
On the Integration of Design and Test —
A Model Based Approach for Embedded Systems ∗

Christian Pfaller,
†

Andreas Fleischmann, Judith Hartmann,
Martin Rappl, Sabine Rittmann, Doris Wild

Technische Universität München
Institut für Informatik, Chair IV: Software & Systems Engineering

Boltzmannstr. 3, 85748 Garching, Germany

{pfaller,fleischa,hartmanj,rappl,rittmann,wildd}@in.tum.de

ABSTRACT
One of the most crucial questions concerned with model-
based testing is how to find ”interesting” test cases. We
consider test cases to be interesting if firstly, they cover the
user requirements and secondly, they have a high probabil-
ity to find potential errors. In this paper we introduce an
approach to derive test cases along different levels of ab-
straction during the design phase. These levels start with
services representing user requirements on the topmost level
and result in models for a specific technical platform on the
most concrete level. Within the presented test process we
use design models of different abstraction levels as test mod-
els out of which test cases can be generated. The test cases
are executed on more concrete levels and finally on the im-
plementation. An exception is the (topmost) service level
which is used for the derivation of the test case specifica-
tion.

One main advantage of our approach lies in preserving
the link from test cases to corresponding user requirements.
Furthermore the danger of using too abstract models which
do not reflect inevitable crucial aspects of the realization
is avoided. Finally this yields to a front loading of qual-
ity control activities to a point as early as possible in the
development process. In our work we focus on embedded re-
active systems especially in the field of automotive software.
Our current research targets at new kinds of test coverage
criteria which reflect the systems requirements rather than
structural aspects of models.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—

∗Partly supported by the Bavarian Government within the
project mobilSoft, grant number IuK 188/001
†Project within INI.TUM - Ingolstadt Institutes of TU
München

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST ’06 Shanghai, China
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

testing tools, tracing ; C.3 [Special-Purpose and Appli-

cation-based Systems]: Real-time and embedded systems

General Terms
Design, Reliability, Verification

Keywords
Abstraction levels, automotive software, model based test-
ing, requirements coverage, services, test case specification.

1. INTRODUCTION
More than 50 % of the development costs of embedded

systems are caused by testing and error correction only [11,
13]. Often this is done using copious tests in the late phases
of development. Sometimes the selection of test cases is
even quite arguable. Thus, testing could be more effective
if two prerequisites are achieved: First, do tests as early as
possible and second, focus on the interesting tests.

Considering several kinds of requirements, as for example
illustrated in [2], two types of requirements must be consid-
ered in depth when it comes to testing the system under de-
velopment: First —of course— the user requirements which
define what behavior the user (more general: the system
environment) expects from the system and which properties
the system has to fulfill. Second, constraints and restrictions
relating to the (technical) realization of a system are impor-
tant as well, since they often reveal error-prone aspects of
the system.

By applying a development process which uses design mod-
els on different levels of abstraction —more abstract ones
which reflect the user requirements and more concrete ones
considering more detailed aspects of the technical realization—
these two dimensions (focusing on user requirements and
technical realization) can be covered better by automati-
cally generated model-based tests.

As for example in [5], the usefulness of classic structural
coverage criteria for automated test case generation is often
doubted. Instead, the demand for more meaningful cov-
erage criteria which may serve as test case specification is
demanded. We suggest to use services representing user re-
quirements as test case specification. This finally leads to
requirements based coverage criteria.

The main contribution of the paper is the integration of a
model-based design process using levels of abstraction with

a test process. The advantage is that the models of the
design process can be used for the testing activities as well.
Therefore, the effort necessary to construct design models
pays off not only for a better design process, but also for an
improved testing process.

For testing, the models of the different abstraction levels
are used in different ways: Services on the service level are
used as test case specification; models on the further levels
are used as test models from which test cases are derived
by using the (service based) test case specification. The
generated test cases may be applied to the models of the
different levels beneath or of the implementation. In the
latter case the models or the implementation, are in the role
of the test object.

By using different levels of abstraction the models also
cover realization constraints which are valuable for identify-
ing error-prone parts in the system under test (or its models,
resp.). When considering for example embedded systems in
the automotive domain it is common that a system is not
implemented just on one single execution platform, but that
the function is realized by distributing its parts on several
control units which communicate via some bus system. Im-
plementing the bus communication of the control units is a
crucial and therefore error-prone design task. Abstract mod-
els of the user-visible behavior leave out this part; but it is
covered on the more concrete levels. Generating test cases
from models on different levels therefore not only focuses on
requirements coverage but also on error-prone design deci-
sions.

The rest of this paper is organized as follows: Section 2
gives a short introduction to model-based testing as it is con-
sidered in this paper. Section 3 states an outline of the pro-
posed design levels for modeling automotive software. How
services may be useful as test case specification and thus
keep the link to user requirements is described in section
4. The process of test case generation over abstraction lay-
ers is introduced in section 5 which includes the refinement
of tests on the subsequent levels. Finally we give a short
conclusion and show prospects on our future work.

2. MODEL BASED TESTING
Techniques for model-based testing [4, 8] use a model as

a specification of the system under test (SUT). Hence the
model (given in form of a state machine for example) rep-
resents the requirements the SUT must fulfill. A test case
relating to such a model is a pair of an input sequence and
the expected output sequence to these inputs. The consid-
eration of input and output sequences (or histories) is im-
portant since the output of the system depends in general
not only on the current input but on the whole history of in-
puts. Embedded (or reactive) systems, as they can be found
for example in the automotive domain, process a potentially
infinite sequence of inputs. Therefore, the set of all possible
input sequences is infinite.

The aim of a test case generation out of the model is to
extract a set of ”interesting”’ test cases from the potentially
infinite set of test cases. To determine this subset of inter-
esting test cases a test case specification is used. Together
with the test case specification auspicious paths in the model
are looked for and the according input and output histories
are determined. Thus, a test case specification serves as
a search strategy which limits the possible infinite search
space to find the interesting test cases. The search strategy

also defines what makes a test case ”interesting”. Unfortu-
nately it is hard to state a clear definition when a test case
is considered to be ”interesting”. The most desired defini-
tion here is that a test case should have a high likelihood
to find potential errors. Since this is a far too general and
vague formulation an application to test case generation is
not practicable [6]. We will focus on test case specifications
in more detail in section 4.2 where we show how services
are used as test case specification. The generated test cases
are applied to a test object ; this can be the SUT but also a
(different) model of the SUT.

As mentioned before, a test case here means not just the
inputs for the SUT but also the expected outputs which
is compared to the actual outputs of the SUT during the
test execution. For a reasonable generation of expected out-
puts it is inevitable that the model is more abstract than
the SUT. This means that further design decisions must be
made to build the SUT. Models which are used for the au-
tomated generation of the SUT or its code can therefore not
be used for test generation. If the SUT can be generated au-
tomatically from the model, test cases derived from such a
model would only be able to find errors which the code gen-
erator made during code generation. However, there would
be no test case which is able to find design errors in the
SUT. By using more abstract models we only get abstract
test cases which must be transformed to concrete tests cases
when applied to the SUT. This task is done by test drivers.
We do not consider test drivers in this paper.

In the next section the system of abstraction levels which
is the basis for our approach is explained.

3. ABSTRACTION LEVELS
Our current work is based on the necessities for software

engineering of automotive systems. Automotive software —
especially in the field of driver assistance and comfort sys-
tems— increasingly becomes complex. Software is usually
deployed on control units with a strong limitation of hard-
ware resources. Additionally, a function often is distributed
over several different control units which communicate via
different bus systems. Sophisticated functionality is made
up by the interplay of interconnected functions. Addition-
ally, we face enhanced reliability needs. Therefore, to cope
with this intricacy it is necessary to divide the design process
into different steps which enable a stepwise modeling from
an abstract point of view on the system to a concrete one.

3.1 Abstraction Levels Overview
For a structured design approach a system of four abstrac-

tion levels is presented in [12]1. This order of abstraction is
shown in figure 1. Each level abstracts from specific aspects
of the system under consideration. The lowest level —the
platform level— is the most concrete one: it just abstracts
from the actual program code by describing the single tasks
of the systems. Clusters on the next higher level —the log-
ical cluster level— additionally abstract from the technical
runtime environment. Furthermore functions on the func-
tional level abstract from questions concerning distribution.
Finally services on the service level loosen —in general— the
demand of completeness of the system (in regard of possible
inputs) and just focus on its characteristic behavior. The

1[12] focuses on automotive software but might be applicable
to similar kinds of embedded systems as well

concretization

abstraction

service level

functional level

(informal) requirements

logical cluster level

platform level

implementation (code)

abstraction from
actual code

no details of HW-
environment

distribution not
considered

lack of totality
characteristic

system services

total function
specification

distributable
units

technical
environment

concretization

abstraction

service level

functional level

(informal) requirements

logical cluster level

platform level

implementation (code)

abstraction from
actual code

no details of HW-
environment

distribution not
considered

lack of totality
characteristic

system services

total function
specification

distributable
units

technical
environment

service level

functional level

(informal) requirements

logical cluster level

platform level

implementation (code)

abstraction from
actual code

no details of HW-
environment

distribution not
considered

lack of totality
characteristic

system services

total function
specification

distributable
units

technical
environment

Figure 1: Abstraction levels

following subsections give a short overview over the focus of
each abstraction level and its design decisions.

3.2 Service level
The aim of the service level is the consolidation and pre-

cise specification of those requirements (user requirements)
that describe the characteristic system behavior. In order to
achieve this the user requirements have to be formalized in
terms of services. The design decisions on this level consist
of both the specification of the system boundaries and the
specification of the inputs and outputs (=actions). Both are
described in a quite abstract way - that is to say: as they
are interpreted by the users. The behavior therefore is spec-
ified by a black box view. The complete definition of the
overall system behavior is not aim of this level. The system
behavior is only partially defined by single services, i.e. the
behavior is not defined for each possible input sequence.

In the presented testing method we will use services on
this level for the test case specification when generating test
cases (see section 4) later. We do not use services to directly
get test cases from them.

3.3 Functional level
So far, the focus lied on a consistent, but not necessar-

ily total description of the characteristic behavior. When
transforming the services to the functional level, the sin-
gle services are integrated to the overall functions of the
system. At this point undesired interactions are solved as
well. On the functional level, the behavior is totalized (de-
fined completely) and made deterministic (i.e. the system
provides a well defined predictable output for each possible
input sequence). On this level the assumption holds that
the complete system does not have to be distributed over
different runtime environments. It is ideally assumed that
there exists a monolithic runtime model.

In our testing approach the models on this level are used
as input models for test case generation from which tests are
derived (see sections 5 and 5.2.1 later).

3.4 Logical cluster level
Software of embedded automotive systems typically runs

in asynchronous tasks and typically is distributed over differ-
ent runtime platforms. On the functional level the assump-
tion still holds that the system runs on a single synchronous

WindowControl

switch

sensor

motor
WindowControl

switch

sensor

motor

Figure 2: Black Box View on Service Level, the Win-

dowControl example

runtime platform. On the logical cluster level we now switch
to an asynchronous runtime model. The aim of the logical
cluster platform is to partition the system into distributable
units (=cluster). This has to be done in an adequate man-
ner so that these distributable units can be a usable basis for
the physical distribution. Major design decisions that have
to be made on this level concern questions at what points
the catenation between functions has to be disconnected.
Additionally, the determination of the timing which defines
when the units are called is of interest.

Like the models on the functional level, the models on this
level are also used as input models for test case generators to
retrieve test cases which address the specific design decisions
made on the cluster level (see section 5.2.2).

3.5 Platform level
On the previous levels, the system is developed widely

independently from hardware issues. This is motivated by
reuse issues. On the platform level the hardware indepen-
dence is abandoned and the system is adapted to specific
hardware. Design decisions that are typically made on this
level comprise the mapping of clusters to controllers or tasks
and their scheduling. The concrete technical data types, the
signals, and bus messages are defined.

Moreover, the platform level models serve as input models
to generate test cases to cover constraints and restrictions
given by the specific platform (see also section 5.2.3).

4. TRACING USER REQUIREMENTS
BY TEST CASE SPECIFICATION

In our approach services handled on the service level (see
section 3.2) serve as test case specifications. In the following
we show why we use services to derive the test case spec-
ification. Therefore we first explain the role of test case
specifications in our testing method in more detail.

4.1 Example: WindowControler
To illustrate our use of services as test case specification

we introduce a simple example from a window control sys-
tem in cars. For the system given in figure 2, a switch, a
sensor, and the motor are the ”users” in the environment.
The given WindowControler must fulfill the following user
requirements. Actions are indicated in bold text. For sim-
plification we consider the operations for opening the win-
dow only:

(a) After action motor:start has occurred
an occurrence of sensor:isDown

must lead to motor:stop

(b) After occurrence of switch:inPosDown1

the window must move down (motor:startDown)
until switch:inPos0, then motor:stop

(c) After occurrence of switch:inPosDown2

the window must move down: motor:startDown

WindowControlEnv

switch:inPosDown1

motor:startDown

switch:inPos0

motor:stop

WindowControlEnv

switch:inPosDown2

motor:startDown

WindowControlEnv

motor:startDown

sensor:isDown

motor:stop

(c)(a) (b)

Figure 3: Services for the example requirements of WindowControl

The first requirement states that when the window reaches
its end position (signalized by the sensor) the motor always
must stop. The difference between (b) and (c) is that in (b)
the window only moves as long as the switch is in position
Down1, and when the switch is released (in Pos0) the mo-
tor should stop. In the case of (c) the window goes down
completely after the switch is once set to Down2, the motor
then stops according to requirement (a).

In figure 3 the services representing these three require-
ments are given as message sequence charts (MSC). Since
we just consider the interactions between the system and its
environment, a distinction between the different users is not
necessary. Therefore the switch, the sensor, and the motor
are accumulated to the environment Env.

4.2 Test Case Specification
We follow the definition of a test case specification as it

is given in [7] where a test case specification is the formal
representation of a test suite. In contrast, the informal de-
scription of a property which is to be tested is considered
a test purpose. Obviously, it is impossible to state precise
and formal rules for the transformation of an informal test
purpose into a formal test case specification. But it must
be possible to derive a test suite (a set of test cases) from
a test case specification in a well-defined way. It is impor-
tant to note that we use the test case specification in order
to generate the test cases out of a behavior model which
is given as a state machine (see section 2). There the test
case specification is used to limit the possible infinite search
space for traces in the model.

Many approaches on test case generation use structural
coverage criteria like state coverage, condition coverage, or
MC/DC coverage [6, 9, 10] as test case specification. There
the aim of the test case generation is to find a test suite
which fulfills the selected coverage criteria. Another kind
of test case specification is a stochastic specification, where
test cases are generated at random. Since the lack of ex-
pressiveness of stochastic specification is obvious and also
the significance of structural test case specification must be
doubted [5], there is a demand for functional test case spec-
ifications which refer to the users requirements on the SUT.

In our case the test purposes are the user requirements.
Clearly, there is no well-defined way to derive a formal test
case specification from informally given user requirements.
But in our design approach based on abstraction levels re-
quirements are formalized as services. These services are
useful as test case specification; it is possible to define an
algorithm for deriving a test suite from a model of these
services. In the presented way of test case derivation one
advantage lies in the fact, that the trace between test cases
and user requirements is preserved.

4.3 Using Services as Test Case Specifications
On the service level modeling is restricted to a black box

view of the system. Only the interaction between the system
and its users and environment is described. On this level
input and output actions of the system are identified. Now
we explain in more detail why services are useful for test
case specification. (In more detail a service defines the test
case specification not completely; we focus this point at the
end of this section and in section 5.1).

In the example above we have shown how services reflect
the user requirements. Trivially a simple execution of one
of the MSCs in figure 3 may also be performed on the sys-
tem as test case. Hence, message sequence charts are used
to describe test cases for a long time, as for example in [3]
as ”test purpose” where MSCs even comprise a larger set
of test cases which can be directly expanded from an MSC.
Since we generate the test cases mainly from additional be-
havioral models of the SUT, we use services in a different
way: The services (test case specification) serve as search
strategy within the model of the SUT, but the content of
a test case is determined in detail by the system model.
On the service level (see section 3.2) we consider a set of
single, independent services which describe the characteris-
tic system behavior; e. g. services state exemplary action
sequences. The integration of the single services to an inte-
grated model is done when moving from the service level to
the functional level. The integration of services requires the
solution of undesired interaction.

The following observations are important when services
are concerned as means for test case generation:

1. Each single service represents one specific requirement.

2. In general, a service represents an infinite set of actual
input sequences (and matching output sequences) but
only comprises a subset of all possible input sequences
of the SUT.

3. The system behavior, as defined by one service, may be
”violated” by actual correct system runs: In general, a
single service does not consider interaction with other
services. In case of desired feature interaction, the
correct overall system behavior is not described by the
single service.

4. The set of all services and the integration of services
may not define the complete system behavior in the
sense of totality: I.e. it is not possible to determine
for every input sequence the expected outputs. (The
reason lies in the fact the we only focus the so called
characteristic system behavior on service level).

From the first statement follows: using services indepen-
dently from each other would lead to tests for each single

functional level test cases

logical cluster level test cases

platform level test cases

implementation

design decision test application

service level test case spec.

(informal) user requirements

re
al

iz
at

io
n

co

ns
tr

ai
nt

s
functional level test cases

logical cluster level test cases

platform level test cases

implementation

design decision test application

service level test case spec.

(informal) user requirements

re
al

iz
at

io
n

co

ns
tr

ai
nt

s

Figure 4: Use of test cases along abstraction levels

user requirement, but there would not be any guarantee that
the combination of user requirements is reflected in the tests.

The second observation shows that on the one hand a
service is a useful means to define a test case specification
(because the set of relevant system traces is restricted), but
on the other hand a service alone does not fulfill the re-
quirements for test case specification as given in [7]. Hence
it still comprises an infinite set of system traces which may
be possible test cases.

Considering statement three, it is obvious that a service
is in general not useful when directly used as test case. Due
to the effects of desired feature interaction, a service used as
test case may detect errors in a system run even if the run
is correct with regard to the integration of all services.

The fact shown in the last point above implies that there
are different kinds of dependencies in the complete (total)
system model: Dependences which are contained in the set
of user requirements (those are considered when integrating
the single services) and dependencies which are necessary to
give a full system specification—remember: Not until the
model on the functional level a complete model in sense
of a total function is required in the presented modeling
approach (see section 3.3).

These considerations show that a service is valuable for
test case specification: It restricts the set of system traces
and it is linked to the actual user requirements. Since test
cases are generated from an integrated model the interplay
between requirements is taken into consideration as well.
As a service may also specify a large or even infinite set
of execution traces of a system, further restriction criteria
of the possible amount of test cases are necessary to gain a
complete test case specification in the sense of [7]. Therefore
structural test case specification criteria may be used —the
observations shown above will be retained.

5. TEST CASE DERIVATION
ON SUBSEQEUNT LEVELS

In this section we first give an overview how the generation
of test cases on the subsequent design levels works in gen-
eral. More details for each specific level are shown in section
5.2. In figure 4 the modeling approach and the tests of the
respective design levels and their application are illustrated.

The test cases of the functional, the logical cluster, and
the platform level are always applied to the more concrete
levels underneath and finally to the implementation. Of
course test cases of an abstract level may not be applied

input model test case
generator

test cases
test cases

fu
nc

tio
na

l l
ev

el
lo

gi
ca

l c
lu

st
er

 le
ve

l /
pl

at
fo

rm
 le

ve
l /

im
pl

em
en

ta
tio

n

test case specificationse
rv

ic
e

le
ve

l

test case specification

dv = vs – v;
if (dv < 0) {

decr();
...

design process test process

input model test case
generator

test cases
test cases

fu
nc

tio
na

l l
ev

el
lo

gi
ca

l c
lu

st
er

 le
ve

l /
pl

at
fo

rm
 le

ve
l /

im
pl

em
en

ta
tio

n

test case specificationse
rv

ic
e

le
ve

l

test case specification

dv = vs – v;
if (dv < 0) {

decr();
...

design process test process

Figure 5: Example: Test case generation on func-

tional level

to the following level only but can be applied to all of the
more concrete levels as well (provided a suitable test driver
for transforming the test cases). For this method one must
be aware that the transformation from models on one level
to the next more concrete level always requires additional
design decisions. Here testing is about finding errors, caused
by this new design decisions. Since the models of the more
concrete levels address technical realization constraints, test
cases derived from this model comprise these aspects as well.

The reader may note that we omit questions about the
validation of informal requirements to services since these
may not be able to automate. Additionally we omit ques-
tions about the correct integration of the single services to
the complete function since a violation of a specified service
in the integration to a function may be a realization of both
desired and undesired feature interaction. In the proposed
modeling approach these questions are tackled during the
design decisions when building function models from ser-
vices.

5.1 General Process on Each Level
In figure 5 the general process is shown exemplary for the

test case derivation on the functional level. The modeled
services are used as test case specifications. With help of
these service models, a test case generator derives test cases
out of the functional model (cluster and platform model,
resp.). These test cases are applied to artifacts on the more
concrete levels.

The first models which are used to generate test cases are
the models on the functional level, since this is the most
abstract representation of the complete specification of the
system. In figure 6 a simple automaton is shown which real-
izes the services specified for the WindowControler example
of section 4.1 before.

From the models of the functional level, the logical cluster
level test cases and platform level test cases are generated
according to the identified services. For using these test case
specifications, it is necessary to consider the functional mod-
els from the point of view of each service. This is done by
cutting only those parts out of the complete model which
are touched by the service. In a formal way, as for exam-
ple described in [1], this means a restriction of the function

FullDown DownIdle
switch:inPos0 /

motor:stop

switch:inPosDown2 /
motor:startDown switch:inPosDown1 /

motor:startDown

sensor:isDown /
motor:stop

sensor:isDown /
motor:stop

switch:inPosDown2 / motor:startDown

switch:inPosDown1 /
motor:stopswitch:inPos0

switch:inPos0

sensor:isDown

Figure 6: WindowControl example on the functional

level

(which can be seen as a total component) to the respective
service domains. For the actual test case generation, an ex-
isting test case generator as mentioned in section 2 might
be used. The procedure can be described by the following
algorithm:

TestSet generateTestCases(Model fullModel,

ServiceSet setOfServices) {
TestSet testSuite;

foreach s in setOfServices do {
Model selectedModel = restrictModelToService(fullModel, s);

TestSet testsForService = callTestGenerator(selectedModel);
testSuite.insert(testsForService);

}
return testSuite;

}

Model restrictModelToService(Model m , Service s) {
// returns a model which only represents

// the traces of the model m

// which fulfill service s

}

TestSet callTestGenerator(Model m) {
// some known test generator (see section 2) is called
// which for example uses coverage criteria to further

// select test cases in the restricted model m

}

The key point in the algorithm is that the complete model
is restricted to an appropriate extract for each service before
the classic test case generation is done. The complete test
suite contains in the end the union of all test sets generated
for each service. In this way we get every user requirement
(which is represented through a service) tested. Addition-
ally, a promising set of test cases is generated rather than
just one test case for each service sequence. In general pos-
sible methods for the restriction of the model are as follow:

• eliminate all states in m which have no outgoing tran-
sition caused by an action of s

• eliminate all states in m which have no incoming tran-
sition emitting an action of s

• eliminate all transitions in m which are not caused by
an action of s

• eliminate all transitions in m which do not emit an
action of s

The detailed formulation and evaluation of the algorithm
is still part of our ongoing research.

5.2 Refinement of Tests Along Design Levels
Besides the above mentioned general methods to restrict

models, specific techniques can be applied to the single mod-
eling levels. In the following sections we therefore take a
closer look at the single levels. When using the different
abstraction levels to generate tests out of them, the result-
ing test suites contain more and more refined tests from each
level. This refinement of test cases is shown in the following.

5.2.1 Functional Level
Models on the functional level, as introduced in section

3.3, integrate all single services and give a complete system
specification in the sense of a total function. But still, these
models remain quite abstract from the implementation and
focus only on the users’ view on the system.

When applying the functional models to the test case gen-
eration algorithm stated in the section above, the distinction
between dependencies of services is valuable: As already
noted in section 4.3 two kinds of dependencies of services
exist in the functional models: First, there are interactions
of services which result from the integration of single ser-
vices to map desired feature interaction. A second class of
dependencies comes from the totalization of the function,
e. g. when missing transitions are added in the state ma-
chine. These distinction of dependencies is used to restrict
the model in the restrictModelToService(...) method:

• Feature interaction dependencies should be followed in
model paths, since these are important from the users
view.

• Totalization dependencies should not be followed in
model paths, since these have quite less significance
towards the users’ expectations on the SUT.

The advantage of getting tests from the functional level
lies in both the immediate representation of the users view
on a system in the test and the high usefulness for re-use
of test cases. Since the retrieved test cases are indepen-
dent from almost all realization constraints, the same test
case may be used for different implementations of the func-
tion. Consider for example a function which has been imple-
mented on a single control unit and must now be deployed
on several control units communicating over some bus ar-
chitecture in a new technical environment.

But this is also a backtrack of tests from this level: The
actual technical realization, as for example distribution to
different control units, identifies error-prone model elements
(”Has the bus communication been realized correctly?”). The
tests from the functional level cannot specifically address
such questions. But tests on the further levels serve as ad-
equate means therefore and will refine the test set as de-
scribed in the next sections.

5.2.2 Level of Logical Clusters
As explained in section 3.4 models on the logical cluster

level consider mainly the distribution of embedded systems
on different runtime platforms and in asynchronous tasks.
On the functional level these design aspects are neglected
but for testing information about distribution of the system
may be quite useful. Connections between distributed units
(e. g. realized by some communication bus) are often a
source for errors. Therefore it is imported to check if the

defined communication relations will not be violated in the
implementation and/or on the subsequent modeling levels.

Similar to the functional level services are used again as
test case specification; again we want to preserve the link
to the user requirements. On the level of logical clusters we
are able to identify subsets of clusters which contribute to
accomplish the single services. Thus we get the following
rules for the restrictModelToService(...) method:

• Connections between clusters which are related to a
specific service should be followed in model paths.

• Connections to clusters which do not affect a specific
service must not be followed.

Unlike the models on the functional level, the logical clus-
ter level is not only used for test case generation. The models
on this levels are also used as test objects: Tests generated
from the functional level are applied to these models.

5.2.3 Platform Level
The usage of models on the platform level is quire similar

to the usage of models on the logical cluster level. Unless
the levels before restriction specific to the chosen hardware
platform are also considered in the models on this level.
Thus test cases can be retrieved which also comprise these
hardware depended requirements. In our ongoing research
we will consider the platform level in more detail.

6. RELATED WORK
Test case generation with structural criteria is for exam-

ple described in [4, 6, 8, 9, 10]. Unlike these approaches we
base our work mainly on user requirements for test case gen-
eration. Using sequences for test case generation is known
for long as for example introduced in [3] where test cases are
derived directly from sequence charts. In contrast, our work
focuses on the integration of the before mentioned model-
based generation techniques by the use of services (which
may be represented by sequence charts). Furthermore we
integrate the test process in a design process which is based
on different abstraction levels as introduced in [12]. Similar
to [5] we see the need for better coverage criteria and lay-
out a basis for the definition of an adequate requirements
coverage.

7. CONCLUSION AND FURTHER WORK
In this paper we introduced a testing approach which is

based on an order of abstraction levels. Here the user re-
quirements are formalized as services which are used as test
case specification. Test cases are derived from the models
on the subsequent levels. By this we keep the trace between
generated test cases and user requirements. Since the dif-
ferent levels focus on different design decisions we also get
test cases which cover realization constraints and identify
error-prone parts of the system design.

We believe this method will be a valuable basis for the
definition of new coverage criteria for test case generation
which are based on user requirements rather than on struc-
tural aspects. In our current work we focus on the refine-
ment of the test case generation algorithms and on a more
detailed specification of the modeling approach. Currently
an architecture description language (called CAR-DL) is be-
ing developed which includes the relations between the in-
troduced abstraction level. We consider this also as helpful

for the definition of test drivers which are needed to instan-
tiate the abstract test cases to make them executable on the
test object.

8. REFERENCES
[1] M. Broy. Engineering Theories of Software Intensive

Systems, chapter Service-Oriented Systems
Engineering: Specification and Design of Services and
Layered Architectures, pages 47–81. Springer, 2005.

[2] A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl,
S. Rittmann, and D. Wild. Concretization and
formalization of requirements for automotive
embedded software systems development. In K. Cox,
J.L. Cybulski et.al, editor, Proc. of the Tenth
Australian Workshop on Requiremements Engineering
(AWRE), pages 60–65, Melbourne, 2005.

[3] J. Grabowski, D. Hogrefe, and R. Nahm. Test case
generation with test purpose specification by mscs. In
O. Faergemand and A. Sarma, editors, SDL’93 -
Using Objects, North-Holland, Oct. 1993.

[4] G. Hamon, L. de Moura, and J. Rushby. Generating
efficient test sets with a model checker. In Software
Engineering and Formal Methods, 2004. SEFM 2004.
Proceedings of the Second International Conference
on, pages 261–270, 2004.

[5] M. Heimdahl, G. Devaraj, and R. Weber. Specification
test coverage adequacy criteria = specification test
generation inadequacy criteria? In High Assurance
Systems Engineering, 2004. Proceedings. Eighth IEEE
International Symposium on, pages 178–186, 2004.

[6] A. Pretschner. Zum modellbasierten funktionalen Test
reaktiver Systeme. PhD thesis, Technische Universität
München, 2003.

[7] A. Pretschner and M. Leucker. Model-Based Testing -
A Glossary, volume 3472 of Lecture Notes in
Computer Science, chapter 20, pages 607–609.
Springer-Verlag, Berlin, Heidlberg, July 2005.

[8] A. Pretschner, O. Slotosch, E. Aiglstorfer, and
S. Kriebel. Model-based testing for real. International
Journal on Software Tools for Technology Transfer
(STTT), 5(2 - 3):140–157, Mar. 2004.

[9] S. Rayadurgam and M. Heimdahl. Coverage based
test-case generation using model checkers. In
Engineering of Computer Based Systems, 2001. ECBS
2001. Proceedings. Eighth Annual IEEE International
Conference and Workshop on the, pages 83–91, 2001.

[10] S. Rayadurgam and M. Heimdahl. Generating mc/dc
adequate test sequences through model checking. In
Software Engineering Workshop, 2003. Proceedings.
28th Annual NASA Goddard, pages 91–96, 2003.

[11] R. Whiting. Take the black magic out of software
development. Electronic Business, 18(9):34–44, 1992.

[12] D. Wild, A. Fleischmann, J. Hartmann, C. Pfaller,
M. Rappl, and S. Rittmann. An architecture-centric
approach towards the construction of dependable
automotive software. In S. of Automotive Engineers,
editor, Proceedings of of the SAE 2006 World
Congress (to appear), Detroit, 2006.

[13] M. Zelkowitz, A. Shaw, and J. Gannan. Principles of
Software Engineering and Design. Prentice-Hall,
Englewood Cliffs, 1979.

