
Algebraic View Speci�cation�

Barbara Paech

Institut f�ur Informatik� Technische Universit�at M�unchen
Arcisstr���� D������ M�unchen

paech	informatik�tu�muenchen�de

Abstract� The application of algebraic speci
cation techniques in the
early phases of software development requires a means for specifying
views� In this paper we argue for algebraic view speci
cation based on
an algebraic concept model� The concept model consists of two parts� a
meta model de
ning the concepts of di�erent views and the relationships
between them� and a system model de
ning the system behaviour� We
show how to derive an algebraic concept model from a semi�formal one
given usually as an entity relationship diagram� This gives the rigour of
formality to pragmatic view speci
cations and allows for an easy trans�
lation between formal and pragmatic speci
cations�

� Introduction

Using algebraic methods in industrial software development means introduc�
ing an algebraic speci�cation at some point of the development process and
exploiting the mathematical semantics for code generation� re�nement� veri�ca�
tion and the like� There is some evidence that introducing formal speci�cations
very early in the development process is most pro�table �SH���� This is due to
the fact that errors in requirement analysis and design are the most costly� mak�
ing the expenses for precise speci�cation and thorough validation worthwile� In
the following� algebraic view speci�cations based on an algebraic concept model

are introduced as a means of making algebraic speci�cations better applicable
to requirements analysis and de�nition�

Views

In the process of requirements analysis several views of the required software sys�
tem and its environment are speci�ed� The reason is that in the early stages there
is not enough information to describe the system as a whole� Instead� seperated
in several views� information is gathered which later on must be integrated in
a design satisfying all the views� Pragmatic development methods like FUSION
�CAB����� OMT �RBP��	�� OOSE �Jac�
�� SSADM �DCC�
� o�er description
techniques for theses views� Mostly� only the notation is de�ned together with
an informal semantics� Consequently� CASE tools often only support editing and
syntactic checks of these description�

� This work was carried out within the project SysLab� supported by Siemens Nixdorf
and by the Deutsche Forschungsgemeinschaft under the Leibniz program

Meta Model

More powerful CASE tools are based on a repository in which information about
all the objects relevant to the software development is stored �HL���� Following
the ANSI standard for information resource dictionary systems �ANS
�� there
are four levels of such objects�

	� the real world objects relevant to the software system �e�g� Miss Marple��

� the types and relationships of the real world objects �e�g� detective� crime�

worksOn�� often called model level�

�� the concepts used to describe these types and relationships �e�g� entity�
process�� often called meta model level� and

�� the concepts used to describe the meta model�

From the point of view of a method designer the meta model level is particu�
larly interesting� On this level the general concepts used to model the application
and the software system are �xed� Interestingly� most books on software engi�
neering methods do not make this meta model explicit� It is� however� becom�
ing increasingly popular for method comparison �e�g� �Gil����� In the tradition
of semantic data modelling usually entity relationship or object diagrams are
used to de�ne the meta model� Thus the modelling concepts are characterized
through their attributes and relationships �and operations � in case of an object
diagram�� Each view corresponds to a certain part of the meta model� Rela�
tionships between concepts of di�erent views determine consistency conditions

between di�erent views� These consistency condition can be enforced by a CASE
tool to give support to the integration of the views�

Concept Model

To allow for algebraic view speci�cation the meta model can be formalized in
an algebraic speci�cation language� This idea is worked out in the �rst part of
the paper� However� from the point of view of algebraic speci�cation� traditional
meta models are not su�cient� They do not provide a semantics of the modelling
concepts in terms of system behaviour� Therefore� in the second part of the
paper the system model is introduced and combined with the meta model� The
combined model is called concept model� Di�erent parts of this model determine
di�erent views together with their mathematical semantics� The relationships
between the concepts give rise to very powerful consistency conditions�

This paper is structured as follows� As an example we introduce part of
the meta model of the method FUSION and the corresponding views� Then we
discuss their formalization� In section � we de�ne a system model for FUSION
and show how to combine the two models to give a precise semantics to the
views� Related work is discussed in the conclusions�

� Views and the Meta Model � An Example

As an example we discuss the simpli�ed meta model of the analysis phase of
FUSION �see �gure 	�� The notation used for this and the following models is
explained in the legend� We only show the most important attributes�

result

Class

min
Card

max
Card

accepted
Inputs

(1,1)

(1,1)
List

Environment
Object
Class

Input
Event

(1,1)(1,1)

System

Output

PostCondition

PreCondition

Operation

assumes

reads

class
Attribute

Item

Relationship

Lifecycle

Legend

Entity Relationship Is-a Attribute

text

(1,1)

(1,1)

(1,1)

(1,1)

Operation
Schema

sends
possibly

describes

changes

triggers(1,1) (1,1)

isTrueOf

relates

System
State

emits

accepts

attribute
Relationship
Attribute

participatesIn

System
Object
Class

Object

Fig� �� Meta Model

This meta model is not given explicitly in �CAB����� The model given here
covers all concepts necessary to explain the description techniques for the views

developed in the analysis phase� After explanation of the model along with the
description techniques for the di�erent views some modelling alternatives are
discussed�

FUSION o�ers three views� the object model� the operation model and the
lifecycle model�

Object Model

The objects of the application� together with their attributes and relationships�
are described in the object model�� In a second step the objects included in
the software system are distinguished from the environment objects� The for�
mer consitute the system object model� In �gure
 part of the object model for
the well�known automatic teller machine example is shown� Figure � gives the
relevant part of the meta model�

Person owns AccountCard authorizes (1,1)

Name Balance

Fig� �� Object Model Example

Class

min
Card

max
Card

Environment
Object
Class

(1,1)(1,1) class
Attribute Relationshipattribute

Relationship
Attribute

participatesIn

System
Object
Class

Object

Fig� �� Object Model

� For the sake of simplicity we omit further structuring facilities like generalization
and aggregation here�

Operation Model

System operations are described in one or more operation schemata� Each schema
covers the items read or changed� the output events possibly sent� the precondition
and the postcondition� The precondition characterizes the set of system states

enabling the operation� The postcondition characterizes a set of pairs of system
states and a list of output events such that the application of the operation in
the �rst state yields the second state together with the list of output events� As
example the system operation dispenseCash of the automatic teller machine is
given in �gure ��� The relevant part of the meta model is shown in �gure ��

Operation dispenseCash�amount�

reads Account

changes Account

sends Person� foverdraw� newAmount�� cash� ejectCardg
assumes Card inserted and Account owned by Person who is authorized

through Card

result If amount available on the Account�
subtract amount from Account balance� send cash and ejectCard�
Otherwise send overdraw and newAmount��

Fig� �� Operation Model Example

Lifecycle Model

The lifecyclemodel determines when input events are accepted �depending on the
history of accepted events� and what output events may be emitted� In FUSION
lifecycles are denoted as regular expressions� where output events are pre�xed
by �� An example describing the lifeycycle of the automatic teller machine is
given in �gure �� Figure � shows the corresponding part of the meta model�

As is most evident in the lifecycle meta model� the concrete syntax of the
description technique and the concepts de�ned in the meta model may be quite
di�erent� This only mirrors the fact that di�erent description techniques can be
used for the same view� Therefore the meta model is much more adequate for
method comparison than the description techniques themselves� Also� the meta
model makes it easier to understand the description techniques�

� We have simpli
ed the parameterization mechanism of FUSION here�

result

accepted
Inputs

List

System

Output

PostCondition

PreCondition

Operation

assumes

reads

Item

(1,1)

(1,1)

(1,1)

(1,1)

Operation
Schema

sends
possibly

describes

changes

isTrueOf

relates

System
State

Fig� �� Operation Model

�insertCard���rejectCard j
�amount�� �dispenseCash��overdraw��newAmount� j
dispenseCash��cash��newAmount���� eject��ejectCard���

Fig� �� Lifecycle Example

This �nishes the explanation of the meta model� As mentioned before� this
model is not unique� It is adequate for method description� For implementa�
tion in a CASE repository it is too general� For example� it is not possible to
keep a list of all system states� Therefore only a simpli�ed version of the rela�
tionships involving SystemState will be supported� E�g� instead of the accepts
relationship all input events referred to in the lifecycle could be recorded�

� Algebraic Meta Model and Algebraic Views

As shown in �Het��� entity relationship diagrams can be formalized in an al�
gebraic speci�cation language� For each entity a sort is introduced� for each

Input
Event(1,1)

triggers

Inputs
accepted

List

(1,1)

emits

Lifecycle

System
Operation

System
State

accepts

Output

Fig� �� Lifecycle Model

attribute an operation and a predicate for each relationship� Cardinalities are
expressed as constraints� In the following the meta model of �gure 	 is translated
into the algebraic speci�cation language Spectrum �BFG����� The translation
is shown in �gure
� The numbers �i� are reference points for the following ex�
planation�

�	� This speci�cation is based on the speci�cation of natural numbers� of sets� of
the attribute sorts and polymorphic lists� All functions are strict and total�

�
� For each entity of the meta model a sort is introduced� EQ means that for all
the introduced sorts equality is decidable�

��� The attributes are mapped into strict and total functions from the entity
sorts to the attribute sorts�

��� The relationships are mirrored in general by predicates� One�one relation�
ships are translated into functions �see for example the triggers relation�
ship��

��� The cardinality constraints are captured by axioms� These axioms use the
function card de�ned in the speci�cation of sets� For a relationship rel�

Sort� � ��� � Sortn a cardinality constraint for Sorti determines the
number of instances of the relationship where the entities of the other sorts
are �xed� As an example consider the relationship accepts between Lifecycle�

SystemState and InputEvent�
��� As discussed in �Het��� there are many constraints not expressible with en�

tity relationship diagrams� They can be expressed in Spectrum and added
as further axioms to the algebraic meta model� One example is a stronger
cardinality constraint for Lifecycle in accepts� There is just one lifecy�
cle for the whole system� Another example is the consistency between the
output list characterized by relates and the one characterized by emits�

Figure 	� gives an example of an algebraic view speci�cation� It speci�es
the equivalent of the lifecycle of �gure � based on the concepts de�ned in

META MODEL � f

��� enriches Nat � Set � AttrSort � List	

strict total	

�
� sort InputEvent� SystemOp� OpSchema� OutputEvent� SystemState�

Precondition� Postcondition� Lifecycle� Attribut� ObjectClass�

SystemObjectClass� EnvironmentObjectClass� Relationship	

sort Item � Attribute � Relationship � Object	

EQ	

��� acceptedInputs � SystemState � List InputEvent	

minCard � Relationship � ObjectClass � Nat	

maxCard � Relationship � ObjectClass � Nat	

�
� classAttribute � Attribute� ObjectClass � Bool	

relationshipAttribute � Attribute � Relationship � Bool	

participatesIn � ObjectClass � Relationship � Bool	

describes � OpSchema � SystemOp	

possiblySends � OpSchema � List OutputEvent	

triggers � InputEvent � SystemOp	

reads � OpSchema � Item � Bool	

changes � OpSchema � Item � Bool	

assumes � OpSchema � Precondition	

result � OpSchema � PostCondition	

isTrueOf � Precondition � SystemState � Bool	

relates � Postcondition � SystemState � SystemState

� List OutputEvent � Bool	

accepts � Lifecycle � SystemState � InputEvent � Bool	

emits � Lifecycle � SystemState � SystemOp

� List OutputEvent � Bool	

��� axioms

���

� l� LifeCycle� � st� SystemState� � acceptsSet� Set �LifeCycle �
SystemState � InputEvent�� � in� InputEvent�

��l�st�in� � acceptsSet � accepts�l�st�in�� �
� � card�acceptsSet�	

� l � LifeCycle� � in�InputEvent� � acceptsSet� Set �LifeCycle �
SystemState � InputEvent�� � st� SystemState�

��l�st�in� � acceptsSet � accepts�l�st�in�� �
� � card�acceptsSet�	

� in� InputEvent� � st� SystemState� � acceptsSet� Set �LifeCycle �
SystemState � InputEvent�� � l� Lifecycle�

��l�st�in� � acceptsSet � accepts�l�st�in�� �
� � card�acceptsSet� � card�acceptsSet� � ��	

��� ��������

� l�l�� lifecycle� � st�st�� SystemState� � in�in�� InputEvent�

�accepts�l�st�in� � accepts�l��st��in��� 	 l � l�	

� st� SystemState� � op� SystemOp� � out� List OutputEvent�

�� l� Lifecycle� emits�l�st�op�out�� �
�� st�� SystemState� � sch� OpSchema � � cond�� Precondition� �
cond
� Postcondition� �describes �sch� � op � assumes�sch�� cond� �
isTrueOf�cond��st� � result�sch� � cond
� �
relates�cond
�st�st��out��	

endaxioms	

g

Fig� �� Formal Meta Model

the algebraic meta model� First� for the sorts InputEvent� OutputEvent and
Lifecycle the relevant elements are introduced� Then the relationships accepts
and emits are speci�ed by axioms� Essentially� these axioms characterize an
Mealy�automaton corresponding to the lifecycle expression� This automaton is
shown in �gure ��

q0 q1

insertCard/[#amount?]

eject / [#ejectCard]

dispenseCash / [#cash. #newAmount?]

dispenseCash / [#overdraw.#newAmount?],insertCard /
[#rejectCard]

Fig� 	� Lifecycle Automaton

Automaton state q� characterizes all system states where the sequence of
acceptedInputs is empty or ends with eject� Automaton state q� characterizes
system states reached by accepting insertCard or dispenseCash� So the axioms for
accepts �rst describe the set of accepted InputEvents� insertCard is accepted
in system states characterized by q� and dispenseCash and eject are accepted
in system states characterized by q�� The axioms for emits �rst describe the
set of OutputEvents� Then the OutputEvent is speci�ed in dependency of the
InputEvent� This corresponds to the transition labels of the automaton of �gure
��

Discussion

The algebraic meta model and view speci�cation combines elements of pragmatic
and formal software engineering methods�

From the point of view of pragmatic software engineering methods� formally
speci�ed views are not of direct use because of the skills required to apply math�
ematical speci�cations in general� However� mirroring the meta model in the
algebraic meta model allows for an easy translation between the pragmatic view
description and the algebraic view description� This translation supports the
indirect use of formal methods as characterized in �Hu����� The algebraic speci�
�cation can be used for an analysis of the corresponding views yielding precise
rules for transformation and consistency checks to be used by the software de�
veloper� If required� e�g� in the case of safety�critical system properties� a large
part of the algebraic speci�cation can be generated from the informal one�

From the point of view of algebraic speci�cations� views introduce a new
structuring principle� The meta model introduces a new level of indirection into
the speci�cations making the modelling concepts explicit� While this lengthens
the speci�cations� it makes the process of specifying more �exible� Because of the

ATM LIFE � f
enriches META MODEL	

insertCard� dispenseCash� eject � InputEvent	

�rejectCard� �amount�� �overdraw� �newAmount�� �cash�
�ejectCard � OutputEvent	

atmLife � Lifecycle	

axioms

� st� SystemState� � in� InputEvent�

accepts�atmLife�st�in� 	 �in � insertCard
 in � dispenseCash
 in � eject� �
accepts�atmLife�st�insertCard� � �acceptedInputs�st� � ��

��last�acceptedInputs�st�� � last�acceptedInputs�st�� � eject�� �
�accepts�atmLife�st�dispenseCash�
 accepts�atmLife� st� eject�� �
��last�acceptedInputs�st�� �
� last�acceptedInputs�st�� � insertCard
 last�acceptedInputs �st�� �

dispenseCash��	

� st�SystemState� � out� List OutputEvent� � x� OutputEvent�

� op� SystemOp�

�emits�atmLife�st�op�out� � isEl�x�out�� 	 �x � �rejectCard

 x � �amount�
 x � �overdraw
 x � newAmount�
 x � �cash

 x � �ejectCard� �
emits�atmLife�st�op�out� 	 �op � triggers�insertCard�

 op � triggers�dispenseCash�
 op � triggers�eject�� �
emits�atmLife�st�triggers�insertCard��out� �
�out � ��rejectCard�
 out � ��amount��� �
emits�atmLife�st�triggers�dispenseCash��out� �
�out � ��overdraw� �newAmount��
 out � ��cash��newAmount��� �
emits�atmLife�st�triggers�eject��out� � �out � ��ejectCard��	
endaxioms

Fig� �
� Algebraic Lifecycle Speci
cation

common vocabulary di�erent views can be speci�ed and re�ned by di�erent peo�
ple at di�erent times� The consistency constraints between the views are made
explicit through the axioms relating concepts of di�erent views� One example of
such a consistency condition is the second formular in ��� of �gure
� It relates
the lifecycle and the operation view�

However� the semantics of the concepts given in the algebraic meta model
is not complete� Nothing is said about the relationship between system states
and objects� Nothing is said about the transition between two system states
in general� The meta model is lacking the concepts necessary to de�ne system

behaviour� Of course� we could have included them in the meta model from the
beginning� However� this is not necessary� if the meta model is used to charcterize

the views� Also� meta models of pragmatic methods do not cover these concepts�
Thus we prefer to introduce another model collecting all the concepts relating to
system behaviour in one place� the system model� The system model of FUSION�
its integration with the meta model� and its formalization is discussed in the
following sections�

� System Model and Concept Model

In this section the system model of FUSION is given� For reasons of space� we
only give the semi�formal version denoted as an entity relationship�diagram�The
derivation of the algebraic version follows the approach discussed above�

FUSION only considers sequential systems� These can be modelled as state
transition systems� where the state determines the set of existing objects� the
values of attributes and of relationships� Since FUSION distinguishes between
input events received and the ones accepted� in each state the list of accepted
input events leading to this state is included� Also� for each transition the list of
emitted output events is recorded� Altogether� �gure 		 shows the system model�
Entities depicted as dashed boxes �SystemObjectClass in the �gure� are just
introduced for layout reasons to avoid crossing lines�

System
Object

Output

Class

ValueValue

(1,1)

isInstanceOf

(1,1)

Attribute
Relationshipclass

System
Object

Relationship

next
Input
Event List

System
State

Relationship
Attribute

Value
Attribute

Value

System
Object
Class

Exist

attribute Attribute

Relationship

accepted Inputs

 Value

participatesIn

(1,1)

min max
Card Card

Fig� ��� System Model

The meta model and the system model can be joined by identifying common
concepts� We call the combined model the concept model� On the algebraic side
this corresponds to a speci�cation combination using �� Again� there are a lot
of consistency constraints between the concepts of the joined models which are
not expressed in the entity relationship diagram� In the algebraic concept model
these can �and have to� be expressed with further axioms� The most important

one is the connection between next and the concepts of the operation schema
�see �gure 	
��

� st��st
� SystemState� � in � InputEvent� � out� List OutputEvent�

next� st��in�st
�out� �
� life� Lifecycle� � op� SystemOp� � sch� OpSchema�

� cond� � PreCondition� � cond
� PostCondition�

�� accepts� st��in�life� � st� � st
 � out � ���

�accepts�st��in�life� � triggers� in� � op �
��assumes �sch� � cond� � isTrueOf� cond��st�� � result� sch� � cond
�

	 relates� cond
�st��st
�out�� �

Fig� ��� Concept Model Axiom

The concept model gives a semantics to all modelling concepts in terms of
the system behaviour� Some of the concepts are directly re�ected in the syntax of
the description techniques �e�g� the concepts of the object model�� while others
are only indirectly re�ected �e�g� the concepts of the lifecycle model�� Also� some
concepts are exclusively related to views or the system model� while others are
common to some view and the system model� Thus the purpose of the concepts
within the method is made explicit in the concept model� Structuring formal
speci�cations along these lines makes them easier to comprehend�

� Conclusions

Altogether we advocate the following combination of algebraic speci�cation and
pragmatic software development methods� The views supported by the prag�
matic method are captured in the meta model� Together with the system model
underlying the pragmatic method it constitutes the pragmatic concept model�
The concept model is directly translated to an algebraic concept model using
the ideas of �Het���� This speci�cation has to be completed with axioms for
the constraints not expressible in the entity�relationship�diagram� The resulting
speci�cation can be structured as follows�

Basic View Speci�cation All sorts� functions and axioms which refer to con�
cepts of one view or the system model specify the semantics of that view�

Consistency All axioms which refer to concepts of di�erent views specify the
consistency constraints between the views��

Based on this speci�cation the concrete syntax of the description techniques
supported in the pragmatic method is given a semantics in terms of the algebraic
concept model� Thus every pragmatic view speci�cation can directly be trans�
lated to an algebraic one� Following the paradigma of indirect use� the algebraic

view speci�cation is hidden to the everyday system developer� It is exploited as
much as possible within CASE�tools for the pragmatic method� One example is
the automatic check of consistency constraints between views� Another example
is support of a re�nement notion for views based on the algebraic semantics� An
expert system developer might use the algebraic semantics for semi�automatic
proofs of complex and critical properties�

Related Work

There are two sides two our approach� On one hand it is related to the e�orts
to give a formal foundation to pragmatic software development methods� In this
respect our work is most in�uenced by �Hu���� where an algebraic semantics to
SSADM is given� There also an algebraic system model is used to give semantics
to the description techniques of SSADM� However� this is not related to an
explicit meta model�

On the other hand our approach extends the work on algebraic system spec�
i�cation� Approaches for the algebraic speci�cation of concurrent systems� for
example SMoLCS �AMRW
��� also include a system model� However� this work
is not extended to views� In �GH��� the language TROLL light is given an alge�
braic semantics� TROLL light o�ers a template to specify di�erent aspects of the
system� However� this template does not give the full �exibility of views� since
all aspects have to be speci�ed at the same time� So this language is more suited
for the design than for requirements analysis�

Future Work

In this paper we have argued for an algebraic concept model allowing for the
algebraic speci�cation and integration of views� On one hand this introduces the
�exibility of views into algebraic speci�cations making them better applicable to
the early phases of software development� On the other hand this gives the rigour
of formality to pragmatic view speci�cation� A great challenge is to extend these
ideas to the speci�cation of distributed systems� Within the SYSLAB�project
a powerful system model for distributed systems has been given �RKB��� � In
a next step this will be related to a meta model supporting an adequate set
of views� Because of the additional complexity of distributed systems it is even
more important to integrate the views using an algebraic concept model�

Acknowledgement

Thanks are due to the SYSLAB�group for stimulating discussions and to the
anonymous referees for many helpful comments�

References

AMRW��� E� Astesiano� G�F� Mascari� R� Reggio� and M� Wirsing� On the parame�
terized algebraic speci
cation of concurrent systems� In TAPSOFT�LNCS
�	
� pages �������� Springer Verlag� �����

ANS��� ANSI� American National Standard X����	��
		� Information Resource
Dictionary System �IRDS�� American National Standard Institute� �����

BFG���� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hu�mann� D� Nazareth�
F� Regensburger� O� Slotosch� and K� St�len� The Requirement and De�
sign Speci
cation Language Spectrum� An Informal Introduction� Version
���� Technical Report TUM�I����� Technische Universit�at M�unchen� �����

CAB���� D� Coleman� P� Arnold� S� Bodo�� C� Dollin� H� Gilchrist� F� Hayes� and
P� Jeremaes� Object�Oriented Development � The FUSION method� Pren�
tice Hall� �����

DCC��� E� Downs� P� Clare� and I� Coe� Structured systems analysis and design
method� application and context� Prentice�Hall� �����

GH��� M� Gogolla and R� Herzig� An algebtraic development technique for infor�
mation systems� In AMAST�LNCS
��� pages �������� Springer Verlag�
�����

Gil��� M� Gilpin� A comparison of object�oriented analysis and design methods�
Technical report� INTERSOLV at CASE World� �����

Het��� R� Hettler� Entity�Relationship�Datenmodellierung in axiomatischen Spez�
i�kationssprachen� Ph�D� thesis� Reihe Softwaretechnik� FAST� Tectum
Verlag� �����

HL��� H� Habermann and F� Leymann� Repository� R� Oldenbourg Verlag� �����

Hu���� H� Hu�mann� Formal foundation for pragmatic software engineering meth�

ods� In B� Wol
nger� editor� Innovationen bei Rechen� und Kommunika�
tionssystemen� pages ������ �����

Hu���� H� Hu�mann� Indirect use of formal methods in software engineering� In
M�Wirsing� editor� ICSE��� Workshop on Formal Methods Applications in
Software Engineering Practice� pages �������� �����

Jac��� I� Jacobson� Object�Oriented Software Engineering� Addison�Wesley� �����

RBP���� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen�

Object�oriented Modeling and Design� Prentice�Hall� �����

RKB��� B� Rumpe� C� Klein� and M� Broy� Ein strombasiertes mathematisches

modell verteilter informationsverarbeitender systeme � SYSLAB System�
modell� Technical Report TUM�I����� Technische Universit�at M�unchen�
�����

SH��� H� Saiedian and M� Hinchey� Issues surrounding the transfer of formal
methods technology into the actual workplace� In M�Wirsing� editor� ICSE�
�� Workshop on Formal Methods Applications in Software Engineering
Practice� pages ������ �����

This article was processed using the LaTEX macro package with LLNCS style

