
MODEL-BASED DEPLOYMENT WITH AUTOFOCUS: A FIRST CUT

Jan Romberg

Institut für Informatik
TU München

D-80290 München, Germany
romberg@in.tum.de

ABSTRACT

Embedded control applications have to meet detailed perfor-
mance requirements on their interactions with the external envi-
ronment. Examples for such requirements include response times,
execution rates, and low-level interactions with hardware. Current
approaches to embedded real-time software development are often
code-centric and do not allow predictions about the satisfiability
of performance constraints. The underlying platform is an intrin-
sic part of the design, yielding poor portability.

We describe model based deployment, an approach to extend
the capabilities of the AutoFOCUS software development method
towards the design and implementation of distributed real-time
systems. We show how the technical architecture can be expressed
in terms of our modeling language, and how performance predic-
tions can be drawn from the system model. Our goal is to define
an integrated approach to design, verification, and testing for dis-
tributed reactive systems with special consideration of the platform
properties.

1. INTRODUCTION

In the widely expanding field of embedded real-time systems, ex-
isting design practices are largely code-based with little or no capa-
bilities for predictions of actual performance characteristics. Porta-
bility among different hardware platforms and operating systems
frequently has to be sacrificed for the conveniences of a target-
specific development process using specialized development tools
for deployment. Formal verification of the logical and real-time
properties of a system, as well as weaker notions of verification
such as automatic test case generation, can usually only be per-
formed with the aid of domain-specific abstractions, models, of
the system

Unfortunately, many of the analysis capabilities available for
“abstract” models of the system, that is, models that assume a fixed
scheduling, communication and partitioning scheme, yield little or
no assertions about the behavior of the actual program running on
the platform if the real-time properties of the target are unknown or
cannot be incorporated into the model. Consequently, one goal of
a model-based approach should be the integration of appropriate
abstractions of processors, channels, and scheduling policies into
the system model.

An important benefit of model-based software engineering is
that the abstract logical specification can, in principle, be kept sep-
arate from those parts of the system determined by the underlying

This work was supported with funds of the Deutsche Forschungsge-
meinschaft under reference number Br 887/9 within the priority program
Design and design methodology of embedded systems.

hardware and operating system. As a consequence, the logical
model is retargetable, i.e. the implementation can be deployed
on a variety of technical architectures. While the definition of the
logical architecture and the technical architecture is left to the de-
veloper, the structure of the generated software should be implicit
in our modeling paradigm so code generation can be fully auto-
mated. Current practice dictates that at some level, there certainly
is no alternative to the integration of hand-written or third-party
code into the application; this should be kept to a minimum, how-
ever, as the technical and logical models cannot accurately reflect
the behavior of the integrated extensions.

In the remainder of this paper, we extend the graphical descrip-
tion language of AutoFOCUS, previously used for purely logical
descriptions of globally synchronized systems, by a notation for
the description of technical architectures. We enrich AutoFOCUS’s
basic semantics by an extended interpretation using stereotypes on
channels. We then show how the logical and technical model can
be combined to a system model in a partitioning step and how the
AutoFOCUS tool can be used for decision support for partitioning
decisions. Finally, we give an outlook discussing further exten-
sions of our method.

Related work. Most of the related work stems from the do-
main of hardware/software co-design. Gupta [1] defines the Vul-
can approach to analysis and synthesis of hardware/software based
on the specification language HardwareC, a hierarchical flow graph
model with non-deterministic delays for synchronized read/write
operations. As opposed to our approach, the target architecture
in Vulcan is restricted to a single-processor, single-bus architec-
ture. Vulcan synthesises both schedules from timing constraints
and hardware (ASIC) components from the logical description,
which is outside the scope of our work.

Giotto [2] is a language specifically designed for real-time
implementation of switched-mode control systems. Giotto uses
the “embedded machine” as an abstract operating system (middle-
ware) which controls and surveys the execution of tasks in real
time. Essentially, Giotto specifies a set of properties for fixed sets
of tasks, so-called modes, which roughly correspond to discrete
control states of a high-level control component in the AutoFOCUS

model. A mode is a set of tasks active at a given time. Because
of its entirely time-triggered and not event-triggered nature, Giotto
puts a heavy restriction on the kind of implementable system. Nev-
ertheless, we perceive the application domain of Giotto as an im-
portant benchmark for our work, e.g. in the context of flight con-
trol systems [3].

The POLIS [4] approach to hardware/software co-design uses
CFSMs (Codesign Finite State Machines) for system specifica-
tion. CFSMs are similar to AutoFOCUS components in some re-

�����
hnical

model

System model

Implementation

Logical
model

Abstract model

Concrete model

Implementation

Mapping

Measurements

Simulation
Validation
Estimates

+ +

Figure 1: Design flow

spects: like components, CFSM are based on atomic execution
of transition operations, and events between CFSMs are buffered.
Send/receive operations, however, are not bound to global clock
ticks and may take an indefinite amount of time. Communication
is broadcast, with mutually disjoint sets of output events. POLIS
covers all the typical codesign steps like translation from high-
level languages (e.g. ESTEREL [5]), simulation, partitioning and
scheduling, hardware synthesis, and software synthesis. The gen-
erated C code is restricted to a limited subset which is in close cor-
respondance with the internal representation of software in POLIS.

2. DESIGN FLOW

2.1. Process

Our design flow for software synthesis is illustrated in Fig. 1.
The designer starts by specifying the intended behavior of the

software with the logical model. The logical model specifies both
the structure of the application software and the behavior for each
component. Other properties such as communication mechanisms
and scheduling properties are specified abstractly. The character-
istics of one or more technical platforms are specified within the
technical model. The technical model will usually be supported by
libraries.

The synthesis step uses a specified mapping from the logical
to the physical model to synthesize both the system model and the
implementation. The system model is the internal representation
of the combined logical and technical models. It is used to ob-
tain estimates, e.g. for timing properties, and to perform analysis
through simulation, verification, and generation of test cases. The
implementation denotes the actual software that is deployed to the
target platform.

2.2. Implementation and system model

We make some simplifying assumptions about the target platform.
The technical architecture is assumed to be built up from a number
of nodes, each equipped with one processor, memory, and possi-
bly sensors and actuators. Processors are assumed to communicate

through I/O links (channels) exclusively; if shared memory com-
munication is available between two processors, some kind of flow
control is assumed. For hardware-to-software communication, we
assume a polling scheme; the opposite direction is simply handled
by writing to a specific memory location.

If our model-based analysis and simulation methods on firm
ground, the following two equivalences between the system model
and the implementation are crucial:

� functional equivalence, the correspondance of the behav-
ioral semantics of the logical model — the simulation se-
mantics — with the behavior of the actual distributed im-
plementation — the technical semantics.

� non-functional equivalence, the correspondance of estimates
for non-functional values (such as timing properties) drawn
from the model with actual properties of the implementa-
tion.

For distributed systems based on general-purpose hardware
and operating systems, establishing either one of the above cor-
respondances in a precise way proves to be a futile effort. For
instance, it is extremely difficult to derive accurate models for
modern processor microarchitectures [6]. Consequently, our ap-
proach weakens the above requirements and requires some corre-
spondance between the model and the implementation. The de-
velopment of sufficient metrics to define the permitted degree of
“looseness” allowed by a model is left to future research.

3. AutoFOCUS

3.1. Introduction

AutoFOCUS [7] is a CASE-tool for distributed and embedded sys-
tems design and was developed at Technische Universität München.
Using a number of dedicated graphical description languages, the
AutoFOCUS tool allows the specification of views of a common
underlying system model.

Structural view. In a System Structure Diagram (SSD), the ar-
chitecture of a distributed system can be defined. The visual syntax
of SSDs consists of components, ports of components, and chan-
nels between ports, analogous to other notations such as UML-
RT/ROOM [8]. Components may either be specified as a network
of sub-components or through their behavior.

Behavioral view. The behavior of a leaf component is de-
scribed by State Transition Diagrams (STD). An STD is an ex-
tended hierarchical state machine with a set of control states, tran-
sitions, and local variables. AutoFOCUS offers extensive support
for pre- and user-defined data types with its Data Type Description
(DTD) language.

Interaction view. Interactions are specified by Extended Event
Traces, which are a simplified version of ITU’s Message Sequence
Charts (MSCs) or UML’s Sequence Diagrams. EETs are adapted
to the clock-synchronous semantics of AutoFOCUS by the intro-
duction of tick marks.

3.2. Analysis and synthesis

In addition to being an editor for system models, the AutoFOCUS

toolset offers detailed analysis of system models through formal
verification. Using the Quest framework, a range of different model
checkers (e.g. SPIN, � cke, SMV), propositional solvers (SATO),
and theorem provers can be employed. An interactive simulation

environment is also incorporated in the tool. In addition to its
analysis capabilities, AutoFOCUS supports a semi-automated ap-
proach to test sequence synthesis using a Constraint Logic Pro-
gramming framework. For single-processor, single-task imple-
mentations, code generators for C, Java, and high-integrity Ada
are available.

3.3. Basic semantics

The behavioral semantics of AutoFOCUS components is similar to
the synchronous-reactive style as characterized by the ESTEREL

and Statecharts languages. Synchronous here refers to the model
of computation, where transitions are assumed to be atomic and
synchronized through a global clock. While communication in Es-
terel and Statecharts is instantaneous and broadcast, AutoFOCUS

restricts communication to channels between components; the ex-
change of events between components consumes one clock tick,
i.e. channels are buffered. An event is consumed by the receiving
component if the message matches one of the input patterns of the
current control state, and is lost otherwise (non-blocking commu-
nication).

3.4. Extended semantics

Similar to other approaches from the hardware/software codesign
domain, we extend our simple global-clock semantics by an glob-
ally asynchronous, locally synchronous interpretation of our mod-
els. Because we do not assume a global clock in our technical ar-
chitecture, the global clock synchronization between components
in the logical model has to be removed whereever a logical chan-
nel is mapped to a technical channel. In the system model, which
is based on AutoFOCUS’s basic semantics, the de-synchronization
is achieved by inserting buffer components and global scheduler
components for channels. The specified mapping can be checked
for correctness by specifying stereotypes on channels in the
logical model which reflect the desired communication properties
of the channel. A stereotype

�������
is a tuple �	� ��
� � ���������� � �����

of partial stereotypes � � � ��� �
. The two sets of partial stereo-

types currently implemented are � «next» � «finally» � , mean-
ing the message will be consumed at the next step, or at some fu-
ture step, and � «volatile» � «safe» � , meaning that delivery
of the message is not guaranteed or guaranteed, respectively. We
define a partial implementation order on � � such that if �
����! �" � ��� ,
then �
�� is said to implement � ��� . The implementation order on the
stereotypes

�$#%�&
(')�(�&'+**�*,')���
can now be derived as

�
 �.-/� �
iff

�0
�213
 �
�� � � ���

For instance, if «safe» implements «volatile», then «fi-
nally»«safe» implements «finally»«volatile». We
allow a channel from the logical model to be mapped to a channel
in the system model precisely if the system channel implements
the logical channel. Scheduler and buffer components may then
be immediately derived from the system channel stereotype.

4. THE MINE PUMP EXAMPLE

4.1. Logical model

Fig. 4.1 shows the top-level structure view of the logical model
for a benchmark example of a mine pump taken from [9]. The

Controller

«hardware»
HighSensor

«hardware»
LowSensor

HighSensor

Component

LowSensor

Component

«hardware»
MethaneSensor

«hardware»
AirSensor

«hardware»
COSensor

MethaneSensor

Component

AirSensor

Component

COSensor

Component

«eventually»«safe»
LowOnOff:Bool

«eventually»«safe»
HighOnOff:Bool

OperatorAlarmSafetyComponent

«eventually»«volatile»
AirValue:Int

«eventually»«volatile»
MethaneValue:Int

«eventually»«volatile»
COValue:Int

«eventually»«volatile»
MethaneValue:Int

«next»«volatile»
StartStop:

Bool

«eventually»
«volatile»

Alarm:Bool

Figure 2: Mine pump — Logical model, SSD

425 6
erSensorProcessor

GasSensor
Processor

LowSensor HighSensor MethaneSensor
AirSensor

COSensor

ControlUnit

RS232 RS232

«hardware» «hardware» «hardware»
«hardware»

«hardware»

Figure 3: Mine pump — Technical model

mine pump is used to pump water out of the bottom of a mine. It
is equipped with water level (high, low) and gas sensors. A pump
controller switches the pump on when the water reaches the high
water level and off when it goes below the low water level.

In the System Structure Diagram for the logical model, the
components tagged as «hardware» are merely used as an anno-
tation to define the context of adjacent components in the logical
and nodes in the physical model. Hardware components are empty
with no behavior or sub-structure. Hardware and software compo-
nents are linked through dependencies. In the logical model, a de-
pendency defines the set of local variables with read and/or write
access by the hardware.

4.2. Technical model

A possible technical model for the example is shown in Fig. 4.2.
Technical models in AutoFOCUS consist of a network of nodes,

channels, and hardware components. A node is a physical compu-
tation unit with dedicated I/O interfaces. Channels can be either di-
rected (unidirectional communication) or undirected (bidirectional
communication). Similar to the logical model, hardware compo-
nents define the context of nodes in the technical model. Depen-

Description Model Variable Value�����
invocation time Map � �����	� ����
 6ms

Execution time: Write
to OS buffer

Techn. ���� �����
 0.2ms

Transit delay, serial bus Techn. �� ��������� �
 2ms�����
invocation time Map � �����	� ���
 4ms

Table 1: Mine pump: Some real-time parameters

dencies in the technical model may include specific parameters
such as memory addresses for data exchange or update frequen-
cies.

Real-time parameters. Nodes are associated with parameter
sets which describe typical delays for basic processor operations
like arithmetic operations, get and fetch, and control flow opera-
tions, as well as some operating system specifics like scheduling
policy, execution times for I/O operations, and multitasking prim-
itives (for code generation). Each channel, in turn, is character-
ized by several real-time and quality of service parameters such as
transit delay and data rate. Parameters sets may be average, worst-
case, or both, depending on the analysis to be performed.

Execution model. Our current model for execution demands
that all logical components running on a given node are compiled
into a single periodic task; the period is specified with the map-
ping. Future extensions to our approach may involve the genera-
tion of multiple tasks for a given component.

4.3. Performance analysis

We illustrate how AutoFocus can support design decisions in early
development phases with a simple example. One of the require-
ments for the mine pump may be stated as follows:

A high methane value reading by MethaneSen-
sor shall cause an emergency shut down of the mine
pump within 30 milliseconds.

In order to evaluate the two deployed alternatives, we first take a
look at the technical model shown in Fig. 4.2. The first alternative
will map MethaneSensorComponent onto node GasSen-
sorProcessor (task

� ���
, period � ��� # �! ms), and both Con-

troller and OperatorAlarm onto ControlUnit (task
� ���

,
period � ��� ##" ms). The second alternative maps both Methane-
SensorComponent and OperatorAlarm to GasSensor-
Processor, leaving OperatorAlarm to be implemented on
ControlUnit. We assume the average values shown in 1 for
the real-time parameters of the system. Note that events between
two components running in the same task are buffered for one task
period.

The overall propagation delay for the event “methane level too
high” can now be estimated to be

� �����	� ����
%$ ���� �&���
%$ �'� �������� �
%$ � �����	� ���
%$ � ��� #(!*) � ! ms

for the first alternative. For the second alternative, the propagation
delay is

� �����	� �+��
 $ � �+� $ � ��� ���,�
 $ � � ��������� �
 $ � �����	� ���
 #(!*- � ! ms.

In a realistic setting, we may now prefer alternative 1 because it
offers a higher safety margin.

5. DISCUSSION AND FUTURE WORK

Like other authors before, we recognize that there are numerous
challenges to the introduction of models and high-level abstrac-
tions in real-time development [8]. First of all, abstraction may re-
sult in efficiency problems. Abstractions usually encourage loose
coupling between system components, which in turn implies a
higher communication overhead. The introduction of specialized
execution models like Time-Triggered Architectures [10] may im-
prove analyzability through improved functional and non-functional
equivalence, but also results in performance overheads.

On the other hand, the larger and more software-heavy a sys-
tem becomes, the more the use of model-based development is
warranted. Through further exploitation of optimization capabil-
ities, we aim to make model-based approaches competitive with
traditional real-time software development.

In the future, we are planning to extend our AutoFOCUS frame-
work with timing and size constraints in the form of annotations to
model entities. Contraints could either be formally or informally
validated with respect to a fixed logical/technical mapping, or used
for automated partitioning leading to a synthesis approach.

Acknowledgements. Thanks to Jan Philipps for fruitful discus-
sions on the use of AutoFOCUS for deployment.

6. REFERENCES

[1] R. K. Gupta, Co-synthesis of hardware and software for dig-
ital embedded systems, Kluwer, Boston, 1995.

[2] Thomas A. Henzinger, Benjamin Horowitz, and
Christoph Meyer Kirsch, “Giotto: A time-triggered
language for embedded programming,” in Proceedings of
EMSOFT 2001. 2001, Springer-Verlag.

[3] A. Blotz, F. Huber, H. Lötzbeyer, A. Pretschner, O. Slotosch,
and H.-P. Zängerl, “Model-based software engineering and
ada: Synergy for the development of safety-critical systems,”
in Proc. Ada Deutschland Tagung, Jena, 2002.

[4] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurec-
ska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,
E. Sentovich, K. Suzuki, and B. Tabbara, Hardware-
Software Co-Design of Embedded Systems: The POLIS Ap-
proach, Kluwer, Boston, 1997.

[5] G. Berry, “The foundations of esterel,” Proof, Language and
Interaction: Essays in Honour of Robin Milner, 2000.

[6] Raimund Kirner and Peter Puschner, “International work-
shop on WCET analysis - summary,” Research Report
12/2002, Technische Universität Wien, Institut für Technis-
che Informatik, Vienna, Austria, 2002.

[7] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, and
O. Slotosch, “Tool supported specification and simulation of
distributed systems,” in Proc. Intl. Symp. on Software En-
gineering for Parallel and Distributed Systems, B. Krämer,
N. Uchihira, P. Croll, and S. Russo, Eds. 1998, pp. 155–164,
IEEE.

[8] B. Selic, G. Gullekson, and T. Ward, Real-Time Object-
Oriented Modeling, John Wiley & Sons, New York, 1994.

[9] Mathai Joseph, Ed., Real-time Systems: Specification, Veri-
fication and Analysis, Prentice Hall, 1996.

[10] Hermann Kopetz, Real-Time Systems: Design Principles for
Distributed Embedded Applications, Kluwer, Boston, 1997.

