
Lecture Notes in Computer Science 1

Modular Process Patterns supporting an Evolutionary
Software Development Process1

Michael Gnatz1, Frank Marschall1, Gerhard Popp1,
Andreas Rausch1 and Wolfgang Schwerin1

1 Technische Universität München, Institut für Informatik,
Lehrstuhl Professor Dr. Manfred Broy,

D-80290 München, Germany
{gnatzm, marschal, popp, rausch, schwerin}@in.tum.de

Abstract. Change and evolution of business and technology imply change and
evolution of development processes. Besides that for a certain enterprise and/or
project we will usually integrate elements from a variety of existing process
models, comprising generic standards as well as specific development methods.
In this paper we propose a Process Framework which is modularly structured on
the basis of the concept of process patterns. This framework allows us to de-
scribe development processes in a way such that change, evolution, and integra-
tion of processes are facilitated. Founded on our framework we sketch the idea
of a living development process. An example illustrates our approach.

1 Introduction

Nowadays, many different process models exist. These models range from generic
ones, like the waterfall model [21] or the spiral model [6], to detailed models defining
not only major activities and their order of execution but also proposing specific nota-
tions and techniques of application. Examples of the latter kind are the Objectory
Process [13], the Unified Software Development Process [15], the Catalysis Approach
[11], the V-Modell 97 [12], or eXtrem Programming [4] – just to name some of them.

All these process models have their individual assets and drawbacks. Hence, one
would wish to take all the different assets and benefits of the various process models
as a basic construction kit for an integrated development process tailored to the spe-
cific needs of the individual team, project, company, and customer. Jacobson, for
example, talks about the unified process as a “strawman” serving only for explanatory
purposes and probably never applied exactly as proposed [14].

To assemble a specific development process from existing models we have to iden-
tify and characterize explicitly the building blocks and their relations of a process

1 This work originates form the research project ZEN – Center for Technology, Methodology

and Management of Software & Systems Development – a part of Bayerischer Forschungs-
verbund Software-Engineering (FORSOFT), supported by the Bayerische Forschungsstiftung.

Lecture Notes in Computer Science 2

model in general. Therefore we need a set of basic notions and definitions common for
all process models – the Process Framework. This Process Framework must allow us
to integrate the various existing process models. The Process Framework can serve as
a common basis for the definition of a development process that incorporates the as-
sets and benefits of the different existing process models and that can be flexibly
adapted to different kinds of project requirements and situations.

Once you have defined your standardized development process in terms of the
Process Framework, you still have to adapt this development process to different pro-
jects and project situations. This is often referred to as static tailoring. But, our busi-
ness is changing almost every day: the requirements of our customers change, new
technology has to be adopted, and finally the way we work together evolves. To be
successful in a changing environment we not only need static adaptation but also a
more flexible way of adaptation - the dynamic adaptation.

Tom DeMarco even mentioned about the nature of process models and methodolo-
gies in [10]: „It doesn’t reside in a fat book, but rather inside the heads of people car-
rying out the work.“ Thus, our Process Framework must additionally offer the ability
to incorporate the process knowledge of the whole company. It must provide a plat-
form for a learning organization recording the evolution steps of a living software
development process.

Therefore the Process Framework must be open for the integration of new process
elements, for the extension and adaptation to new technologies and fields of applica-
tion. Besides static adaptation – support of different kinds of projects and project
situations – there is a need of dynamic adaptation.

In this paper we propose a Process Framework that is sufficiently powerful to fulfill
these requirements. First, in Section 2 we give an overview over different modeling
levels of development processes. We present the requirements on and user views of an
evolutionary process model. In the next section, Section 3, we define our Process
Framework. In Section 4 we present the concept of process patterns, providing guide-
lines about the organization of the actual development process. A conclusion is given
at the end of the paper in Section 5.

2 Basic Concepts of the Living Software Development Process

Various people and groups get into touch with process models and metamodels. In the
next section, we discuss the different levels of a software development process. Then,
in the following two sections, we present the two main views on process models - the
project view and the method view. We will discuss their specific way of interaction
with the living software development process we are going to propose in this work.
Thus, we can show the needs and benefits of the two different user groups mentioned
above.

Lecture Notes in Computer Science 3

2.1 Process Models and Metamodels

Developing and maintaining software has become one of the most challenging tasks a
company can do. Following some kind of process model, such as the Rational Unified
Process [17] or the V-Modell 97 [12], promises to provide guidance facilitating the
development task. Usually there are different people involved with different views on
the development process itself.

Developers and project leaders are concerned about the development process of
their individual projects. They concentrate on concrete tasks and results of their actual
project, like the development of an analysis model of the system under consideration.
Accordingly to [28, 29] we can divide the software development process into the pro-
duction process, that is the process in charge of developing and maintaining the prod-
ucts to be delivered, and the meta process, that is the process in charge of maintaining
and evolving the whole software process. Using this terminology, we see the focus of
developers on the production process.

Another group of people being primarily concerned with the meta process – espe-
cially in large organizations – might be a methodology group. Companies, which are
on Capability Maturity Model (CMM) level 3 or higher, have a standardized process
model [20]. This standard process model provides guidelines and support for organiza-
tion’s projects in general.

If a company is on CMM level 5, continuous process improvement is enabled by
quantitative feedback from the process and from piloting innovative ideas and tech-
nologies [20]. The organization as a whole and the projects themselves must address
continuous realization of measurable software process improvement, like for instance
defect prevention, technology change management, and process change management.
Thus, the companies' methodology group must be able to improve and evolve the
standard software process. Therefore this group needs a common Process Framework
capturing the basic concepts of software development process models. Figure 1 illus-
trates three levels of an overall model for software development processes where the
aforementioned views can be mapped on.

The Instance Level in Figure 1 captures those elements that belong to a certain pro-
ject, such as an analysis document of a concrete project.

The Model Level describes a certain software development process. This process
definition contains an outline of an analysis document or a description and guidelines
of how to organize and hold a workshop with customers to elicit the requirements.
This level offers the guideline and information for project managers as well as team
members. A specific Process Model, as defined in [28], expressed in a suitable proc-
ess modeling language, would be an element of our Model Level.

The Metamodel Level provides the basic framework to establish a living process
model. It offers clear definitions for terms like „Work Product” or „Activity”. The
Metamodel Level represents the common conceptual base of a company’s methodol-
ogy group to improve and evolve the underlying standard software development proc-

Lecture Notes in Computer Science 4

ess2. It is on this level where (the concepts of) process modeling languages, such as
EPOS SPELL and SOCCA (cf. [9, 28]) are defined.

Processmodel

Processmodel Framework

Process

Instance Level

Model Level

Metamodel Level

process pattern,

activity, modeling

concept, notation, etc.

waterfall pattern, test

pattern, analysis

document, static

structure modeling,

UML class diagram

notation, etc.

applied pattern in a

concrete project,

analysis documents,

UML class diagrams,

etc.

«instance»

«instance»

Fig. 1. The Layers of an Overall Process Model

2.2 The Project View of the Living Software Development Process

Project managers and project team members follow the concepts, guidelines, and help
provided by a specific software development process defined on the Model Level in
Figure 1. While performing their daily tasks they are creating instances on the Instance
Level in Figure 1.

Managing a concrete project implies selection of a suitable process from a set of
existing, possibly standardized alternatives. Then the chosen process has to be tailored
accordingly to the project’s characteristics. This tailored process represents the guide-
lines, which are to be followed in the project. In terms of our Process Framework,
given in section 3, the tailored process defines which work products are to be pro-

2 Note, this metamodel structure follows the guidelines provided by the Meta Object Facility

(MOF) specification of the Object Management Group (OMG) [19].

Lecture Notes in Computer Science 5

duced, and which modeling concepts, notations, and patterns may be applied in the
project.

2.3 The Method View of the Living Software Development Process

Process improvement, as required on CMM level 5 [20] for example, means the evolu-
tion of process models, i.e. of elements on the Model Level in Figure 1. The formula-
tion of process models on the basis of a well-defined ontology facilitates comprehen-
sion and hence changes of development processes. Elements of the Metamodel Level
in Figure 1 are supposed to play the role of such an ontology defining terms like “Ac-
tivity”, “Process Pattern”, “Work Product” and their inter-relations.

An ontology for development processes provides both, developers and the method-
ology group, with a common vocabulary. On the one hand a methodology group can
use such an ontology for the definition of standardized processes. On the other hand
developers can use this vocabulary for the description of proposals for changes or
additional process elements, which reflect their experience made with former process
elements. On the basis of these proposals redefinitions by the methodology group can
be done. Figure 2 shows this method view on a living software development process.

Analysis

Design

Implementation

Test

Process Pattern Library

Method Support Team

new or improved
templates

new or improved
process patterns

Software-EngineerSoftware-Engineer

proposals for new or improved
templates and process patterns

Fig. 2. The Living Software Development Process from the Method View

In our ontology, which we call the Process Framework, given in section 3, we fol-
low the principle of separation of concerns so that changes are facilitated because of
having minimal and localized effects.

Lecture Notes in Computer Science 6

3 Framework of a Living Software Development Process

In the previous section we have shown how developers and methodology group may
interact for elaborating and improving a (standard) software development process
establishing a living software development process. Our basic ontology is defined in
the Process Framework, which is on the Metamodel Level in Figure 1.

The Process Framework must provide the ability to define and maintain a process
model, which integrates elements of all the various existing process models, like for
instance the Rational Unified Process [17] or the V-Modell 97 [12]. Thus, the frame-
work must enable the methodology group to state clearly the correlations between the
elements of the different process models. Additionally, the Process Framework must
support static as well as dynamic adaptation of the process model with respect to the
evolution and learning of a living organization (c.f. Section 1).

The new, upcoming concept of process patterns seems to be an approach which ba-
sically follows our ideas and which may fulfill our requirements. Process patterns are
a very general approach allowing us to integrate existing process models without hav-
ing to develop a new models from scratch [2, 3, 7, 8]. For example in [1] we have
already shown the integration of the V-Modell in the process pattern approach.

The basic idea of the concept of process patterns is to describe and document proc-
ess knowledge in a structured, well defined, and modular way. Moreover patterns
provide information helping us in finding and selecting alternative development steps,
similar to strategies and selection guidelines in [22]. Conform with most authors,
patterns in our approach consist mainly of an initial context, a result context, a prob-
lem description and a solution. The initial context is an overall situation giving rise to
a certain recurring problem that may be solved by a general and proven solution. The
solution leads to the result context [5].

Figure 3 illustrates the basic concepts of the proposed Process Framework. It de-
velops further the process pattern approach from [7, 8], and integrates it with an en-
hanced variant of the widely accepted process model framework given in [9]. The
framework is based on a clear separation of concerns between the overall result struc-
ture, the consistency criteria, and the process patterns themselves.

A Process Pattern defines a general solution to a certain recurring problem. The
problem mentions a concrete situation that may arise during the system development.
It mentions internal and external forces, namely influences of customers, competitors,
component vendors, time and money constraints and requirements. A process pattern
suggests an execution of a possibly temporally ordered set of activities. Activities
themselves may be carried out following the guidelines of other, subordinated process
patterns realizing the activity in question. Therefore process patterns and activities in
our framework may be structured hierarchically.

Process Patterns in our framework represent strategies to solve certain problems.
Activities represent development steps and are executed by process patterns. An activ-
ity does only describe what is to be done but not how it is to be done. In contrast to
that a process pattern provides a solution for realizing an activity. Hence generally one
activity might be realized by different process patterns. Activities are performed by
definite roles. In turn roles are assigned to corresponding persons.

Lecture Notes in Computer Science 7

*

1 11 1

1

1..*

assign

perform
execute

realize

describe

describe

describe

relationship

relationship relationship

Person Role

Activity
Process
Pattern

Problem

Context

Modelling
Concept NotationWork

Product

relationship

Conceptual
Model

initial result initial result

Fig. 3. The Process Framework

Each process pattern as well as each activity needs an initial context to produce a
result context. The initial context describes the required project situation to perform an
activity or pattern, respectively. The result context describes the situation we reach
when performing an activity or pattern, respectively. The context captures the internal
state of the development project and can be characterized by constraints over the set of
work products. Simple constraints are that certain work products have to exist.

A process model assigns certain process patterns, as for instance the pattern “Plan-
ning the Project”, to certain work products, as for example the “Project Schedule”.
These work products are described by means of modeling concepts, as for instance
“Time Flow Modeling”. The modeling concepts are represented by certain notations,
such as “UML Sequence Diagrams”.

The initial and result context of a process pattern may not only require the existence
of certain work products, but also that certain modeling concepts and notations are to
be applied for these work products. This is important when a pattern proposes the
application of notation specific techniques. For instance in [18] methodical guidelines
for the refinement of specifications are introduced. These refinement techniques re-
quire the modeling concept “Interaction Modeling” based on the notation “Message
Sequence Charts”.

For the executes and realizes relationships in Figure 3 we require certain relation-
ships between the contexts of related process patterns and activities. The work prod-

Lecture Notes in Computer Science 8

ucts in the result context of a Process Pattern have to be a superset of the result context
of each realized activity. The initial context of a process pattern yet has to be a subset
of the initial context of each realized activity. With these consistency criteria we cover
the intuition that a realizing pattern does require at most the input of the realized activ-
ity, to produce at least those results “promised” by the activity.

An example of a realizes-relationship is shown in the context of a Business Process
Modeling example in Figure 4. The activity Identify Business Tasks might be realized
by the process patterns Inspecting Legacy Systems or Involving Business Experts
respectively. The process pattern Inspecting Legacy Systems is a realization of the
activities Identify Business Tasks as well as Refine Task Characteristics.

Consistency is also required for the contexts regarding the executes relationship.
The union of the result contexts of the executed activities form the result context of
the executing process pattern. The initial contexts of the activities have to be subsets
of the of the initial contexts of the process pattern they are executed by. Thus interme-
diate results produced in the workflow of the executed activities need not necessarily
be part of the initial context of the executing activity. For an example of the executes-
relationship in the context of Business Process Modeling we refer to Figure 4.

The precise definition of the meaning of, and context conditions between work
products can be achieved by the use of a so-called conceptual model. Work products
that are based on sound description techniques have not only a well-defined notation,
but also a possibly even formal semantics in form of a mapping from the set of work
products into the set of systems (cf. [16, 23, 25]). A conceptual model characterizes,
for instance, the set of all systems that might ever exist. This integrated semantics
provides the basis for the specification of a semantic preserving translation from speci-
fication work products to program code. This can serve as a basis for correct and
comprehensive code generation.

The circular relationship associations assigned to various elements in Figure 3, such
as work product and conceptual model, cover the general idea of structuring these
elements, for example hierarchically.

4 Process Patterns

A process pattern enables us to describe and document process knowledge in a struc-
tured and well-defined way. As already discussed in Section 3 and illustrated in Figure
3 process patterns consist mainly of a problem solved by a proven solution applied
through certain activities, and an initial as well as a result context. The activities play
important roles in process patterns, because they reflect the tasks, which have to be
carried out as described by the solution.

Process patterns, as well as all kinds of patterns, must be presented in an appropri-
ate form to make them easy to understand and discussable. In this section, we first
present a uniform pattern description template for process patterns. Then we provide a
sample process pattern to illustrate the basic concepts of process patterns.

Lecture Notes in Computer Science 9

5.1 Pattern Description Template

A good description helps us grasp the essence of a pattern immediately – what is the
problem the pattern addresses, and what is the proposed solution. A good description
also provides us with all the details necessary to apply the pattern and to consider the
consequences of its application. Moreover a uniform, standardized description tem-
plate for process patterns is needed. This helps us to compare patterns, especially
when we have to select from alternative solutions. For activities similar templates are
useful. For brevity we omit a detailed description of this kind of template. Table 1 and
Table 2 illustrate our proposal for an activity and process pattern description template
by example. A detailed discussion of a wider range of process patterns is not in the
scope of this paper and can be found in [7, 8]. Please note, that the sample Process
Pattern of this section resides on the Instance Level of the Overall Process Model
shown in Figure 1.

The example pattern template given in Table 2 contains, besides others, the follow-
ing fields:
• Intent : A concise summary of the pattern’s rationale and intent. It mentions the

particular development issue or problem that is addressed by the pattern.
• Problem: The problem the pattern addresses, including a discussion of the specific

development task, i.e. the realized activity, and its associated forces. Moreover the
problem description may contain information with respect to consumers, competi-
tors, and the market situation.

• Solution: A solution may suggest certain activities to be applied to solve a certain
problem. Possibly an order may be given in which to perform these activities, or al-
ternatives may be proposed. Besides that the solution comprises methodical guide-
lines and concrete recommendations. A solution shows a possible answer to balance
the various forces that drove the project into the current situation. The solution in-
cludes a list of activities for execution. In contrast to these activities, the activity re-
alized by the process pattern is referenced below. Moreover the solution depicts the
relationships of the initial and result contexts of the executed activities and shows
how the activities are combined.

• Realized Activities: The name of the activities for which the pattern provides a
strategy of how to execute it. Every process pattern realizes at least one activity.

• Initial Context The internal state of the development project, i.e. the state of the
corresponding work products, that allows the application of this process pattern.

• Result Context: The expected situation after the process pattern has been applied,
i.e. the resulting state of the work products.

• Pros and Cons: A short discussion of the results, consequences, and tradeoffs asso-
ciated with the pattern. It supports an evaluation of the pattern’s usefulness in a
concrete project situation. The problem description together with the pros and cons
of a pattern helps us in choosing from alternatives, that is static and dynamic tailor-
ing. Thereby these two pattern elements have a purpose similar to selection guide-
lines in [22].

Lecture Notes in Computer Science 10

• Example: Known uses of the pattern in practical development projects. These ap-
plication examples illustrate the acceptance and usefulness of the pattern, but also
mention counter-examples and failures.

• Related Patterns: A list of related patterns that are either alternatives or useful in
conjunction with the described pattern.

In our example we chose the activity Business Process Modeling and a process pat-

tern called Business Process Modeling Task Analysis with Activity Diagrams. This
process pattern provides project team members with a strategy for developing a Busi-
ness Process Model from an Initial Customer Specification.

Table 1 gives the description of the Business Process Modeling Activity:

Table 1. Activity Description: Business Process Modeling (BPM)

Entry Activity Description
Name Business Process Modeling (BPM)
Role Business Expert, Software Architect
Development Issue The goal of performing this activity is to develop a (complete)

business process model, which covers all the business scenarios
and business entities described by example in the Initial Cus-
tomer Specification serving as input. Thereby the project goals,
system vision, and constraints specified in the initial customer
specification are to be taken into account.

Initial Context Initial Customer Specification
Result Context Initial Customer Specification, Business Process Model

Table 2 gives the description of the pattern BPM Task Analysis with Activity Dia-

grams, which realizes the Business Process Modeling activity:

Table 2. Process Pattern Description: BPM Task Analysis with Activity Diagrams

Entry Process Pattern Description
Name BPM Task Analysis with Activity Diagrams
Keywords Business Process Modeling, UML Activity Diagrams, Stepwise

Refinement, Iterated Modeling with Reviews
Intent Development of

− a precise and unambiguous documentation of a BPM
− documentation of BPM on different levels of abstraction

cover not only all details but also provide an overview of rele-
vant business processes.

− documentation of BPM such that it can be understood by
business experts as well as software developers

− ensured adequacy of BPM (validated model)
Problem Business experts are available but a precise documentation of as-

is and to-be business processes being relevant for the system to
be developed does not exist.

Lecture Notes in Computer Science 11

High complexity of business processes.
The system vision of the initial customer specification hints at a
strong relationship between the system to be developed and the
business processes (e.g. support of large parts of business proc-
esses by the intended software system).

Solution In order to achieve a precise and unambiguous documentation of
business processes use UML activity diagrams [26] with its for-
mal syntax to describe business processes.
In order to achieve a documentation of different layers of ab-
straction apply the principle of stepwise refinement. Start with
the definition of major tasks and refine them iteratively.
Ensure adequacy of the business process model by reviewing
each iteration of the model with (third party) experts.
Involve business and software architecture experts being fluent
with activity diagrams.
The patterns workflow - namely its executed activities - is the
following3:
After having identified major tasks and user classes assign user
classes as actors to tasks. Refine task characteristics of major
tasks, and define a first version of the tasks’ task chains by de-
composing it into sub-tasks, and defining their causal dependen-
cies. Consider alternative chains.
Review this first model involving persons representing the iden-
tified user classes in the review.
Perform the refinement steps of tasks iteratively and review each
iteration (apply pattern Refinement of Activity Diagrams).

Realized Activi-
ties

Business Process Modeling

Initial Context Initial Customer Specification with arbitrary modeling concepts
and notations

Result Context Business Process Model with UML activity diagrams as notation
for task chains and a pre- and post-condition style specification
of tasks.

Pros and Cons Pros:
− UML Activity Diagrams provide a standardized, concise and

unambiguous notation to document business processes (Task
Chains). The applied modeling concepts are widely used by
business experts (e.g. similarity with Event Driven Process
Chains) [24] as well as software developers (e.g. similarity
with Petri nets).

− This precise way of description supports detailed and precise
review.

3 The temporal ordering of the activities, which are executed by a Process Pattern, may be de-

scribed by an UML Activity Diagram.

Lecture Notes in Computer Science 12

− Iterative modeling and review increases understanding and
quality of the business model.

Cons:
− Usage of specific notations, namely UML activity diagrams,

may require training of involved persons. A common under-
standing of the notation must be ensured.

− Stepwise refinement is a pure top down approach so that con-
sideration of existing parts may be difficult.

Related Patterns See also: BPM Informal Task Analysis

Besides BPM Task Analysis with Activity Diagrams, as mentioned in Table 2, the

further ways for performing activity Business Process Modeling might exist. For ex-
ample the process pattern BPM Informal Task Analysis represents an alternative strat-
egy for business modeling proposing an informal documentation of business proc-
esses. This might be suitable when business processes are simple and the software
system does not play a major role in these processes. The pattern map given in Figure
4 shows these two alternative performance strategies for the business modeling activ-
ity.

5.3 Managing the Process Lifecycle – Process Pattern Maps

As already mentioned process patterns will exist on several levels of detail. Like in
other pattern-based approaches, a single pattern may be combined with others, form-
ing the lifecycle of a development process. This lifecycle will not be fixed, but will
vary from project to project and from situation to situation, according to the specific
problems of the projects.

The selection of a process pattern may be outlined as follows: Based on the pro-
ject’s current situation, as partly represented by the state and consistency of work
products, the project leader tries to identify the next activities he wants to be executed.
This information leads to the selection of one or more alternative process patterns with
initial contexts and problem descriptions matching the current situation. After a care-
ful consideration of the alternatives’ pros and cons and their problem descriptions one
pattern is chosen. This pattern recommends a number of development activities and
their temporal order. For each of its activities the solution may require or propose the
application of certain process patterns.

By choosing process patterns the project manager forms the process lifecycle. Usu-
ally a process pattern library will contain a large number of patterns. We introduce
two kinds of pattern maps providing an overview over a set of patterns by structuring
them from different points of view.

Lecture Notes in Computer Science 13

Business Process
Modelling (BPM)

BPM: Task Analysis
(Activity Diagrams)

...

Identify
BusinessTasks

Identify
Business Users

Refine Task
Characteristics

Analyze Tasks
into Sub-Tasks

Review
Business Model

Identify Business Tasks
by Inspecting
Legacy Systems

Identify Business
Tasks by
Involving Business
Experts

execute

execute

realized by
realized by

OR

OR

BPM: Informal Task
Analysis

realized by

Activity

Process Pattern

Fig. 4. An Activity Process Pattern Map

One possibility is to structure process patterns accordingly to the activities they re-
alize. We call this activity process pattern map. Activity process pattern maps are
directed graphs. These graphs have two kinds of nodes, namely activities and process
patterns. A process pattern node has edges to all the activities that have to be per-
formed by applying the pattern and exactly one edge to the activity it realizes. Each
activity may be performed following the solution provided by a process pattern. Hence
each activity node has edges to process pattern nodes that provide guidelines to per-
form the activity. Figure 4 illustrates such an activity process pattern map that builds a
graph.

A second viewpoint on a set of pattern maps is the so-called context process pattern
map. This kind of map is a directed graph with contexts as nodes and patterns as arcs.
This way we can easily see alternative ways, i.e. process patterns, from one context to
another. These maps are similar to the maps presented in [22].

6 Conclusion and Further Work

In this paper we enhanced existing Process Frameworks comprising elements, such as
work product, activity, and role, by introducing the notion of process pattern as a
modular way for the documentation of development knowledge. According to the best
of breed idea, a company can combine the most appropriate solutions from different
established methods and best practices to form a perfectly tailored process for a com-
pany and for all types of projects. Therefore we introduced a Process Framework that
facilitates integration, tailoring, and evolution of process models.

Lecture Notes in Computer Science 14

Similar to the approach presented in [22], by stating the tackled problem as well as
discussing pros and cons, patterns support selection of adequate strategies during
process enactment that is problem-driven dynamic process tailoring.

A difference to other existing approaches is the explicit modeling of relationships
between work products, modeling concepts, and notations, allowing us to describe and
integrate generic processes, referring to work products only in general, with specific
development processes providing concrete modeling concepts and notations.

To realize a process pattern approach within a company software developers need
some guidance to find their way through the vast number of process patterns that may
have been developed at their company. Moreover due to the continuous evolution and
change of a living development process patterns a tool to store, present and manage
process patterns and work product definitions would be very desirable. We are work-
ing on a tool supporting process model maintenance. By realizing the presented pat-
tern maps this tool is supposed to provide guidance for software developers in finding
their way through the jungle of process patterns.

To sum up the application of a process pattern approach seems to be very promis-
ing, as it provides a flexible way to define a tailored development process that can be
easily adapted to new requirements. Combined with a reasonable tool support for the
management and development of process patterns this approach may help organiza-
tions to create and evolve their custom development process.

References

1. Dirk Ansorge, Klaus Bergner, Bernd Deifel, N. Hawlitzky, C. Maier, Barbara Paech, Andras
Rausch, Marc Sihling, Veronika Thurner, Sascha Vogel. Managing Componentware Devel-
opment - Software Reuse and the V-Modell Process. In Lecture Notes in Computer Science
1626, Advanced Information Systems Engineering, Page 134-148, Editors Matthias Jarke,
Andreas Oberweis. Springer Verlag. 1999.

2. Scott W. Ambler. Process Patterns: Building Large-Scale Systems Using Object Technology.
Cambridge University Press. 1998.

3. Scott W. Ambler. More Process Patterns: Delivering Large-Scale Systems Using Object
Technology. Cambridge University Press. 1999.

4. Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley. 1999.
5. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal. Pattern-

Oriented Software Architecture, A System of Patterns. John Wiley & Sons.. 1996.
6. Barry Boehm. A Spiral Model of Software Development and Enhancement. ACM Sigsoft

Software Engineering Notes, Vol. 11, No. 4. 1986.
7. Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander Vilbig. A Componentware Devel-

opment Methodology based on Process Patterns. Proceedings of the 5th Annual Conference
on the Pattern Languages of Programs. 1998.

8. Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander Vilbig. A Componentware Meth-
odology based on Process Patterns. Technical Report TUM-I9823, Technische Universität
München. 1998.

9. J.-C. Derniame, B. Ali Kaba, D. Wastell (eds.): Software Process, Principles, Methodology,
and Technology. Lecture Notes in Computer Science 1500, Springer, 1999.

Lecture Notes in Computer Science 15

10. Tom DeMarco, Timothy Lister. Peopleware, Productive Projects and Teams, Second Edi-
tion Featuring Eight All-New Chapters. Dorset House Publishing Corporation. 1999.

11. Desmond Francis D’Souza, Alan Cameron Wills. Objects, Components, and Frameworks
With Uml: The Catalysis Approach. Addison Wesley Publishing Company. 1998.

12. Wolfgang Dröschel, Manuela Wiemers. Das V-Modell 97. Oldenbourg. 1999.
13. Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach. Addi-

son Wesley Publishing Company. 1992.
14. Ivar Jacobson. Component-Based Development Using UML. Invited Talk at SE:E&P’98,

Dunedin, Newzealand. 1998.
15. Ivar Jacobson, Grady Booch, James Rumbaugh. Unified Software Development Process.

Addison Wesley Publishing Company. 1999.
16. C. Klein, B. Rumpe, M. Broy: A stream-based mathematical model for distributed informa-

tion processing systems - SysLab system model. In Proceedings of the first International
Workshop on Formal Methods for Open Object-based Distributed Systems, Chapmann &
Hall, 1996.

17. Philippe Kruchten. The Rational Unified Process, An Introduction, Second Edition. Addison
Wesley Longman Inc. 2000.

18. Ingolf Krüger. Distributed System Design with Message Sequence Charts. Dissertation,
Technische Universität München. 2000.

19. Object Management Group (OMG). Meta Object Facility (MOF) Specification.
http://www.omg.org, document number: 99-06-05.pdf. 1999.

20. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Capability Maturity
Model for Software, Version 1.1. Software Engineering Institute, CMU/SEI-93-TR-24,
DTIC Number ADA263403. 1993.

21. Winston W. Royce. Managing the Development of Large Software Systems: Concepts and
Techniques. In WESCON Technical Papers, Western Electronic Show and Convention, Los
Angeles, Aug. 25-28, number 14. 1970.
Reprinted in Proceedings of the Ninth International Conference on Software Engineering,
Pittsburgh, PA, USA, ACM Press, 1989, pp. 328-338.

22. C. Rolland, N. Prakash. A. Benjamen: A multi-Model View of Process Modelling. Re-
quirements Engineering Journal, to appear.

23. Bernhard Rumpe: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, 1996.

24. A.-W. Scheer: ARIS, Modellierungsmethoden, Metamodelle, Anwendungen. Springer
Verlag, 1998.

25. B. Schätz, F. Huber: Integrating Formal Description Techniques. In: FM'99 - Formal Meth-
ods, Proceedings of the World Congress on Formal Methods in the Development of Comput-
ing Systems, Volume II. J. M. Wing, J. Woodcock, J. Davies (eds.), Springer Verlag, 1999.

26. OMG: Unified Modeling Language Specification, Version 1.3 alpha R5, March 1999,
http://www.omg.org/.

27. Workflow Management Coalition: Terminology & Glossary. Document Number WFMC-
TC-1011, Status 3, www.wfmc.org, February 1999.

28. A. Finkelstein, J. Kramer, B. Nuseibeh: Software Process Modelling and Technology. Re-
search Studies Press Ltd, JohnWiley & Sons Inc, Taunton, England,1994.

29. R. Conradi, C. Fernström, A.Fuggetta, R. Snowdon: Towards a Reference Framework for
Process Concepts. In Lecture Notes in Computer Science 635, Software Process Technology.
Proceedings of the second European Workshop EWSPT’92, Trondheim, Norway, September
1992, pp. 3-20, J.C. Derniame (Ed.), Springer Verlag, 1992.

