
More Church�Rosser Proofs �in Isabelle�HOL�

Tobias Nipkow�

Technische Universit�at M�unchen��

Abstract� The proofs of the Church�Rosser theorems for �� � and � � �
reduction in untyped ��calculus are formalized in Isabelle�HOL� an im�
plementation of Higher Order Logic in the generic theorem prover Isa�
belle� For ��reduction� both the standard proof and the variation by
Takahashi are given and compared� All proofs are based on a general
theory of commutating relations which supports an almost geometric
style of con�uence proofs�

� Introduction

The Church�Rosser theorem for ��reduction is one of the basic properties of ��
calculus� The de facto standard proof can be found in ���� It has been machine�
checked a number of times already ���� �� �� �	�� A recently published alternative
proof technique ��
� prompted me to apply Isabelle�HOL to this problem� The
resulting formalization has the following distinctive features�

��Reduction Not just � but also� for the rst time� � and � � � are treated�
Proof techniques In the case of �� two di�erent proof techniques are com�

pared� the standard one and the one due to Takahashi�
Substitution Two di�erent notions of substitution are formalized and related�
Abstractness Based on a theory of binary relations� including transitive and

re�exive closure� an abstract theory of commuting relations is developed
which supports an almost geometric style of con�uence proofs�

Automation With the exception of the low level details of substitution� most
proofs are almost automatic� using a few general purpose tactics�

Although the paper provides a complete formalization of the Church�Rosser
proofs� it is not meant as an introduction to the underlying intuitions� which the
reader is assumed to be familiar with� The purpose of the paper is to contrast
textbook mathematics with its formalization in a theorem prover� and to contrast
this latest exercise with other published formalizations� The overall structure of
the proofs follows Chapter � of ���� except that all abstract relational reasoning
is concentrated in one section�

The complete formalization �including proofs� is available on the web via
http���www��informatik�tu�muenchen�de��nipkow�isabelle�HOL�Lambda��

� Research supported by ESPRIT BRA ���	� TYPES�
�� Institut f�ur Informatik� TU M�unchen�
��� M�unchen� Germany�

http���www��informatik�tu�muenchen�de��nipkow�

� Isabelle�HOL

Isabelle is an interactive theorem prover which can be instantiated with di�er�
ent object�logics� One particularly well�developed instantiation is Isabelle�HOL�
which supports Church�s formulation of Higher Order Logic and is very close
to Gordon�s HOL system �
�� In the remainder of the paper HOL is short for
Isabelle�HOL�

We present no proofs but merely denitions and theorems� Hence it su�ces
to introduce HOL�s surface syntax� A detailed introduction to Isabelle and HOL
can be found elsewhere ���� We have used Regensburger�s LaTEX�converter to
improve readability�

Formulae The syntax is standard� except that there are two universal quanti�
ers �� and

V
�� two implications ��� and ��� and two equalities �� and

�� which stem from the object and meta�logic� respectively� The distinction
can be ignored while reading this paper� The notation ��A�� � � � �An�� �� A
is short for the nested implication A� �� � � � �� An �� A�

Types follow the syntax for ML�types� except that the function arrow is �
rather than ��

Theories introduce constants with the keyword consts� non�recursive deni�
tions with defs� and primitive recursive denitions with primrec� Further
constructs are explained as we encounter them�

Although we do not present any of the proofs� we usually indicate their
complexity� If we state that some proof is automatic� it means that it was either
solved by rewriting or by the �classical reasoner�� fast�tac in Isabelle parlance�
The latter provides a reasonable degree of automation for predicate calculus
proofs� Note� however� that its success depends on the right selection of lemmas
supplied as parameters�

� Abstract Reduction Systems

��� Relations

The whole development is based on the HOL theory of binary relations� which
are simply sets of pairs� i�e� of type �� � ��set� In particular there are two poly�
morphic operations � and � for the transitive�re�exive and the re�exive closure�
respectively� They come with a number of theorems� in particular induction for �

�� �a	b� � R�

P a
V
y z� �� �a	y� � R�
 �y	z� � R
 P y �� �� P z

�� �� P b

and some equational laws like �R��� � R� and �R��� � R��

	

��� Squares

The rewriting literature is full of con�uence�like notions which are dened for�
mally on the predicate calculus level but are accompanied by diagrams in the
form of squares� Proofs are almost exclusively performed at the level of diagrams�
We mimic this approach by introducing the notion of a square�

consts square �� �����set � �����set � �����set � �����set
� bool

defs square R S T U � �x y� �x	y� � R �� ��z� �x	z� � S ��
�� u� �y	u� � T 	 �z	u� � U��

where � is a type variable� i�e� square is polymorphic� Thus square R S T U

corresponds directly to the diagram

�

R

�
S

�

T
�

U

Although square is simply an abbreviation and all reasoning could be con�
ducted directly on the predicate calculus level� there are distinct advantages in
conducting arguments at the level of squares� for the human� proofs are much eas�
ier to nd and explain on this level than on the level of quantiers� In the context
of automated deduction� there is another reason� induction� which many auto�
matic systems cannot handle� can be encapsulated as a lemma about squares�
which is then amenable to automation �see the Strip Lemma below��

For the convenience of the reader� occurrences of squares in formulae are
often replaced by the corresponding diagram�

First we need a few basic lemmas about square�

�

R

�
S

�

T
�

U ��
�

S

�
R

�

U
�

T ���

�

R

�
S

�

T
�

U 	 T �� T ��
�

R

�
S

�

T
�

U �	�

�

R

�
S

�

S
�

T ��
�

R�

�
S

�

S
�

T� ���

�

�

R

�
S

�

T
�

R� 	 S �� T ��
�

R�

�
S

�

T
�

R� �
�

where �� is overloaded �Isabelle has type classes� and means
 on sets�
Lemma ��� is usually called the Strip Lemma� It is easily proved by induction

on R� and it also encapsulates induction� all of the subsequent lemmas about
squarewhich require induction are proved by means of the Strip Lemma instead�

As an example of the diagrammatic proof method a�orded by square we
examine the proof of

square R S S� R� �� square R� S� S� R� ���

which is the key lemma for proving commutation of � and � later on�

�

R

�
S

�

S�
�

R�
�
�
��

�

R�

�
S

�

S�
�

R�
���
��

�

S

�
R�

�

R�
�

S�
���
��

�

S�

�
R�

�

R�
�

S�
���
��

�

R�

�
S�

�

S�
�

R�
���
��

�

R�

�
S�

�

S�
�

R�

Trivial as this proofs may look� it should be kept in mind that it contains two
hidden inductions� We refrain from showing any further such chains� most of
which fast�tac nds automatically�

��� Con�uence

The notion of a square is su�cient to dene the usual con�uence�like concepts�

consts commute �� ��� ��set � ��� ��set � bool

confluent	 diamond �� ��� ��set � bool

defs commute R S � square R S S R

diamond R � commute R R

confluent R � diamond�R���

We simply list the key lemmas� which form the basis for the con�uence proofs
of �� � and � � �� respectively�

��diamond R
 S �� R
 R �� S��� �� confluent S ���

follows essentially from the Strip Lemma and the fact that R� � S��

square R R R� R� �� confluent R ���

follows directly from ��� and �	��

��confluent R
 confluent S
 commute�R���S���� �� confluent�R�S� ���

is often called the lemma of Hindley and Rosen�
Finally� we come to the Church�Rosser property itself

consts Church�Rosser �� ��� ��set � bool

defs Church�Rosser R � �x y� �x	y� � �R � converse�R��� ��
��z� �x	z� � R� 	 �y	z� � R��

�converse R � f�y	x� � �x	y��Rg� and prove it coincides with con�uence�

confluent R � Church�Rosser R

The proof� although short� requires a certain amount of guidance�

� Lambda terms and reductions

Lambda terms are represented in de Bruijn notation ��� which is conveniently
expressed as an inductive data type with three constructors for variables� appli�
cation and abstraction�

datatype db � Var nat � � db db �infixl ���� � Fun db

Note that application is written inx� Thus the term �x��xx� is represented as
Fun�Var � � Var ���

��� Lifting and substitution

In order to describe ��reduction for de Bruijn terms we need the notions of
�lifting� and substitution� The starting point of our formalization is the report
by Rasmussen ��	� who ported Huet�s theory of residuals ��� to Isabelle�ZF� Isa�
belle�s set theory� Initially we benet a lot from Rasmussen�s work but we soon
diverge because �a� we take a direct route to the Church�Rosser theorem instead
of going via residuals and �b� we also include ��reduction�

consts lift �� db � nat � db

subst �� db � db � nat � db ������� ����	�	�� ����

primrec lift db

lift �Var i� k � �if i � k then Var i else Var�Suc i��

lift �s � t� k � �lift s k� � �lift t k�

lift �Fun s� k � Fun�lift s �Suc k��

�

primrec subst db

�Var i��s�k� � �if k � i then Var�pred i�

else if i � k then s else Var i�

�t � u��s�k� � t�s�k� � u�s�k�

�Fun t��s�k� � Fun �t�lift s � � Suc k��

t�s�i� is syntactic sugar for subst t s i and mimics the traditional t�s�x��

Most of the work went into proving the following lemmas� of which the last
one is the crucial one�

i � Suc k �� lift �lift t i� �Suc k� � lift �lift t k� i

j � Suc i �� lift �t�s�j�� i � �lift t �Suc i���lift s i�j�

i � Suc j �� lift �t�s�j�� i � �lift t i��lift s i�Suc j�

�lift t k��s�k� � t

i � Suc j �� t�lift v i�Suc j��u�v�j��i� � t�u�i��v�j�

All lemmas are proved by structural induction on t� where the application and
abstraction cases go through by simplication� Only the variable cases require
painful case distinctions and explicit reasoning about inequalities between nat�
ural numbers�

Initially I tried to nd and prove these lemmas from scratch but soon decided
to steal instead� Rasmussen�s ZF proofs carried over almost verbatim to HOL�
I only had to prove ve simple lemmas about � to create the same arithmetic
basis� Without this productivity boost� the whole development would have taken
much longer than it did�

��� ��Reduction

Once we have substitution� ��reduction is easy�

consts beta �� �db � db� set

syntax �� �� db � db � bool �infixl ���

translations s �� t � �s	t� � beta

inductive beta

�Fun s� � t �� s�t���

s �� t �� s�u �� t�u

s �� t �� u�s �� u�t

s �� t �� Fun s �� Fun t

�

Above we introduce beta as a relation on de Bruijn terms and s �� t as syntac�
tic sugar for �s	t� � beta� Beta�reduction is dened as an inductive relation�
Except for the syntactic sugar and the trick of using a generic ��operator� this
is very much standard�

We also introduce inx syntax for beta� and beta��

syntax ��

� 	 ��� �� db � db � bool �infixl ���

translations s ��

� t � �s	t� � beta�

s ��� t � �s	t� � beta�

two concepts needed later on� It helps to know that ��� is also a congruence�

s ��� s �� Fun s ��� Fun s

s ��� s �� s � t ��� s � t

t ��� t �� s � t ��� s � t

�� s ��� s
 t ��� t �� �� s � t ��� s � t

which follows almost automatically using a few basic lemmas about �� in partic�
ular induction�

��� ��Reduction

At this point I had to improvise because I was not aware of previous formaliza�
tions of � in the context of de Bruijn notation �see Section ����� The following
approach seemed fairly obvious�

consts free �� db � nat � bool

decr �� db � nat � db

eta �� �db � db� set

syntax �� �� db � db � bool �infixl ���

translations s �� t � �s	t� � eta

primrec free db

free �Var j� i � �j�i�

free �s � t� i � �free s i � free t i�

free �Fun s� i � free s �Suc i�

inductive eta

�free s � �� Fun�s � Var �� �� decr s �

s �� t �� s�u �� t�u

s �� t �� u�s �� u�t

s �� t �� Fun s �� Fun t

free t i determines if i is free in t� decr t i is supposed to decrement all free
variables in t greater than i� and the rst clause of the inductive denition of
eta formalizes �x��s x��� s if x is not free in s�

Initially I dened decr as a primitive recursive function�

�

decr �Var j� i � �if j��i then Var j else Var�pred j��

decr �s � t� i � �decr s i� � �decr t i�

decr �Fun s� i � Fun �decr s �Suc i��

where pred is the predecessor on nat�
This was a recipe for disaster because I now had to relate decr to both

subst and lift� This lead to a collection of unsavoury lemmas similar to those
relating subst and lift� Fortunately� it then dawned on me that decr is not a
new concept but already inherent in subst�

defs decr t i � t�Var i�i�

This denition disables the substitution aspect of subst by replacing Var i by
itself� thus reducing subst to decrementation� The alert reader may have noticed
that in the context of ��reduction it does not matter what we substitute for i�
because decr t i is only called if i is not free in t� This is the gist of the
following lemmas�

�free s i �� s�t�i� � s�u�i�

�free s i �� s�t�i� � decr s i

The rst is proved automatically by induction on s� the second is a trivial con�
sequence�

The main point of reducing decr to subst is that the number of auxiliary
lemmas required later on boils down to a mere handful�

free �lift s k� i � �i � k 	 free s i � k � i 	 free s �pred i��

free �s�t�k�� i � �free s k 	 free t i �
free s �if i�k then i else Suc i��

s �� t �� free t i � free s i

s �� t �� s�u�i� �� t�u�i�

s �� t �� decr s i �� decr t i

The rst two are de Bruijn specic� quite tricky to come up with� and are proved
by induction on s and painful arithmetic reasoning� The next two are of a general
nature� quite intuitive� and automatic by induction on s �� t� The last one is
a trivial consequence of the one before�

We also introduce inx syntax for eta� and eta��

syntax ��

� 	 ��� �� db � db � bool �infixl ���

translations s ��

� t � �s	t� � eta�

s ��� t � �s	t� � eta�

�

two concepts needed later on� It helps to know that ��� is also a congruence�

s ��� s �� Fun s ��� Fun s

s ��� s �� s � t ��� s � t

t ��� t �� s � t ��� s � t

�� s ��� s
 t ��� t �� �� s � t ��� s � t

which follows almost automatically using a few basic lemmas about �� in partic�
ular induction�

� Con�uence of �

The key idea is to use lemma ��� to reduce con�uence of �� to the diamond
property of a new reduction� say�� � such that�� lies in between�� and��� �

��� Parallel ��reduction

It is well known that the following form of parallel �and nested� ��reduction has
the desired properties�

consts par�beta �� �db � db� set

syntax �� �� db � db � bool �infixl ���

translations s �� t � �s	t� � par�beta

inductive par�beta

Var n �� Var n

s �� t �� Fun s �� Fun t

�� s �� s
 t �� t �� �� s � t �� s � t

�� s �� s
 t �� t �� �� �Fun s� � t �� s�t���

It is a simple inductive consequence that �� is re�exive�

The proofs of beta �� par�beta and par�beta �� beta� are again� modulo
the application of induction� automatic� Using lemma ���� it only remains to
prove the diamond property of ���

However� before we get there� we need two lemmas� namely that �� is com�
patible with lifting and substitution�

t �� t �� lift t k �� lift t k

s �� s �� t �� t �� t�s�k� �� t�s�k�

Both lemmas are proved by induction on t� The second is the key to the diamond
property proof� two di�erent versions of which we now present�

�

��� Takahashi�s proof

Takahashi ��
� needs a mere page to sketch the complete con�uence proof� which
is probably the best one can do on paper� This succinctness is achieved by using
the notion of complete development of a term�

consts cd �� db � db

primrec cd db

cd�Var n� � Var n

cd�s � t� � �case s of

Var n �� s � �cd t�

� s� � s� �� �cd s� � �cd t�

� Fun u �� �cd u��cd t����

cd�Fun s� � Fun�cd s�

Unfortunately we cannot dene cd exactly as above using the current version of
primrec� in the second clause� only the recursive calls cd s and cd t are allowed
because s and t are the only direct subterms of the argument s � t� Fortunately
we do not have to resort to well�founded recursion but can patch the problem�
instead of cd u we use deFun�cd s�� where deFun is a new function dened by
deFun�Fun s� � s� The reader is invited to convince herself that this achieves
the desired result�

It is now straightforward to prove the completion theorem for cd�

s �� t �� t �� cd s

Apart from the induction on s and a case distinction� the proof is automatic�
This is the result of combined simplication and logical reasoning�

The proof of diamond par�beta� i�e� the diamond property of �� � is now
completely automatic� the existential variable u in the denition of diamond� i�e�
square� is instantiated by cd x with the help of the completion theorem and
unication�

��� The standard proof

Traditionally ���� the diamond property is proved directly� This is less slick than
Takahashi�s proof because it involves a laborious case distinction on the relative
positions of the two redexes contracted at the root of the diamond� and each
case leads to a di�erent completion of the diamond� This� however� does not
bother Isabelle� diamond par�beta is proved automatically� modulo the initial
application of induction on par�beta� This was a little surprising to me� because
of the required existential witnesses and the lack of an obvious candidate cd x�

This raises the question if anything has been gained by the formalization of
Takahashi�s proof� The answer seems to be no� Takahashi requires an additional
function cd and the proof of the completion theorem for cd is in fact a little
more complicated than the direct proof of the diamond property of �� � The
point is that the ingenuity of her approach is wasted in the presence of mindless
search procedures� aka tactics�

��

� Con�uence of � � �

Con�uence of � on its own is an anticlimax� no auxiliary concepts are required�

square eta eta �eta�� �eta��

is proved automatically by induction on eta� and confluent eta follows directly
by lemma ����

The real challenge is the con�uence of � � �� We proceed the way of Hindley
and Rosen by combining con�uence of � and � �which we already have� with the
commutation of ��� and ��� �which remains to be proved�� The latter requires
some further lemmas

s �� t �� free t i �� free s i

s �� t �� decr s i �� decr t i

which are automatic by induction on s �� t� We also need the recursion equa�
tions of the primitive recursive version of decr shown above� they follow directly
by simplication� This enables us to prove the following very de Bruijn specic
lemma

�free t �Suc i� �� decr t i � decr t �Suc i�

by induction on t� Finally there are two more lemmas on the interaction of ��

with lifting and substitution

s �� t �� lift s i �� lift t i

s �� t �� u�s�i� ��� u�t�i�

proved by induction on s �� t and u respectively� The proof of the key com�
mutation lemma

square beta eta �eta�� �beta�� ���

is by induction on the denition of beta� Although the resulting subgoals could
in principle be solved automatically� fast�tac hits a complexity barrier� Explicit
case analysis of the eta�component of the square yields a total of � subgoals�
each of which is solved automatically� Using lemmas ��� and ��� together with
the con�uence of � and � and lemma ����

confluent �beta � eta�

follows automatically�

��

� An optimization

The code for lifting and substitution given above is used in most theoretical in�
vestigations of de Bruijn terms because it only requires successor and predecessor
on natural numbers� However� most implementations use an optimized form of
substitution and lifting� which replaces n ��step liftings by � n�step lifting�

consts substn �� db � db � nat � db

liftn �� nat � db � nat � db

primrec liftn db

liftn n �Var i� k � �if i 	 k then Var i else Var�i
n��

liftn n �s � t� k � �liftn n s k� � �liftn n t k�

liftn n �Fun s� k � Fun�liftn n s �Suc k��

primrec substn db

substn �Var i� s k � �if k 	 i then Var�pred i�

else if i � k then liftn k s � else Var i�

substn �t � u� s k � �substn t s k� � �substn u s k�

substn �Fun t� s k � Fun �substn t s �Suc k��

An exception is Huet� who uses the above versions in his proofs� which complicate
them severely� On top of the lemmas in section
��� he needs a number of further
lemmas dealing with addition� among them the following beauty�

substn �substn t s p� u �p
n� �

substn �subst t u �Suc�p
n��� �substn s u n� p

We show now that you can have your cake and eat it too� do your proofs with
the simple form of substitution and lifting� and prove the optimized versions
equivalent later on� This turns out to be much simpler than working with the
optimized code directly� The following sequence of lemmas does the trick�

liftn � t k � t

liftn �Suc n� t k � lift �liftn n t k� k

substn t s k � tliftn k s � � k�

All three are proved by induction on t followed by simplication� As a corollary to
the last lemma we obtain substn t s � � t�s���� Thus we can safely replace
�Fun t� � s �� t�s��� by �Fun t� � s �� substn t s � in the denition
of �� �

	 Comparisons

A comparison with the treatments by Shankar ����� Pfenning ���� Huet ��� and
Rasmussen ��	� is di�cult because the frameworks and aims di�er signicantly�
Shankar uses a much weaker logic than the others �no explicit quantiers�� and
Pfenning uses higher�order abstract syntax� thus bypassing de Bruijn terms in
favour of the built�in ��abstraction of ELF� Huet and Rasmussen develop a

�	

general theory of residuals� which yields the Church�Rosser theorem as a by�
product� Hence we only highlight how our approach di�ers from the others�

There is also the work by McKinna and Pollack ��� ��� who have proved the
Church�Rosser theorem in LEGO using Takahashi�s approach� What sets their
work apart is that they formalize ��terms with named variables rather than
de Bruijn indices� However� they do not provide many details� since for them the
Church�Rosser theorem is only a small part of a much larger development�

	�� Proof techniques

We formalized both Takahashi�s and the standard proof of the diamond property�
Although Takahashi�s approach is intellectually appealing� the standard direct
proof turned out to be simpler and shorter� since its many case distinctions
disappear through automation� For systems with a low degree of automation�
for example LEGO and Coq� Takahashi�s method may be preferable� It may
also be preferable for the Boyer�Moore prover because it yields a simple witness
function� which their quantier�free logic requires�

Of course� Takahashi�s approach may well turn out to be signicantly better
than the traditional methods when we try to formalize more advanced theorems
like standardization ��
��

	�� Substitution

We have followed Shankar and Rasmussen in using the � step lifting function
lift to simplify the proofs of the basic substitution lemmas� This paid o� be�
cause these lemmas required about a third of the work �including the failed
attempts before porting Rasmussen�s proofs� and would have been much harder
had we used Huet�s optimized versions liftn and substn� Fortunately we could
prove both forms of lifting and substitution equivalent quite easily� This is in ac�
cordance with the accepted wisdom that correctness proofs should always start
from the simplest version of a system and that optimizations should come later�

	�� Abstractness

All of section � is independent of ��calculus� It is part of a general theory of
relations and can be reused in many other contexts� Although it has probably
not shortened our development by much� this abstractness has denitely made
the proofs more transparent and is an investment for the future� The other
authors conduct all arguments in terms of the specic relations�� ���� and�� �
and even dene the transitive�re�exive closure of �� via an explicit inductive
denition instead of using a generic operation like ��

	�� Automation

With the exception of the low level details of substitution� most of the Isabelle
proofs are almost automatic� using a few general purpose tactics� Due to the

��

relatively high degree of automation� some of our proofs require a fair bit of
search and take up to 	� seconds� Loading the complete development takes ���
seconds on a SPARCstation 	����	� If Isabelle provided more automation for
arithmetic �as the Boyer�Moore prover does�� the substitution lemmas should be
automatic as well� Another area where automation seemed to break down was
transitivity� a few times it had to be invoked explicitly to avoid an explosion of
the search space�

In terms of lemmas required� Shankar�s proof has a similar granularity as
ours� but each individual lemma is proved automatically� Due to the absence
of inductively dened relations and existential quantiers� the formalization re�
quired by the Boyer�Moore prover is not exactly natural� Pfenning�s proofs are
the opposite� they follow the traditional mathematical argument quite closely�
but provide no automation at all� With respect to automation� Huet�s proofs are
closer to Pfenning�s� Rasmussen�s are closer to ours�

	�� ��Reduction

I am not aware of any machine�checked proofs for � or ���� However� after I had
nished my own development I found out about the following two formalizations
of � in ��calculi with explicit substitutions�

Hardin ��� brie�y considers� in our notation� the following denition of ���

Fun�lift t � � Var �� �� t ����

She rejects it because the subterm lift t � gives rise to critical pairs with the
rules for lift� We conjecture that ���� works in our setting because the equations
for lift are on a di�erent level than ����� Hardin settles for a conditional variant
of ���� which leads to quite involved con�uence proofs�

Briaud �	� follows a very similar train of thought as I did to arrive at the
conclusion that decr should be expressed in terms of subst� In order to avoid a
conditional rule he introduces a ctitious term and denes

Fun�t � Var �� �� t����

Although he avoids tricky lemmas about the interaction of free and subst�lift�
he pays for it in terms of the complications causes�

	�
 Resources � not a comparison

The complete proof e�ort took � days� of which � days were taken up by the
ground work including con�uence of �� and a further � days to develop the theory
of squares� � and � � �� Of those � days� almost 	 were spent developing the
de Bruijn theory of � on paper� and one was wasted with the initial primitive
recursive denition of decr� The size �in number of lines� of the nal theories�
including all comments� denitions and proofs� is shown in the following table�

Relations Terms� Substitution� � Con�uence � �� Con�uence � � �
��� 	�� �
� 	��

�

 Conclusion

It should be obvious from the above comparisons that the eld as a whole is
making progress� formalizations have become more natural and shorter� and the
degree of automation is increasing� We are also beginning to reuse other people�s
work �as in the case of Rasmussen�s proofs�� Yet each system still has painful
shortcomings� for example arithmetic in the case of Isabelle� More work on the
integration of decision procedures is urgently needed�

Acknowledgments� Thanks are due to James McKinna for detailed discus�
sions� to Randy Pollack for his short cut in the abstract con�uence proofs �����
and to Konrad Slind for his excellent suggestions for improvements�

References

�� H� P� Barendregt� The Lambda Calculus� its Syntax and Semantics� North Holland�
�nd edition� �
��

�� D� Briaud� An explicit Eta rewrite rule� In M� Dezani�Ciancaglini and G� Plotkin�
editors� Typed Lambda Calculi and Applications� volume �� of Lect� Notes in

Comp� Sci�� pages ����
� Springer�Verlag� ���
	� N� G� de Bruijn� Lambda calculus notation with nameless dummies� a tool for

automatic formula manipulation� with application to the Church�Rosser theorem�
Indagationes Mathematicae� 	��	
��	�� ����

�� M� Gordon and T� Melham� Introduction to HOL� a theorem�proving environment

for higher�order logic� Cambridge University Press� �	�
�� T� Hardin� Eta�conversion for the language of explicit substitutions� In

H� Kirchner and G� Levi� editors� Algebraic and Logic Programming� volume �	�
of Lect� Notes in Comp� Sci�� pages 	���	��� Springer�Verlag� ���

�� G� Huet� Residual theory in ��calculus� A formal development� J� Functional

Programming� ��	���	�� ���
�� J� McKinna and R� Pollack� Pure type systems formalized� In M� Bezem and

J� Groote� editors� Typed Lambda Calculi and Applications� volume ��� of Lect�
Notes in Comp� Sci�� pages �
�	��� Springer�Verlag� �	�

� L� C� Paulson� Isabelle� A Generic Theorem Prover� volume
�
 of Lect� Notes in
Comp� Sci� Springer�Verlag� ���

� F� Pfenning� A proof of the Church�Rosser theorem and its representation in a
logical framework� J� Automated Reasoning� �� To appear�

��� R� Pollack� The Theory of LEGO� A Proof Checker for the Extended Calculus of

Constructions� PhD thesis� University of Edinburgh� ���
��� R� Pollack� Polishing up the Tait�Martin�L�of proof of the Church�Rosser theorem�

Unpublished manuscript� Jan� ���
��� O� Rasmussen� The Church�Rosser theorem in Isabelle� A proof porting experi�

ment� Technical Report 	��� University of Cambridge� Computer Laboratory� May
���

�	� N� Shankar� Metamathematics� Machines� and G�odel�s Proof� Cambridge Univer�
sity Press� ���

��� M� Takahashi� Parallel reductions in ��calculus� Information and Computation�
��
��������� ���

��

This article was processed using the LaTEX macro package with LLNCS style

��

