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Abstract� The application of algebraic speci
cation techniques in the
early phases of software development requires a means for specifying
views� In this paper we argue for algebraic view speci
cation based on
an algebraic concept model� The concept model consists of two parts� a
meta model de
ning the concepts of di�erent views and the relationships
between them� and a system model de
ning the system behaviour� We
show how to derive an algebraic concept model from a semi�formal one
given usually as an entity relationship diagram� This gives the rigour of
formality to pragmatic view speci
cations and allows for an easy trans�
lation between formal and pragmatic speci
cations�

� Introduction

Using algebraic methods in industrial software development means introduc�
ing an algebraic speci�cation at some point of the development process and
exploiting the mathematical semantics for code generation� re�nement� veri�ca�
tion and the like� There is some evidence that introducing formal speci�cations
very early in the development process is most pro�table �SH���� This is due to
the fact that errors in requirement analysis and design are the most costly� mak�
ing the expenses for precise speci�cation and thorough validation worthwile� In
the following� algebraic view speci�cations based on an algebraic concept model

are introduced as a means of making algebraic speci�cations better applicable
to requirements analysis and de�nition�

Views

In the process of requirements analysis several views of the required software sys�
tem and its environment are speci�ed� The reason is that in the early stages there
is not enough information to describe the system as a whole� Instead� seperated
in several views� information is gathered which later on must be integrated in
a design satisfying all the views� Pragmatic development methods like FUSION
�CAB����� OMT �RBP��	�� OOSE �Jac�
�� SSADM �DCC�
� o�er description
techniques for theses views� Mostly� only the notation is de�ned together with
an informal semantics� Consequently� CASE tools often only support editing and
syntactic checks of these description�

� This work was carried out within the project SysLab� supported by Siemens Nixdorf
and by the Deutsche Forschungsgemeinschaft under the Leibniz program



Meta Model

More powerful CASE tools are based on a repository in which information about
all the objects relevant to the software development is stored �HL���� Following
the ANSI standard for information resource dictionary systems �ANS
�� there
are four levels of such objects�

	� the real world objects relevant to the software system �e�g� Miss Marple��


� the types and relationships of the real world objects �e�g� detective� crime�

worksOn�� often called model level�

�� the concepts used to describe these types and relationships �e�g� entity�
process�� often called meta model level� and

�� the concepts used to describe the meta model�

From the point of view of a method designer the meta model level is particu�
larly interesting� On this level the general concepts used to model the application
and the software system are �xed� Interestingly� most books on software engi�
neering methods do not make this meta model explicit� It is� however� becom�
ing increasingly popular for method comparison �e�g� �Gil����� In the tradition
of semantic data modelling usually entity relationship or object diagrams are
used to de�ne the meta model� Thus the modelling concepts are characterized
through their attributes and relationships �and operations � in case of an object
diagram�� Each view corresponds to a certain part of the meta model� Rela�
tionships between concepts of di�erent views determine consistency conditions

between di�erent views� These consistency condition can be enforced by a CASE
tool to give support to the integration of the views�

Concept Model

To allow for algebraic view speci�cation the meta model can be formalized in
an algebraic speci�cation language� This idea is worked out in the �rst part of
the paper� However� from the point of view of algebraic speci�cation� traditional
meta models are not su�cient� They do not provide a semantics of the modelling
concepts in terms of system behaviour� Therefore� in the second part of the
paper the system model is introduced and combined with the meta model� The
combined model is called concept model� Di�erent parts of this model determine
di�erent views together with their mathematical semantics� The relationships
between the concepts give rise to very powerful consistency conditions�

This paper is structured as follows� As an example we introduce part of
the meta model of the method FUSION and the corresponding views� Then we
discuss their formalization� In section � we de�ne a system model for FUSION
and show how to combine the two models to give a precise semantics to the
views� Related work is discussed in the conclusions�



� Views and the Meta Model � An Example

As an example we discuss the simpli�ed meta model of the analysis phase of
FUSION �see �gure 	�� The notation used for this and the following models is
explained in the legend� We only show the most important attributes�
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Fig� �� Meta Model

This meta model is not given explicitly in �CAB����� The model given here
covers all concepts necessary to explain the description techniques for the views



developed in the analysis phase� After explanation of the model along with the
description techniques for the di�erent views some modelling alternatives are
discussed�

FUSION o�ers three views� the object model� the operation model and the
lifecycle model�

Object Model

The objects of the application� together with their attributes and relationships�
are described in the object model�� In a second step the objects included in
the software system are distinguished from the environment objects� The for�
mer consitute the system object model� In �gure 
 part of the object model for
the well�known automatic teller machine example is shown� Figure � gives the
relevant part of the meta model�

Person owns AccountCard authorizes (1,1)

Name Balance

Fig� �� Object Model Example
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� For the sake of simplicity we omit further structuring facilities like generalization
and aggregation here�



Operation Model

System operations are described in one or more operation schemata� Each schema
covers the items read or changed� the output events possibly sent� the precondition
and the postcondition� The precondition characterizes the set of system states

enabling the operation� The postcondition characterizes a set of pairs of system
states and a list of output events such that the application of the operation in
the �rst state yields the second state together with the list of output events� As
example the system operation dispenseCash of the automatic teller machine is
given in �gure ��� The relevant part of the meta model is shown in �gure ��

Operation dispenseCash�amount�

reads Account

changes Account

sends Person� foverdraw� newAmount�� cash� ejectCardg
assumes Card inserted and Account owned by Person who is authorized

through Card

result If amount available on the Account�
subtract amount from Account balance� send cash and ejectCard�
Otherwise send overdraw and newAmount��

Fig� �� Operation Model Example

Lifecycle Model

The lifecyclemodel determines when input events are accepted �depending on the
history of accepted events� and what output events may be emitted� In FUSION
lifecycles are denoted as regular expressions� where output events are pre�xed
by �� An example describing the lifeycycle of the automatic teller machine is
given in �gure �� Figure � shows the corresponding part of the meta model�

As is most evident in the lifecycle meta model� the concrete syntax of the
description technique and the concepts de�ned in the meta model may be quite
di�erent� This only mirrors the fact that di�erent description techniques can be
used for the same view� Therefore the meta model is much more adequate for
method comparison than the description techniques themselves� Also� the meta
model makes it easier to understand the description techniques�

� We have simpli
ed the parameterization mechanism of FUSION here�
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�insertCard���rejectCard j
�amount�� �dispenseCash��overdraw��newAmount� j
dispenseCash��cash��newAmount���� eject��ejectCard���

Fig� �� Lifecycle Example

This �nishes the explanation of the meta model� As mentioned before� this
model is not unique� It is adequate for method description� For implementa�
tion in a CASE repository it is too general� For example� it is not possible to
keep a list of all system states� Therefore only a simpli�ed version of the rela�
tionships involving SystemState will be supported� E�g� instead of the accepts
relationship all input events referred to in the lifecycle could be recorded�

� Algebraic Meta Model and Algebraic Views

As shown in �Het��� entity relationship diagrams can be formalized in an al�
gebraic speci�cation language� For each entity a sort is introduced� for each
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attribute an operation and a predicate for each relationship� Cardinalities are
expressed as constraints� In the following the meta model of �gure 	 is translated
into the algebraic speci�cation language Spectrum �BFG����� The translation
is shown in �gure 
� The numbers �i� are reference points for the following ex�
planation�

�	� This speci�cation is based on the speci�cation of natural numbers� of sets� of
the attribute sorts and polymorphic lists� All functions are strict and total�

�
� For each entity of the meta model a sort is introduced� EQ means that for all
the introduced sorts equality is decidable�

��� The attributes are mapped into strict and total functions from the entity
sorts to the attribute sorts�

��� The relationships are mirrored in general by predicates� One�one relation�
ships are translated into functions �see for example the triggers relation�
ship��

��� The cardinality constraints are captured by axioms� These axioms use the
function card de�ned in the speci�cation of sets� For a relationship rel�

Sort� � ��� � Sortn a cardinality constraint for Sorti determines the
number of instances of the relationship where the entities of the other sorts
are �xed� As an example consider the relationship accepts between Lifecycle�

SystemState and InputEvent�
��� As discussed in �Het��� there are many constraints not expressible with en�

tity relationship diagrams� They can be expressed in Spectrum and added
as further axioms to the algebraic meta model� One example is a stronger
cardinality constraint for Lifecycle in accepts� There is just one lifecy�
cle for the whole system� Another example is the consistency between the
output list characterized by relates and the one characterized by emits�

Figure 	� gives an example of an algebraic view speci�cation� It speci�es
the equivalent of the lifecycle of �gure � based on the concepts de�ned in



META MODEL � f

��� enriches Nat � Set � AttrSort � List	

strict total	

�
� sort InputEvent� SystemOp� OpSchema� OutputEvent� SystemState�

Precondition� Postcondition� Lifecycle� Attribut� ObjectClass�

SystemObjectClass� EnvironmentObjectClass� Relationship	

sort Item � Attribute � Relationship � Object	

EQ	

��� acceptedInputs � SystemState � List InputEvent	

minCard � Relationship � ObjectClass � Nat	

maxCard � Relationship � ObjectClass � Nat	

�
� classAttribute � Attribute� ObjectClass � Bool	

relationshipAttribute � Attribute � Relationship � Bool	

participatesIn � ObjectClass � Relationship � Bool	

describes � OpSchema � SystemOp	

possiblySends � OpSchema � List OutputEvent	

triggers � InputEvent � SystemOp	

reads � OpSchema � Item � Bool	

changes � OpSchema � Item � Bool	

assumes � OpSchema � Precondition	

result � OpSchema � PostCondition	

isTrueOf � Precondition � SystemState � Bool	

relates � Postcondition � SystemState � SystemState

� List OutputEvent � Bool	

accepts � Lifecycle � SystemState � InputEvent � Bool	

emits � Lifecycle � SystemState � SystemOp

� List OutputEvent � Bool	

��� axioms

���

� l� LifeCycle� � st� SystemState� � acceptsSet� Set �LifeCycle �
SystemState � InputEvent�� � in� InputEvent�

��l�st�in� � acceptsSet � accepts�l�st�in�� �
� � card�acceptsSet�	

� l � LifeCycle� � in�InputEvent� � acceptsSet� Set �LifeCycle �
SystemState � InputEvent�� � st� SystemState�

��l�st�in� � acceptsSet � accepts�l�st�in�� �
� � card�acceptsSet�	

� in� InputEvent� � st� SystemState� � acceptsSet� Set �LifeCycle �
SystemState � InputEvent�� � l� Lifecycle�

��l�st�in� � acceptsSet � accepts�l�st�in�� �
� � card�acceptsSet� � card�acceptsSet� � ��	

��� ��������

� l�l�� lifecycle� � st�st�� SystemState� � in�in�� InputEvent�

�accepts�l�st�in� � accepts�l��st��in��� 	 l � l�	

� st� SystemState� � op� SystemOp� � out� List OutputEvent�

�� l� Lifecycle� emits�l�st�op�out�� �
�� st�� SystemState� � sch� OpSchema � � cond�� Precondition� �
cond
� Postcondition� �describes �sch� � op � assumes�sch�� cond� �
isTrueOf�cond��st� � result�sch� � cond
� �
relates�cond
�st�st��out��	

endaxioms	

g

Fig� �� Formal Meta Model



the algebraic meta model� First� for the sorts InputEvent� OutputEvent and
Lifecycle the relevant elements are introduced� Then the relationships accepts
and emits are speci�ed by axioms� Essentially� these axioms characterize an
Mealy�automaton corresponding to the lifecycle expression� This automaton is
shown in �gure ��

q0 q1

insertCard/[#amount?]

eject / [#ejectCard]

dispenseCash / [#cash. #newAmount?]

dispenseCash / [#overdraw.#newAmount?],insertCard /
[#rejectCard]

Fig� 	� Lifecycle Automaton

Automaton state q� characterizes all system states where the sequence of
acceptedInputs is empty or ends with eject� Automaton state q� characterizes
system states reached by accepting insertCard or dispenseCash� So the axioms for
accepts �rst describe the set of accepted InputEvents� insertCard is accepted
in system states characterized by q� and dispenseCash and eject are accepted
in system states characterized by q�� The axioms for emits �rst describe the
set of OutputEvents� Then the OutputEvent is speci�ed in dependency of the
InputEvent� This corresponds to the transition labels of the automaton of �gure
��

Discussion

The algebraic meta model and view speci�cation combines elements of pragmatic
and formal software engineering methods�

From the point of view of pragmatic software engineering methods� formally
speci�ed views are not of direct use because of the skills required to apply math�
ematical speci�cations in general� However� mirroring the meta model in the
algebraic meta model allows for an easy translation between the pragmatic view
description and the algebraic view description� This translation supports the
indirect use of formal methods as characterized in �Hu����� The algebraic speci�
�cation can be used for an analysis of the corresponding views yielding precise
rules for transformation and consistency checks to be used by the software de�
veloper� If required� e�g� in the case of safety�critical system properties� a large
part of the algebraic speci�cation can be generated from the informal one�

From the point of view of algebraic speci�cations� views introduce a new
structuring principle� The meta model introduces a new level of indirection into
the speci�cations making the modelling concepts explicit� While this lengthens
the speci�cations� it makes the process of specifying more �exible� Because of the
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insertCard� dispenseCash� eject � InputEvent	

�rejectCard� �amount�� �overdraw� �newAmount�� �cash�
�ejectCard � OutputEvent	

atmLife � Lifecycle	

axioms

� st� SystemState� � in� InputEvent�

accepts�atmLife�st�in� 	 �in � insertCard 
 in � dispenseCash 
 in � eject� �
accepts�atmLife�st�insertCard� � �acceptedInputs�st� � �� 

��last�acceptedInputs�st�� � last�acceptedInputs�st�� � eject�� �
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� last�acceptedInputs�st�� � insertCard 
 last�acceptedInputs �st�� �

dispenseCash��	

� st�SystemState� � out� List OutputEvent� � x� OutputEvent�

� op� SystemOp�

�emits�atmLife�st�op�out� � isEl�x�out�� 	 �x � �rejectCard

 x � �amount� 
 x � �overdraw 
 x � newAmount� 
 x � �cash

 x � �ejectCard� �
emits�atmLife�st�op�out� 	 �op � triggers�insertCard�

 op � triggers�dispenseCash� 
 op � triggers�eject�� �
emits�atmLife�st�triggers�insertCard��out� �
�out � ��rejectCard� 
 out � ��amount��� �
emits�atmLife�st�triggers�dispenseCash��out� �
�out � ��overdraw� �newAmount�� 
 out � ��cash��newAmount��� �
emits�atmLife�st�triggers�eject��out� � �out � ��ejectCard��	
endaxioms

Fig� �
� Algebraic Lifecycle Speci
cation

common vocabulary di�erent views can be speci�ed and re�ned by di�erent peo�
ple at di�erent times� The consistency constraints between the views are made
explicit through the axioms relating concepts of di�erent views� One example of
such a consistency condition is the second formular in ��� of �gure 
� It relates
the lifecycle and the operation view�

However� the semantics of the concepts given in the algebraic meta model
is not complete� Nothing is said about the relationship between system states
and objects� Nothing is said about the transition between two system states
in general� The meta model is lacking the concepts necessary to de�ne system

behaviour� Of course� we could have included them in the meta model from the
beginning� However� this is not necessary� if the meta model is used to charcterize



the views� Also� meta models of pragmatic methods do not cover these concepts�
Thus we prefer to introduce another model collecting all the concepts relating to
system behaviour in one place� the system model� The system model of FUSION�
its integration with the meta model� and its formalization is discussed in the
following sections�

� System Model and Concept Model

In this section the system model of FUSION is given� For reasons of space� we
only give the semi�formal version denoted as an entity relationship�diagram�The
derivation of the algebraic version follows the approach discussed above�

FUSION only considers sequential systems� These can be modelled as state
transition systems� where the state determines the set of existing objects� the
values of attributes and of relationships� Since FUSION distinguishes between
input events received and the ones accepted� in each state the list of accepted
input events leading to this state is included� Also� for each transition the list of
emitted output events is recorded� Altogether� �gure 		 shows the system model�
Entities depicted as dashed boxes �SystemObjectClass in the �gure� are just
introduced for layout reasons to avoid crossing lines�
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The meta model and the system model can be joined by identifying common
concepts� We call the combined model the concept model� On the algebraic side
this corresponds to a speci�cation combination using �� Again� there are a lot
of consistency constraints between the concepts of the joined models which are
not expressed in the entity relationship diagram� In the algebraic concept model
these can �and have to� be expressed with further axioms� The most important



one is the connection between next and the concepts of the operation schema
�see �gure 	
��

� st��st
� SystemState� � in � InputEvent� � out� List OutputEvent�

next� st��in�st
�out� �
� life� Lifecycle� � op� SystemOp� � sch� OpSchema�

� cond� � PreCondition� � cond
� PostCondition�

�� accepts� st��in�life� � st� � st
 � out � ��� 

�accepts�st��in�life� � triggers� in� � op �
��assumes �sch� � cond� � isTrueOf� cond��st�� � result� sch� � cond
�

	 relates� cond
�st��st
�out�� �

Fig� ��� Concept Model Axiom

The concept model gives a semantics to all modelling concepts in terms of
the system behaviour� Some of the concepts are directly re�ected in the syntax of
the description techniques �e�g� the concepts of the object model�� while others
are only indirectly re�ected �e�g� the concepts of the lifecycle model�� Also� some
concepts are exclusively related to views or the system model� while others are
common to some view and the system model� Thus the purpose of the concepts
within the method is made explicit in the concept model� Structuring formal
speci�cations along these lines makes them easier to comprehend�

� Conclusions

Altogether we advocate the following combination of algebraic speci�cation and
pragmatic software development methods� The views supported by the prag�
matic method are captured in the meta model� Together with the system model
underlying the pragmatic method it constitutes the pragmatic concept model�
The concept model is directly translated to an algebraic concept model using
the ideas of �Het���� This speci�cation has to be completed with axioms for
the constraints not expressible in the entity�relationship�diagram� The resulting
speci�cation can be structured as follows�

Basic View Speci�cation All sorts� functions and axioms which refer to con�
cepts of one view or the system model specify the semantics of that view�

Consistency All axioms which refer to concepts of di�erent views specify the
consistency constraints between the views��

Based on this speci�cation the concrete syntax of the description techniques
supported in the pragmatic method is given a semantics in terms of the algebraic
concept model� Thus every pragmatic view speci�cation can directly be trans�
lated to an algebraic one� Following the paradigma of indirect use� the algebraic



view speci�cation is hidden to the everyday system developer� It is exploited as
much as possible within CASE�tools for the pragmatic method� One example is
the automatic check of consistency constraints between views� Another example
is support of a re�nement notion for views based on the algebraic semantics� An
expert system developer might use the algebraic semantics for semi�automatic
proofs of complex and critical properties�

Related Work

There are two sides two our approach� On one hand it is related to the e�orts
to give a formal foundation to pragmatic software development methods� In this
respect our work is most in�uenced by �Hu���� where an algebraic semantics to
SSADM is given� There also an algebraic system model is used to give semantics
to the description techniques of SSADM� However� this is not related to an
explicit meta model�

On the other hand our approach extends the work on algebraic system spec�
i�cation� Approaches for the algebraic speci�cation of concurrent systems� for
example SMoLCS �AMRW
��� also include a system model� However� this work
is not extended to views� In �GH��� the language TROLL light is given an alge�
braic semantics� TROLL light o�ers a template to specify di�erent aspects of the
system� However� this template does not give the full �exibility of views� since
all aspects have to be speci�ed at the same time� So this language is more suited
for the design than for requirements analysis�

Future Work

In this paper we have argued for an algebraic concept model allowing for the
algebraic speci�cation and integration of views� On one hand this introduces the
�exibility of views into algebraic speci�cations making them better applicable to
the early phases of software development� On the other hand this gives the rigour
of formality to pragmatic view speci�cation� A great challenge is to extend these
ideas to the speci�cation of distributed systems� Within the SYSLAB�project
a powerful system model for distributed systems has been given �RKB��� � In
a next step this will be related to a meta model supporting an adequate set
of views� Because of the additional complexity of distributed systems it is even
more important to integrate the views using an algebraic concept model�
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