
A Call�by�Need Strategy for Higher�Order
Functional�Logic Programming

Christian Prehofer
Technische Universit�at M�unchen

prehofer�informatik�tu�muenchen�de

Abstract

We present an approach to truely higher�order functional�logic programming
based on higher�order narrowing� Roughly speaking� we model a higher�
order functional core language by higher�order rewriting and extend it by
logic variables� For the integration of logic programs� conditional rules are
supported� For solving goals in this framework� we present a complete calcu�
lus for higher�order conditional narrowing� We develop several re�nements
that utilize the determinism of functional programs� These re�nements can
be combined to a narrowing strategy which generalizes call�by�need as in
functional programming� where the dedicated higher�order methods are only
used for full higher�order goals� Furthermore� we propose an implementa�
tional model for this narrowing strategy which delays computations until
needed�

� Introduction

We present a novel approach towards the integration of higher�order func�
tional and logic programming �for a survey see ����� The goal was to design
a simple language� in contrast to a language that subsumes both� The pri�
mary feature we support is higher�order programming� which is common in
functional languages� but not in �functional��logic programming ����

Roughly speaking� we extend a higher�order functional core language by
logic variables as in Prolog� These logic variables may be higher�order� which
is hard to avoid in this context� Thus we need higher�order uni�cation�
as e�g� in �Prolog� The language is based on higher�order rewrite rules�
which model functional programming �and actually more�� To support logic
programming� we allow conditions with extra variables�

Our higher�order setting allows for highly expressive constructs� e�g� sym�
bolic di	erentiation� The function diff�F�X�� de�ned by

diff��y�F�X� �

diff��y�y�X� � �

diff��y�sin�F �y��� X� � cos�F �X�� � diff��y�F �y�� X�

diff��y�ln�F �y��� X� � diff��y�F �y�� X��F �X��

computes the di	erential of a function F at a point X � With these rules� we

can not only evaluate� as e�g��

diff��y�sin�sin�y��� X�
�
�� cos�sin�X�� � cos�X�

but also solve goals modulo these rules� as shown later�
On the technical side� we contribute the following�

� Completeness results for conditional higher�order narrowing�
� A call�by�need narrowing strategy� motivated by call�by�need in func�
tional programming� which utilizes properties of functional programs�

� A simpler operational model with leads to decidable higher�order uni�
�cation in the second�order case� i�e� a program may not diverge only
due to uni�cation�

We use directed equational goals of the form the form s �� t� where � is
a solution if �s

�
�� �t� Intuitively� the computation in such goals proceeds

from left to right� Our approach admits higher�order rules l� r � c� cgr �
where cgr is a ground �or closed� term in normal form and c may have extra
variables not occurring in l� Then for solving conditions of rules� as well as
for queries� oriented goals suce� The restriction to ground right�hand sides
in the conditions also simpli�es the technical treatment and helps to establish
con�uence�termination �see e�g� ����� We argue that these restrictions do not
impede programming applications� In our higher�order functional setting�
extra variables on the right are not needed� since we may use functional let
or where constructs� as shown later�

� Preliminaries

We brie�y introduce simply typed ��calculus �see e�g� ����� We assume the
following variable conventions�

� F�G�H�X�Y denote free variables�
� a� b� c� f� g �function� constants� and
� x� y� z bound variables�

Type judgments are written as t � � � Further� we often use s and t for terms
and u� v� w for constants or bound variables� The set of types for the simply
typed ��terms is generated by a set of base types �e�g� int� bool� and the
function type constructor �� The syntax for ��terms is given by

t � F j x j c j �x�t j �t� t��

A list of syntactic objects s�� � � � � sn where n �
 is abbreviated by sn�
For instance� n�fold abstraction and application are written as �xn�s �
�x� � � ��xn�s and a�sn� � ��� � ��a s�� � � �� sn�� respectively� Free and bound
variables of a term t will be denoted as FV�t� and BV�t�� respectively� Let
fx �� sgt denote the result of replacing every free occurrence of x in t by
s� Besides ��conversion� i�e� the consistent renaming of bound variables� the
conversions in ��calculus are de�ned as�

� ��conversion� ��x�s�t �� fx �� tgs� and
� ��conversion� if x �� FV�t�� then �x��tx� �� t�

The long ���normal form of a term t� denoted by tl
�

�� is the ��expanded
form of the ���normal form of t� It is well known ��� that s ���� t i	
sl

�

� �� tl
�

� � As long ���normal forms exist for typed ��terms� we will in
general assume that terms are in long ���normal form� For brevity� we may
write variables in ��normal form� e�g� X instead of �xn�X�xn�� We assume
that the transformation into long ���normal form is an implicit operation�
e�g� when applying a substitution to a term�

A substitution � is in long ���normal form if all terms in the image of
� are in long ���normal form� The convention that ��equivalent terms are
identi�ed and that free and bound variables are kept disjoint �see also ����
is used in the following� Furthermore� we assume that bound variables with
di	erent binders have di	erent names� De�ne Dom��� � fX j �X 	� Xg and
Rng��� �

S
X�Dom��� FV��X�� Two substitutions are equal on a set of

variables W � written as � �W ��� if �� � ��� for all � � W � A substitution
� is idempotent i	 � � ��� We will in general assume that substitutions
are idempotent� A substitution �� is more general than �� written as ��
 ��
if � � 	�� for some substitution 	�

We describe positions in ��terms by sequences over natural numbers�
The subterm at a position p in a ��term t is denoted by tjp� A term t with
the subterm at position p replaced by s is written as t�s�p�

A term t in ��normal form is called a �higher�order� pattern if every
free occurrence of a variable F is in a subterm F �un� of t such that the un
are ��equivalent to a list of distinct bound variables� Uni�cation of patterns
is decidable and a most general uni�er exists if they are uni�able ����� Also�
the uni�cation of a linear pattern with a second�order term is decidable and
�nitary� if they are variable�disjoint ����� Examples of higher�order patterns
are �x� y�F �x� y� and �x�f�G��z�x�z���� where the latter is at least third�
order� Non�patterns are for instance �x� y�F �a� y� and �x�G�H�x���

A rewrite rule ���� ��� is a pair l � r such that l is a pattern but not
a free variable� l and r are long ���normal forms of the same base type� and
FV�l� � FV�r�� Assuming a rule l� r and a position p in a term s in long
���normal form� a rewrite step from s to t is de�ned as

s ��l�r
p�� t � sjp � �l t � s��r�p�

For a rewrite step we often omit some of the parameters l� r� p and �� We
assume that constant symbols are divided into free constructor symbols

and de�ned symbols� A symbol f is called a de�ned symbol� if a rule
f�� � �� �� t exists� Constructor symbols are denoted by c and d� A term
is in R�normal form for a set or rewrite rules R if no rule from R applies
and a substitution � is R�normalized if if all terms in the image of � are in
R�normal form�

Notice that a subterm sj
p
may contain free variables which used to be

bound in s� For rewriting it is possible to ignore this� as only matching of a
left�hand side of a rewrite rule is needed� For narrowing� we need uni�cation
and hence we use the following construction to lift a rule into a binding
context to facilitate the technical treatment�

An xk�lifter of a term t away from W is a substitution 	 � fF ��
�
F ��xk� j F � FV�t�g where
 is a renaming such that Dom�
� � FV�t��
Rng�
� �W � fg and
F � �� � � � � � �k � � if x� � ��� � � � � xk � �k and
F � � � A term t �rewrite rule l � r� is xk�lifted if an xk�lifter has been
applied to t �l and r�� For example� fX �� X ��x�g is an x�lifter of g�X�
away from any W not containing X �

� Conditional Lazy Narrowing

In this section� we propose a class of conditional higher�order rewrite rules
which are tailored for functional programming languages� Then we introduce
a system of transformations for this class of rules� Further optimizations are
developed in later sections�

De�nition ��� A normal conditional higher�order rewrite system

�NCHRS� R is a set of conditional rewrite rules of the form l � r �
ln � rn� where l� r is a rewrite rule and rn are ground R�normal forms� A

conditional rewrite step is de�ned as s ��l�r�ln�rn
p�� t i	 s ��l�r

p�� and

�ln
�
�� R rn�

Notice that rewrite rules are restricted to base type� but the conditions may
be higher�order� Also� oriented goals suce for proving the conditions as

�ln
�

�� �rn is equivalent with �ln
�
�� rn�

The rules of System CLN for lazy higher�order narrowing are shown in
Figure �� The rules are split into standard ��rst�order� rules� plus higher�
order rules� These consist of a rule for narrowing at variables� needed to com�
pute functional objects� and rules for higher�order uni�cation� The higher�
order rules will only be needed if truly higher�order free variables occur �in
non pattern terms� to be precise�� For brevity� some type constraints of the
rules� which particularly restrict the higher�order rules� are left implicit�

Let s
�
� t stand for one of s �� t and t �� s� For goals of the form

s
�
� t� the rules are intended to preserve the orientation of

�
�� We ex�

tend the transformation rules on goals to sets of goals in the canonical way�
fs�� tg � S �� fsn �� tng � �S if s �� t �� fsn �� tng� For a sequence
��� � � � ��n of CLN steps� we write

�
� �� where � � �n � � � ��� Goals of

the form �xk�F �� � ��
�
� �xk�G�� � ��� called 	ex�	ex� are guaranteed to have

some solution and are usually delayed in higher�order uni�cation�
The main ingredient for completeness of conditional narrowing is to as�

sure that solutions for fresh variables in the conditions are normalized� This

Decomposition

�xk�v�tn��� �xk�v�t�n� � f�xk�tn �� �xk�t�ng

Elimination

F
�
� t �� fg if F �� FV�t� and

where � � fF �� tg

Conditional Narrowing with Decomposition

�xk�f�tn��
� �xk�t � f�xk�tn �� �xk�ln� �xk�l�p �

� �xk�r�p�
�xk�r�� �xk�tg
where f�ln�� r� l�p � r�p
is an xk�lifted rule

Truly Higher�Order Rules

Conditional Narrowing at Variable

�xk�H�tn��� �xk�t �� f�xk�Hm��tn��� �xk�lm� �xk�l�p �
� �xk�r�p�

�xk�r�
� �xk�tg

if �xk�H�tn� is not a pattern�
f�lm�� r � l�p � r�p is an xk�lifted rule�

and � � fH �� �xn�f�Hm�xn��g
with fresh variables Hm

Imitation

�xk�F �tn�
�
� �xk�f�t�m� �� f�xk�Hm��tn�

�
� �xk�t�mg

where � � fF �� �xn�f�Hm�xn��g
with fresh variables Hm

Projection

�xk�F �tn�
�
� �xk�v�t�m� �� f�xk��ti�Hp�tn��

�
� �xk�v�t�m�g

where � � fF �� �xn�xi�Hp�xn��g�
Hp � �p� and xi � �p � �

with fresh variables Hp

Figure �� System CLN for Conditional Lazy Narrowing

is possible for extra variables on the left if the system is convergent or at least
con�uent and weakly normalizing �which means that normal forms exist� as
above� This is the reason for disallowing extra variables on the right�

Theorem ��
 �Completeness of CLN� Assume a con�uent and weakly nor�

malizing NCHRS R� If s �� t has solution �� i�e� �s
�
��R �t� �t and � are

R�normalized� then fs �� tg ��
CLN F such that � is more general� modulo

the newly added variables� than � and F is a set of �ex��ex goals��

��� Re�nements Using the Determinism of Functional Lan�
guages

We mention brie�y some important re�nements that have been established
in the higher�order setting ���� ����

� Simpli�cation� i�e� �partial� functional evaluation� has shown to be
complete for convergent systems�

� Binding variables via variable elimination is a very natural rule� but
in general its completeness is an open problem� In our context� elimi�
nation on goals X �� t is complete�

� It is useful to add some re�nements for constructors� First� decompo�
sition on constructors� e�g� on c�� � ���� c�� � �� is deterministic� Corre�
spondingly� goals of the form c�� � ���� v�� � ��� where v is not a variable
and v 	� c are unsolvable� since evaluation proceeds from left to right�

� Left�Linear Programs and Simple Systems

In this section we examine a particular class of goal systems� Simple Sys�
tems ����� which suce for programming and have several interesting prop�
erties� We assume in the following NCHRS with left�linear rules� A rule
l� r � ln � rn is left�linear� if no free variable occurs repeatedly in l�

De�nition ��� We write s�� s� � t�� t�� if FV�s��� FV�t� 	� fg�

This order links goals by the variables occurring� e�g� t�� f�X�� X �� s�
Now we are ready to de�ne Simple Systems�

De�nition ��
 A system of goals Gn � sn �� tn is a Simple System� if

� all right�hand sides tn are patterns�
� Gn is cycle free� i�e� the transitive closure of � is a strict partial
ordering on Gn and
� every variable occurs at most once in the right�hand sides tn�

We show next that this class is closed under the rules of CLN�

Theorem ��� Assume a left�linear NCHRS R� If Gn is a Simple System�
then applying CLN with R preserves this property�

The following results on solved forms from ���� will be crucial later�

�Detailed proofs can be found in �����

Theorem ��� A Simple System S � fX�
�
� t�� � � � � Xn

�
� tng has a solu�

tion if all Xn are distinct�

The following corollary is needed for the new narrowing strategy developed
later�

Corollary ��� A Simple System of the form ftn �� Xng is solvable�

In the second�order case uni�cation never leads to divergence� as shown
in ����� extending results in �����

Theorem �� Solving a second�order Simple System by the uni�cation rules
of CLN� i�e� without the narrowing rules� terminates�

� Variables of Interest

In the following� we classify variables in Simple Systems into variables of
interest and intermediate variables� This prepares the narrowing strategy
presented in the next section�

We consider initial goals of the form s � t� and assume that only the
values for the free variables in s are of interest� neither the variables in t

nor intermediate variables computed by CLN� For instance� assume the rule
f�a�X�� g�b� and the goal f�Y� t��� g�b�� which is transformed to

Y �� a� t�� X� g�b��� g�b�

by Lazy Narrowing� Clearly� only the value of Y is of interest for solving the
initial goal� but not the value of X �

The invariant we will show is that variables of interest only occur on the
left� but never on the right�hand side of a goal� We �rst need to de�ne the
notion of variables of interest� Consider an execution of CLN� We start with
a goal s�� t where initially the variables of interest are in s� This has to be
updated for each CLN step� If X is a variable of interest� and an CLN step
computes �� then the free variables in �X are the new variables of interest�
With this idea in mind we de�ne the following�

De�nition ��� Assume a sequence of transformations fs �� tg
�
� �

CLN

fsn �� tng� A variable X is called a variable of interest if X � FV��s�
and intermediate otherwise�

Now we can show the following result�

Theorem ��
 Assume a left�linear NCHRS R� a Simple System Gn �
fsn �� tng and a set of variables V with V � FV�tn� � fg� If Gn �

�
CLN

fs�m �
� t�mg� then ��V � Dom�����Rng����� FV�t

�
m� � fg�

Then the desired result follows easily�

Corollary ��� �Variables of Interest� Assume a left�linear NCHRS R
and assume solving a Simple System s �� t with system CLN� Then vari�

ables of interest only occur on the left� but never on the right�hand side of a
goal�

� Call�By�Need Narrowing

We show that for Simple Systems a strategy for variable elimination leads
to a new narrowing strategy� coined call�by�need narrowing� In essence� we
show that certain goals can safely be delayed� which means that computa�
tions are only performed when needed�

As we consider oriented equations� we can distinguish two cases of vari�
able elimination and we will handle variable elimination appropriately in
each case� In the �rst case� X �� t� the variable X can be a variable of
interest� Thus the elimination of X is desirable for computational reasons
and is deterministic �Sec� ����� Notice that elimination is always possible on
such goals� as X �� FV�t� in Simple Systems�

In the other case of variable elimination� i�e�

t�� X�

elimination may not be deterministic� Thus such goals will be delayed� This
simple strategy has some interesting properties� which we will examine in
the following�

First view this idea in the context of a programming language� Let
us for instance model the evaluation �or normalization� f�t�� t���R � t by
narrowing� assuming the rule f�X� Y �� g�X�X��

ff�t�� t���
� tg �CLN ft� �

� X� t� �
� Y� g�X�X��� tg

Now we can model the following evaluation strategies�

Eager evaluation �or call�by�value� is obtained by performing normaliza�
tion on the goals t� and t�� followed by eager variable elimination on
t��R �

� X and t��R �
� Y � The disadvantage is that eager evaluation

may perform unnecessary evaluation steps�

Call�by�name is obtained by immediate eager variable elimination on t� ��

X and on t� �
� Y � It has the disadvantage that terms are copied� e�g�

t� here as X occurs twice in g�X�X�� Thus expensive evaluation may
have to be done repeatedly�

Needed evaluation �or call�by�need� is an evaluation strategy that can be
obtained by delaying the goals t� �

� X and t� �
� Y � thus avoiding

copying� Then t� and t� are only evaluated when X or Y are needed
for further computation�

In the latter� we model equationally lazy evaluation with sharing copies
of identical subterms� i�e� the delayed equations may be viewed as shared
subterms� The notion of need considered here is similar to the notion of
call�by�need in ���� but not to optimal or needed reduction ����

Let us now come back from evaluation to the context of narrowing� Con�
sider for instance the narrowing step with the above rule

ff�t�� t���
� g�a� Z�g �CLN ft� �

� X� t� �
� Y� g�X�X��� g�a� Z�g

In contrast to evaluation as in functional languages� solving the goals t� ��

X� t� �� Y may have many solutions� Whereas in functional languages� ea�
ger evaluation can be faster� this is unclear for functional�logic programming�
Thus we suggest to adopt the following �call�by�need� approach�

De�nition �� Call�By�Need Narrowing is de�ned as Lazy Narrowing
with System CLN where goals of the form t�� X are delayed�

For instance� in the above example� decomposition on g�X�X� �� g�a� Z�
yields the goals X �� a�X �� Z� Deterministic elimination on X �� a
instantiates X � thus the goal t� �� a has to be solved� i�e� a valued for t� is
needed� In contrast� t� �

� Y is delayed�
This new notion of narrowing for Simple Systems and left�linear NCHRS

is supported by the following arguments� Call�By�Need Narrowing

is complete� or safe� in the sense that when only goals of the form tn �� Xn

remain� they are solvable by Corollary ���� Since the strategy is to
delay such goals� this result is essential��

delays intermediate variables only� As shown in the last section� we can
identify the variables to be delayed� a variable X in a goal t �� X
cannot be a variable of interest�

avoids copying� as shown above� variable elimination on intermediate vari�
ables possibly copies unevaluated terms and duplicates work� Thus
intermediate goals of the form t �� X are only considered if X is
instantiated� i�e� if a value is needed�

The important aspect of this strategy is that the higher�order rules are only
needed if higher�order free variables occur� goals with a �rst�order variable on
one side are either solved by elimination� as the occurs check is immaterial�
or simply delayed�

The analogy to call�by�need in programming languages leads to another
simple improvement� On a goal of the formX�t��� t� the higher�order rules
have to be applied in general� However� if a goal s �� X exists� then it is
advantageous to compute a value for X from this goal before attempting the
higher�order rules� This case is particularly easy to detect if delayed goals
are viewed as a context� which we show next�

�This may con�ict with �ex��ex pairs in some special cases �����

��� Implementation Considerations

This section discusses more operational and implementational aspects of
call�by�need narrowing� In the following abstract model for call�by�need
narrowing� goals are delayed in a context after Decomposition and Lazy
Narrowing and are possibly reactivated by Elimination� The idea is to handle
intermediate evaluations e	ectively and to detect deterministic operations
on�the��y�

The important step is to view the delayed goals for call�by�need narrow�
ing as a �context� and to consider an intermediate variable as a pointer to
a delayed term� This is possible for the following two reasons� intermediate
variables can be characterized and� more importantly� variables can occur
only once on the right and can thus be seen as a pointer to a �single�� term�
Thus we get contexts for free� i�e� we do not need any extra machinery�

Assume a set of delayed goals� or a context�

Gd � tn �� Xn�

where Xn are guaranteed to be distinct� and a set of active goals

Ga � sm �� s�m�

For an implementation� we assume that the intermediate variables fsmg �
fXng have a �pointer� to their delayed goal in Gd� �Unfortunately the
arrow in a delayed goal t�� X gives the wrong direction for viewing this as
a pointer��

With this model in mind� we �rst examine the �rst�order rules from CLN
on a goal from Ga� The idea of the following is to scan newly generated goals
on�the��y for deterministic operations�

Elimination on a goal X �� t performs a �wake�up� on a delayed goal
ti �� X � if X � fXng�

Decomposition on a goal v�tp��
� v�t�p� creates the new goals tp �

� t�p�

Conditional Narrowing on a goal f�tp� �� s with a rule f�lp� � r �
lo � ro creates the new goals tp �� lp� lo �� ro� r�

� s�

For a set of new goals Gn � tp �� t�p� created by the Decomposition or Nar�
rowing rule� we examine if a deterministic operation is possible �see Sec� ����
and if the goal is to be delayed� A goal from Gn can be of one of the following
forms�

�� u�tk��
� v�t�l�

�� X �� v�t�k�
�� u�tk��

� X

When creating these goals� we check for deterministic simpli�cation as fol�
lows� For the �rst form� we only check if a deterministic decomposition or if
a constructor clash applies� Elimination is performed on goals of the second
form� This may reactivate a delayed goal which is added to the new goals
Gn and is checked as well� In the remaining case� goals of the third form
are delayed� This �recursive� simpli�cation procedure must terminate� as we
only perform uni�cation rules�

For the higher�order rules� we cannot hope for much preprocessing as
above� Imitation and Conditional Narrowing at Variable on a goal create
new goals with variable heads where in some cases Projection is the only
operation that applies�

� Examples

This section presents examples for higher�order functional�logic program�
ming� more example can be found in �����

Strict equality on �rst�order data types is common in functional��logic�
programming languages� With strict equality �s two terms are equal� if they
can be evaluated to the same �constructor� term� It is interesting to see how
strict equality can be encoded in our setting� For instance� the rules

s�X� �s s�Y � � X �s Y

 �s
 � true

suce for the constructors s and
� With strict equality� we can avoid
full equality on higher�order terms� similar to current functional��logic� lan�
guages� Recall that full equality entails undecidable second�order uni�cation�

��� Computing Ancestor Relations

This example computes ancestor relations from a simple database� In the
�rst�order case� such examples are used to �nd persons that are related in
some way� here we can also compute the relation explicitly as a ��term�

map�F� �X jY �� � �F �X�jmap�F� Y ��
map�F� ��� � ��
father�mary� � john

father�john� � art

With these rules� the query

R�mary��� art

has the solution R �� �x�father�father�x�� and the goal

map�F� �mary� john���� �john� art�

is solved by F �� �x�father�x��

��� Symbolic Di�erentiation

Using the rules for di	erentiation of Section �� we can solve the following
goal by call�by�need narrowing� For simplicity� we also use functional evalu�
ation ���� in this example�

f�x�diff��y�ln�F �y��� x��� �x�cos�x��sin�x�g
�
�Evaluation for diff

f�x�diff��y�F �y�� x��F �x��� �x�cos�x��sin�x�g
�
�Decomposition

f�x�diff��y�F �y�� x��� �x�cos�x��

�x�F �x��� �x�sin�x�g
�
�Elimination

f�x�diff��y�sin�y�� x��� �x�cos�x�g
�
�Evaluation

f�x�cos�x� � diff��y�y� x��� �x�cos�x�g
�
�Evaluation

f�x�cos�x��� �x�cos�x�g
�
�Decomposition

fg

Compared to ����� there is no search necessary to �nd the solution F ��
�x�sin�x� by the call�by�need strategy�

� Discussion and Related Work

In this section� we brie�y discuss some important aspects of this approach�
the restrictions imposed on conditions and� secondly� a comparison to an
optimal �rst�order strategy�

We argue that in the higher�order case extra variables in right side
of the conditions are not needed for programming purposes� Whereas in
�functional��logic programming such extra variables are often used as local
variables� we prefer the more suitable constructs of functional programming
here� Consider for instance the function unzip� splitting a list of pairs into
a pair of lists� which we write in a functional way�

unzip���x� y�jR��� let �xs� ys� � unzip�R� in ��xjxs�� �yjys��

This is usually written as unzip���x� y�jR��� ��xjxs�� �yjys��� unzip�R��
�xs� ys� in �rst�order languages� which requires extra variables on the right�
The above notation for a let�construct corresponds to

let �xs� ys� � X in F �xs� ys� �def let X in �xs� ys�F �xs� ys�

which can be de�ned by a higher�order rewrite rule

let �Xs� Y s� in �xs� ys�F �xs� ys�� F �Xs� Y s��

On the other hand� we use existential logic variables in conditions for rela�
tional programming� e�g� a grandmother predicate�

grand mother�X� Y �� mother�X�Z�� mother�Z� Y �

Next we compare this approach to some advanced �rst�order ones� For
a restricted class of rewrite rules� i�e� inductively sequential� an optimal
narrowing strategy� called needed narrowing� has been presented in ���� As in
other �rst�order approaches to functional�logic programming� an alternative
de�nition of narrowing is used� we write t � t� for a narrowing step if
some subterm tjp is uni�ed with the left�hand side of a rule such that �t
can be rewritten to t�� For this notion of narrowing many re�nements have
been developed� but in the general higher�order case this approach has some
principal problems with bound variables ����� It is thus not clear how to
compare these two approaches� Generally� needed narrowing in ��� is optimal
wrt the length of the reduction steps performed �modulo sharing� for a precise
de�nition see �����

One di	erence is that we have a clear model to prefer deterministic op�
erations� For instance� with the following rules

f�
� �

ones�
� � s�
�
ones�s�X�� � ones�X�

the goal f�ones�X���� s�
� obviously has no solution� This is detected here
by a constructor clash during simpli�cation �see Sec� ����� On the other hand�
a strategy driven purely by optimal reductions� such as in ���� attempts nar�
rowing steps at the inner ones�X� redex and diverges� Although it is dicult
to compare these approaches for practical applications� notice that Prolog�
when coding the above into predicates� performs the same simpli�cation� i�e�
uni�cation fails�

A disadvantage of the outside�in approach of lazy narrowing is that re�
dundant computations in di	erent search trees are possible� For instance�
consider the goal ones�t� �� s�Y �� where t is an arbitrary term� In this
example� for each of the two rules� the term t has to be evaluated� i�e� in two
goals t ��
 and t �� s�X�� This can be avoided by needed narrowing ����
Again� a naive translation into Prolog may exhibit the same ineciency� de�
pending on the order of the literals� Also� this may not be a problem for
mostly functional programs with little branching�

	 Conclusions

We have presented an e	ective model for the integration of functional and
logic programming� We have shown that the restrictions in our setting�
motivated by functional programming� lead to operational bene�ts and to
a call�by�need narrowing strategy� A particular feature is that truly higher�
order goals with higher�order logic variables are solved by distinguished rules�

In contrast to many other works on higher�order functional�logic pro�
gramming ��� ��� ���� we cover the full higher�order case� The work in
��
� on higher�order narrowing considers only a restricted class of ��terms�

higher�order patterns with �rst�order equations� which does not suce for
modeling higher�order functional programs� The approach to higher�order
narrowing in ��� aims at narrowing with higher�order functional programs�
but restricts higher�order variables in the left�hand sides of rules and only
permits restricted goals�

Compared to higher�order logic programming ����� higher�order program�
ming as in functional languages is possible directly here� Our results may
also contribute to �operational� semantics of the language Escher ��
�� which
pursues similar goals as done here�

Acknowledgements The author is grateful to the helpful comments of the
anonymous referees� This research was supported by the DFG under grant
Br ���� Deduktive Programmentwicklung and by ESPRIT WG �
��� CCL�

References

��� S� Antoy� R� Echahed� and M� Hanus� A needed narrowing strategy� In
Proc� ��st ACM Symposium on Principles of Programming Languages�
pages �������� Portland� �����

��� Zena Ariola� Matthias Felleisen� John Maraist� Martin Odersky� and
Philip Wadler� A call�by�need lambda calculus� In ��	nd ACM Sympo�
sium on Principles of Programming Languages� San Francisco� Califor�
nia� �����

��� J� Avenhaus and C� A� Lor��a�S�aenz� Higher�order conditional rewrit�
ing and narrowing� In Jean�Pierre Jouannaud� editor� �st International
Conference on Constraints in Computational Logics� M�unchen� Ger�
many� September ����� Springer LNCS ����

��� Hendrik Pieter Barendregt� The Lambda Calculus� its Syntax and Se�
mantics� North Holland� �nd edition� �����

��� J�C� Gonz�alez�Moreno� M�T� Hortal�a�Gonz�alez� and M� Rodr��guez�
Artalejo� On the completeness of narrowing as the operational seman�
tics of functional logic programming� In E� B�orger� G� J�ager� H� Kleine
B�uning� S� Martini� and M�M� Richter� editors� CSL	
�� Springer LNCS�
San Miniato� Italy� September �����

��� M� Hanus� The integration of functions into logic programming� From
theory to practice� Journal of Logic Programming� �� �
���������
�����

��� M� Hanus� On extra variables in �equational� logic programming� In
Proc� Twelfth International Conference on Logic Programming� MIT
Press� �����

��� J�R� Hindley and J� P� Seldin� Introduction to Combinators and ��

Calculus� Cambridge University Press� �����

��� G�erard Huet and Jean�Jacques L�evy� Computations in orthogonal
rewriting systems� I� In J��L� Lassez and G� Plotkin� editors� Com�
putational Logic� Essays in Honor of Alan Robinson� pages ��������
MIT Press� Cambridge� MA� �����

��
� John Wylie Lloyd� Combining functional and logic programming lan�
guages� In Proceedings of the �

� International Logic Programming

Symposium� ILPS	
�� �����

���� Hendrik C�R Lock� The Implementation of Functional Logic Languages�
Oldenbourg Verlag� �����

���� Richard Mayr and Tobias Nipkow� Higher�order rewrite systems
and their con�uence� Technical report� Institut f�ur Informatik� TU
M�unchen� �����

���� Dale Miller� A logic programming language with lambda�abstraction�
function variables� and simple uni�cation� J� Logic and Computation�
���������� �����

���� Gopalan Nadathur and Dale Miller� Higher�order logic programming�
In C� Hogger D� Gabbay and A� Robinson� editors� Handbook of Logic in
Arti�cial Intelligence and Logic Programming� volume �� Oxford Uni�
versity Press� To appear�

���� Tobias Nipkow� Higher�order critical pairs� In Proc� th IEEE Symp�

Logic in Computer Science� �����

���� Christian Prehofer� Decidable higher�order uni�cation problems� In
Automated Deduction � CADE���� Springer LNAI ���� �����

���� Christian Prehofer� Higher�order narrowing� In Proc� Ninth Annual

IEEE Symposium on Logic in Computer Science� IEEE Computer So�
ciety Press� July �����

���� Christian Prehofer� Higher�order narrowing with convergent systems� In
�th Int� Conf� Algebraic Methodology and Software Technology� AMAST
	
�� Springer LNCS ���� July �����

���� Christian Prehofer� Solving Higher�order Equations� From Logic to Pro�

gramming� PhD thesis� TU M�unchen� ����� Also appeared as Technical
Report I��
��

��
� Zhenyu Qian� Higher�order equational logic programming� In Proc� ��st
ACM Symposium on Principles of Programming Languages� Portland�
�����

���� Yeh�heng Sheng� HIFUNLOG� Logic programming with higher�order
relational functions� In David H�D� Warren and Peter Szeredi� editors�
Logic Programming� MIT Press� ���
�

