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Abstract. Second-order unification is undecidable in general. Miller
showed that unification of so-called higher-order patterns is decidable
and unitary. We show that the unification of a linear higher-order pat-
tern s with an arbitrary second-order term that shares no variables with
s is decidable and finitary. A few extensions of this unification problem
are still decidable: unifying two second-order terms, where one term is
linear, is undecidable if the terms contain bound variables but decidable
if they don’t.

1 Introduction

Higher-order unification is currently used in theorem provers such as Isabelle
[25], TPS [1], Nuprl® [4] and others. The success of A-Prolog [22] has shown
the utility of higher-order constructs for programming. Other applications of
higher-order unification include program synthesis [13] and machine learning [14,
6]. In this paper we consider the unification of a linear A-term with an arbitrary
second-order A-term and develop several classes where this unification problem
is decidable.

We start with an overview of the existing decidability results for higher-order
unification problems in Figure 1. The column labeled Monadic refers to the
unification of terms with unary function symbols only. A simply typed A-term is
a higher-order pattern, if all its free variables only have distinct bound variables
as arguments. Dale Miller, as indicated in the column labeled Patterns, recently
showed that unification of higher-order patterns is decidable and unitary.?

Section 3 reviews a set of transformation rules for full higher-order unifica-
tion. Then we show in Section 4 that unification of linear higher-order patterns
with an arbitrary second-order term is decidable and finitary, if the two terms
share no variables. In particular, we do not have to resort to pre-unification, as
equations with variables as outermost symbols on both sides (flex-flex) pairs can
be finitely solved in this case. Further extensions are discussed in Section 5. The
most general extension, unifying two second-order terms where one term is lin-
ear, is undecidable if the terms contain bound variables and decidable otherwise.
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! Nuprl uses only second-order pattern matching.

2 We will adopt a relaxed notion of patterns, where unification is only finitary.



Order Unification Problem
Unification | Patterns | Monadic | Matching
1 decidable
undecidable decidable decidable
Goldfarb 81 [12] : Farmer ’88 [9] |Huet *73 [17, 16]
Farmer ’91 [10]

3 undecidable undecidable decidable
Huet °73 [17, 16] Narendran ’90 [23]|G. Dowek 92 [7]
Lucchesi 72 [20]

0 : decidable : ?

D. Miller *91[21] Wolfram °92 [31]

Fig. 1. Decidability of Higher-Order Unification

2 Notation and Basic Definitions

The following notation of A-calculus are used in the sequel. For the standard
theory of A-calculus we refer to [15, 2]. We assume the following variable con-
ventions:

F, G, H, P, X,Y free variables,
— a,b, ¢, f, g (function) constants,
— x,y, 2z bound variables,

— «, 3 types.
The following grammar defines the syntax for A-terms,
t = Fla]c| At ] (t1ta)

A list of syntactic objects s1,...,s, where n > 0 is abbreviated by 5,. We will
use n-fold abstraction and application, i.e.

AT f(Bn) = Axy .o Axm (- (f 1)) sn)

Substitutions are finite mappings from variables to terms and are denoted
by {X, — tn}. We assume the following standard conversions in A-calculus:

a-conversion: Ax.t =, Ay.({z — y}t)
B-conversion: (Ar.s)t =g {z —t}s
n-conversion: if z ¢ FV(t), then Ax.(tz) =,

A term in S-normal form is in long Bn-normal form if it is n-expanded [30].
For our proofs we assume that terms are in long Gn-normal form, for brevity
we sometimes use n-normal form, which is denoted by ¢|,. We assume that this
transformation into long Gn-normal form is an implicit operation, e.g. occurs
when applying a substitution to a term. The head of a term AZj.v(%,,) is defined
as Head(ATg.v(,)) = v. Free and bound variables of a term ¢ will be denoted
as FV(t) and BY(t), respectively. We describe the subterm at a position p in



a A-term ¢t by t|,. A (sub-)term ¢|, is ground, if no free variables of ¢t occur in
t|p. A variable is isolated if it occurs only once (in a term or in a system of
equations). A term is linear if no free variable occurs repeatedly.

The set of types 7 for the simply typed A-terms is generated by a set 7y
of base types (e.g. int, bool) and the function type constructor —. Notice that
— is right associative, i.e. « — 8 — v = @ — (# — 7). The order of a type
p=a1 — ... —a, — (3, f&7Tyis defined as

(1 ifn=0ie p=p8¢€7
Ord(p) = { 14+ max(Ord(oy),...,0rd(ay))  otherwise

A language of order n is restricted to function constants of order < n+41 and
variables of order < n.

Definition1. A simply typed A-term s is a relaxed higher-order pattern,
if all free variables in s only have bound variables as arguments, i.e. if X(,,) is
a subterm of s, then all ¢;|, are bound variables.

Examples are Az, y.F(z,y) and Az.f(G(Az.2(2))), where the latter is at least
third-order. Non-patterns are Az, y.F(a,y), Axe.G(H(x)).

In most of the existing literature [21, 24], patterns are required to have dis-
tinct bound variables as arguments to a free variable. This restriction is neces-
sary for unitary unification, but for our purpose this is not relevant and we will
henceforth work with relaxed higher-order patterns and call these patterns for
brevity.

We identify a-equivalent terms and assume that free and bound variables are
kept disjoint [2]. Furthermore, we assume that bound variables with different
binders have different names.

3 Pre-unification by Transformations

We present in the following a version of the transformation system P7 for higher-
order unification of Snyder and Gallier [30]. More precisely, we use the primed
transformations for pre-unification of Section 5 in [30], where also the omitted
type constraints can be found. These transformation rules in Figure 2 work
on sets of pairs of terms to be unified, written as {# = v,...}. Pre-unification
differs from unification by the handling of so-called flex-flex pairs. These are
equations of the form AZ;.P(...) = AZ;.P'(...), which permit in general an
infinite number of incomparable unifiers but are guaranteed to have at least one
unifier, e.g. {P +— AT,,.a, P’ — AZT,.a}. The idea of pre-unification goes back to
Huet [17]. It means to handle flex-flex pairs as constraints and not to attempt
to solve them explicitly.

The only place where the restriction to second-order terms simplifies the
system 1s the last rule, projection, where z; must be a first-order object. Hence
the binding to F' in this case is of the simpler form F' = Az, .x;, which will be
important for our results.

We have restricted the application of rule (3) slightly compared to [30]: the
rule of Snyder et al. can also be applied to flex-flex equations. We have excluded



(1) Delete

{t=t}usS=S5
(2) Decompose

ATk f(tn) = ATh. f()}U S = UL, ATkt = ATr iU S
(3) Eliminate

(F= ATt} US = {F = ATt} U {F — ATF.1}S
if F ¢ FY(ATx.t) and
Head(t) is not a free variable
(4'a) Imitate

T F (1) = AT f (1)} U S = {F = Ay f(Hm(T0) )}V

- AT F(T,) = Am?(tén)} us
4/ roject

AT%. F(1) = ATr.0(th)} U S = {F = A\Tn.ai(Hm(Tn)) JU
(AT5.F(tn) = ATn.o(thh)} U S

where v is a constant or bound variable

Fig. 2. System P7 for Higher-order Pre-unification

this case as it is not necessary for completeness (the same is done in the algorithm
presented by Snyder et al.).

Theorem 2 (Snyder-Gallier). System PT is a sound and complele transfor-
mation system for higher-order pre-unification.

When applying the rules of system P7 to a set of equations, the completeness
does not depend on how the equations are selected. The only branching occurs
when both immitation and projection apply to some equation. This was shown

by Huet [17].

FEzample 1. Consider the unification problem at the root of the search tree in
Figure 3, which is obtained by the transformations P7 in Figure 2. Notice that
in this example all projection substitutions are of the form Az.x. The failure
cases are caused by a clash of distinct symbols and are abbreviated. Putting
the substitutions of the only successful path together gives the only solution
{F — Ar.g(z,2), Gy — G, G2 — G}

4 Unifying Linear Patterns with Second-Order Terms

In this section we show that unification of second-order A-terms with linear
patterns is decidable and finitary. Let us first use system P7 to solve the pre-
unification problem.



[Ae.g(F(2,G1), f(2,G2)) = Ao F(f(2,0)) |
| |

[{F = deg(Hi(e), Ha(2)), .} [{F = e, )]
I |
‘{)\x.f(x,Gi):)\x.Hi(f(x,G)),...}, i=1,2‘ failure
[ 1
[{Hi=)aa,. .}, i=12] ({1 = Xe p(Hi(0) H!(2),..}, i=1Tori=2]

[
{f(.G) = f(2,G),.. }, i=12|
[
‘{Gi:G,...}, i=1,2‘

Fig. 3. Search Tree with System P7T

Lemma 3. System P7T terminates for two variable-disjoint terms s =t if s is
a linear pattern and t is second-order. Furthermore, PT terminates with a set
of flex-flex pairs of the form ATy .P(y;) = A%Tx.P'(w) where all y; are bound
variables and P is isolated.

Proof We show that system P7 terminates for this unification problem. We
start with the equation s = ¢ and apply the transformations modulo commuta-
tivity of = in Figure 2. By this we achieve that after any sequence of transfor-
mations, all free variables on the left hand sides (lhs) are isolated in the system
of equations, as all newly introduced variables on the lhs are linear also. The
latter can be easily seen be examining the cases (4'a) or (4'b), the other rules
are trivial. Another important invariant is that the lhs’s remain patterns, which
is easy to verify.

In addition, we ignore “solved” equations of the form F =t or t = F which
are created by transformation (3). This is necessary for the termination ordering.
Since transformations (1), (2) and (3) preserve the set of solutions, as shown in
[30], we can assume that variable elimination (3) is applied eagerly; in particular,
after a transformation (4’a) or (4’b), we assume that (3) is applied (with implicit
B-normalization). In addition, we assume that transformation (2) is applied after
(4'a) and after applying (4'0) to a lhs.

We use the following lexicographic termination ordering on the multiset of
equations (ignoring all solved equations):

A: Compare the number of constant symbols on all lhs’s; if equal

B: compare the number of occurrences of bound variables on all lhs’s that are
not below a free variable, if equal

C: compare the multiset of the sizes of the right-hand sides (rhs).

Now we show that the transformations reduce the above ordering:



(1) trivial

(2) A or B is reduced.

(3) Although (3) eliminates one equation, it is not trivial that it also reduces the
above ordering. In particular, we do not apply (3) to flex-flex pairs, which
could increase the size of some rhs if a bound variable occurs repeatedly on
the lhs. Consider the possible equations (3) is applied to:

— AT F(Tp) = ATg.t: As the free variable F' is isolated, A and B remain
constant and C 1s reduced.

— ATg.a(...) = AT F(7;): The elimination of an equation with a constant
a reduces A.

— ATp.2(...) = ATy . F(Ty): Here B is reduced (and possibly A).

(4'a) We have two cases:

— AT, F(Yn) = AZg.f(tm): The imitation binding for F is of the form
F = Xz . f(Hn(%)). Now, after applying (3) and (2), we replace the
above equation by a set of equations of the form A%T; . H;(7n) = AT; .4,
where ¢ = 1,...,m. Notice that the number of constants on the lhs
(A) does not increase, as all y,, are bound variables. Also, B remains
unchanged. As F is isolated and hence does not occur on any right hand
side, C decreases after transformation (2) is applied.

— AZy.f(tn) = AT .F(Un,): We obtain an imitation binding as above and
can apply (3) and (2). Then the number of constant symbols on the lhs’s
decreases, since F' may not occur on the lhs’s.

(4'b) We again have two cases:

— AT, F(¥n) = AZg.yi(tm): As U, are bound variables, this rule applies
only if the head of the rhs is a bound variables as well, say y;. Then the
case is similar to the Imitation case above, as after (4'b), transformations
(3) and (2) apply.

— Azp.v(t,) = AT F(Um): As we have second-order variables on the rhs,
we only have projection bindings of the form F' = AZy.z;. Hence the lhs’s
(i.e. A and B) are unchanged, whereas C decreases, as we assume terms
in long An-normal form.

O

So far, we have shown that pre-unification is decidable. To solve the remaining
flex-flex pairs, notice that all of these are of the form

T P(Ym) = A7 P (W),

where P is isolated and {7, } are bound variables. Now AZ;.P'(%,) is almost an
instance of the lhs, we only have to eliminate all occurrences of bound variables
that are not in {7, }.

Frample 2. Consider the pair Az, y.F(x) = Az, y.F'(F"(x), F"(y)). There are
two ways to eliminate y on the rhs, i.e. 61 = {F' — Az1,22.F{(z1)} and 05 =
{F"” +— Az; . F{'}, where F| and F|’ are new variables.



Eliminate

(6, [MTx. P(t2)| R, W) =i (18, 7Pi[AT. P(12)| R], W)
if 3z € W N BYV(ATx.t)

Proceed

(0, DTe.v(t2)|R], W) =« (8, [ MTr.tn|R], W)

unless v is a bound variable in W

Fig.4. System £L for Eliminating Bound Variables

We first define some notation to formalize this idea. We use square brackets
to denote lists, i.e. appending a list R to an element ¢ is written as [t|R]. The
application of a substitution to a list, written as 0[1,,] is defined as [0t,].
For a variable I' of type @&, — «¢ we define the i-th parameter eliminating

substitution 7p; as
P /
Tri = {F — AZp F'(21, ..., %21, %41, ..., Tn) |,

where I’ is a new variable of appropriate type.

The transformation rules =.; in Figure 4 transform triples of the form
(0,1, W), where @ is the computed substitution, [ is the list of remaining terms,
and W is the set of bound variables to be eliminated.

We say system EL succeeds if it reduces a triple to (8,[], W). For the flex-
flex pair in Example 2 system £L works as follows, starting with the triple
{3 [P,y FI(F(2), F"(y))], {y}). Then EL can either eliminate the second ar-
gument of F” or it can proceed until the triple ({}, [Az, y.F" ()], {y}) is reached
and then eliminate y. In these two cases, £L£ succeeds with #; and 65, respec-
tively, as in Example 2. All other cases fail.

Observe that system £L is not optimal, as it can produce the same solution
twice. For instance, consider the pair Az.F = Az.F'(F'(z)). There are two dif-
ferent transformation sequences that yield the unifier with {F’ +— As.F"}. More
precisely, this happens only if a bound variable occurs below nested occurrences
of a variable at subtrees with the same index. Let us first show the correctness

of £L.

Lemmad4 Correctness of £L. Let A\T;.P(Ym) = ATy . P/ (W) be a flex-flex pair
where {Ym} C {Fx}t and P does not occur in P'(uy). Assume further W =
{7} = {m}- UL [P(@)], W) =7 (0,0, W) then 0 U{P — 0AYm P'(un)} s
a unifier of \#5.P(Um) = ATx. P'(Uyn).

Proof We show that {P — 0Ayn, .P'(u,)} is a well defined substitution, i.e.
all bound variables in 6 P'(w;) are locally bound or are in ¥n,. As any successful
sequence of £L reductions must traverse the whole term AZ3. P/(%,;) to succeed,
only bound variables in {¥;;} can remain; occurrences of {Zy} — {Um } are either
eliminated by some substitution 7p; in rule Eliminate, or the algorithm fails as
the rule Proceed does not permit these bound variables. a



The next lemma states that if  eliminates all occurrences of variables in W from
t,, then there is a sequence of ££ reductions that approximates 6.

Lemmab. If[t,] = [{n], BV(0t,)NW =0, 8 = 67 for some substitution &, and
t, are second-order terms, then there exist a reduction (7, [t,], W) =73, (0',[], W)
and a substitution &' such that 6 = §'¢’.

Proof by induction on the sum of the sizes of the terms in [{,,]. Clearly, each =
reduction reduces this sum. The base case, where n = 0, is trivial. We show that
for each such problem some £L step applies and that the induction hypothesis
can be applied. Depending on the form of ¢; and the conditions of the rules of £L,
we apply different rules. Assume ¢; is of the form AZy. P(%y,) and 6P = Ay, .t. By
our variable conventions, we can assume that W N BV(6P) = 0. As AT;. P (un)
is a second-order term, some bound variable from W appears in 0A7;. P(uy,) if
and only if it appears in some OATy.u; where y; € BV (A, .t) = BY(6P). Then
let
i= Min{j | Jx € BY(0AT; .u;) "W}

Thus this set describes the indices of bound variables that may not occur in
0P = AYm .t by assumption on 6, e.g. y; € BV (AU, .t). If the above set is empty
and no j exists, we apply the second rule and can then safely apply the induction
hypothesis.

In case ¢ exists, we know that BV (0AT;.un )W C BV (AZg.un )W . Hence the
Eliminate rule applies with 7p; = {P +— AT . Po(®1,. .., Zic1, Tit1, -, Lm) )
Then we can apply the induction hypothesis to (7p;7, 7p ;[{,], W): define 6’ such
that X = 86X if X # P and &Py = A1, ..., Yi—1, Yit1,- - -, Ym-L. Notice that
8 is well formed, as y; &€ BY(Ayn.t). Clearly the premises for the induction
hypothesis are fulfilled, as § = §'7p ;7 follows from 7P = P. Then the induction
hypothesis assures that both ££ succeeds with a substitution ¢ and that a
substitution 6" exists such that § = §"¢’.

The remaining cases of ¢; are trivial as the Proceed rule does not compute
substitutions. ad

Now we can show that £L£ captures all unifiers.

Lemma 6 (Completeness of £L£). Assume 0 is a unifier of a flex-flex pair of
the form ATy .P(Um) = AT5. P'(Wn), where {ym} C{T5} and all yp, are distinct.
Assume further X5 P'(Wy,) is second-order and does not contain P. Let W =
{Tr} —{Um}- Then there exist a substitution 6" = ¢’ U{P — 0' Ay, .P'(uy)} and
a reduction ({}, [A\Tx.P'(un)], W) =%, (0',[], W) such that 8" is more general
than 6.

Proof It is clear that any unifier must eliminate all bound variables from W
on the right hand side. Then the proof follows easily from Lemma 5. a

To state the above lemma in a simple form, we did not allow repeated bound
variables on the left hand side. In the next lemma we extend this result to
repeated variables; which causes some technical overhead. Repeated variables
may cause an additional number of distinct unifiers in each case, as there can



be different permutations if a repeated variable occurs in the common instance.
Consider for example the pair Az.F(z,z) = Az.F'(x). There are the two solutions

{F— Ay, z.F'(y)} and {F — Ay, z.F'(2)}.

Theorem 7. Assume t is a second-order A-term and s ts a linear pattern such
that s shares no variables with t. Then the unification problem s =t is decidable
and finitary.

Proof We first extend Lemma 6 to the case of repeated bound variables. For-
mally, consider the pair AZ;.P(¥m) = ATi.v and assume some bound variables
occur several times in P(Zp,). Assume L succeeds with (6,[],{ZTx — U }). Let
p(%, j) be the position of the j-th occurrence of #; in fv. For this solution of £L,
all solutions for P are of the form {P — A7, .v'}, where Head(v'|,(; j)) = 2z and
y; = x; for all positions p(i, j) of some «; in fv and Head(v'|;) = Head(6v|,)
otherwise. Here the last equation allows for many permutations, as some xz; may
occur repeatedly in 7,,. All these permutations are clearly independent from the
remaining parts of the computed unifier, as P does not occur elsewhere, and can
hence be easily computed.

From Lemma 3 we know that P7 terminates with a set of flex-flex pairs,
where the lhs is a pattern. Then by the extended Lemma 6 we can use £L£
to compute a complete and finite set of unifiers for some flex-flex pair, as £L£
terminates and is finitely branching. This unifier is applied to the remaining
equations. Repeat this for all flex-flex pairs. This procedure terminates and works
correctly as all lhs’s are patterns and only have isolated variables. Notice that a
flex-flex pair remains flex-flex when applying a unifier computed by £L. a

It can be shown that ££ computes at most a quadratic number of different
substitutions. Let n be the number of occurrences of variables to be eliminated
and let m be the maximal number of nested free variables. Then there can be
at most m distinct ways to eliminate some particular variable. As m and n are
both linear in the size, the maximal number is solutions, i.e. mn, is quadratic.

However, repeated bound variables on the lhs may cause an exponential
number of different solutions. Consider for instance Az.F'(z, ) = Ax.v, where »
occurs in v exactly n times. Then there are 27 different solutions.

It would be interesting to examine whether the computed set of unifiers is
minimal, in particular for ££. However, the most concise representation of all
unifiers is still a flex-flex pair. Which representation is best clearly depends on the
application. For instance, flex-flex pairs may not be satisfactory for programming
languages where explicit solutions are desired. For automated theorem proving,
flex-flex pairs can be advantageous as they can reduce the search space in some
cases.

Observe that £L£ is not complete for the third-order case. Here, if a free
variable has two arguments, one can be a function. If in some solution this
function is applied to the other argument, then this function could eliminate,
in the above sense, the other argument. For instance, consider the third-order
pair Az, y. F(x) = Az, y. F'(Az.F"(2),y). Here £L would not uncover the solution
{F' — Xy, z. F{(y(2)), F"" — Az.a, F — Ay, z.Fj(a)}.



5 Extenslons

In the following sections, we will examine extensions of the above decidabil-
ity result. First, notice that the linearity restriction is essential; otherwise full
second-order unification can easily be embedded. But even with one linear term,
this embedding still works:

FEzample 3. Consider the unification problem

e F(f(2,G)) = Ae.g(f(z,t1), fx, 1)),

where ¢; and {5 are arbitrary second-order terms. By applying the transforma-
tions P7 it is easy to see (compare to Example 1) that in all solutions of the
above problem F' = Az.g(x,z) and t; = t3 must be solved, which is clearly
undecidable.

Motivated by this example, we consider the following two extensions. First, we
assume that arguments of free variables are either bound variables or second-
order ground terms. Secondly, we consider the case where an argument of a free
variable contains no bound variables. These two cases can be combined in a
straightforward way, as shown in Section 5.3. Thus arguments of free variables
may either be ground second-order terms or terms with no bound variables. The
general case where one term is linear follows easily from Example 3:

Corollary 8. It is undecidable to determine if two second-order terms unify,
even if one s linear.

Pre-unification of two linear second-order terms i1s however decidable and
finitary, as shown by Dowek [8].

5.1 Ground Second-Order Arguments to Free Variables

We now loosen the restriction that one term must be a linear pattern. As long
as all arguments of free variables are either bound variables or ground second-
order terms, we can still solve the pre-unification problem. In particular, for the
second-order case, this can be rephrased as disallowing nested free variables.
However, we only solve the pre-unification problem, as the resulting flex-flex
pairs are more intricate than in the last section.

Similar to the above, we present a termination ordering for a particular strat-
egy of the P7T transformations. We will see that in essence only one new case
results from these ground second-order terms. This can be handled separately
by second-order matching, which is decidable and finitary. (It is also an instance
of Theorem 7.) That is, whenever such a matching problem occurs, this is solved
immediately (considering all its solutions). Hence we first need a lemma about
matching. A substitution is ground if it maps variables to ground terms only.

Lemma 9. Solving a second-order matching problem with system PT yields only
solutions that are ground substitutions.



This result does not hold for the higher-order case, as noted by Dowek [8]:
e.g. {F — Ar.x(Y)} is a solution to F(Az.a) = a, but no complete set of ground
matchers exists. Now we can show the desired theorem:

Theorem 10. Assume s,t are A-terms such that t is second-order, s is linear
and s shares no variables with t. Furthermore, all arguments of free variables in
s are etther

— bound variables of arbitrary type or
— second-order ground terms of base type.

Then the pre-unification problem s =t is decidable and finitary.

Proof We give a termination ordering for system P7 with the same additional
assumptions as in the proof of Lemma 3, i.e. eager application of rules (2) and
(3). In addition, we consider solving a second-order matching problem an atomic
operation, with possibly many solutions. In particular, after a projection on a
lhs, this step eliminates one equation and applies a (ground) substitution to the
rhs. It 1s easy to see that the two premises, only isolated variables and no nested
free variables on the lhs’s, are invariant under the transformations.

We use the following (lexicographic) termination ordering on the multiset of
equations (ignoring all solved equations):

A: Compare the number of occurrences of constant symbols and of bound vari-
ables that are not below a free variable on a lhs, if equal

B: compare the number of free variables in all rhs’s, if equal

C: compare the multiset of the sizes of the rhs’s.

The remainder of the proof is similar to Lemma 3 and is left out for lack of
space. O

It might seem tempting to apply the same technique to arguments that are
third-order ground terms, as third-order matching is known to be decidable.
However, there can be an infinite number of matchers and without a concise
representation for these the extension of the above method seems difficult.

5.2 No Bound Variables in an Argument of a Free Variable

We say a bound variable y in AZ,,.t is outside bound if y = #; for some i. The
set of all outside bound variables of a term AZ,.t is written as OBV (A\7,.t) =
BY (A%, .t) N {7z, }.

We show that the remaining case, where an argument of a free variable
contains no (outside-)bound variables, can be reduced to a simpler case. This
method checks unifiability, but does not give a complete set of unifiers. We use
the standard notation of contexts as terms with holes, written as Ct].

Theorem 11. Assume s = A%, . C[H(t1,...,t;,...)] and t are variable-disjoint
A-terms such that s s linear. Assume further t; contains free but no bound
variables, i.e. OBV(ATy,, Um t;) = 0, where Yn, are all bound variables on the path
to the position of t; in AT C[H(t1,...,t;,...)]. Then the unification problem



s =1 has a solution, iff Awo,Tn.C[H(t1,..., 20, ...)] = Azg.t, where xy does not
occur elsewhere, is solvable.

Proof Consider the unification problem
ATn ClH(ty, ... b, .. )] = ATq.u

where H occurs only once in A%, .C[H(t1,...,t;,...)] and t; does not contain
bound variables. Assume {X1,..., X, } = FV(¢;). Let a solution to this problem
be of the form {H — ATy 10} U{ X — un }US. As H does not occur elsewhere,
we can construct a substitution 6 = {H — AT, .{x; — t'}to} U S, where ¢/ =
{Xm — um };, that is a solution to

Al‘o,m.C[H(tl, ey Ly - )] = /\l‘o,m.u

Notice that 6 is well-formed, as A%y, ¥m.t; does not contain (outside) bound
variables. The other direction is simple, since xg does not occur elsewhere, i.e.
not in an instance of Axg, T,.u. O

Notice that the above procedure only helps deciding unification problems but
does not imply that pre-unification or even unification is finitary.

5.3 Putting It All Together

Now we can combine the previous results. Recall that the remaining case is
undecidable in general.

Theorem 12. Assume s,t are A-terms such that t is second-order, s is linear
and s shares no variables with t. Furthermore, all arguments of a free variable
F i s are either

— bound variables of arbitrary type or
— second-order ground terms of base type or
— second-order terms of base type without variables bound outside of .

Then the unification problem s =t 1s decidable.

Proof First apply Theorem 11 to the unification problem until s has no nested
free variables. This argument can be applied repeatedly, as the lhs is linear and
hence the substitutions of multiple applications do not overlap. Then Theorem 10
can be applied to decide this problem. a

A special case often considered (e.g. [12]) is terms with second-order variables,
but no bound variables. Then we get the following stronger result as an instance
of Theorem 12:

Proposition13. Assume s,t are second-order A-terms such that s is linear and
shares no vartables with t. Furthermore, s contains no bound variables. Then the
unification problem s =1t is decidable.

The above unification problems are at least NP-hard, as they subsume second-
order matching, which is NP-complete [3].



6 Applications

As mentioned in the introduction, higher-order unification is currently used in
several theorem provers, programming languages, and logical frameworks. With
the above results we can now develop simplified and somewhat restricted versions
of the above applications that enjoy decidable unification. It should be mentioned
that several systems such as EIf [27] and Isabelle® have already resorted to higher-
order patterns, where unification behaves much like the first-order case.

There is an interesting variety of applications where linearity is a common
and sometimes also useful restriction. For instance, narrowing [18] is a general
method to solve equations modulo a theory given by a term rewrite system. Then
we can define a second-order version of narrowing with decidable unification as
long as the left-hand sides of the used rules are linear patterns. This is in fact a
common restriction for constructor-based narrowing [32] and for functional logic
languages [19]. Using the results of this work, different versions of higher-order
narrowing are developed in [28]. Usually, the lhs’s of the rewrite rules in these
applications are restricted and fulfill the requirement for linear patterns. For
instance, we could use rules such as

map(F, cons(X,Y)) — cons(F(X), map(F,Y)).

Notice that systems which work only with higher-order patterns cannot express
this rule, as the right-hand side is not a pattern. Then narrowing or rewrit-
ing with this rule may yield a non-pattern term and repeated narrowing needs
higher-order unification with the linear left-hand side. So far, most functional
logic languages even with higher order terms only use first-order unification.
Interestingly, when coding functions such as map into predicates, as for in-
stance done in higher-order logic programming [22], the head of the literal, e.g.
mapP(F,cons(X,Y), cons(F(X), L)) :— mapP(F,Y, L), is not linear. However,
when invoking this rule only with goals of the form mapP(t,t', Z), where 7 is a
fresh variable,® then the unification problem is decidable as it is equivalent to a
unification with a linear term. Thus our results also explain to some extent why
unification in higher-order logic programming rarely diverges.

Furthermore we open the way for finding decidable second-order matching
problems w.r.t. higher-order equational theories. First results on second-order
matching modulo first-order theories can be found in [5].

Higher-order theorem provers often work with some form of a sequent calcu-
lus, where most rules have linear premises and conclusions e.g.

I'tA I'tB
'+ A&B

Furthermore, non-linear unification problems occur mostly with rewriting, e.g.
with rules such as P&P —— P. For rewriting, however, only matching is re-
quired.

? Isabelle still uses full higher-order pre-unification, if the terms are not patterns.
* Such variables are also called “output-variables” in [29]



Another application area is type inference, which is mostly based on uni-
fication, whereby decidable static type inference for programming languages is
desired. In many advanced type systems such as Girard’s system F' [11] variables
may range over functions from types to types, i.e. second-order type variables.
In particular, Pfenning [26] relates type inference in the nth-order polymorphic
A-calculus with nth-order unification. Thus progress in higher-order unification
may help finding classes where type inference i1s decidable.
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