E , emit o; S)

The last proposal we consider updates the environment if an emission is passed in

a sequence. Hence, we modify the definition of ActSf (ϕ, S1; S2) in case S1 is an

emission as follows:

ActSf (ϕ, emit o; S) = {(ϕ, emit o)} ∪ {([γ]true

o
, α) | (γ, α) ∈ ActSf (ϕ, S)}

Again, some programs become constructive with the above definition that were

not constructive with the original definition. As an example, consider program

P17 in Figure 7. Using the original definition, we would obtain the actions {(o1 ∧
¬o2, emit o1), (o1, emit o2)} which lead to the following equation system (hard-

ware circuit): {o1 = o1 ∧ ¬o2, o2 = o1}. It is easily seen that this equation system

can not be solved by ternary simulation, since it contains again the problem to prove

or disprove x∧¬x which is not valid in ternary logic. Using the modified definition,

we obtain instead the surface actions {(o1 ∧ [¬o2]
true

o2
, emit o1), (o1, emit o2)}, i.e.,

{(false, emit o1), (o1, emit o2)}, and therefore the simple acyclic equation system

{o1 = false, o2 = o1}.

5.6 Further Improvements

In the previous five subsections, we have reviewed Boussinot’s proposals for im-

proving causality analysis. This imposes the question if there are further improve-

ments, in particular, modifications of the code generation, i.e., the recursive defini-

tion of ActSf (ϕ, S).

First of all, we can clearly demonstrate that further modifications to improve

causality analysis are possible. In particular, we have proved in [26] that once

the equation system is obtained, adding all prime implicants yields an equivalent

equation system whose constructiveness implies the constructiveness of the original

one. Moreover, we proved in [26] that this yields a maximal causality analysis.

module P18 :
output o1, o2;

if o1 then

emit o2

‖
if o2 else emit o1 end

end

end

module P19 :
output o1, o2, o3, o4;

if o2 then emit o1 end

‖
if o1 ∧ o3 then emit o2 end

‖
if ¬o1 ∧ o4 then emit o2 end

‖
emit o3

‖
emit o4

end

Figure 8. Programs P18 and P19

As an example, consider program P19 given in Figure 8: we obtain the following

equation system E19 for the starting time of the program:

E19 :=















o1 = o2

o2 = o1 ∧ o3 ∨ ¬o1 ∧ o4

o3 = true

o4 = true

The above set of equations is not constructive, and none of the proposals in this pa-

per can be used to generate a better equation system. However, adding the missing

prime implicant o3 ∧ o4 in the second equation yields the equation

o2 = o1 ∧ o3 ∨ ¬o1 ∧ o4 ∨ o3 ∧ o4,

which makes the code constructive. Hence, adding prime implicants is more pow-

erful than the proposals of the previous sections. However, it is also more complex.

Nevertheless, also maximal causality analysis is not able to replace logical cor-

rectness: Program P18 given in Figure 8 yields {(o1 ∧¬o2, emit o1), (o1, emit o2)}
with the original code generator, and also with the maximal causality analysis. Al-

though program P18 has a unique behavior, this unique behavior can not even be

found by maximal causality analysis.

6 Conclusions

In this paper, we reviewed Boussinot’s proposals [5] for improving causality anal-

ysis. In contrast to Boussinot’s work, we did not simply modify the definitions of

CanAct (E , S) and MustAct (E , S). Instead, we changed the basis for code gen-

eration, i.e., the computation of guarded commands for the data flow such that

Boussinot’s proposals were obtained via the ternary interpretation of the data flow.

This is necessary to retain the beautiful relationship between causality analysis and

characterizations of the generated code like existence of dynamic schedules and

module P12a :
output o1, o2;

if o1 then emit o2

else emit o2

end

end module

Figure 9. Program P12a

stabilization of combinational hardware circuits with feedback loops as given in

Theorem 1.1.

As a result, we conclude that ‘causality of a program’ is not a binary issue.

Instead, there are different degrees of causality that can be implemented by a com-

piler that successively increases the complexity of the compilation but also the set

of programs that can be compiled. Hence, causality is not only a property of a

program alone, but also depends on the used code generation, since causality is a

syntactic property rather than a semantic property. As a result, different code gen-

erators may differ in causality analysis although they produce logically equivalent

code.

The proposals in Boussinot’s work and in this paper therefore naturally impose

the question whether there is a semantic definition of causality. Indeed, this se-

mantic definition can be obtained by a maximal causality analysis, as we showed

in [26]: by adding all prime implicants, we can show that the obtained equation

system Emax for a program P can be used for this definition. In particular, the se-

mantic definition of causality means that P is constructive iff Emax is constructive.

This also yields the most powerful code generator in terms of the programs that

it can handle in causality analysis. However, this requires to compute all prime

implicants of the related Boolean functions, and for this reason, it is much more

complex than the proposals given by Boussinot.

Finally, one may argue whether programs with a stronger notion of causality

are reasonable at all. In [3] (page 36), it is argued that program P10 has a unique

behavior so that reasonable code can, in principle, be generated for it. However,

it is further argued that these programs are not good in the sense that information

flows backwards in terms of program lines (not macro steps). However, we feel that

it is not quite clear what ‘backward information flow’ means, since program P12 is

rejected with the original definition of causality, while program P12a in Figure 9

is accepted. To analyze program P12a, one has to inspect the ‘then’ and ‘else’

branches in the same way as this has to be done for program P12. Therefore, also

in P12a there is a backward flow of information, but nevertheless, P12a is accepted,

while P12 is rejected. If backward information flow should be forbidden at all, then

we have to use functions f0 and g0 for the definitions in Sections 5.2 and 5.3, which

is however not done in current compilers.

To sum up, we conclude that stronger notions of causality are reasonable, as

long as they retain the relationship between stabilization of circuits, existence of

dynamic schedules and constructive programs.

References

[1] Benveniste, A. and G. Berry, The synchronous approach to reactive real-time systems,

Proceedings of the IEEE 79 (1991), pp. 1270–1282.

[2] Benveniste, A., P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic and R. de Simone,

The synchronous languages twelve years later, Proceedings of the IEEE 91 (2003),

pp. 64–83.

[3] Berry, G., The constructive semantics of pure Esterel,

http://www-sop.inria.fr/esterel.org (1999).

[4] Berry, G., The Esterel v5_91 language primer (2000).

[5] Boussinot, F., SugarCubes implementation of causality, Research Report 3487, Institut

National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis

Cedex (France) (1998).

[6] Bryant, R., D. Beatty and C.-J. Seger, Formal hardware verification by symbolic

ternary trajectory evaluation, in: Design Automation Conference (DAC) (1991), pp.

397–402.

[7] Brzozowski, J. and C.-J. Seger, Advances in asynchronous circuit theory part i,

Bulletin of the European association of Theoretical Computer Science (1990).

[8] Brzozowski, J. and C.-J. Seger, Advances in asynchronous circuit theory part II,

Bulletin of the European Association of Theoretical Computer Science (1991).

[9] Brzozowski, J. and C.-J. Seger, “Asynchronous Circuits,” Springer, 1995.

[10] Edwards, S., Making cyclic circuits acyclic, in: Design Automation Conference (DAC)

(2003), pp. 159–162.

[11] Eichelberger, E., Hazard detection in combinational and sequential switching circuits,

IBM Journal of Research and Development 9 (1965), pp. 90–99.

[12] Halbwachs, N., “Synchronous programming of reactive systems,” Kluwer, 1993.

[13] Howard, W., “To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and

Formalism,” Academic, New York, 1980 pp. 479–490.

[14] Huffman, D., Combinational circuits with feedback, in: A. Mukhopadhyay, editor,

Recent Developments in Switching Theory (1971), pp. 27–55.

[15] Kautz, W., The necessity of closed circuit loops in minimal combinational circuits,

IEEE Transactions on Computers C-19 (1970), pp. 162–166.

[16] Lassez, J.-L., V. Nguyen and E. Sonenberg, Fixed point theorems and semantics. A

folk tale., Information Processing Letters 14 (1982), pp. 112–116.

[17] Le Guernic, P., T. Gauthier, M. Le Borgne and C. Le Maire, Programming real-time

applications with SIGNAL, IEEE 79 (1991), pp. 1321–1336.

[18] Malik, S., Analysis of cyclic combinational circuits, in: Conference on Computer

Aided Design (ICCAD) (1993), pp. 618–625.

[19] Malik, S., Analysis of cycle combinational circuits, IEEE Transactions on Computer

Aided Design 13 (1994), pp. 950–956.

[20] Mendler, M., Timing analysis of combinational circuits in intuitionistic propositional

logic, Formal Methods in System Design 17 (2000), pp. 5–37.

[21] Mendler, M. and M. Fairtlough, Ternary simulation: A refinement of binary functions

or an abstraction of real-time behaviour, in: Workshop on Designing Correct Circuits

(DCC), Electronic Workshops in Computing (1996).

[22] Rivest, R., The necessity of feedback in minimal monotone combinational circuits,

IEEE Transactions on Computers C-26 (1977), pp. 606–607.

[23] Schneider, K., Embedding imperative synchronous languages in interactive theorem

provers, in: Conference on Application of Concurrency to System Design (ACSD)

(2001), pp. 143–156.

[24] Schneider, K., Proving the equivalence of microstep and macrostep semantics, in:

V. Carreño, C. Muñoz and S. Tahar, editors, Higher Order Logic Theorem Proving

and its Applications (TPHOL), LNCS 2410 (2002), pp. 314–331.

[25] Schneider, K., J. Brandt and T. Schuele, Causality analysis of synchronous programs

with delayed actions, in: Conference on Compilers, Architecture, and Synthesis of

Embedded Systems (CASES) (2004), pp. 179–189.

[26] Schneider, K., J. Brandt, T. Schuele and T. Tuerk, Maximal causality analysis, in:

Conference on Application of Concurrency to System Design (ACSD) (2005).

[27] Shiple, T., “Formal Analysis of Synchronous Circuits,” Ph.D. thesis, University of

California at Berkeley (1996).

[28] Shiple, T., G. Berry and H. Touati, Constructive analysis of cyclic circuits, in:

European Design and Test Conference (EDTC) (1996).

[29] Shiple, T., V. Singhal, R. Brayton and A. Sangiovanni-Vincentelli, Analysis of

combinational cycles in sequential circuits, in: Symposium on Circuits and Systems

(ISCAS), 1996, pp. 592–595.

[30] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math

5 (1955), pp. 285–309.

[31] Yoeli, M. and S. Rinon, Application of ternary algebra to the study of static hazards,

Journal of the ACM 11 (1964), pp. 84–97.

	Introduction
	Computing Actions and Instantaneous Statements
	Causality Analysis Based on Three-Valued Logic
	Problematic Cases for Causality
	Implementing Boussinot's Improvements
	Proposal 1: Attempt to Refine CanInstant(E,S)
	Proposal 2: Attempt to Refine MustInstant(E,S)
	Proposal 3: Refine MustAct(E,if then S1 else S2 end)
	Proposal 4: Refine MustAct(E,if then S1 else S2 end)
	Proposal 5: Refine MustAct(E,emit o;S)
	Further Improvements

	Conclusions
	References

