

Classifying Requirement Conflicts
for Multi-Stakeholder Distributed Systems

Frank Marschall, Maurice Schoenmakers

Technische Universität München
Lehrstuhl Prof. Dr. Manfred Broy
Software & Systems Engineering
(marschal|schoenma)@in.tum.de

Abstract

Multi stakeholder distributed systems become more
and more widespread and raise a lot of integration
problems. One problem is that conflicts arise often only
at runtime if a single system component is changed. The
whole composition of systems then doesn’t behave like at
least one of the stakeholders expects. The following
paper provides a classification of the potential conflicts
and gives some guidelines how to handle and overcome
these conflicts using this classification. The classification
is based on the fact that some parts of a system
implementation can be linked to explicit stated
stakeholder requirements, while others are just
implementation specific parts that are not related to any
explicitly stated requirement. Therefore a prerequisite
for a successful conflict resolution is the traceability
between requirements of a requirements model and the
affected parts of an implementation model.

1. Introduction

Resolving requirement conflicts and combining
reusable software components are often tasks performed
once during the system development. The system is
deployed in a controlled environment, and after
deployment, each requirement change enforces new
requirement engineering and system integration cycles.

Today systems are more and more composed of
distributed services which are under control of loosely
coupled stakeholders with possibly conflicting interests.
The services are deployed independently and combined at
runtime. Examples for such scenarios are web service
architectures for B2B e-commerce systems with a large
set of business partners or enterprise application
integration systems which compromise a large set of
single applications of different departments.

The result is that the requirements are likely not to be
propagated throughout all participating parties, thus

conflicts may not appear although they exist. There is no
central explicitly coordinated consistent conceptual
model of the system at all times. Instead each participant
has its own conceptual model. System changes are
performed without notice of other stakeholders, which
results in unexpected misbehavior.

In this paper we propose a model for the classification
of requirement conflicts and show how to reason about
conflicts in terms of a conceptual model by using a little
example.

2. Example

The following example stems from [7] and describes
a web service scenario. There are four stakeholders: the
user who uses the UpToTheMinuteNews news service,
Corporate IT that provides internet access for the user
through a proxy, and the AWS company that provides a
caching proxy that is used by Corporate IT.

From the moment when Corporate IT starts using the
AWS proxy, the user experiences that the news form
UpToTheMinuteNews isn’t up to date any more.
Obviously this does not meet the user’s requirements
while Corporate IT and AWS might not even have
reasoned about this topic.

3. Requirements

In our model we suppose that stakeholders have
requirements which are basically statements about the
systems in their scope. These requirements form a
requirements model of the desired system. This model is
refined into an implementation model that is enriched by
design decisions which are not considered in the
conceptual system model. When the models are formal an
approach like considered by the Model Driven
Architecture (MDA) approach [5] may be chosen to
derive platform specific models from more abstract
platform independent models and computational
independent models. Ideally the requirements can be

traced so that one knows from which parts of the
requirements model a certain part of the implementation
model stems. Since the implementation model is a
refinement of the requirements model it has in general
properties that were never explicitly required and thus
fulfil never stated “requirements”.

Thus the implementation model can be partitioned into
two parts: one contains the model elements that can be
seen as a direct refinement of the conceptual model. The
other part contains the elements that were not explicitly
specified in the conceptual model. This is typical since
requirement models are usually underspecified, i.e. they
often leave (intentionally or not) room for design
decisions.

Figure 1 depicts these facts. The implementation

model comprises a part R that was derived from the
requirements model and a part I that cannot be mapped to
any elements of the requirements model but is necessary
for the system to work.

When combining two systems, there exist overlapping
parts that both systems have to deal with in the
requirements and in the implementation model. For
example the requirements models of both systems have to
consider the common goals of their collaboration,
exchanged data types, messaging mechanisms etc. Often
the latter arise only in the implementation model because
they didn’t seem to be relevant to the stakeholders and
thus the decision was left to the developers.

Figure 2 depicts the conflicts that may arise if two

participants integrate their systems: the following
conflicts can occur simultaneously. There may occur a
conflict between parts of the systems that

• reflect the requirements of both participants:
RR conflicts

• where not considered by the requirements of any
participant: II conflicts

• where only considered by the requirements of just one
of the participants: IR/RI conflicts

Requirement conflicts (RR) are fundamental conflicts
which must be resolved before the two parties can form a
system satisfying to both parties. Normally one tries to
prevent these conflicts by exchanging some kind of
requirements model description concerning the
overlapping parts. For example IT and AWS sign a
contract in advance, which contains the rules of operation
between these parties. Identifying such a conflict at
runtime must result in an adaptation of the requirements
at one or both sides or more likely results in dissolving
the contract between the two parties.

Conflicts concerning parts of the implementations that
are not considered in the requirements model of at least
one stake holder, the II and RI/IR conflicts, can be
overcome by adapting the implementation without
changing the original requirements. However such a
conflict indicates that the requirements specification is
incomplete and should be completed. Therefore
mechanisms are needed that identify the context of the
conflicting parts of the implementation model and
identify the appropriate area of the requirements part
where information is missing. For example if the
requirements model doesn’t state anything about the
message exchange between two components and during
operation it turns out that this message exchange fails
such a mechanism could lead a stakeholder to the
involved components that failed to communicate. Thus
the stakeholder would be confronted with the problem in
terms of the requirements model, not with a technical
error. He can make a decision at the high level
requirements model and refer it to the developers. These

Refinement

R Implementation Model

Tracing

Requirements Model

I

Figure 1. A single system. Assumption: the
implementation satisfies the requirements

Figure 2: Conflicts between two systems can
occur in implementation areas RR, II, IR/RI.

R1

I1

R2

I2
RR

II
I R

refine the new requirement into a consistent solution,
presumed that the requirements model is not still
underspecified for the collaboration of the components.

In case of a legal contract one party may enforce the
other party to adapt to an implementation. However, this
is not always possible or feasible because each partner
controls which implementation is deployed, and the
implementation can be chosen at the other party because
of other internal requirements. Conflicts in these classes
occur often by not having explicitly modelled the
requirements on one or both sides.

Some RI/IR conflicts between requirements of one
party and implementations of the other party can be very
problematic and should generally be avoided. One party
has a requirement accidentally fulfilled by the
implementation of the other party while it was not
explicitly guaranteed by the conceptual model or
contract. The other party can change the implementation
at any time which may cause the requirement to become
unfulfilled. Therefore such requirements should be
explicitly stated and exchanged in advance to lift the
fulfilled feature up to the RR class.

In the previously described example, where the user
experiences that the news form UpToTheMinuteNews is
not up to date any more, because Corporate IT started to
use the AWS proxy, there are seven possible reasons
given in [7] for the conflict. We now look at these
reasons from the classification perspective:

1. AWS's contract has fine print explaining that it does
not guarantee freshness of its pages. In this case the
requirements model of the user / Corporate IT is
underspecified, thus this is an IR conflict. AWS has
specified a requirement the user / Corporate IT didn’ t
consider. However adding the new requirement that
the information provided by the AWS proxy must be
fresh enough would yield to a RR conflict in the
requirements specifications that must be eliminated
by the involved stakeholders.

2. AWS's contract is purposely inaccurate or unclear at
this point. Here two cases can occur: The AWS
implementation is caching and delaying requests by
purpose then there is an AWS internal requirement
hidden for the IT department, which is not stated in
the external contract. In this case there is an IR
conflict as the IT department did not specify its
requirements sufficiently. If the AWS implementation
causes the conflict just because the developers choose
the implementation accidental, then both parties did
not specify the requirements thus an II conflict
occurred.

3. AWS's implementation is buggy, old, or incorrectly
configured so that it does not honour "no-cache"
header information. In this case the refinement of the
AWS requirements model to its implementation
model failed. Such conflicts must be avoided by
efficient testing of the implementation model against
its requirements model. The other party can in this
case insist on the adaptation of the implementation if
possible.

4. U2M's implementation is buggy or incorrectly
configured, so that it does not produce "no-cache"
headers with its pages. This is the same case as (3).

5. IT failed to read or correctly interpret the AWS
contract. In this case the conflict detection between
requirements models failed. The RR conflict was not
detected. With more formal requirements
specifications (e.g. B2B Specifications like ebXML
[3]) some of these conflicts can be avoided. However
there may still be cases when these specification
languages are not expressive enough to formalize all
desired requirements.

6. IT failed to realize that some of its users required
freshness. In this case the requirements model of IT
or that of the users is underspecified (if it doesn’ t
state anything about the freshness of information) or
it is simply wrong and needs to be reworked.

7. The user failed to communicate to IT that it needed
access to a time critical web site, even though IT
surveyed its users on this point at some time
previously. Again the requirements model of IT is
wrong and needs to be reworked. Both IT and the user
didn’ t specify parts of their overlapping requirement
model in an explicit contract.

4. Position

In our opinion the following criteria must be fulfilled to
correctly handle occurring conflicts:

• A) Differentiate between required (R) and not
required (I) implementation parts at both parties.
One must be able to differentiate between the system
properties which originate from real requirements and
those properties stemming from implementation
refinement steps chosen by developers for technical
reasons unrelated to any stated requirements.

• B) Tracing back from implementation components to
the requirement model. Because conflicts arise at the
implementation level tracing a requirement from the

implementation level up to the original requirement
level becomes an essential feature. The affected
implementation parts of the conflict at
implementation level must be related to the
requirements in the original requirement model. This
allows an expression of the conflict at the language
level used by the stakeholders. This in turn allows an
effective requirement conflict resolving discussion.

We propose that each partner formulates requirements
explicitly and forms a conceptual model to relate
elements of the conceptual model to system components
as well as to ensure traceability.

Traceability is very important for open distributed
multi stakeholder systems. Exchanging model
information may be used to prevent RR conflicts but
cannot prevent II, RI/RI conflicts. Furthermore as
requirements are often not made explicit and
requirements and implementations change over time
requirement conflicts may arise only at runtime in form
of implementation conflicts. Only traceability between
conceptual model elements and system components of
the implementation can then be used to identify to which
classes RR, RI, IR, or II the conflict really belongs. To
which class a conflict belongs in turn shows how to
resolve it and this may reveal the legal and financial
consequences.

A conflict is classified as follows: If the conflicting
system component is related to a requirement at each
party, then the conflict may belong in the RR class, if
these requirements are conflicting. In this case there is a
fundamental problem. If the conflicting system
component is related to a requirement at just one party,
the conflict belongs to the RI or IR class and without any
related requirements at either side it belongs to the II
class. In any case a conflict belonging to the RI/IR or II
may also point to an incomplete conceptual model. The
parties then can at least pinpoint the problematic areas
and discuss resolution possibilities.

In the research project KOGITO [6] the authors
address some of the topics mentioned here. The scope of
KOGITO is requirement engineering for multi
stakeholder B2B internet systems. Typical problems are
the integration of different existing open distributed
systems. To ensure the above mentioned tracing
capabilities KOGITO has defined a multilevel conceptual
model. Requirements in documents individually reference
subsets of the conceptual model elements. The levels of
the conceptual model range from coarse grain business
process areas to fine grained message exchange. During
system development the refinement steps result in linking
the different levels of the conceptual model. The steps
become traceable and fine grained system components
become related to single requirements at the conceptual

level. This ensures the traceability and the capability to
differentiate between those implementation parts directly
linked to requirements and those not linked to
requirements. Furthermore the integration of formalized
ebXML [3] business process descriptions at a middle
level allow to check and ensure consistent overlapping
requirements and helps avoiding RR conflicts by reusing
predefined business processes as some kind of contracts.

Until now we discussed cases where both parties were
able to get in contact to each other directly, can sign
contracts and resolve conflicts in a direct discussion with
stakeholders.

This is only possible for open distributed systems with
a limited number of participants and a rather stable
requirement model, where stakeholders may have a
contractual relationship. For fine grained fast changing
systems with a high number of participants tracing
conflicts back to requirements and resolving conflicts in
discussions is not feasible. Especially as the stakeholders
may not have any direct contractual relationship.
Examples for such systems are large distributed web
service [2] or Jini [9] based systems. To trace back
conflicts or to generate conflict resolutions automatically
would require a high degree of formalization [8], [4]. For
such systems it is probably more feasible to avoid
conflicts and to check for RR conflicts automatically up
to a certain level instead of resolving them. Thus
stakeholders will have to agree on standards or models
for which they claim to provide a correct implementation.

While the proposed principles and conflict classes do
not change, the way conflicts and requirements and are
identified and are resolved would change: As RR conflict
checks must be performed frequently and automatically.
We propose that implementations are accompanied by an
explicit formulated abstract conceptual model which
expresses the requirements and defines the collaboration
between the participating systems (for example as an
ebXML business process description [1] with an
appropriate role profile). Each implementation would
thus be accompanied by a simple formalized version of a
requirements model of Figure 1. Before components
would be combined the models then could be checked
automatically for RR conflicts, this roughly would reflect
the case of signing a contract. If no conflicts arise the
implementations could be combined. Conflicts of any of
the classes II, RI, RI and RR could still occur. However
the change of conflicts in the RI and IR classes would be
lowered as the requirements would be quite explicitly
defined and modeled and RR conflicts could only stem
from requirements which cannot be formulated in the
formalized requirement description model.

The problem of inconsistencies in the conceptual
model respectively between the contract and the
implementation is not addressed by this proposal. Such

problems occur because the implementation doesn’ t
fulfill the requirements either by purpose (deception by a
stakeholder) or by failure would still arise. While it could
be guaranteed that such problems would not occur by
proving each refinement step in a formal way, it would
probably more feasible to combine the requirement
models and their implementations with certificates or
ratings. A trust relation could be established in the
following way: A third party checks if the requirements
model of a stakeholder is fulfilled by the stakeholders
implementation. If both, the stakeholder using the system
and the stakeholder providing the system, trust this third
party, then they can be confident to a certain degree that
conflicts will not arise because of deception or failure.

5. Conclusion

The proposed conflict classification allows to reason
about occurring conflicts, for example if a conflict is a
simple technical implementation issue or a fundamental
requirement conflict. It therefore provides valuable hints
how to solve these conflicts and to consider the conflict
implications.

To classify conflicts the basic capability identified was
traceability of refinement during development, how
requirements are related to system components of the
implementation. This ensures the capability to trace a
conflict back from the implementation to the requirement
level. This in turn is crucial to identify if a fundamental
requirement conflict occurred or merely a technical
failure.

The best way to handle conflicts is to avoid them
upfront by formulating contracts on a conceptual
requirement level. We gave an outlook how more or less
formalized conceptual models like ebXML process
descriptions could help avoiding requirement conflicts

References

[1] ebXML Business Process Specification Schema Version 1.01
6, http://www.ebxml.org/specs/ebBPSS.pdf, 11 May 2001

[2] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, 6(2):86{93, March 2002

[3] Electronic Business using eXtensible Markup Language,
UN/CEFACT and OASIS, http://www.ebxml.org

[4] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B.
Nuseibeh, "Inconsistency Handling in Multi-perspective
Specifications", IEEE TSE, 20(8): 569-578, 1994

[5] MDA Guide Version 1.0, Joaquin Miller and Jishnu Mukerji,
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-
0.pdf, Mai 2003 OMG

[6] Towards Model-Based Requirements Engineering for Web-
Enabled B2B Applications, Frank Marschall, Maurice
Schoenmakers, Proceedings 10th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems
(ECBS'03), p. 312, April 07 - 10, 2003

[7] Workshop on Requirements Engineering and Open Systems
(REOS), Home Page, http://www.cs.uoregon.edu/~fickas/
REOS/, 2003

[8] Robinson, W.N., Volkov, S., Conflict-Oriented Requirements
Restructuring, GSU CIS Working Paper 99-5, Georgia State
University, Atlanta, GA, April 9, 1999

[9] Jim Waldo. The Jini Architecture for Network-centric
Computing. Communications of the ACM, pages 76--82, July
1999

