
��

AUTOMATA DESCRIBING

OBJECT BEHAVIOR

Bernhard Rumpe and Cornel Klein
Institut f�ur Informatik� Technische Universit�at M�unchen

����� M�unchen� Germany
http���www��informatik�tu	muenchen�de�

ABSTRACT

Relating formal re�nement techniques with commercial object�
oriented software development methods is important to achieve enhancement
of the power and �exibility of these software development methods� and tools�
We will present an automata model together with a denotational and an op�
erational semantics to describe the behavior of objects� Based on the given
semantics� we de�ne a set of powerful re�nement rules� and discuss their appli�
cability in software engineering practice� especially with the use of inheritance�

� INTRODUCTION

��� Software Development Methods� Theory and Prac�

tice

In the industrial practice of software engineering in the last �veteen years a mul�
titude of so�called software development methods have been developed� Such
methods� such as SSADM �AG���� OMT �RBPEL�	� or Fusion �CABDGHJ�
��
normally use di�erent description techniques for describing di�erent views of
a software product to be developed� On the one hand� these description tech�
niques provide notations which are well�suited for the communication with the

�This paper originated in the SysLab project� supported by the DFG �Deutsche
Forschungs Gemeinschaft� and by Siemens�Nixdorf

��� Chapter ��

application expert� and which can be e�ciently used for typical modeling prob�
lems such as data modeling e�g� entity��relationship�diagrams� �C����� On the
other hand� however� these description techniques lack a precisely de�ned se�
mantics� Even their syntax is sometimes only de�ned informally� e�g� by giving
examples� As a result� a lot of problems during the application of such methods
arise� which are caused by the ambiguous interpretation of the semantics of the
used modeling concepts�

� problems concerning the communication between di�erent persons in�
volved in the project occur due to ambiguities arising from informal se�
mantic de�nitions�

� it is impossible to de�ne formal relationships between di�erent system
views and to de�ne rules to transfer information between di�erent de�
scription levels�

� and moreover even in one description level there is a lack of clarity con�
cerning issues of �consistency� and �completeness��

As a consequence� tool systems assisting methods so called �CASE�Tools��
often do not cause the expected gain in productivity� The information which
can be acquired by the use of methods is� because of the de�cient semantic foun�
dation of the methods� not very evident� As a result of this the functionality
of tools is mostly restricted to document editing� and managing functions�

The vast literature concerning the commercial software development meth�
ods at least suggests that these methods are widely applied in industry� An�
other important research direction in academia� however� are formal methods�
These techniques are based on mathematical models of information processing
systems� such as process algebras �M���� �H����� structures of temporal logic
�L�	�� or stream processing functions �BDDFGW���� They are equipped with
powerful re�nement techniques� allowing to formally relate models on very dif�
ferent abstraction levels� As description techniques� various logical languages
are used�

While formal methods are theoretically appealing� their acceptance in in�
dustry is still in its infancy� We think that the main reasons for this are�

� the produced documents can not be used as the basis for communication
with the application expert� because they consist of logical formulae which
are di�cult to understand even for many software engineers�

� no description techniques are provided for typical modeling problems such
as e�g� data modeling�

� the re�nement calculus provides only a set of �low�level�� �ne�grained
re�nement rules with an emphasize on completeness� What is needed
are powerful� large�grained re�nement rules which are tailored for typical
re�nement problems and typical description techniques�

AUTOMATA DESCRIBING OBJECT BEHAVIOR ���

It is the aim of this paper to present a step towards closing the above�
sketched gap between theory and practice� We believe that both worlds� theory
and practice� can bene�t from such an approach� For formal methods� commer�
cially successful description techniques may aid in scaling up these methods for
their application in the development of larger systems� Commercial methods
may bene�t conceptually by more precisely de�ned concepts� and by CASE�
tools with enhanced functionalities such as improved consistency checks and
more powerful generation� and analysation facilities�

��� Overview of the paper

Typical for all object�oriented software development methods are description
techniques of the following two kinds�

� A description technique for data modeling�
These description techniques are normally based on the entity��relation�
ship�model �C���� which is extended in various ways� Data models de�
scribe the structure of the persistent data of a system� and some integrity
constraints� Entity��relationship�modeling is the most widely used mod�
eling technique�

� A description technique for modeling behavior�
State�Transition diagrams� or automata� are used to model the behavior
of the whole system� of subsystems or of single objects� For reducing the
complexity of the notation� hierarchical state�transition diagrams such as
statecharts �H��� have been proposed� which are used e�g� in OMT�

In this paper� we will present an automaton model which is well�suited for
the description of the behavior of objects� We will consider objects as being
active entities encapsulating a local data space and a local process� and which
communicate with asynchronous message passing� This kind of objects can
not be tackled adequately with well known modeling approaches� but they
are gaining importance in industry in the context of distributed client��server
applications�

The paper is organized as follows� In the following section� we de�ne the
abstract syntax and a concrete graphical notation for our automata� The main
purpose of the graphical notation is to illustrate the examples� In section �� the
denotational semantics of an automaton is given by a predicate characterizing
a set of stream processing functions see �BDDFGW���� �RKB����� and the op�
erational semantics is de�ned as the set of their executions� Based on the given
denotational semantics� we will continue by de�ne a calculus for re�nement
which is well�suited for the use by application experts and software engineers�
We show the usefulness of the re�nement rules by a short example�

��� Chapter ��

� MESSAGE PROCESSING AUTOMATA

In this section� we de�ne the abstract syntax for message processing automata
in short automata� as well as one notation for them�

We will use automata to model the input��output behavior of components�
For this purpose� we will not use a black�box�view� which only relates the in�
put and the output of a component� Instead� we will use an abstraction of the
internal structure of a component� This approach is also called the �state�box�
view�� e�g� in the cleanroom software engineering method �MDL���� �HM�����
We will also abstract from the concrete messages which objects may receive
and send� Instead� we model equivalence classes of these messages� called char	
acters� One such equivalence class is for example the set of all messages of the
same type� abbreviated by the name of this type�

An automaton describes the reaction of a component with respect to a
given input stimulus and a given state� The automaton consumes the input
message� produces a sequence of output messages� and enters a new state for
processing the next input message� Thus� transitions are labeled with sequences
of messages� as this is the case in mealy automata �HU����

Our approach for modeling the input��output behavior of components is
closely related with I�O�automata �J���� �J���� �LS����� One transition of an
I�O�automaton can input a character� output a character� or it can be an
internal transition� The processing of an input character triggers a sequence of
further transitions� where each transition may output a further character� To
guarantee that the environment of an I�O�automaton may send messages at any
point in time� an additional constraint called �input enabledness� is imposed
on the transition relation� Because an I�O�automaton can only accept or emit
one character per transition� it needs a �ne grained set of control states� Our
notion of an automaton is more abstract� it labels transitions with the input
character as well as with output characters� thus modeling the input characters
causal for the output� Therefore� no intermediate control states are necessary�
One transition models the handling of a complete message� describing input
and output as well as the internal state change� We only use abstract data
states� characterizing equivalence classes of the data states of the modeled
components�

��� Abstract Syntax for Automata

The abstract syntax contains only the essence of the concrete textual or graph�
ical notation of the automaton� while it ignores the keywords used or the con�
crete shape of the graphical symbols� We de�ne the abstract syntax of an
automaton as follows�

AUTOMATA DESCRIBING OBJECT BEHAVIOR ���

De�nition � �Message Processing Automaton�
A message processing automaton is a �	tuple �S�M���I�� consisting of

� a set of states S�

� a set of input and output characters M�

� a state transition relation � � S�M�S�M�� where the
rst two compo	
nents are the source state and the input message and the second two
components are the destination state and a sequence of output messages�
and

� a set I � S�M� of pairs each consisting of a start state and an initial
output�

�End De�nition�

I will be called the set of initial elements� Instead of �s�m�t�out��� we
will often write ��s�m�t�out�� For given source s and input m� we write
��s�m� as a shorthand if there exists a destination t and output out such
that ��s�m�t�out��

An automaton models the input��output behavior and the state changes
of an object� which processes messages from the set M� A sequence of charac�
ters is processed in the following way� Nondeterministically� according to the
�rst character of the input stream and the current state of the automaton a
matching transition from � is selected� The transition is labeled with output
characters� which are sent out during the processing of the input character�
The automaton enters a new state according to the transition� in which he
continues the processing of the input stream where the �rst character has been
removed�

A transition models the fact that the output of the transition causally de�
pends on the input of the transition� During the processing of a transition� the
output is emitted� This does not mean that the output immediately follows
the input� but only that the output is caused by the input� and is sent some�
times later� This corresponds to possible message delay between distributed�
asynchronously communicating objects�

In contrast to �nite automata �T���� we also allow in�nite state sets� and
extend transitions with output� We do not use �nal states� because we do not
model terminating components� but components with an in�nite lifetime�

De�nition � �Total Automaton�
An automaton �S�M���I� is called total� if for each input in each state at least
one transition exists� �s�S�m�M� ��s�m� ���� An automaton which is not total
is called partial�

�End De�nition�

��	 Chapter ��

��� Notation for Automata

To illustrate our automata model� in the sequel we will use a graphical repre�
sentation for automata� Nodes will represent equivalence classes of� states of
an automaton� while directed arcs will be used to represent the transitions of
an automaton� Another possibility for the concrete syntax of automata might
be the use of tables� as this is the case in �J��a�� �P��� and �S�
�� We will not
discuss the various advantages of graphical and textual notations for software
engineering here� An excellent survey concerning this topic can be found in
�P����

Example � �Parity automaton�
The automaton in
gure � describes the behavior of an object computing the
parity of its input messages� The automaton has two states� representing an
even or odd sum of the bits received so far� The current parity can be requested
by issuing a ��

�End Example�

Parity� M � f��L��g

���
�� ��

��L

� L�

L�

Figure 	� Graphical representation of the parity automaton

In general� the nodes represent the states S� The state transition relation � is
given by arcs� which are labeled with one input character m and with an output
sequence out in the form m�out� The empty output sequence � is omitted for
simplicity� The initial states are characterized by arcs without source node�
which are labeled with the initial output in the form �out� Only the set M of
input� and output characters has to be given explicitly�

In software engineering methods like �SM���� �B�
�� �CABDGHJ�
� or �J���
state transition graphs or hierarchical extension of these are used to represent
the behavior of components� Due to the fact that the state space of compo�
nents is in�nite in general� in these methods one node of a graph represents an
equivalence class of states� To allow for the formulation of propositions about

AUTOMATA DESCRIBING OBJECT BEHAVIOR ���

states� pre� and postconditions are used� We will illustrate this by specifying an
object which realizes an unbounded FIFO�bu�er see �gure ��� Transitions are
additionally labeled by pre� and postconditions in a suitable formal language�
For the pre� and postconditions we use the well�known Hoare notation� The
variable s denotes the source state and the variable s� denotes the target state
of a transition� The functions �� ft and rt are de�ned in the appendix� Because
one node of the graph represents a non�empty set of states� there has to be a
mapping from nodes in the graph to sets of states� This mapping is de�ned by
conditions which are attached to the nodes and which constitute a partition of
the state space�

Buffer� M � D � f�g� S � D�� I � f�����g

d� fs���d�g

fs��d�g ��d

���

s��

f�s��g ��ft�s� fs��rt�s�g
d� fs��s	dg

s���

�

Figure �� Graphical representation of a bu�er automaton

� SEMANTICS FOR AUTOMATA

We now give a denotational semantics for our automata� The denotational
semantics associates a set of stream processing functions with each automa�
ton� Stream processing functions provide an abstract� compositional semantics
for asynchronous communication objects �BDDFGW���� We will also give an
operational semantics� associating a set of transition sequences with each au�
tomaton� These transition sequences re�ect the intuitive understanding of the
operational behavior of an automaton�

��� Denotational Semantics

The semantic model of stream processing functions is introduced in the ap�
pendix� The semantics of an automaton is a set of stream processing functions�

��� Chapter ��

A set of stream processing functions can either be viewed to model an un	
derspeci
ed agent� i�e� as an agent in the speci�cation of which some details
have been left open� or as a model of a non	deterministic agent� i�e� as an
agent which non�deterministically chooses between alternatives during its life�
time� The di�erence between nondeterminism and underspeci�cation can not
be observed�

Non�determinism in our automata occurs because of the non�deterministic
choice of the transition relation �� Here� any transition with matching source
state and input character may be chosen�

De�nition
 �Semantics for Total Automata�
The semantics of a total automaton �S�M���I� is de
ned as follows�

���S�M���I���c def
� f g� M�

s� M� j
	 h� ���S�M���I���C� �si�outi��I� �in� g�in��outi�h�si�in� g

where �����C is the greatest set of state parameterized functions satisfying the
following equation �the greatest
xpoint via set inclusion�

���S�M���I���C def
� f h� S�M� s� M� j ��s� h�s��� � ��

�m�s�	t�out���s�m�t�out�
 	h�����S�M���I���C�
�in� h�s�m�in� � out�h��t�in�g

�End De�nition�

The recursively de�ned set ���S�M���I���C consists of state parameterized
stream processing functions� According to a given input message m and the
current state s non�deterministically a transition �s�m�t�out� is chosen� the
output out is emitted and the new state t is entered� To allow for maximum
non�determinism� a new function h� is chosen to model the behavior in the new
state� For empty input streams� an empty output stream is emitted�

In �R��� it has been shown that the

� semantics of total automata is well�de�ned�

� that automata cannot be inconsistent in the sense that they denote an
empty set of stream processing functions� if set I is nonempty�

A partial automaton can be viewed as shorthand for an automaton which
in certain cases leaves the target state and the output completely unspeci�ed�
Such an automaton allows for any behavior in cases where the state transition
relation is partial for certain inputs� We call this situation chaos� Partial
automata can easily be totalized by adding auxiliary transitions� This way�
the semantic de�nition for partial automata can be reduced to the semantic
de�nition for total automata�

AUTOMATA DESCRIBING OBJECT BEHAVIOR ��

��� Operational Semantics

We now de�ne the operational semantics for our automata� as a set of execu�
tions� An execution describes the transitions of an automaton which are used
during the processing of a certain input sequence� An execution also describes
which output is produced and how the output causally depends on the input�

An execution is composed of the following components� which describe so�
called execution elements�

s in�out t is a normal� transition with output� when ��s�in�t�out��

out� s� describes an initial element� when �s��out���I�

Formally the execution elements are members of the sets �S�M�S�M�� and
�S�M���

De�nition � �Executions�
An execution is a
nite or in
nite sequence of execution elements� The
rst
element of an execution has to be an execution element without source state�
while all other elements have to be execution elements corresponding to transi	
tions� The source	 and target states of subsequent execution elements have to
be identical� It is depicted as�

out� s�
in��out� s�

in��out� s� � � �

�End De�nition�

Each execution describes the set of the traversed states as well as the pro�
cessed input and the produced output during execution of the transitions� The
operational semantics of an automaton is the set of all possible executions�

In �R��� it has been shown that the denotational and operational semantics
of our automata correspond to each other� The theorem proven shows that the
intuitive understanding of the computations� which is formally modeled using
the operational semantics� corresponds to the denotational semantics� which is
better suited for the correctness proof of the re�nement rules in the following
section�

� REFINEMENT TECHNIQUES

Re�nement techniques are a necessary prerequisite for e�cient software pro�
duction� for reusing given components� and for a transformational software
development starting with very abstract� underspeci�ed components and re�
sulting in concrete and e�cient executable code� Another area of application
is the inheritance of behavior from a super�class to a sub�class� This has been
studied extensively in another context in �PR�
��

��� Chapter ��

��� The Re�nement Calculus

For the tractability of a re�nement calculus it is important that the transforma�
tion rules are described on the syntactic level� Nevertheless� the transformation
rules have to have a well de�ned underlying mathematical semantics for ensur�
ing their correctness� The re�nement relation we use at the semantic level is the
inclusion relation between sets of stream processing functions� This way� re�ne�
ment corresponds to the reduction of underspeci�cation or non�determinism��

We de�ne re�nement as follows�

De�nition � �Re�nement�
An automaton �S��M����I�� is called re�nement of the automaton �S�M���I��
i�

��S�� M� ��� I���� � ��S� M� �� I����

This re
nement relation is denoted by

S� M� �� I� � S�� M� ��� I��

�End De�nition�

Note that the re�nement relation is a transitive relation due to the fact that
the inclusion between sets of stream processing functions� is transitive�

Transformation rules often need additional constraints so called application
conditions� which have to be ful�lled to ensure that a transformation rule can
be successfully applied� While from the theoretical point of view a complete
and powerful set of re�nement rules might be desirable� from the practical point
of view it is more important that these conditions can be e�ectively checked�

The transformation rules given in �gure � are very elementary� Their full
power only reveals by their adequate composition to more powerful transfor�
mation rules�

These rules can be understood as follows�

�Arb� allows to start a development process by creating a new automaton with
arbitrary state set� message set� transition relation and initial states�

�RemI� allows to re�ne an existing automaton by removing initial states thus
reducing the initial choice and thus nondeterminism�

�RemT� allows for the removal of transitions if alternative transitions exist�
also reducing nondeterminism�

�AddT� allows the addition of transitions if so far no corresponding transi�
tions exist� Therefore the automaton gets more robust� because chaotic
behavior is replaced by an explicit description of behavior�

AUTOMATA DESCRIBING OBJECT BEHAVIOR ���

Arb�

�S�M���I�

t

RemI�
�S�M���I�

�S�M���I��

t
I� � I

RemT�
�S�M���I�

�S�M����I�

t
�� � �

�s�S�m�M� ��s�m� � ���s�m�

AddT�
�S�M���I�

�S�M����I�

t
� � ��

�s�S�m�M� ���n���s�m� � ��s�m�

RemS�
�S�M���I�

�S��M����I�

t
reach�S�M���I� � S� � S

�� � � � S��M�S��M�

AddS�
�S�M���I�

�S��M���I�

t
S � S�

RefS�
�S�M���I�

�S��M����I��

u
v �	 S� � S total� surjective

���f�s�m�t�out� j ��� s�m�� t�out�g
I� � f�s��out� j ���s���out��Ig

Figure �� Re�nement rules

�RemS� allows for the removal of non�reachable states� where reach denotes
the set of reachable sets of an automaton�

�AddS� allows for the addition of new states�

�RefS� allows for the re�nement of states� This way a single state can be

��� Chapter ��

re�ned into a more �ne grained set of states�

As already mentioned� for the practical applicability of a re�nement calculus
it is important that the applicability conditions of the re�nement rules can be
checked automatically� If the state set and the transition set are both �nal�
as this is the case in description techniques for software engineering methods�
all the applicability conditions of all re�nement rules can in fact be checked
automatically� However� the situation gets more complex if one uses a �nite
representation of an automaton which has in�nite state� and transition sets� as
this was the case in section ���� We will not study this further� however one
soon gets problems with the decidability of the applicability conditions� See
also �PR�
� and �PR�
b��

The re�nement rules given in �gure � leave the syntactic interface of a
re�ned component unchanged� In �R��� an extension to re�ne the interface of
an object is also given� It allows for extending the input and output set of
characters as well as re�ning one abstract character such as a message name�
by a set of characters such as the set of possible messages�� It also may be
used to add further components to messages arriving at or emitted from an
object� Especially object�identi�ers for identifying the receiver of a message
may be added� Thus object�identi�ers may be left out if the abstract behavior
of an object should be modeled and only later be introduced if the object are
modeled more concrete for implementation purposes�

��� Re�nement Example

In order to demonstrate the usefulness of our calculus� we now show a small
example for a development process where the behavior of objects is re�ned
step by step by the presented re�nement calculus� In �gure
 the development
process of the behavior of objects of a class Figure is shown� In �gure � the
continued development for subclass
D�Figure is depicted� The development
is somewhat erratic as it often is in practice�� because it uses intermediate
development steps that do not contribute to the result� but are undone by
other development steps� This is due to our intension of showing all kinds of
re�nement steps� their �exibility and their combined application within one
example� For simplicity� we do not model output within this example� How�
ever� it would be no problem to add output restrictions at any stage of the
development process�

Objects of class Figure represent objects shown on the screen� These ob�
jects may be selected and deselected by sending appropriate messages to them�
The development process shown in �gure
 of Figure�objects consists of the
following steps� corresponding to applications of the rules of our calculus�

AUTOMATA DESCRIBING OBJECT BEHAVIOR ���

deselect

deselect

sel�False

deselect

sel�True

deselect

select

sel�False

deselect

Step
� �RemI�

Step �� �AddT�

Step � �Arbitrary�

Step �� �RemS�

Step �� �RemT�

Step �� �AddS�

sel�True

sel�True

deselect

select

sel�False

sel�True

sel�Errordeselect

deselect

select

select

sel�True

sel�Error

deselect

select

sel�True

sel�Error

sel�False

sel�False

sel�False

select

deselect� select

deselect� select

Figure
� Development of behavior of class Figure

��� Chapter ��

Step � � At the beginning of our development� we start with a very simple au�
tomaton� It has two states re�ecting a selected and an unselected �gure�
It has one transition modeling what happens if the �gure object is sent
a select if it is not yet been selected� Both states are initially allowed�

Step � � We want to add transitions for a deselection� but what happens if
the �gure is already deselected� We decide to introduce an additional
state� re�ecting this error�

Step
 � We now add deselect�transitions� leaving open whether deselect
results in an error or is just being ignored in the deselected state�

Step � � The customer wants a robust implementation of deselect� There�
fore� we remove the possibility to result in an error� Another alternative
would be to require the output of a warning message in the the left
deselect�loop�

Step � � The previously introduced error state is now super�uous and can be
removed�

Step � � In a last development step we decide that a newly introduced �gure
is automatically selected and therefore remove one initial element�

The development for class Figure is now �nished� It describes the behavior
of any object of this class� in terms of the state change according to a given
sequence of input messages�

The substitutability principle �WZ���� �W���� for objects now enforces the
inheritance of this automaton to all subclasses of Figure� This not only means
that the signature is preserved or extended� but that behavior is inherited in
some way� An automaton thus can be seen as an interface description which
may be viewed as a contract on which clients may rely on�

We now continue the development process by developing a class
D�Figure�
which is a subclass of Figure�
D�Figure in addition allows to �ll and empty
its area� We start with the inherited automaton from class Figure�

Step � � We add transitions for �lling end emptying selected �D��gures� The
�gures remain selected�

Step � � Filling changes the state of a �D��gure� This is not modeled� There�
fore� we re�ne the in which a �gure is selected into two states� This has
the e�ect� that every transition with source or destination in the unre�ned
state is duplicated� This way� underspeci�cation has been introduced�

Step � � We now remove some transitions to describe the behavior of fill
and empty in more detail� In addition we model that a newly created
�D��gure is not �lled�

AUTOMATA DESCRIBING OBJECT BEHAVIOR ���

sel�True
�lled cont�

sel�True
no contents

�ll� empty

sel�True
�lled cont�

sel�True
no contents

Step �� �AddT�

Step �� �RefS�

Step �� �RemT� and �RemI�

deselect

sel�True

deselect

sel�False

�ll� empty

select

�ll� empty
deselect

deselect

�ll� empty

sel�False

select

deselect

deselect

sel�False

�ll

�ll

empty

select

deselect

deselect
empty

�ll� empty

select

select

Figure �� Development of behavior of class
D�Figure

The presented development steps should be su�cient to show that the re�
�nement calculus can be applied to real application development problems� and
that the rules of our calculus exactly re�ect the development steps used for the
development of behavior descriptions� However� this small example also shows
that a rigid tool support is inevitable for larger example�

� RELATED WORK

Recently� various approaches for formalizing methods of systems and software
development were given� Well known are the so�called �meta�models�� origi�
nating in the context of tool integration� see �T��� and �HL����� However� by
this �models� almost only the abstract syntax of the description techniques is
captured� An overview of several projects concerning the integration of struc�

��	 Chapter ��

tured methods with techniques of formal speci�cation can be found in �SFD����
In �H�
�� the British standard method SSADM �AG��� is formalized using the
algebraic speci�cation language Spectrum �BFGHHNRSS���� This work is
continued in the project SysLab �B�
a�� It is the aim of this project to pro�
vide a scienti�cally founded approach for software� and system development�
SysLab emphasizes the early phases analysis� requirements de�nition� log�
ical design�� prototyping� reuse� and code�generation� In the context of the
SysLab�project� a multitude of description techniques have been formalized
up to now� Examples are entity��relationship�diagrams �H���� �H����� data
�ow techniques �N��a� or time sequence diagrams �F���� The formalization
in most of these cases is based on a so�called mathematical system model or
on Focus� which have been presented in �RKB��� and �BDDFGW���� This
mathematical system model� which is based on streams and stream processing
functions� is also the basis for this paper� and it is presented in the appendix�

The specialization of automata has been a research topic of some groups�
especially in the context of object oriented systems�

In software engineering methods �RBPEL�	�� �CABDGHJ�
� oder �SM����
automata are used for the behavior modeling of systems and its components�
Due to the informal semantics of the description techniques used in these meth�
ods in general no guidance is given for determining the relationship of automata
of classes being in an inheritance�relationship�

Closely related to our approach is the work presented in �PR�
�� However�
in �PR�
� output actions are not considered and only one powerful� re�nement
rule is given� The semantic model of stream processing functions is not used�
First order formulae are used for expressing the pre� and postconditions of
transitions�

The work in �LW���� �AC���� �C��� is based on the basic principle of substi	
tutability� which has been presented in �WZ��� and �W���� Here� substitutabil�
ity means that elements objects� of a supertype can safely be substituted by
objects of a subtype� These approaches also study the specialization of behav�
ior in the context of subtyping� which is interesting if the behavior of methods
of objects is specialized by inheritance� The concepts developed in these ap�
proaches are partially integrated in some object�oriented languages� e�g� in
Modula�� �CDGJKN���� �A����

Nierstrasz uses �nite automata in �N��� for typing objects� The automata
are used to model which messages are accepted by an object in which states�
This way� the type of an object not only contains information about the static
method interface� but also information about the sequences of possible method
invocations of a client� Moreover� Nierstrasz de�nes a subtype relation which
corresponds to a behavior specialisation� The subtype�relation is suitable for
sequential as well as for distributed� parallel communication� However� the
construction of the subtype�relations gets very complex� possibly due to the
underlying synchronous communication paradigm which is based on Milner�s
CCS �M����

AUTOMATA DESCRIBING OBJECT BEHAVIOR ���

A simpler re�nement calculus which is based on asynchronous communica�
tion and an I�O�automaton approach is given in �BHS���� There� input� and
output characters are not distinguished and only one character is allowed for
each transition� The semantics and the re�nement rules are based on a trace
semantics�

In �PR�
b� we studied how automata can be integrated in the algebraic
speci�cation language Spectrum �BFGHHNRSS���� There� an automaton is
viewed as a special notation for a logical axiom� This way� a visual description
technique is integrated in an axiomatic speci�cation language� while the power
and �exibility of Spectrum is available in cases where automata can not be
used adequately� Examples where Spectrum can be applied are pre� and
postconditions� as they have also been used in this paper�

The translation process of automata� which have been developed in the de�
sign phase� in an implementation using current object�oriented programming
languages like C�� �S�	� is error�prone� Therefore� in �R�
� we used �nite
automata the transitions of which are labeled with executable program frag�
ments and executable pre� and postconditions� This way� automata get part
of the programming language� The resulting language called C��STD contains
concepts of design and implementation and can therefore be viewed as a very�
high level programming language� For C��STD a prototypical implementation
exists�

� CONCLUSIONS

We have presented an automata model for the design phase of object�oriented
software engineering methods� A denotational and an operational semantics
have been given� which correspond with each other� Because the denotational
semantics was based on stream processing functions� the re�nement techniques
of stream processing functions could be used to de�ne re�nement rules for our
automata�

The example of a development process has shown that the presented set
of re�nement rules is simple� �exible and powerful� Therefore� the re�nement
rules seem to be well�suited for integration in commercial software engineering
methods� and tools�

Thank

We thank Klaus Bergner and Manfred Broy for discussing ideas with us and
Bernhard Sch�atz for a thorough reading of this paper�

��� Chapter ��

A STREAMS AND STREAM PROCESSING

FUNCTIONS AS A MODEL OF INTER�

ACTIVE SYSTEMS

Stream processing function provide an abstract model for information process�
ing systems and their components� Objects are modeled as components commu�
nicating asynchronously with their environment by the exchange of messages�
Objects have an input port for receiving messages from their environment� and
an output port for sending messages to their environment�

A�� Streams

In our model� the behavior of an object is modeled by its runs� which describe
the relationship between the messages arriving at the input port of the object
and the messages sent on the output port of the object� We assume that for
each run the events on a port are totally ordered� which means that for two
di�erent events always one temporarily precedes the other� This allows to
model the communication history on a port by a stream of messages�

A stream is a �nite or in�nite sequence of messages� If M denotes the set
of messages� M� the set of all �nite sequences of messages and M� the set of
all in�nite sequences of messages� for the set of all streams over M � denoted by
M�� the equation

M� � M� �M�

holds�
We will use the following operations and relations�

� � � M� �M� � M� denotes the concatenation of two streams� i�e� the
stream which is obtained by putting the second argument after the �rst�
The operator � is usually written in in�x notation� We assume that

s �M��s�t � s�

holds� i�e� the concatenation of an in�nite stream s with a stream t yields
the stream s� � will also be used to concatenate a single message with a
stream�

� � � M� � Nat � f�g� delivers the length of the stream as a natural
number or �� if the stream is in�nite�

� Filter � PM� � M� � M� denotes the �lter�function� Filter N� s�
deletes all elements in s which are not contained in set N �

� ft � M� � M delivers the �rst element of a stream if the stream has at
least one element� and is unde�ned if its argument is the empty stream�

REFERENCES ��

� rt � M� �M� removes the �rst element of a stream if the stream has at
least one element� and is unde�ned if its argument is the empty stream�

� v � M� �M� � Bool is the pre�x order between streams� mvn holds if
there exists an u such that m�u � n�

Using streams� the communication history of an object can be represented
by a pair of streams of messages� where the �rst component represents the
input history of the object and the second component represents the output
history of the object�

A�� Stream processing functions

The behavior of an object is modeled by a stream processing function mapping
a stream of input messages to a stream of output messages�

Behavior � M� �M�

However� not every function with this functionality represents an adequate
model of an object� In reality� it is impossible that at any point of time the out�
put depends on future input� To model this fact� we impose an additional math�
ematical requirement� We require stream processing functions to be monotone
with respect to to the pre�x ordering on streams�

xvy�Behaviorx�vBehaviory�

An additional requirement� continuity� has also to be imposed on stream
processing functions as models of objects� We will not de�ne continuity here�
but refer to �BDDFGW���� All monotone and continues stream processing
functions are denoted by the function arrow s��

While one stream processing function can be used to model a deterministic
agent� we also have to take into account nondeterminism� Nondeterminism
occurs during the development process due to underspeci
cation� or during the
lifetime of an agent due to non	deterministic choice during the execution� In
our model� non�deterministic agents are modeled by sets of stream processing
functions�

Please note that all the above de�nitions can easily be extended to objects
with more than one input� or output port� see �RKB��� or �BDDFGW����
While the model of stream processing functions could only be sketched here�
in these papers also more details are given�

References

�A��� M� Abadi� Baby Modula�� and a Theory of Objects� SRC Research Re�
port ��� Digital Equipment Corporation� February ����

��� REFERENCES

�AC��� R� M� Amadio and L� Cardelli� Subtyping Recursive Types� SRC Research
Report
�� Digital Equipment Corporation� January ����

�AG��� C� Asworth and M� Goodland� SSADM � A practical approach� McGraw�
Hill� ����

�B��� G� Booch� Object Oriented Analysis and Design with Applications� Ben�
jamin�Cummings Publishing Company� Inc�� ����

�B��a� M� Broy� SysLab � Projektbeschreibung� Internal project report� October
����

�BDDFGW��� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and
R� Weber� The Design of Distributed Systems � An Introduction to fo�
cus � revised version �� SFB�Bericht ���������� A� Technische Universit�at
M�unchen� January ����

�BFGHHNRSS��� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hu�mann�
D� Nazareth� F� Regensburger� O� Slotosch� and K� St�len� The Requirement
and Design Speci�cation Language Spectrum� An Informal Introduction�
Version ��� Part � Technical Report TUM�I���� Technische Universit�at
M�unchen� ����

�BHS�
� M� Broy� H� Hu�mann� and B� Sch�atz� Graphical Development of Consistent
System Speci�cations� In FME���� Formal Methods Europe� Symposium ����
LNCS� Springer�Verlag� Berlin� � ��
� to appear�

�C�
� P�P� Chen� The Entity�Relationship Model � Towards a Uni�ed View of
Data� ACM Transactions on Database Systems� ������
� ��
�

�C��� L� Cardelli� Extensible Records in a Pure Calculus of Subtyping� SRC
Research Report �� Digital Equipement Corporation� January ����

�CABDGHJ��� D� Coleman� P� Arnold� S� Bodo�� C� Dollin� H� Gilchrist� F� Hayes�
and P� Jeremaes� Object�Oriented Development� The Fusion Method� Pren�
tice Hall� ����

�CDGJKN��� L� Cardelli� J� Donahue� L� Glassman� M� Jordan� B� Kalsow� and
G� Nelson� Modula�� Language De�nition� ACM SIGPLAN NOTICES�
����������� August ����

�F��� C� Facchi� Methodik zur formalen Spezi�kation des ISO�OSI Schichtenmod�
ells� Herbert Utz Verlag Wissenschaft� ���� PhD Thesis�

�H��� C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall� ����

�H��� D� Harel� Statecharts� A Visual Formalism for Complex Systems� Science
of Computer Programming� ��������� ����

�H��� R� Hettler� Zur �Ubersetzung von E�R�Schemata nach spectrum� Technical
Report TUM�I����� Technische Universit�at M�unchen� ����

�H��� H� Hu�mann� Formal Foundations for SSADM� Technische Universit�at
M�unchen� Habilitation Thesis� ����

�H��� R� Hettler� Entity�Relationship�Datenmodellierung in axiomatischen Spez�
i�kationssprachen� Tectum Verlag� M�unchen� ���� PhD Thesis�

�HL��� H�J� Habermann and F� Leymann� Repository � eine Einf	uhrung� Handbuch
der Informatik� Oldenbourg� ����

REFERENCES ���

�HM��� A� Hevner and H� Mills� Box�Structured Methods for Systems Development
with Objects� IBM Systems Journal� ��������� ����

�HU��� J� Hopcroft and J� Ullman� Einf	uhrung in die Automatentheorie� Formale
Sprachen und Komplexit	atstheorie� Addison�Wesley� ����

�J��� B� Jonsson� A Model and Proof System for Asynchronous Networks� In
Proc
 �th ACM Symposium on Principles of Distributed Computing� ACM�
����

�J��� B� Jonsson� Compositional Veri�cation of Distributed Systems� PhD thesis�
Uppsala University� Uppsala Sweden� ����

�J��� I� Jacobson� Object�Oriented Software Engineering � a Use Case Driven
Approach� Addison Wesley� ����

�J��a� R� Janicki� Towards a Formal Semantics of Tables� Technical Report �
��
CRL� September ����

�L�� L� Lamport� The temporal logic of actions� Technical Report ��� Digital
Equipment Corporation� Systems Research Center� Palo Alto� California�
December ���

�LS��� N� Lynch and E� Stark� A Proof of the Kahn Principle for Input�Output
Automata� Information and Computation� �������� ����

�LW��� B� Liskov and J� M� Wing� A New De�nition of the Subtype Relation� In
ECOOP ��� pages ���� ����

�M��� R� Milner� Communication and Concurrency� Prentice�Hall� ����

�MDL��� H� Mills� M� Dyer� and R� Linger� Cleanroom Software Engineering� IEEE
Software� ������� ����

�N��� O� Nierstrasz� Regular Types for Active Objects� In Andreas Paepke� editor�
OOPSLA ��� ACM Press� October ����

�N��a� F� Nickl� Ablaufspezi�kation durch Daten�u�modellierung und stromverar�
beitende Funktionen� Technical Report TUM�I����� Technische Universit�at
M�unchen� ����

�P��� C� Parnas� Tabular Representation of Relations� Technical Report �
��
CRL� October ����

�P��� M� Petre� Why Looking Isn�t Always Seeing� Readership Skills and Graph�
ical Programming� Communications of the ACM� ���
�������� June ����

�PR��� B� Paech and B� Rumpe� A new Concept of Re�nement used for Behaviour
Modelling with Automata� In FME���� Formal Methods Europe� Symposium
���� LNCS ���� Springer�Verlag� Berlin� October ����

�PR��b� B� Paech and B� Rumpe� Spezi�kationsautomaten� Eine Erweiterung der
Spezi�kationssprache Spectrum um eine graphische Notation� In Formale
Grundlagen f	ur den Entwurf von Informationssystemen� GI�Workshop�
Tutzing �����
� Mai ��� �GI FG ����� EMISA�� Institut f�ur Informatik�
Universit�at Hannover� May ����

�R��� B� Rumpe� Verwendung endlicher Automaten zur Implementierung des dy�
namischen Verhaltens von C Objekten� In G� Snelting U� Meyer� editor�
Semantikgestuetzte Analyse� Entwicklung und Generierung von Program�
men� ����� Justus�Liebig�Universit�at Giessen� March ����

��� REFERENCES

�R�
� B� Rumpe� Formale Methodik f	ur den Entwurf verteilter objektorientierter
Systeme� Phd�thesis� to appear� Technische Universit�at M�unchen� ��
�

�RBPEL�� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen�
Object�Oriented Modeling and Design� Prentice Hall� ���

�RKB��� B� Rumpe� C� Klein� and M� Broy� Ein strombasiertes mathematisches Mod�
ell verteilter informationsverarbeitender Systeme � Syslab Systemmodell ��
Technical Report TUM�I���� Technische Universit�at M�unchen� Institut f�ur
Informatik� March ����

�S�� B� Stroustrup� The C�� Programming Language� Addison�Wesley� ���

�S��� K� Spies� Funktionale Spezi�kation eines Kommunikationsprotokolls� SFB�
Bericht ��������� A� Technische Universit�at M�unchen� Mai ����

�SFD��� L�T� Semmens� R�B� France� and T�W�G� Docker� Integrated Structued
Analysis and Formal Speci�cation Techniques� The Computer Journal�
���
��
���
�� ����

�SM��� S� Shlaer and S� Mellor� Object Lifecycles� Modeling the World in States�
Yourdon Press� ����

�T��� I� Thomas� PCTE interfaces� Supporting tools in software�engineering en�
vironments� IEEE Software� pages ����� November ����

�T��� W� Thomas� Automata on In�nite Objects� In J� van Leeuwen� editor� Hand�
book of Theoretical Computer Science� volume Band B� chapter �� pages
������ Elsevier Publisher Amsterdam� ����

�W��� Peter Wegner� Concepts and Paradigms of Object�Oriented Programming�
OOPS Messenger� �������� ����

�WZ��� P�Wegner and S� Zdonik� Inheritance as an Incremental Modi�cation Mech�
anism or What Like Is and Isn�t Like� In S� Gjessing and K� Nygaard�
editors� Proceedings ECOOP ���� LNCS ���� pages ������ Springer Verlag�
Oslo� August ����

