
I�O Automata in Isabelle�HOL

Tobias Nipkow� and Konrad Slind��

Technische Universit�at M�unchen���

Abstract� We have embedded the meta�theory of I�O automata� a
model for describing and reasoning about distributed systems� in Isa�
belle�s version of higher order logic� On top of that� we have speci�ed
and veri�ed a recent network transmission protocol which achieves reli�
able communication using single�bit�header packets over a medium which
may reorder packets arbitrarily�

� Introduction

This paper describes a formalization of Input�Output automata �IOA�� a partic�
ular model for concurrent and distributed discrete event systems due to Lynch
and Tuttle ���� inside Isabelle�HOL� a theorem prover for higher�order logic ��	�


The motivation for our work is twofold�

� The veri�cation of distributed systems is a challenging application for formal
methods because in that area informal arguments are notoriously unreliable


� This area is doubly challenging for interactive general purpose theorem
provers because model�checking �
� already provides a successful automatic
approach to the veri�cation of �nite state systems


IOA were chosen as the vehicle for our study because they have become popular
for specifying and verifying distributed algorithms both on paper ��� 	� and with
machine assistance ���� �� ��� ��
 The unique aspect of our work is the fact that we
have formalized and veri�ed the meta�theory of IOA on top of which we carried
out our case study
 Thus IOA are objects in the logic� just like natural numbers
or lists� which can be manipulated by operators such as parallel composition and
hiding


The �rst half of the paper describes how �parts of� the rigorous mathematical
theory of IOA is completely formalized in higher�order logic
 The second half
describes a protocol proof built on top of this formalization


� Research supported by ESPRIT BRA ��	
� TYPES
�� Research supported by DFG grant Br ������
� Deduktive Programmentwicklung
��� Institut f�ur Informatik� ��
�� M�unchen� Germany�

E�mail� fnipkow�slindg�informatik�tu�muenchen�de



��� Related work

The same protocol had been veri�ed by the �rst author 
 years ago� but without
the meta�theory� i
e
 Isabelle was then merely used to prove some �random�
veri�cation conditions
 When comparing the two proofs� we noticed that at the
time the �rst author had accidentally missed out one proof obligation to do with
initial states
 This is a typical example of the kind of mistake that formalized
meta�theory helps to avoid


Helmink et al
 ��� follow the same approach� they verify a communication
protocol using the Coq system ��� to discharge proof obligations set up by hand


An interesting compromise is the approach by Garland et al
 ���� �� based
on the Larch Prover �LP�
 They formalize some of the meta�theory �e
g
 �nite
execution fragments and simulation maps� using the Larch Shared Language
�LSL�
 They can then generate veri�cation conditions automatically from LSL
speci�cations and discharge them using LP
 In contrast to our work� IOA are a
meta�linguistic notion and are not available as objects in the logic
 Also� they
do not formalize in�nite behaviours and do not have an independent notion of
implementation based on inclusion of traces
 Instead they formalize the notion of
a simulation map� which is a su�cient condition for implementation
 Part of our
work has been to formalize both concepts� simulationmaps and implementations�
and prove they are related


� I�O automata

Lynch and Tuttle ��� give a set�theoretic de�nition of I�O automata
 An IOA
is a possibly in�nite state automaton where each transition between states is
labelled from a set of actions
 The set of actions that an automaton A may
use is structured into an action signature by partitioning the actions into three
disjoint sets� inputs� outputs� and internals
 The external actions are the union
of inputs and outputs


An IOA A can be modelled with a quintuple �Asig � St � St���� �� where

� Asig is an action signature
 acts�Asig� � inputs�Asig� � outputs�Asig� �
internals�Asig�


� St is a set of states
� St� � St is a non�empty set of start states
� �� St � acts�Asig�� St is a transition relation
 An element s

a
� t of this

relation is also known as a step

� � is an equivalence relation used to de�ne fairness
 We do not consider

fairness in this paper


An important property of � is that it must be input�enabled
 By this we
mean that for every state s and every input action a� A must have a transition
s

a
� t 
 This expresses that an automaton must be able to respond to any input

o�ered by its environment

A �run� of an automaton consists of a sequence of linked steps� formally� such

an execution fragment of A is a �nite sequence s�
a�� s�

a�� � � �
an� sn or an in�nite

	



sequence s�
a�� s�

a�� � � � of alternating states and actions of A such that si
ai� si��

is a step of A for every i 
 An execution of A is just an execution fragment of
A that begins in a start state of A
 A state is reachable if it occurs in some
execution
 A property P of A is invariant if it holds in every reachable state of
A


IOA provide a notion of parallel composition
 The central idea in this is
highlighted by considering two di�erent automataAi and Aj in a set of automata
to be composed
 If Ai performs an output action a that is equal to an input
action of Aj � then in the composed automaton� Ai produces a �and moves to
a new state� and Aj consumes it� in the same moment� by moving along some
transition it has labelled a
 The action a remains as an output action of the
composed automaton� hiding is provided as a separate operation


We must de�ne a notion of composition for action signatures before we can
formally de�ne composition for automata
 A countable set fSigi�I of action
signatures is strongly compatible if for all i � j such that i �� j

� outputs�Si � � outputs�Sj � � fg�
� internals�Si � � acts�Sj � � fg� and
� each action is contained only in a �nite number of signatures


If fSigi�I is a countable collection of strongly compatible action signatures� its
composition �i�ISi is the action signature S with

inputs�S � � �
�

i�I

inputs�Si ��� �
�

i�I

outputs�Si ��

outputs�S � �
�

i�I

outputs�Si �

internals�S � �
�

i�I

internals�Si �

A set of automata with strongly compatible action signatures is also said to be
strongly compatible
 If fAigi�I is a strongly compatible set of automata� then
the composition ki�IAi is the following automaton�

Asig � �i�IAsig�Ai�

St �
Y

i�I

St�Ai�

St� �
Y

i�I

St��Ai�

� � f�s� a� t� j �i 	 I � if a 	 acts�Asig�Ai�� then �si � a� ti� is a step of Ai

else si � tig

In the above de�nition�
Q

refers to the set�theoretic product of a family of
sets� s and t refer to elements of the state product� and si and ti refer to the
ith projections of these elements
 Typically� a �nite composition ki�����nAi is
written as A� k � � � k An 


�



Hiding some actions W of an automaton is accomplished by an operation on
its action signature S �

hide�S �W � � �inputs�S � �W � outputs�S � �W � internals�S � �W�

Similarly� restricting the actions of an automaton is performed by the following
operation on its action signature�

restrict�S �W � � �inputs�S � �W � outputs�S � �W �

internals�S � � �externals�S � �W ��

Note that hide and restrict may lead to complications if input actions are allowed
to be hidden
 However� since we do not use them in this fashion we do not
encounter any problems


Now we turn to notions of behaviour
 If we strip out the subsequence of
actions ai � ai��� � � � of an execution fragment of A� we obtain a schedule of A
 If
we �lter the schedule of an execution of A so that it has only external actions�
we obtain a behaviour of A
 The set of behaviours of A represents the externally
observable activities that A can participate in and is de�ned

behaviours�A� � fbeh� 
ex 	 executions�A�� beh � behaviour�A� ex �g�

For various cases ��nite� in�nite� fair� Lynch and Tuttle present de�nitions of
the notions of implementation and speci�cation that� in each case� amount to
requiring that the behaviours of an implementation automaton be a subset of
the behaviours of the speci�cation
 In the case important to our veri�cation� the
de�nition is as follows�

implements�A�B� �

inputs�Asig�A�� � inputs�Asig�B�� �

outputs�Asig�A�� � outputs�Asig�B�� �

behaviours�A� � behaviours�B�

The formal presentation of IOA gives rise to a very large and complex theory�
there are approximately �� de�nitions in the base theory� before considering any
bifurcations resulting from the consideration of fairness or from supporting the
distinction between �nite and in�nite sequences


��� I�O automata in Isabelle

Our formalization is in Isabelle�s version of higher�order logic� a variant of
Church�s Simple Type theory supporting ML�style polymorphism and Haskell�
style type classes��	�
 The formalization was largely straightforward� since Isa�
belle�s higher�order logic already supports a well�developed theory of sets
 We
will touch on only a few of the most important de�nitions


One important aspect in this formalization is that our logic requires de�ni�
tions to be total� i
e
 without conditions on them� unlike many given by Lynch






and Tuttle
 This has the drawback that some de�nitions may not be exactly as
in the presentation of Lynch and Tuttle� but has the advantage that the de��
nitions are smaller and more general� conditions only appear in the statements
of theorems that require them
 For example� in the de�nition of composition for
IOA� we do not require that the set of automata be countable
 This condition is
necessary for some meta�theoretic results� but not all� e
g
 it is not necessary for
the meta�theory we base our veri�cation on

Isabelle notation� Set comprehension has the shape fe� Pg� where e is an
expression and P a predicate
 Tuples are written between angle brackets� e
g

�s� a� t�� and are nested pairs with projection functions fst and snd 
 If f is a
function of type �� � �� � ��� application is written f �x � y� rather than f x y 

Conditional expressions are written if �A�B �C �
 The empty list is written � ��
and �cons� is written in�x� h �� tl 
 Function composition is another in�x� e
g

f � g 


Action signatures� An action signature is described by the type

���signature � ���set � ���set � ���set �

The �rst� second and third components of an action signature S may be extracted
with inputs� outputs� and internals
 Furthermore� actions�S � is de�ned to be
inputs�S � � outputs�S � � internals�S �
 Action signatures are de�ned as follows�

is asig�triple� �

�inputs�triple� � outputs�triple� � fg� �

�outputs�triple� � internals�triple� � fg� �

�inputs�triple� � internals�triple� � fg�

I�O automata� An IOA is a triple with type de�ned by

��� ��ioa � ���signature � ���set � �� � �� ��set

and it is further required that the �rst member of the triple be an action signa�
ture� the second be a non�empty set of start states and the third be an input�
enabled state transition relation�

IOA��asig � starts� trans�� �

is asig�asig� � starts �� fg � is state trans�asig � trans��

Notice that we have employed the polymorphic type system of higher order logic
in the representation of the actions and states of an IOA
 Among other bene�ts�
this enables the automatic type inference mechanism of Isabelle to detect some
inconsistencies
 The property of being an input�enabled state transition relation
is de�ned as follows�

is state trans�asig �R� �

���s� a� t� 	 R� a 	 actions�asig�� �

��a 	 inputs�asig���s�
t � �s� a� t� 	 R�

�



The projections from an IOA are asig of � starts of � and trans of 
 The actions
of an IOA are de�ned acts � actions � asig of 
 We will use � interchangeably
with trans of 


Sequences� Lynch and Tuttle de�ne the executions and behaviours of IOA in
terms of underlying theories of �nite and in�nite sequences
 We felt that devel�
oping two separate types of sequences and hence two parallel theories of IOA
would result in a clumsy framework for veri�cation� accordingly� we searched for
a single representation that would accommodate both kinds of sequence� while
still being able to make the necessary distinctions
 Besides the �nite�in�nite
distinction� sequences must support �ltering by a predicate� indexing� and con�
catenation operations
 Under our criteria� lists are not usable to model sequences
since the theories of �nite and in�nite lists are di�erent� the theory of lazy lists
accomodates both �nite and in�nite lists� but does not support �ltering


We chose to model sequences with functions� an in�nite sequence of elements�
each of type �� is represented by a function of type nat � �
 However� the
consideration of �nite sequences forces us to address the issue of partiality� our
chosen logic �HOL� provides only total functions� but a �nite sequence� modelled
with the built�in notion of function in the logic� must be a partial function


There are three basic approaches that we know of for handling partial func�
tions in a logic of total functions�

� Regard the function as a relation� members of the relation are points where
the function is de�ned


� Expand the range
 Extending the range of the function by adding a special
value that stands for �unde�ned� allows a functional style� at the cost of
having to support the �unde�ned� value in some manner


� Decline to say how the function behaves over part of its domain
 This allows�
for example� describing the predecessor function by� �n� pred�n � �� � n


We chose the second approach
 Sequences have type nat � ���option
 The
option datatype can be de�ned in Isabelle as ���option � None j Some��� using
an ML�like notation
 A �nite sequence in this representation ends with an in�nite
number of consecutive Nones


Execution fragments� Consider modelling a step of an execution as a triple
�s� a� s��
 Then an execution fragment could be modelled as a sequence of such
triples subject to the condition that for every i � s�i � si��
 This condition makes
for an awkward representation
 More seriously� such a representation is not able
to model an empty execution� which consists of only a single state


We eventually decided to represent an execution fragment with a pair of se�
quences� an action sequence with type nat � �action�option and an in�nite state
sequence having type nat � state
 Using this representation� a step of fragment
ex � �A� S� is �Si � act � Si��� when Ai � Some�act�
 This representation
makes it easy to distinguish between in�nite and �nite executions �ex is �nite i�

�



the sequence A is�� �ltering ex reduces to �ltering A� and the empty execution
consisting only of state s is �	i �None� 	i �s�
 The Isabelle de�nition is

is execution fragment�A� �act � state�� �

�n a� �act�n� � None 
 state�Suc�n�� � state�n�� �

�act�n� � Some�a� 
 �state�n�� a� state�Suc�n��� 	 �A�

Note that there is no requirement that None be followed only by None� Nones
may occur at arbitrary points in the sequence� indicating that no action has been
performed
 In the trade this is known as �invariance under stuttering� ���


Reachability� Using an inductive de�nition� reachability could be de�ned by
the following two rules�

s 	 starts of �A� 
 reachable�A� s�

reachable�A� s� ��s� a� t� 	 �A 
 reachable�A� t�

However� we derive the two rules from a more direct de�nition�

reachable�A� s� � 
ex 	 executions�A�� 
n� snd�ex ��n� � s�

Invariants in IOA are de�ned to be properties that hold in all reachable states�

invariant�A�P� � �s� reachable�A� s� 
 P�s�

The following important theorem allows the proof of invariant properties by
induction�

��s�s 	 starts of �A� 
 P�s�� �
��s t a�reachable�A� s� � P�s� ��s� a� t� 	 �A 
 P�t��

 invariant�A�P�

Parallel composition� Many IOA de�nitions use indexed families
 Higher or�
der logic gives a neat approach to this� since an ��indexed family can be repre�
sented by the type �� �
�set �or indeed� �� 
 � bool � but we want to retain
some concrete indication that we are using sets�
 In Isabelle� general union is
de�ned UNION �A�B� � fy � 
x 	 A� y 	 B�x �g
 A trivial specialization of A
to the universal set of a type gives UNION �� a �functional� version of general
union


asig composition�asigs� �

�UNION ��inputs � asigs� �UNION ��outputs � asigs��

UNION ��outputs � asigs��

UNION ��internals � asigs��

�



The direct product of a family of sets is also quite simple to de�ne� DP�F � �
ftuple � �i � tuple�i� 	 F �i�g
 We therefore have the following de�nition of the
parallel composition of an indexed family of automata�

ioa composition�ioas� �

�asig composition�asig of � ioas��
DP�starts of � ioas��
f�s� act � t� � �i � if �act 	 acts�ioas�i���

�s�i�� act � t�i�� 	 trans of �ioas�i���
s�i� � t�i��g �

This de�nition of composition is appealingly compact� but hard to use in
veri�cation
 The following de�nition is tailored for the binary case and was used
in the example veri�cation


A k B �

�asig comp�asig of �A�� asig of �B���
f�u� v� � u 	 starts of �A� � v 	 starts of �B�g�
f�s� act � t� � �act 	 acts�A� � act 	 acts�B�� �

if �act 	 acts�A�� �fst�s�� act � fst�t�� 	 �A� fst�s� � fst�t�� �
if �act 	 acts�B�� �snd�s�� act � snd�t�� 	 �B � snd�s� � snd�t��g�

where a specialization of action signature composition is needed�

asig comp�A��A�� �

��inputs�A�� � inputs�A���� �outputs�A�� � outputs�A����
outputs�A�� � outputs�A��� internals�A�� � internals�A���

Notice that this binary composition operator gives more �exibility in the states
than the in�nite case
 Letting � stand for the type of actions� and � and � for
types of states� binary composition has type

��� ��ioa � ��� � �ioa � ��� � � � �ioa

whereas the in�nite version has

�
 � ��� ��ioa�� ��� 
 � ��ioa

and thus requires that every member of the indexed set have the same type� i
e

all automata are de�ned over the same state space and action set
 This is �ne for
replicating the same IOA many times but awkward when composing a system
from many di�erent components


Note that in our formalization both of binary and arbitrary parallel compo�
sition� each process to be composed must already be de�ned over all actions in
the composition� even those not in its own action signature
 This is feasible for a
system built from a �xed number of processes but precludes the reuse of generic
components
 The latter can be achieved with an operation for renaming actions�

rename � ��� ��ioa � �
 � ���option� � �
� ��ioa

The details are contained in a forthcoming report� rename is not used in the
sequel


�



��� Meta�theory

Possibility maps ��� give a means of doing re�nement proofs of IOA systems
 The
set of possibility maps we make use of is described by the following predicate�
which takes a function f �from concrete states to abstract states�� a concrete
automaton C � and an abstract automaton A


is weak pmap�f �C �A� �
��s� 	 starts of �C �� f �s�� 	 starts of �A�� �
��s t a� reachable�C � s� ��s� a� t� 	 trans of �C �

 if �a 	 externals�asig of �C ��� �f �s�� a� f �t�� 	 trans of �A�� f �s� � f �t���

The following theorem states that the existence of a possibility map between C
and A implies that the behaviours of C do not exceed those prescribed by A


IOA�C � � IOA�A� �
externals�asig of �C �� � externals�asig of �A�� �
is weak pmap�f �C �A�

 behaviours�C � � behaviours�A�

The proof proceeds by using f to give an execution of A in terms of an execution
of C 
 After that� the behaviours are shown to coincide� and the proof �nishes
by demonstrating that the abstract execution is in fact an execution


Note that the above theorem merely requires the external actions of both
automata to be the same but does not preclude that some actions are inputs
of one automaton and outputs of the other
 In such unusual cases� however�
it will not be possible to prove that C implements A because the de�nition
of implements requires that the inputs and outputs are identical� not just the
externals


� An example veri�cation

In the sequel we specify and verify a communication protocol originally due
to Attiya et al
 ���
 This protocol achieves FIFO�communication over channels
which may lose and reorder messages� but may not duplicate them
 Let us call
such channels non�duplicating �ND�
 The remarkable fact is that the protocol
requires only a single header�bit
 Starting from ���� Nipkow veri�ed a slightly
optimized version of this protocol some 
 years ago� using Isabelle merely as
a theorem prover for the hand�generated veri�cation conditions
 To simplify
matters he also assumed that the underlying channels do not lose messages

In the following we recast Nipkow�s speci�cation and veri�cation in the IOA
formalization presented above


In the mean time the above protocol has been simpli�ed considerably �	�
using the following divide�and�conquer approach�

�
 FIFO�communication can be implemented on top of order�preserving �OP
� duplication and loss� but no reordering� channels using standard protocols
like the Alternating Bit


�



	
 OP�communication can be implemented on top of ND�channels using a cut
down version of the protocol in ���


Putting the two protocols on top of each other� we obtain FIFO�communication
using ND�channels
 In retrospect� the original protocol can be seen as an explicit
merge of the two layers


Despite this recent simpli�cation� we have stuck to the original protocol for
two reasons� we had an Isabelle reference version already� which would allow
interesting comparisons� and because the original protocol� being more complex�
would be more of a challenge for Isabelle�s theorem proving technology


In the protocol� the Sender and the Receiver progress through a series of
rounds
 The key idea is that processes count and compare the number of packets
sent and received
 When to switch to a new round� i
e
 when a message has
been sent� is determined by this relationship
 The precise logic is too intricate
to summarize concisely


��� Concise descriptions of transition relations

We need some notation to describe the transition relations of the processes
 In
our implementation� a transition relation is given by a set comprehension having
the following shape�

f�s� act � s�� � case act of
a� � R��s� s��





an � Rn �s� s��g

where each Ri gives the relationship between s and s� when ai occurs
 This style
of representation is clear and easy to work with
 Unfortunately� it entails much
redundancy� if part or all of the state does not change� that must explicitly be
expressed
 Therefore� in the interests of readability� we will use the precondition�
e�ect format of Lynch and Tuttle to describe a transition relation�

action �input j output j internal�
Precondition� C
E�ect� p� �� v�� � � � � pn �� vn �

Predicate C is the constraint on the state s that must hold for the transition to
apply
 The pi are the state components and the vi are the new values taken on
in the transition
 We omit mention of all parts of the state that are not changed
in the transition� all empty transitions� and all vacuous preconditions
 A formal
translation from this style to the set comprehension representation is straight�
forward� but unnecessary for the purposes of reading this paper
 Although it
would be desirable to have a tool to perform such translations automatically� we
consider this a user�interface question which should be separated from the proof
tool


��



��� The Speci�cation

The intended FIFO�behaviour of the system is given by de�ning an IOA named
Spec
 The state of Spec is a message queue q � initially empty� modelled with
the type ���list � where the parameter � represents the message type
 The only
actions performed in the abstract system are� S msg�m�� putting message m at
the end of q � and R msg�m�� taking message m from the head of q 
 Formally�

S msg�m� input R msg�m� output
E�ect� q �� q��m� Precondition� q � m �� rst

E�ect� q �� rst

��� The Implementation

The system being proved correct is a parallel composition of 
 processes�

Impl � Sender k Schannel k Receiver k Rchannel

a sender� a receiver� and proprietary channels for both
 The �data�ow� in the
system is depicted in Fig
 �

��
��
Sender ��

��
Receiver

�
�
�
�Schannel

�
�
�
�Rchannel

� �
�
�
�
�
�� �

�
�
�
�
�R
�
�
�

�
�
���

�
�
�

�
�I

�S msg

S pkt R pkt

S ackR ack

R msg

Fig� �� The Implementation

The objects going over the medium from Sender to Receiver are modelled
with the type ���packet � bool � �
 This expresses that messages �represented
by �� are sent with a single header bit
 The header bit of a packet is extracted
with hdr and the message �eld is extracted with msg 


The type of system actions� ���action� is described in Isabelle by the following
ML�style datatype�

��



�m action �

S�msg ��m� �� Sender inputs msg ��

� R�msg ��m� �� Receiver outputs msg ��

� S�pkt ��m packet� �� Sender sends packet ��

� R�pkt ��m packet� �� Receiver receives packet ��

� S�ack �bool� �� Receiver sends acknowledgment ��

� R�ack �bool� �� Sender receives acknowledgment ��

� C�m�s �� Change mode in Sender ��

� C�m�r �� Change mode in Receiver ��

� C�r�s �� Change round in Sender ��

� C�r�r ��m� �� Change round in Receiver ��

The current datatype de�nition facility in Isabelle�HOL directly asserts the nec�
essary freeness and induction axioms
 It is planned to port Paulson�s datatype
package ����� which proves these axioms from a construction of the datatype�
from ZF to HOL
 This would not change the interface but would guarantee the
consistency of the system


It may come as a surprise that we introduce all the actions in one go and
not on a �per automaton� basis
 This is a consequence of the type system which
enforces that each component automaton A of a composition is de�ned over
the same type of actions
 Of course the transition of each A contains only triples
�s� a� t� where a 	 acts�A�
 At the end of Section 	
� we indicated how rename
could be used to achieve a modular style of composition


There is a related problem to do with the implementation relationship which
requires that both automata �the speci�cation and the implementation� are de�
�ned over the same type of actions� otherwise their traces are incomparable
 Of
course the speci�cation�s action signature �which is a set� is independent of the
implementation� but the type of actions is not
 Depending on the exact syntax
used in the de�nition of the transition relation� this may even require additional
�no�op��clauses when new internal actions are added to the implementation
 To
get around this problem requires a notion of �implementation modulo a renam�
ing� where the renaming relates the action types of both automata


If all this explicit renaming appears very cumbersome� the alternative should
be considered� a single global type of actions
 Not only would this approach rob
us of the bene�ts of type checking� but it would also pose the problem of how to
associate individual application�speci�c actions� e
g
 S�msg� with elements of the
global type of actions
 It is even less clear how to model parameterized actions
in such an approach


��� Multisets

The veri�cation uses a theory of �nite multisets
 The axiomatization provides
operations to add and delete elements from the multiset� as well as to count
the number of members of the multiset having a particular property
 The empty
multiset is written �
 The number of members of multiset M with property P is

�	



written jM �P j


delm��� x � � �
delm�addm�M � x �� y� � if �x � y �M � addm�delm�M � y�� x ��

j��P j � �
jaddm�M � x ��P j � jM �P j � if �P�x �� �� ��

By abuse of notation� we will sometimes write jM � x j to stand for jM �	y �y � x j�
the number of occurrences of items equal to x in M 
 There is also an induction
theorem for the �nite multisets�

P��� 
 ��M x � P�M � 
 P�addm�M � x ��� 
 P�N �

We derived a collection of theorems about multisets� among the more useful
in our veri�cation is the following� which enables the reduction of cardinality
relationships to logical relationships�

��x � P�x � 
 Q�x �� 
 jM �P j � jM �Q j

��	 The Sender

The state of the process Sender is a ��tuple�

Field Type Initial Value
messages� ���list � �
sent � �bool�multiset �
received � �bool�multiset �
header � bool false
sending � bool true

The Sender makes the following transitions�

S msg�m� input
E�ect� messages �� messages��m�
S pkt�pkt� output
Precondition� hdr�pkt� � header �msg�pkt� � hd�messages�

� sending
E�ect� sent �� addm�sent � hdr�pkt��
R ack�b� input
E�ect� received �� addm�received � b�
C m s internal
Precondition� jsent ��header j � jreceived ��header j � sending
E�ect� sending �� False
C r s internal
Precondition� jsent � header j � jreceived ��header j � �sending
E�ect� header �� �header � sending �� True�

messages �� tl�messages�

��



��
 The Receiver

The state of the process Receiver is also a ��tuple�

Field Type Initial Value
messages� ���list � �
replies� �bool�multiset �
received � ����packet�multiset �
header � bool false
replying � bool false

The Receiver makes the following transitions�

R msg�m� output
Precondition� messages � m �� rst
E�ect� messages �� rst

R pkt�pkt� input
E�ect� received �� addm�received � pkt�
S ack�b� output
Precondition� b � header � replying
E�ect� replies �� addm�replies� b�
C m r internal
Precondition� jreplies��header j � jreceived �	y �hdr�y� � header j

� replying
E�ect� replying �� False
C r r�m� internal
Precondition� jreplies� header j � jreceived �	y �hdr�y� � header j �

jreplies��header j � jreceived ��header �m�j � �replying
E�ect� header �� �header � replying �� True�

messages �� messages��m�

��� The Channels

The Sender and Receiver each have a proprietary channel� named Schannel and
Rchannel respectively
 The messages sent by the Sender and Receiver are never
lost� but the channels may mix them up
 Accordingly� multisets are used in
modelling the channel states� the state of Schannel is of type ����packet�multiset �
the state of Rchannel is of type �bool�multiset � expressing that replies from the
Receiver are just one bit
 Schannel makes the following transitions�

S pkt�pkt� input R pkt�pkt� output
E�ect� M �� addm�M � pkt� Precondition� jM � pkt j �� �

E�ect� M �� delm�M � pkt�

Similarly� Rchannel makes the following transitions�

S ack�b� input R ack�b� output
E�ect� M �� addm�M � b� Precondition� jM � bj �� �

E�ect� M �� delm�M � b�

The initial state of both channels is an empty multiset


�




� The Veri�cation

An assortment of theories are used to structure the veri�cation
 The theory
structure can be seen in Fig
 	
 Theories with a ��� are already installed in the
Isabelle system


Packet

Action

Correctness

Impl

Sender Receiver Channels Spec

List*

Arith*

IOA

Asig

Multiset

Option

Fig� �� Theory Structure

In the theory Correctness we de�ne a mapping hom from the implementation
state to the speci�cation state�

hom�s� � R�messages�if �R�header � S �header � S �messages� ttl�S �messages��

In this� ttl is a function de�ned by the equations ttl�� �� � � � and ttl�h �� rst� �
rst 
 To distinguish between components of the Receiver state and the Sender
state that have the same �eld names� e
g
 header � we use a �dotted identi�er�
notation� e
g
 S�header and R�header
 The statement of correctness says that hom
is a possibility map from the implementation IOA to the speci�cation IOA �under
the restriction of the action signature of the implementation to the external

��



action signature of the speci�cation�


is weak pmap�hom� restrict�Impl � externals�Spec sig��� Spec�

The veri�cation depends on several system invariants �lemmas �
� to �

 in ����
that relate the states of the 
 processes in all reachable states of the system

Although we attempt to give loose English paraphrases of these invariants� they
can be di�cult to make sense of


�
 No packets from the Receiver to the Sender are dropped by Rchannel
 The
analogous statement for Schannel is also true
 We employ the abbreviatory
function hdr sum�M � b� � jM �	pkt � hdr�pkt� � bj to improve readability


��b� jR�replies� bj� jS �received � bj� jRchannel � bj� �
��b� jS �sent � bj� hdr sum�R�received � b� � hdr sum�Schannel � b��

	
 This invariant expresses a complicated relationship about how many mes�
sages are sent and the relative status of header bits in the Sender and Re�
ceiver


R�header � S �header � S �sending �
jR�replies��S �header j � jS �sent ��S �header j � jR�replies� S �header j
�
R�header � �S �header � R�replying �
jS �sent ��S �header j � jR�replies� S �header j � jS �sent � S �header j

�
 The number of received messages in the Receiver plus the number of those
messages in transit �in Schannel� is not greater than the number of replies�
provided the message isn�t current and the header bits agree


R�header � S �header 

�m� �S �messages � � ��m �� hd�S �messages�� 


jR�received �� S �header �m � j � jSchannel �� S �header �m � j
� jR�replies��S �header j



 If the headers are opposite� then the Sender queue has a message in it


R�header � �S �header 
 S �messages �� � �

��� Proofs

The proofs of the invariants and the �nal theorem followed a common pattern

Each proof proceeded by induction on the structure of the reachability relation�
followed by case analysis on the type of actions
 This gave ten cases
 Most of the
vacuous cases �those arising from transitions not changing any states mentioned
in the invariant� were cleared o� automatically by the conditional and contextual
rewriting of Isabelle
 In the remaining cases� one or two precise applications of
simple arithmetic inequalities in the hypotheses were necessary before another
application of rewriting or Isabelle�s automatic reasoning tactics would �nish o�

��



the proof
 Usually� the reasoning steps in Isabelle were larger than in ���� but
once in a while� usually when doing intricate reasoning among the hypotheses�
quite low level steps had to be made� sometimes requiring explicit instantiations
of hypotheses to be given


As a measure of complexity� we counted the number of tactic applications

In the development of the meta�theory� there are about �� proof steps
 In the
example� there are a little over 
�� proof steps
 Building the meta�theory and
verifying the system takes approximately twenty minutes on a Sparc	 with �

Megabytes of memory


A problem we encountered� echoed in accounts of other large veri�cations�
was identifying what to do next when confronted by a large goal with many
hypotheses
 Of course� one answer to this is �keep your goals small�� but then
one has the problem of expending too much e�ort on proof management
 Fur�
thermore� we were often in a situation where there were lots of hypotheses that
needed to be used� and isolating ��rst visually� then computationally� the small
number that were immediately relevant to the goal at hand took a lot of e�ort


A �nal remark is that automated support for arithmetic reasoning would
have helped


��� The use of meta�theory

What are the advantages and disadvantages of embedding the theory of a for�
malism� IOA in this case� in a mechanized logic The advantages are several�

� Such an embedding is formal and hence non�ambiguous
 Thus it can serve
as a standard presentation


� Such an embedding is relatively consistent� so worries about consistency of
an embedded calculus can be ameliorated


� Meta�theorems� such as the possibility map theorem� can make veri�cations
easier since correctness can be reduced to establishing some simpler fact� e
g

that hom is a possibility map
 An alternative is to have an external agent
operating outside the logic that would take the system correctness statement
and compute the necessary �veri�cation conditions�
 The veri�cation could
not be considered to be totally formal in that case� since the veri�cation
conditions� when proven� could not be joined back together using inference
to produce the theorem stating system correctness
 Hence the correctness
statement could not be used in further veri�cations without making a break
in the chain of formal proofs


� A consequence of having meta�theorems is that correctness statements are
fairly simple to set up
 In contrast� a person attempting a veri�cation in
an environment without either meta�theorems or a veri�cation condition
generator would in general need to have a good background in mathematics
and logic


Some disadvantages are

� The representation of objects being veri�ed can be large


��



� Work needs to be done to logically derive the veri�cation conditions
 In
e�ect� the meta�theory needs to be hidden so that it doesn�t clutter up the
veri�cation
 Sometimes this work is not trivial


� Conclusions and Future Work

We have formalized the theory of IOA in Isabelle�s higher order logic
 Lynch
and Tuttle give a quite abstract set�theoretical presentation of IOA� the Isabelle
implementation of higher order logic met this challenge easily
 We found that
Isabelle�s well�developed theory of sets was nicely complemented by the equiva�
lence of sets and types in higher�order logic
 For example� we chose to represent
states and actions with type variables in the development of the meta�theory

This use of the type system highlights essential dependencies� one must choose
actions and states for automata before describing their transitions
 Also� hav�
ing functions and predicates as �rst�class objects allowed a smooth treatment of
such notions as invariants� in�nitary composition� traces� and multisets


In the theory of IOA� we have speci�ed and veri�ed a recent protocol
 In this
e�ort� we found that hiding the meta�theory was necessary� otherwise the formu�
lae confronting the user were simply too complex
 We also found that describing
the transition relations of individual IOA had much redundance� therefore� it
would be useful to support �shorthand� descriptions of automata in the style of
this paper
 Another issue is that of action management in Lynch and Tuttle�s
theory
 Both composition and implementation currently require all automata in�
volved to be de�ned over the same type of actions
 This has grave consequences
for modularity� therefore a facility for explicit renaming is required


Acknowledgments� We have bene�tted from Manfred Broy�s criticism� from
many conversations with Bernhard Sch!atz and from the critical and perceptive
comments by Frits Vaandrager


References

�� Martin Abadi and Leslie Lamport� The existence of re�nement mappings� In
Proc� �rd IEEE Symp� Logic in Computer Science� pages ��	����� IEEE Computer
Society Press� �����


� Yehuda Afek� Hagit Attiya� Alan Fekete� Michael Fischer� Nancy Lynch� Yishay
Mansour� Da�Wei Wang� and Lenore Zuck� Reliable communication over unreliable
channels� Journal of the ACM� To appear�


� Hagit Attiya� Alan Fekete� Michael Fischer� Nancy Lynch� Yishay Mansour� Da�
Wei Wang� and Lenore Zuck� Reliable communication over unreliable channels�
Draft version� �����

�� J�R� Burch� E�M� Clarke� K�L� McMillan� D�L� Dill� and L�J�Hwang� Symbolic
model checking� ���� states and beyond� In Proc� �th IEEE Symp� Logic in Com�

puter Science� pages �
���
�� �����

��



	� G� Dowek� A� Felty� H� Herbelin� G� Huet� C� Murthy� C� Parent� C� Paulin�
Mohring� and B� Werner� The Coq proof assistant user�s guide version 	��� Tech�
nical Report �	�� INRIA� May ���
�

�� Leen Helmink� Alex Sellink� and Frits Vaandrager� Proof�checking a data link pro�
tocol� In Henk Barendregt and Tobias Nipkow� editors� Types for Proofs and Pro�
grams� volume ��� of Lect� Notes in Comp� Sci�� pages �
����	� Springer�Verlag�
�����

�� Victor Luchangco� Ekrem S�oylemez� Stephen Garland� and Nancy Lynch� Verify�
ing timing properties of concurrent algorithms� In FORTE���� Seventh Interna�

tional Conference on Formal Description Techniques for Distributed Systems and

Communciations Protocols� ����� Submitted for publication�
�� Nancy Lynch� Michael Merritt� William Weihl� and Alan Fekete� Atomic Transac�

tions� Morgan Kaufmann Publishers� �����
�� Nancy Lynch and Mark Tuttle� An introduction to Input�Output automata� CWI

Quarterly� 
�
��
���
��� �����
��� Tobias Nipkow� Formal veri�cation of data type re�nement � theory and prac�

tice� In J�W� de Bakker� W��P� de Roever� and G� Rozenberg� editors� Stepwise
Re�nement of Distributed Systems� volume �
� of Lect� Notes in Comp� Sci�� pages
	���	��� Springer�Verlag� �����

��� Lawrence C� Paulson� A �xedpoint approach to implementing �co�inductive de�ni�
tions� In Alan Bundy� editor� Proc� 	
th Int� Conf� Automated Deduction� volume
��� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�
� Lawrence C� Paulson� Isabelle� A Generic Theorem Prover� volume �
� of Lect�
Notes in Comp� Sci� Springer�Verlag� �����

�
� J�rgen S�gaard�Andersen� Stephen Garland� John Guttag� Nancy Lynch� and
Anya Pogosyants� Computer�assisted simulation proofs� In Fourth Conference

on Computer�Aided Veri�cation� volume ��� of Lect� Notes in Comp� Sci�� pages

�	�
��� Springer�Verlag� ���
�

This article was processed using the LaTEX macro package with LLNCS style

��


