
Decidable Higher�Order Uni�cation Problems

Christian Prehofer�

Technische Universit�at M�unchen��

Abstract� Second�order uni�cation is undecidable in general� Miller
showed that uni�cation of so�called higher�order patterns is decidable
and unitary� We show that the uni�cation of a linear higher�order pat�
tern s with an arbitrary second�order term that shares no variables with
s is decidable and �nitary� A few extensions of this uni�cation problem
are still decidable� unifying two second�order terms� where one term is
linear� is undecidable if the terms contain bound variables but decidable
if they don�t�

� Introduction

Higher�order uni�cation is currently used in theorem provers such as Isabelle
����� TPS ���� Nuprl� ��� and others	 The success of ��Prolog ���� has shown
the utility of higher�order constructs for programming	 Other applications of
higher�order uni�cation include program synthesis ��
� and machine learning ����
��	 In this paper we consider the uni�cation of a linear ��term with an arbitrary
second�order ��term and develop several classes where this uni�cation problem
is decidable	

We start with an overview of the existing decidability results for higher�order
uni�cation problems in Figure �	 The column labeled Monadic refers to the
uni�cation of terms with unary function symbols only	 A simply typed ��term is
a higher�order pattern� if all its free variables only have distinct bound variables
as arguments	 Dale Miller� as indicated in the column labeled Patterns� recently
showed that uni�cation of higher�order patterns is decidable and unitary	�

Section 
 reviews a set of transformation rules for full higher�order uni�ca�
tion	 Then we show in Section � that uni�cation of linear higher�order patterns
with an arbitrary second�order term is decidable and �nitary� if the two terms
share no variables	 In particular� we do not have to resort to pre�uni�cation� as
equations with variables as outermost symbols on both sides �
ex�
ex� pairs can
be �nitely solved in this case	 Further extensions are discussed in Section �	 The
most general extension� unifying two second�order terms where one term is lin�
ear� is undecidable if the terms contain bound variables and decidable otherwise	
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Fig� �� Decidability of Higher�Order Uni�cation

� Notation and Basic De�nitions

The following notation of ��calculus are used in the sequel	 For the standard
theory of ��calculus we refer to ���� ��	 We assume the following variable con�
ventions�

� F�G�H� P�X�Y free variables�
� a� b� c� f� g �function� constants�
� x� y� z bound variables�
� �� � types	

The following grammar de�nes the syntax for ��terms�

t � F j x j c j �x�t j �t� t��

A list of syntactic objects s�� � � � � sn where n � � is abbreviated by sn	 We will
use n�fold abstraction and application� i	e	

�xm�f�sn� � �x� � � � �xm���� � � �f s�� � � �� sn�

Substitutions are �nite mappings from variables to terms and are denoted
by fXn �� tng	 We assume the following standard conversions in ��calculus�

��conversion� �x�t �� �y��fx �� ygt�
��conversion� ��x�s�t �� fx �� tgs
��conversion� if x �� FV�t�� then �x��tx� �� t

A term in ��normal form is in long ���normal form if it is ��expanded �
��	
For our proofs we assume that terms are in long ���normal form� for brevity
we sometimes use ��normal form� which is denoted by t��	 We assume that this
transformation into long ���normal form is an implicit operation� e	g	 occurs
when applying a substitution to a term	 The head of a term �xk�v�tn� is de�ned
as Head��xk�v�tn�� � v	 Free and bound variables of a term t will be denoted
as FV�t� and BV�t�� respectively	 We describe the subterm at a position p in



a ��term t by tjp	 A �sub��term tjp is ground� if no free variables of t occur in
tjp	 A variable is isolated if it occurs only once �in a term or in a system of
equations�	 A term is linear if no free variable occurs repeatedly	

The set of types T for the simply typed ��terms is generated by a set T�
of base types �e	g	 int� bool� and the function type constructor �	 Notice that
� is right associative� i	e	 � � � � � � � � �� � ��	 The order of a type
� � �� � � � �� �n � �� � � T� is de�ned as

Ord��� �

�
� if n � �� i	e	 � � � � T�
� �max�Ord����� � � � � Ord��n�� otherwise

A language of order n is restricted to function constants of order � n�� and
variables of order � n	

De�nition�� A simply typed ��term s is a relaxed higher�order pattern�
if all free variables in s only have bound variables as arguments� i	e	 if X�tn� is
a subterm of s� then all ti�� are bound variables	

Examples are �x� y�F �x� y� and �x�f�G��z�x�z���� where the latter is at least
third�order	 Non�patterns are �x� y�F �a� y�� �x�G�H�x��	

In most of the existing literature ���� ���� patterns are required to have dis�
tinct bound variables as arguments to a free variable	 This restriction is neces�
sary for unitary uni�cation� but for our purpose this is not relevant and we will
henceforth work with relaxed higher�order patterns and call these patterns for
brevity	

We identify ��equivalent terms and assume that free and bound variables are
kept disjoint ���	 Furthermore� we assume that bound variables with di�erent
binders have di�erent names	

� Pre�uni�cation by Transformations

We present in the following a version of the transformation system PT for higher�
order uni�cation of Snyder and Gallier �
��	 More precisely� we use the primed
transformations for pre�uni�cation of Section � in �
��� where also the omitted
type constraints can be found	 These transformation rules in Figure � work
on sets of pairs of terms to be uni�ed� written as fu � v� � � �g	 Pre�uni�cation
di�ers from uni�cation by the handling of so�called 
ex�
ex pairs	 These are
equations of the form �xk�P �� � �� � �xk�P

��� � ��� which permit in general an
in�nite number of incomparable uni�ers but are guaranteed to have at least one
uni�er� e	g	 fP �� �xm�a� P

� �� �xn�ag	 The idea of pre�uni�cation goes back to
Huet ����	 It means to handle 
ex�
ex pairs as constraints and not to attempt
to solve them explicitly	

The only place where the restriction to second�order terms simpli�es the
system is the last rule� projection� where xi must be a �rst�order object	 Hence
the binding to F in this case is of the simpler form F � �xn�xi� which will be
important for our results	

We have restricted the application of rule �
� slightly compared to �
��� the
rule of Snyder et al	 can also be applied to 
ex�
ex equations	 We have excluded



��� Delete

ft � tg � S � S
��� Decompose

f�xk �f�tn� � �xk�f�t�n�g � S �
S

i������ �n
f�xk �ti � �xk�t

�

ig � S

��� Eliminate

fF � �xk�tg � S � fF � �xk�tg � fF �� �xk �tgS
if F �� FV��xk�t� and
Head�t� is not a free variable

���a� Imitate

f�xk�F �tn� � �xk�f�t�m�g � S � fF � �xn�f�Hm�xn��g�

f�xk�F �tn� � �xk�f�t�m�g � S
���b� Project

f�xk�F �tn� � �xk�v�t�m�g � S � fF � �xn�xi�Hm�xn��g�

f�xk�F �tn� � �xk�v�t�m�g � S
where v is a constant or bound variable

Fig� �� System PT for Higher�order Pre�uni�cation

this case as it is not necessary for completeness �the same is done in the algorithm
presented by Snyder et al	�	

Theorem� �Snyder�Gallier�� System PT is a sound and complete transfor�

mation system for higher�order pre�uni�cation�

When applying the rules of system PT to a set of equations� the completeness
does not depend on how the equations are selected	 The only branching occurs
when both immitation and projection apply to some equation	 This was shown
by Huet ����	

Example �� Consider the uni�cation problem at the root of the search tree in
Figure 
� which is obtained by the transformations PT in Figure �	 Notice that
in this example all projection substitutions are of the form �x�x	 The failure
cases are caused by a clash of distinct symbols and are abbreviated	 Putting
the substitutions of the only successful path together gives the only solution
fF �� �x�g�x� x�� G� �� G�G� �� Gg	

� Unifying Linear Patterns with Second�Order Terms

In this section we show that uni�cation of second�order ��terms with linear
patterns is decidable and �nitary	 Let us �rst use system PT to solve the pre�
uni�cation problem	



�x�g�f�x�G��� f�x�G��� � �x�F �f�x�G��

fF � �x�g�H��x��H��x��� � � �g

f�x�f�x�Gi� � �x�Hi�f�x�G��� � � �g� i � �� �

fHi � �x�x� � � �g� i � �� �

ff�x�Gi� � f�x�G�� � � �g� i � �� �

fGi � G� � � �g� i � �� �

fHi � �x�f�H �

i�x��H
��

i �x��� � � �g� i � � or i � �

failure

fF � �x�x� � � �g

failure

Fig� �� Search Tree with System PT

Lemma	� System PT terminates for two variable�disjoint terms s � t if s is

a linear pattern and t is second�order� Furthermore� PT terminates with a set

of �ex��ex pairs of the form �xk�P �yi� � �xk�P
��ui� where all yi are bound

variables and P is isolated�

Proof We show that system PT terminates for this uni�cation problem	 We
start with the equation s � t and apply the transformations modulo commuta�
tivity of � in Figure �	 By this we achieve that after any sequence of transfor�
mations� all free variables on the left hand sides �lhs� are isolated in the system
of equations� as all newly introduced variables on the lhs are linear also	 The
latter can be easily seen be examining the cases ���a� or ���b�� the other rules
are trivial	 Another important invariant is that the lhs�s remain patterns� which
is easy to verify	

In addition� we ignore �solved� equations of the form F � t or t � F which
are created by transformation �
�	 This is necessary for the termination ordering	
Since transformations ���� ��� and �
� preserve the set of solutions� as shown in
�
��� we can assume that variable elimination �
� is applied eagerly� in particular�
after a transformation ���a� or ���b�� we assume that �
� is applied �with implicit
��normalization�	 In addition� we assume that transformation ��� is applied after
���a� and after applying ���b� to a lhs	

We use the following lexicographic termination ordering on the multiset of
equations �ignoring all solved equations��

A� Compare the number of constant symbols on all lhs�s� if equal
B� compare the number of occurrences of bound variables on all lhs�s that are

not below a free variable� if equal
C� compare the multiset of the sizes of the right�hand sides �rhs�	

Now we show that the transformations reduce the above ordering�



��� trivial
��� A or B is reduced	
�
� Although �
� eliminates one equation� it is not trivial that it also reduces the

above ordering	 In particular� we do not apply �
� to 
ex�
ex pairs� which
could increase the size of some rhs if a bound variable occurs repeatedly on
the lhs	 Consider the possible equations �
� is applied to�
� �xk�F �xk� � �xk�t� As the free variable F is isolated� A and B remain
constant and C is reduced	

� �xk�a�� � �� � �xk�F �xk�� The elimination of an equation with a constant
a reduces A	

� �xk�xi�� � �� � �xk�F �xk�� Here B is reduced �and possibly A�	

���a� We have two cases�

� �xk�F �yn� � �xk�f�tm�� The imitation binding for F is of the form
F � �xn�f�Hm�xn��	 Now� after applying �
� and ���� we replace the
above equation by a set of equations of the form �xj�Hi�yn� � �xj�ti�
where i � �� � � � �m	 Notice that the number of constants on the lhs
�A� does not increase� as all ym are bound variables	 Also� B remains
unchanged	 As F is isolated and hence does not occur on any right hand
side� C decreases after transformation ��� is applied	

� �xk�f�tn� � �xk�F �um�� We obtain an imitation binding as above and
can apply �
� and ���	 Then the number of constant symbols on the lhs�s
decreases� since F may not occur on the lhs�s	

���b� We again have two cases�

� �xk�F �yn� � �xk�yi�tm�� As yn are bound variables� this rule applies
only if the head of the rhs is a bound variables as well� say yi	 Then the
case is similar to the Imitation case above� as after ���b�� transformations
�
� and ��� apply	

� �xk�v�tn� � �xk�F �um�� As we have second�order variables on the rhs�
we only have projection bindings of the form F � �xk�xi	 Hence the lhs�s
�i	e	 A and B� are unchanged� whereas C decreases� as we assume terms
in long ���normal form	

�

So far� we have shown that pre�uni�cation is decidable	 To solve the remaining

ex�
ex pairs� notice that all of these are of the form

�xk�P �ym� � �xk�P
��un��

where P is isolated and fymg are bound variables	 Now �xk�P
��un� is almost an

instance of the lhs� we only have to eliminate all occurrences of bound variables
that are not in fymg	

Example �� Consider the pair �x� y�F �x� � �x� y�F ��F ���x�� F ���y��	 There are
two ways to eliminate y on the rhs� i	e	 	� � fF � �� �z�� z��F

�

��z��g and 	� �
fF �� �� �z��F

��

� g� where F
�

� and F ��

� are new variables	



Eliminate

��� ��xk�P �tn�jR��W � �el ��P�i�� �P�i��xk�P �tn�jR��W �
if �x �W � BV��xk�ti�

Proceed

��� ��xk�v�tn�jR��W � �el ��� ��xk�tnjR��W �
unless v is a bound variable in W

Fig� �� System EL for Eliminating Bound Variables

We �rst de�ne some notation to formalize this idea	 We use square brackets
to denote lists� i	e	 appending a list R to an element t is written as �tjR�	 The
application of a substitution to a list
 written as 	�tn� is de�ned as �	tn�	
For a variable F of type �n � �� we de�ne the i�th parameter eliminating
substitution 
F�i as


F�i � fF �� �xn�F
��x�� � � � � xi��� xi��� � � � � xn�g�

where F � is a new variable of appropriate type	
The transformation rules �el in Figure � transform triples of the form

�	� l�W �� where 	 is the computed substitution� l is the list of remaining terms�
and W is the set of bound variables to be eliminated	

We say system EL succeeds if it reduces a triple to �	� ���W �	 For the 
ex�

ex pair in Example � system EL works as follows� starting with the triple
�fg� ��x� y�F ��F ���x�� F ���y���� fyg�	 Then EL can either eliminate the second ar�
gument of F � or it can proceed until the triple �fg� ��x� y�F ���y��� fyg� is reached
and then eliminate y	 In these two cases� EL succeeds with 	� and 	�� respec�
tively� as in Example �	 All other cases fail	

Observe that system EL is not optimal� as it can produce the same solution
twice	 For instance� consider the pair �x�F � �x�F ��F ��x��	 There are two dif�
ferent transformation sequences that yield the uni�er with fF � �� �s�F ��g	 More
precisely� this happens only if a bound variable occurs below nested occurrences
of a variable at subtrees with the same index	 Let us �rst show the correctness
of EL	

Lemma� Correctness of EL� Let �xk�P �ym� � �xk�P
��un� be a �ex��ex pair

where fymg � fxkg and P does not occur in P ��un�� Assume further W �
fxkg 	 fymg� If �fg� �P ��un���W ���

el �	� ���W � then 	 
 fP �� 	�ym �P
��un�g is

a uni�er of �xk�P �ym� � �xk�P
��un��

Proof We show that fP �� 	�ym �P
��un�g is a well de�ned substitution� i	e	

all bound variables in 	P ��un� are locally bound or are in ym	 As any successful
sequence of EL reductions must traverse the whole term �xk�P

��un� to succeed�
only bound variables in fymg can remain� occurrences of fxkg	fymg are either
eliminated by some substitution 
P�i in rule Eliminate� or the algorithm fails as
the rule Proceed does not permit these bound variables	 �



The next lemma states that if 	 eliminates all occurrences of variables inW from
tn� then there is a sequence of EL reductions that approximates 		

Lemma�� If 
 �tn� � �tn�� BV�	tn��W � �� 	 � �
 for some substitution �� and
tn are second�order terms� then there exist a reduction �
� �tn��W ���

el �	
�� ���W �

and a substitution �� such that 	 � ��	��

Proof by induction on the sum of the sizes of the terms in �tn�	 Clearly� each�el

reduction reduces this sum	 The base case� where n � �� is trivial	 We show that
for each such problem some EL step applies and that the induction hypothesis
can be applied	 Depending on the form of t� and the conditions of the rules of EL�
we apply di�erent rules	 Assume t� is of the form �xk�P �um� and 	P � �ym�t	 By
our variable conventions� we can assume that W � BV�	P � � �	 As �xk�P �um�
is a second�order term� some bound variable from W appears in 	�xk�P �um� if
and only if it appears in some 	�xk�ui where yi � BV��ym�t� � BV�	P �	 Then
let

i � Minfj j 
x � BV�	�xk �uj� �Wg�

Thus this set describes the indices of bound variables that may not occur in
	P � �ym�t by assumption on 	� e	g	 yi �� BV ��ym�t�	 If the above set is empty
and no j exists� we apply the second rule and can then safely apply the induction
hypothesis	

In case i exists� we know that BV�	�xk�un��W � BV��xk�un��W 	 Hence the
Eliminate rule applies with 
P�i � fP �� �xm�P��x�� � � � � xi��� xi��� � � � � xm�g	
Then we can apply the induction hypothesis to �
P�i
� 
P�i�tn��W �� de�ne �� such
that ��X � �X if X �� P and ��P� � �y�� � � � � yi��� yi��� � � � � ym�t	 Notice that
�� is well formed� as yi �� BV ��ym�t�	 Clearly the premises for the induction
hypothesis are ful�lled� as 	 � ��
P�i
 follows from 
P � P 	 Then the induction
hypothesis assures that both EL succeeds with a substitution 	� and that a
substitution ��� exists such that 	 � ���	�	

The remaining cases of t� are trivial as the Proceed rule does not compute
substitutions	 �

Now we can show that EL captures all uni�ers	

Lemma
 �Completeness of EL�� Assume 	 is a uni�er of a �ex��ex pair of

the form �xk�P �ym� � �xk�P
��un�� where fymg � fxkg and all ym are distinct�

Assume further �xk�P
��un� is second�order and does not contain P � Let W �

fxkg	fymg� Then there exist a substitution 	�� � 	�
fP �� 	��ym�P
��un�g and

a reduction �fg� ��xk�P ��un���W � ��

el �	
�� ���W � such that 	�� is more general

than 	�

Proof It is clear that any uni�er must eliminate all bound variables from W
on the right hand side	 Then the proof follows easily from Lemma �	 �

To state the above lemma in a simple form� we did not allow repeated bound
variables on the left hand side	 In the next lemma we extend this result to
repeated variables� which causes some technical overhead	 Repeated variables
may cause an additional number of distinct uni�ers in each case� as there can



be di�erent permutations if a repeated variable occurs in the common instance	
Consider for example the pair �x�F �x� x� � �x�F ��x�	 There are the two solutions
fF �� �y� z�F ��y�g and fF �� �y� z�F ��z�g	

Theorem�� Assume t is a second�order ��term and s is a linear pattern such

that s shares no variables with t� Then the uni�cation problem s � t is decidable
and �nitary�

Proof We �rst extend Lemma � to the case of repeated bound variables	 For�
mally� consider the pair �xk�P �ym� � �xk�v and assume some bound variables
occur several times in P �ym�	 Assume EL succeeds with �	� ��� fxk 	 ymg�	 Let
p�i� j� be the position of the j�th occurrence of xi in 	v	 For this solution of EL�
all solutions for P are of the form fP �� �zm�v

�g� where Head�v�jp�i�j�� � zi and
yi � xi for all positions p�i� j� of some xi in 	v and Head�v�jq� � Head�	vjq�
otherwise	 Here the last equation allows for many permutations� as some xj may
occur repeatedly in ym	 All these permutations are clearly independent from the
remaining parts of the computed uni�er� as P does not occur elsewhere� and can
hence be easily computed	

From Lemma 
 we know that PT terminates with a set of 
ex�
ex pairs�
where the lhs is a pattern	 Then by the extended Lemma � we can use EL
to compute a complete and �nite set of uni�ers for some 
ex�
ex pair� as EL
terminates and is �nitely branching	 This uni�er is applied to the remaining
equations	 Repeat this for all 
ex�
ex pairs	 This procedure terminates and works
correctly as all lhs�s are patterns and only have isolated variables	 Notice that a

ex�
ex pair remains 
ex�
ex when applying a uni�er computed by EL	 �

It can be shown that EL computes at most a quadratic number of di�erent
substitutions	 Let n be the number of occurrences of variables to be eliminated
and let m be the maximal number of nested free variables	 Then there can be
at most m distinct ways to eliminate some particular variable	 As m and n are
both linear in the size� the maximal number is solutions� i	e	 mn� is quadratic	

However� repeated bound variables on the lhs may cause an exponential
number of di�erent solutions	 Consider for instance �x�F �x� x� � �x�v� where x
occurs in v exactly n times	 Then there are �n di�erent solutions	

It would be interesting to examine whether the computed set of uni�ers is
minimal� in particular for EL	 However� the most concise representation of all
uni�ers is still a 
ex�
ex pair	Which representation is best clearly depends on the
application	 For instance� 
ex�
ex pairs may not be satisfactory for programming
languages where explicit solutions are desired	 For automated theorem proving�

ex�
ex pairs can be advantageous as they can reduce the search space in some
cases	

Observe that EL is not complete for the third�order case	 Here� if a free
variable has two arguments� one can be a function	 If in some solution this
function is applied to the other argument� then this function could eliminate�
in the above sense� the other argument	 For instance� consider the third�order
pair �x� y�F �x� � �x� y�F ���z�F ���z�� y�	 Here EL would not uncover the solution
fF � �� �y� z�F �

��y�z��� F
�� �� �x�a� F �� �y� z�F �

��a�g	



� Extensions

In the following sections� we will examine extensions of the above decidabil�
ity result	 First� notice that the linearity restriction is essential� otherwise full
second�order uni�cation can easily be embedded	 But even with one linear term�
this embedding still works�

Example �� Consider the uni�cation problem

�x�F �f�x�G�� � �x�g�f�x� t��� f�x� t����

where t� and t� are arbitrary second�order terms	 By applying the transforma�
tions PT it is easy to see �compare to Example �� that in all solutions of the
above problem F � �x�g�x� x� and t� � t� must be solved� which is clearly
undecidable	

Motivated by this example� we consider the following two extensions	 First� we
assume that arguments of free variables are either bound variables or second�
order ground terms	 Secondly� we consider the case where an argument of a free
variable contains no bound variables	 These two cases can be combined in a
straightforward way� as shown in Section �	
	 Thus arguments of free variables
may either be ground second�order terms or terms with no bound variables	 The
general case where one term is linear follows easily from Example 
�

Corollary �� It is undecidable to determine if two second�order terms unify�

even if one is linear�

Pre�uni�cation of two linear second�order terms is however decidable and
�nitary� as shown by Dowek ���	

��� Ground Second�Order Arguments to Free Variables

We now loosen the restriction that one term must be a linear pattern	 As long
as all arguments of free variables are either bound variables or ground second�
order terms� we can still solve the pre�uni�cation problem	 In particular� for the
second�order case� this can be rephrased as disallowing nested free variables	
However� we only solve the pre�uni�cation problem� as the resulting 
ex�
ex
pairs are more intricate than in the last section	

Similar to the above� we present a termination ordering for a particular strat�
egy of the PT transformations	 We will see that in essence only one new case
results from these ground second�order terms	 This can be handled separately
by second�order matching� which is decidable and �nitary	 �It is also an instance
of Theorem �	� That is� whenever such a matching problem occurs� this is solved
immediately �considering all its solutions�	 Hence we �rst need a lemma about
matching	 A substitution is ground if it maps variables to ground terms only	

Lemma�� Solving a second�order matching problem with system PT yields only

solutions that are ground substitutions�



This result does not hold for the higher�order case� as noted by Dowek ����
e	g	 fF �� �x�x�Y �g is a solution to F ��x�a� � a� but no complete set of ground
matchers exists	 Now we can show the desired theorem�

Theorem��� Assume s� t are ��terms such that t is second�order� s is linear

and s shares no variables with t� Furthermore� all arguments of free variables in

s are either

� bound variables of arbitrary type or

� second�order ground terms of base type�

Then the pre�uni�cation problem s � t is decidable and �nitary�

Proof We give a termination ordering for system PT with the same additional
assumptions as in the proof of Lemma 
� i	e	 eager application of rules ��� and
�
�	 In addition� we consider solving a second�order matching problem an atomic
operation� with possibly many solutions	 In particular� after a projection on a
lhs� this step eliminates one equation and applies a �ground� substitution to the
rhs	 It is easy to see that the two premises� only isolated variables and no nested
free variables on the lhs�s� are invariant under the transformations	

We use the following �lexicographic� termination ordering on the multiset of
equations �ignoring all solved equations��

A� Compare the number of occurrences of constant symbols and of bound vari�
ables that are not below a free variable on a lhs� if equal

B� compare the number of free variables in all rhs�s� if equal
C� compare the multiset of the sizes of the rhs�s	

The remainder of the proof is similar to Lemma 
 and is left out for lack of
space	 �

It might seem tempting to apply the same technique to arguments that are
third�order ground terms� as third�order matching is known to be decidable	
However� there can be an in�nite number of matchers and without a concise
representation for these the extension of the above method seems di�cult	

��� No Bound Variables in an Argument of a Free Variable

We say a bound variable y in �xn�t is outside bound if y � xi for some i	 The
set of all outside bound variables of a term �xn�t is written as OBV ��xn�t� �
BV��xn�t� � fxng	

We show that the remaining case� where an argument of a free variable
contains no �outside��bound variables� can be reduced to a simpler case	 This
method checks uni�ability� but does not give a complete set of uni�ers	 We use
the standard notation of contexts as terms with holes� written as C�t�	

Theorem��� Assume s � �xn�C�H�t�� � � � � ti� � � ��� and t are variable�disjoint

��terms such that s is linear� Assume further ti contains free but no bound

variables� i�e� OBV��xn� ym�ti� � �� where ym are all bound variables on the path

to the position of ti in �xn�C�H�t�� � � � � ti� � � ���� Then the uni�cation problem



s � t has a solution� i� �x�� xn�C�H�t�� � � � � x�� � � ��� � �x��t� where x� does not

occur elsewhere� is solvable�

Proof Consider the uni�cation problem

�xn�C�H�t�� � � � � ti� � � ��� � �xn�u

where H occurs only once in �xn�C�H�t�� � � � � ti� � � ��� and ti does not contain
bound variables	 Assume fX�� � � � � Xmg � FV�ti�	 Let a solution to this problem
be of the form fH �� �xn�t�g
fXm �� umg
S	 As H does not occur elsewhere�
we can construct a substitution 	 � fH �� �xn�fxi �� t�gt�g 
 S� where t� �
fXm �� umgti� that is a solution to

�x�� xn�C�H�t�� � � � � x�� � � ��� � �x�� xn�u

Notice that 	 is well�formed� as �xn� ym�ti does not contain �outside� bound
variables	 The other direction is simple� since x� does not occur elsewhere� i	e	
not in an instance of �x�� xn�u	 �

Notice that the above procedure only helps deciding uni�cation problems but
does not imply that pre�uni�cation or even uni�cation is �nitary	

��	 Putting It All Together

Now we can combine the previous results	 Recall that the remaining case is
undecidable in general	

Theorem��� Assume s� t are ��terms such that t is second�order� s is linear

and s shares no variables with t� Furthermore� all arguments of a free variable

F in s are either

� bound variables of arbitrary type or

� second�order ground terms of base type or

� second�order terms of base type without variables bound outside of F �

Then the uni�cation problem s � t is decidable�

Proof First apply Theorem �� to the uni�cation problem until s has no nested
free variables	 This argument can be applied repeatedly� as the lhs is linear and
hence the substitutions of multiple applications do not overlap	 Then Theorem ��
can be applied to decide this problem	 �

A special case often considered �e	g	 ����� is terms with second�order variables�
but no bound variables	 Then we get the following stronger result as an instance
of Theorem ���

Proposition�	� Assume s� t are second�order ��terms such that s is linear and
shares no variables with t� Furthermore� s contains no bound variables� Then the

uni�cation problem s � t is decidable�

The above uni�cation problems are at least NP�hard� as they subsume second�
order matching� which is NP�complete �
�	



� Applications

As mentioned in the introduction� higher�order uni�cation is currently used in
several theorem provers� programming languages� and logical frameworks	 With
the above results we can now develop simpli�ed and somewhat restricted versions
of the above applications that enjoy decidable uni�cation	 It should be mentioned
that several systems such as Elf ���� and Isabelle� have already resorted to higher�
order patterns� where uni�cation behaves much like the �rst�order case	

There is an interesting variety of applications where linearity is a common
and sometimes also useful restriction	 For instance� narrowing ���� is a general
method to solve equations modulo a theory given by a term rewrite system	 Then
we can de�ne a second�order version of narrowing with decidable uni�cation as
long as the left�hand sides of the used rules are linear patterns	 This is in fact a
common restriction for constructor�based narrowing �
�� and for functional logic
languages ����	 Using the results of this work� di�erent versions of higher�order
narrowing are developed in ����	 Usually� the lhs�s of the rewrite rules in these
applications are restricted and ful�ll the requirement for linear patterns	 For
instance� we could use rules such as

map�F� cons�X�Y �� 	� cons�F �X��map�F� Y ���

Notice that systems which work only with higher�order patterns cannot express
this rule� as the right�hand side is not a pattern	 Then narrowing or rewrit�
ing with this rule may yield a non�pattern term and repeated narrowing needs
higher�order uni�cation with the linear left�hand side	 So far� most functional
logic languages even with higher order terms only use �rst�order uni�cation	
Interestingly� when coding functions such as map into predicates� as for in�
stance done in higher�order logic programming ����� the head of the literal� e	g	
mapP �F� cons�X�Y �� cons�F �X�� L�� �	 mapP �F� Y� L�� is not linear	 However�
when invoking this rule only with goals of the form mapP �t� t�� Z�� where Z is a
fresh variable�� then the uni�cation problem is decidable as it is equivalent to a
uni�cation with a linear term	 Thus our results also explain to some extent why
uni�cation in higher�order logic programming rarely diverges	

Furthermore we open the way for �nding decidable second�order matching
problems w	r	t	 higher�order equational theories	 First results on second�order
matching modulo �rst�order theories can be found in ���	

Higher�order theorem provers often work with some form of a sequent calcu�
lus� where most rules have linear premises and conclusions e	g	

� � A � � B
� � A�B

Furthermore� non�linear uni�cation problems occur mostly with rewriting� e	g	
with rules such as P�P 	� P 	 For rewriting� however� only matching is re�
quired	

� Isabelle still uses full higher�order pre�uni�cation� if the terms are not patterns�
� Such variables are also called �output�variables� in ����



Another application area is type inference� which is mostly based on uni�
�cation� whereby decidable static type inference for programming languages is
desired	 In many advanced type systems such as Girard�s system F ���� variables
may range over functions from types to types� i	e	 second�order type variables	
In particular� Pfenning ���� relates type inference in the nth�order polymorphic
��calculus with nth�order uni�cation	 Thus progress in higher�order uni�cation
may help �nding classes where type inference is decidable	
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