
�Java� Embedding a Programming Language

in a Theorem Prover

Tobias Nipkow and David von Oheimb and Cornelia Pusch
Institut f�ur Informatik

Technische Universit�at M�unchen
����� M�unchen� Germany

http���www�in�tum�de��fnipkow�oheimb�puschg

Abstract� This paper introduces the subset �Java of Java� essentially
by omitting everything but classes� The type system and semantics of
this language �and a corresponding abstract Machine �JVM� are for�
malized in the theorem prover Isabelle�HOL� Type safety both of �Java
and the �JVM are mechanically veri�ed�

To make the paper self�contained� it begins with introductions to
Isabelle�HOL and the art of embedding languages in theorem provers�

� Introduction

Embedding a programming language in a theorem prover means to describe �parts of�
the language in the logic of the theorem prover� for example the abstract syntax� the
semantics� the type system� a Hoare logic� a compiler� etc� One could call this applied
machine�checked semantics�

Why should we want to do this� We have to distinguish two possible applications�

� Proving theorems about programs� This is usually called program analysis or
veri�cation and will not concern us very much in this paper�

� Proving theorems about the programming language� This is meta�theory and
could be called language analysis� It is the very focus of our work�

Since programming languages are complex entities� the machine� i�e� the theorem prover�
helps us to stay honest and also forces us to look for the simplest possible formalization
of all concepts�

The purpose of this paper is to describe a particular such embedding� namely the
de�nition of �Java� a fragment of Java� in the theorem prover Isabelle�HOL which is
based on higher�order logic� The main analysis that we discuss is the proof of type
safety� i�e� the absence of �unchecked� run�time type errors�

The plan of the paper is as follows� In the �rst third� we survey the necessary
background information� after a few general remarks about higher�order logic �x	� we
introduce the theorem prover Isabelle�HOL �x
� and discuss the main principles of
language embeddings �x��� The other two thirds are dedicated to �Java and the corre�
sponding virtual machine� the �JVM� For both levels� the type system and semantics
of the language are presented and type safety is proved� Discussion of related work is
found in the individual sections�



� Higher�order logic

The term higher�order logic traditionally means a typed logic that permits quanti�ca�
tion over functions or sets� A very speci�c example of such a logic is Church�s simple
theory of types 
Chu��� And���� In the theorem proving community� higher�order logic
is often abbreviated to HOL and refers to the simple theory of types� We follow this
convention which is due to one of the �rst theorem provers for this logic� Mike Gordon�s
HOL system 
Gor��� GM�
�� a descendant of LCF 
Pau����

The work reported in this paper has been conducted with the help of Isabelle�HOL�
Isabelle 
Pau��� is a generic interactive theorem prover� and Isabelle�HOL an instance
supporting HOL� There are many other systems supporting HOL� and many other
higher�order logics� Mike Gordon�s HOL system has spawned many closely related
implementations� There is even an automatic theorem prover for HOL� the TPS sys�
tem 
ABI�����most other theorem provers for higher�order logics are interactive� Then
there is the area of type theories� which are constructive higher�order logics with so�
phisticated type systems� This area is marked by its proliferation of di�erent although
related logics� many of which are supported by their own theorem prover� The most
prominent of these provers are Coq 
BBC����� Nuprl 
C���� and Lego 
Pol���� Also
based on type theory are the Elf and Twelf systems 
Pfe��� PS���� Strictly speaking the
latter are not fully �edged theorem provers but logical frameworks speci�cally designed
for prototyping but also �automatic� reasoning about deductive systems� in particular
operational descriptions of programming languages�

� Modeling and proving in Isabelle�HOL

What is HOL� In a nutshell� it is a classical �i�e� two�valued� logic with equality and
total polymorphic higher�order functions� Therefore familiarity with classical predicate
logic and functional programming is all one needs when reading this paper� since we
will not be concerned with the low level details in proofs� The system Isabelle�HOL is
more than just a theorem prover for HOL� it is a fully �edged speci�cation and pro�
gramming language� Coming from a programming perspective� one could characterize
Isabelle�HOL as combination of functional programming� logic programming and quan�
ti�ers� The remainder of this section describes the main features of Isabelle�HOL from
an abstract perspective� For more details see the Isabelle�HOL tutorial 
Nip��a��

�	
 Terms� types� formulae and theories

The type system is similar to that of typed functional programming languages like ML�
Haskell and Gofer� There are basic types like bool� nat and int� and type constructors
�written post�x� like ���list and ���set �where � is the argument type�� Function types
are written �� � �� and represent the type of all total functions� Type variables� which
are used to express polymorphism� are written �� � etc�

Terms are formed as in ��calculus by application and abstraction� The construc�
tions let x � e� in e�� if b then e� else e� and case e of p� � e� j � � � familiar from func�
tional programming are also supported�

Formulae are terms of type bool� HOL o�ers the usual logical vocabulary� The
notation

A� � � � An

C
means A� � � � � � An �� C�



Modules in Isabelle�HOL are called theories to emphasize their mathematical con�
tent� They contain collections of declarations and de�nitions of types and constants
�which include functions�� You could also call them speci�cations or programs� depend�
ing on your point of view� Although you can in principle add new axioms as well� this
is strongly discouraged because of the following variant of Murphy�s law�

What can be inconsistent will be inconsistent	

Therefore the HOL dogma �going back to Gordon�s HOL system� is never to add new
axioms� only de�nitions� because the latter preserve consistency� However� working only
with basic non�recursive de�nitions of the form

name � term

can be very cumbersome� Therefore Isabelle�HOL additionally provides several derived
application�oriented de�nition principles� recursive datatypes� recursive functions and
inductively de�ned sets� We discuss them in turn�

�	� Functional programming

Functional programming is supported by constructs for the de�nition of recursive
datatypes and recursive functions� A simple example is the theory of lists�

datatype � list � Nil ��	�
j Cons � �� list� �in�xr ��

consts app 

 � list � � list � � list �in�xr ��

primrec
�	 � ys � ys

�x � xs� � ys � x � �xs � ys�

It de�nes the recursive datatype of lists together with some syntactic sugar �Nil can
be written �	 and Cons x xs can be written x�xs�� declares a function app �with in�x
syntax ��� and de�nes app by primitive recursion� The key proof technique in this
setting is structural induction on datatypes� For example� associativity of �

�xs � ys� � zs � xs � �ys � zs�

is proved by �structural� induction on xs�

Nil� ��	 � ys� � zs � ys � zs � �	 � �ys � zs�

Cons� ��x � xs� � ys� � zs � �x � �xs � ys�� � zs �

x � ��xs � ys� � zs� � x � �xs � �ys � zs�� � �x�xs� � �ys � zs�

Such proofs are performed automatically by Isabelle�HOL�
More complex recursion patterns can be expressed by well�founded recursion� which

requires a termination ordering to convince Isabelle�HOL of the totality of the de�ned
function� More precisely� the ordering is used in a non�recursive de�nition of the func�
tion from which the desired recursion equations are proved as theorems� For details see
the work by Slind 
Sli��� Sli��� Sli����

Totality is always the key requirement when de�ning a function in HOL since HOL
is a logic of total functions� and the introduction of a truly partial function would cause
an inconsistency�



�	� Inductively de�ned sets

Isabelle�HOL comes with a type ���set of ��nite and in�nite� sets over type � and
together with the usual operations� Set comprehension is written fx � Pg instead of
fx j Pg�

Sets can be de�ned inductively in Isabelle�HOL� for example the set of even num�
bers�

consts even 

 nat set

inductive

� � even
n � even

n�� � even

The importance of this mechanism cannot be overestimated because computer science
abounds with inductive processes�

In general� an inductive de�nition looks like this

consts M 

 � set

inductive

t� � M � � � tn � M

t � M

and de�nes M as the least subset of � which satis�es the given rules� There can be
any �nite number of rules of the given format� In fact� a more general rule format is
supported� but this one su�ces for our purposes�

Leastness is the mathematical way of saying that the given rules are the only rules
that de�ne M� From a programmer�s perspective� inductive de�nitions can be seen
as providing logic programming with closed world assumption� This gives rise to the
principle of rule induction� For example�

n � even �� n�n � even

is proved by induction on the derivation of n � even�

rule �� ��� � even

rule 	� n�n � even �� n�n�� � even �� n�n���� � even �� �n�����n��� � even

In general� x � M �� P�x� is proved by rule induction on x � M� i�e� by showing
that P is preserved by every rule�

P�t�� � � � P�tn�

P�t�

In fact� one may also assume ti � M for all i � �� � � � � n� Isabelle�HOL supports proof
by rule induction�

�	� Peeking at the library

The formalization of Java� as any large project� makes use of many prede�ned theories�
We quickly summarize the most important ones�

�	�	
 Cartesian products

The type �� � �� of Cartesian products of �� and �� comes with projection functions
fst 

 � � � � � and snd 

 � � � � �� and with �post�x� operations for constructing
the transitive closure R� and transitive re�exive closure R� of a relation R 

 �� � ��set�



�	�	� Lists

In addition to the basic list constructs shown above� the list library contains the fol�
lowing relevant functions�

length 

 � list � nat
set 

 � list � � set
map 

 �� � �� � � list � � list
zip 

 � list � � list � �� � ��list
nodups 

 � list � bool
nth 

 � list � nat � �

The meaning of length� set� map and zip should be obvious� nodups xs is true i� xs contains
no duplicates� and nth xs i selects the i�th element �starting from �� and is abbreviated
by xs�i� The usual notation �x�y�z	 instead of x�y�z��	 is also supported�

�	�	� Options

The datatype of optional values

datatype � option � None j Some �

consts the 

 � option � �

primrec the �Some x� � x
the None � � � �

is used to add a new element None to a type and wrap the remaining elements up in
Some� function the unwraps them again� on None it can be de�ned arbitrarily�

�	�	� Mappings

One frequently needs partial functions where one can determine if an entry is de�ned
or not� We call them mappings and de�ne them as functions with optional range type�

types � � � � � � � option

Typical applications are symbol tables �where declared names are mapped to some
information� or heap storage �where allocated addresses are mapped to their content��

For the convenient manipulation of mappings the following functions are provided�

empty 

 � � �
� �� � 

 �� � �� � � � � � �� � ��
� � ��	 � 

 �� � �� � � list � � list � �� � ��
� 

 �� � �� � �� � �� � �� � ��
map of 

 ����� list � �� � ��

They represent the empty mapping� updating in one place and in a list of places�
overwriting of one map with another� and turning an association list into a mapping�
The de�nitions are unsurprising�

empty � �k� None
m�x �� y� � �k� if k�x then Some y else m k

s � t � �k� case t k of None � s k j Some y � Some y

map of �	 � empty
map of ��x�y��l� � �map of l��x �� y�

m��	 ���	 �	� � m
m�a�as� ��	b�bs� � m�a ��b��as� ��	bs�



� The basics of programming language embeddings

Historically� this work has its roots in research on generating programming environ�
ments� especially compilers and interpreters� from formal language descriptions� Promi�
nent systems of this kind are PSG 
Sne��� �based on denotational semantics�� ASF�SDF

Kli�
� �based on algebraic speci�cations� and Centaur 
BCD����� Centaur is quite close
to our framework because it is based on operational semantics expressed by inference
rules� a connection that has already been exploited by Bertot and Fraer 
BF����

However� the �rst embedding of a semantics in a theorem prover is due to Gor�
don 
Gor���� who de�ned the semantics of a simple while�language in the HOL system
and derived the rules of Hoare logic as theorems� The attractiveness of this approach
soon lead other researchers to embed various programming languages in various theo�
rem provers� CCS 
Nes���� CSP 
TW���� Java 
Sym��� ON��� JHvB����� JVM 
Coh���
Pus���� ML 
Sym��� VG��� MG���� UNITY 
APP��� Pra��� HC��� Pau��� and Hoare
logics 
Nip��� Kle��� Ohe���� This is just a random selection and not a complete list�
We will now discuss the basic principles of language embeddings�

The literature 
BGG��	� distinguishes two di�erent kinds of embeddings�

deep embeddings represent the abstract syntax of the language as a separate datatype
and de�ne the semantics using the syntax �for example as a function from syntax
to semantics��

shallow embeddings de�ne the semantics directly� i�e� each construct in the language
is represented directly by some function on a semantic domain�

The di�erence is best explained by an example�
Assume we want to embed boolean expressions consisting of variables� conjunctions

and disjunctions in Isabelle�HOL� Let us call them positive boolean expressions� The
semantics of a boolean expression is a function from environments to boolean values�
where environments map variables �we assume we are given a type var of variables� to
boolean values�

types env � var � bool
sem � env � bool

A shallow embedding represents the semantics only� i�e� it identi�es the positive boolean
expressions with type sem� Each language construct is directly de�ned in terms of
semantics�

var p � �e� e p� and b� b� � �e� b� e � b� e� or b� b� � �e� b� e � b� e

Thus the boolean expression �p�q� �where p and q are variables� is represented directly
by the HOL function �e� e�p� � e�q� of type sem�

A deep embedding requires a de�nition of the syntax� usually as an inductive type�

datatype pbex � Var var j And pbex pbex j Or pbex pbex

The semantics is de�ned by an explicit function eval 

 pbex � sem�

eval �Var p� � �e� e�p�
eval �And b� b�� � �e� �eval b� e � eval b� e�
eval �Or b� b�� � �e� �eval b� e � eval b� e�



The boolean expression �p� q� is represented by And �Var p� �Var p� and applying eval

to it yields its semantics �e� e�p� � e�q��
Both embeddings allow proofs about individual boolean expressions� for example

�p � p � p�� In a shallow embedding this reduces �via extensionality of functions� to
the idempotence of � in HOL�

���e� e�p� � e�p�� � ��e� e�p��� � �e�p� � e�p� � e�p�� � True

The deep embedding has to be reduced to the shallow one �rst before the truth emerges�

�eval�And �Var p� �Var p�� � eval�Var p�� � ���e� e�p� � e�p�� � ��e� e�p��� � True

This indicates that deep embeddings are often harder to work with than shallow ones
because the syntax has to be translated into semantics �rst�

However� the tide turns against shallow embeddings when we consider general state�
ments about the embedded language as a whole� i�e� meta�theory� For example� we
would like to prove monotonicity of positive boolean expressions� To this end we order
bool and env in the canonical way� i�e� False � True and env is ordered pointwise�

x 	 y � x �� y
e� 	e e� � 
p� e��p� 	 e��p�

In the deep embedding� monotonicity of pb 

 pbex is expressed as

e� 	e e� �� eval pb e� 	 eval pb e�

and proved by induction on pb� The Var�case is straightforward by assumption�

eval �Var p� e� � e��p� 	 e��p� � eval �Var p� e��

The And�case �and similarly the Or�case� follows from the monotonicity of � in HOL
using the induction hypotheses�

eval �And x y� e� � eval x e� � eval y e� 	 eval x e� � eval y e� � eval �And x y� e�

In the shallow embedding however� monotonicity of f 

 sem� i�e�

e� 	e e� �� f e� 	 f e�

is not true because sem contains the semantics of all boolean expressions� not just the
positive ones� The restriction to variables� conjunctions and disjunctions is not part
of the speci�cation and thus not available for an inductive proof� Hence it is folklore
that shallow embeddings do not allow meta�theory� However� this is not true as Felty
et al	 
FHR��� have shown� one can often de�ne the required subset of the semantics
via an inductive de�nition that follows the syntax� In our case we de�ne a subset Pbex
of denotations of positive boolean expressions�

consts Pbex 

 sem set

inductive

var p � Pbex

b� � Pbex b� � Pbex

and b� b� � Pbex

b� � Pbex b� � Pbex

or b� b� � Pbex

Monotonicity of Pbex is expressed as b � Pbex �� e� 	e e� �� b e� 	 b e� and proved
by rule induction on b � Pbex� The proof follows the one above for pbex very closely�

It should be clear from our discussion that a shallow embedding is advantageous
for reasoning about individual elements of the embedded language� For meta�theory
a deep embedding is the natural choice� but combining a shallow embedding with an
inductive de�nition may also work� Our Java formalization presented below is a deep
embedding because of our interest in meta�theory and also because the semantics is
de�ned operationally rather than denotationally� Thus there is no direct semantic
counterpart for each syntactic construct�



� �Java

This section describes the �Java formalization and one of its applications� a proof of
type�safety� After motivating the subset of Java that we chose and giving a short survey
of related work� we present the abstract syntax and operational semantics of �Java along
with the corresponding well�formedness and well�typedness conditions� Subsequently
we introduce the notions required for the type�safety proof and state the main results�

�	
 Why �Java


Being a general�purpose programming language� Java has �almost� all features a state�
of�the�art language is supposed to o�er� Formalizing all of them is possible� but the
amount of detail and the complexity of several aspects like concurrency would make it
involved and di�cult to handle� Thus a typical formalization like Bali 
ON��� on the
one hand tries to cover the main features of Java� but on the other hand intentionally
leaves out many bulky but uninteresting details� For didactic purposes� the result is
still too involved� So we further reduced Bali to the bare essentials of Java� namely an
imperative language with classes� �Java�

�	� Other approaches to formalizing Java

There are several formalizations of Java� the pioneering one being of Drossopoulou and
Eisenbach 
DE���� It gives a transition ��small�step�� semantics of the core object�
oriented features of Java and a proof of type�safety� which has been extended later

DE��� to include exception handling� Syme has embedded this paper�and�pencil work
in his theorem prover DECLARE 
Sym���� correcting several �aws that came up thanks
to the rigorous machine�checked treatment� In parallel� we have developed the �rst
version of our embedding in Isabelle�HOL 
NO��� covering a similar fraction of Java
but using an evaluation ��big�step�� semantics� B�orger and Schulte have formalized �on
paper� almost the full Java language as an Abstract State Machine 
BS���� Jacobs el al�
translate Java code directly into the PVS higher�order logic �as a shallow embedding�
in order to conduct program veri�cation 
JHvB�����

�	� Design goals

For any formalization� it is important to aim at the following general design goals�

� readability �this is the basic requirement� as otherwise handling and applying the
formalization would be severely hampered��

� faithfulness to the original language speci�cation�

� succinctness and simplicity�

� maintainability and extendibility�

� adequacy for applications like theorem proving�

The reader is invited to keep them in mind while reading the subsequent sections and
to judge herself how far we have reached them�



�	� Abstract syntax of �Java

�	�	
 Programs

A key idea of this formalization is to separate declarations from code� Not only is
their structure inherently di�erent� they can also be described in isolation from each
other� Since furthermore the structures of declarations for �Java and its �JVM are
identical �from an abstract point of view�� it is pro�table to formalize the declarations
in a generic style and supplying the actual method bodies �i�e�� code� as a parameter�

As a �Java program consists of a series of class declarations� we model with a
�parameterized� type that stands for a list of class declarations�

types � prog � � cdecl list

The parameter � is the type of method bodies� The list representation is not the most
abstract one possible� since it retains the immaterial order of the class declarations� Yet
its advantages are that it implies a �niteness constraint on the number of declarations
and that the canonical conversion to a mapping yields a simple lookup mechanism�

A class declaration consists of the class name �of type cname which does not need
to be speci�ed further�� the name of the superclass �for all classes except Object�� and
the lists of �eld and method declarations�

types � cdecl � cname � cname option � fdecl list � � mdecl list

Field declarations simply give the �eld name and type�

types fdecl � vname � ty

whereas method declarations give the method signature �consisting of the method name
and the list of parameter types�� the result type� and the method body� which is the
parameter motivated above�

types sig � mname � ty list
� mdecl � sig � ty � �

�	�	� Values and types

The variety of values and their corresponding types in �Java is limited to the most
important ones� basically Booleans� integers� and class references�

datatype val � Unit
j Bool bool
j Intg int
j Null
j Addr loc

datatype ty � void
j boolean
j int
j NT
j Class cname

Here NT stands for the null type� i�e� the common type of all Null references� We have
invented the type void �with the single dummy value Unit� for convenience in modeling
the �non�existing� result of void methods�

Function default val� de�ned by cases on ty� is used for variable initialization� Func�
tion typeof �of HOL type �loc � ty option� � val � ty option�� determining the dynamic
type of a value� is used for the de�nition of conformance in x����	� where the argument
dt is used to dermine the existence and the �class� types of objects on the heap�



primrec default val void � Unit
default val boolean � Bool False
default val int � Intg �
default val NT � Null
default val �Class C� � Null

primrec typeof dt Unit � Some void
typeof dt �Bool b� � Some boolean
typeof dt �Intg i� � Some int
typeof dt Null � Some NT
typeof dt �Addr a� � dt a

�	�	� Looking up method and �eld declarations

The method lookup function

method 

 � prog � cname � �sig � cname � ty � ��

serves as a typical example of a de�nition by well�founded recursion� The intended
result of method ���C� sg is Some �D�T�b� where class D is the �rst class �traversing the
subclass hierarchy upwards starting from C� that declares a method with signature
sg� which has return type T and body b� Exploiting the fact that the inverse subclass
relation �see x������ is well�founded� the following characteristic equation can be derived
from the de�nition of method�

wf ��subcls� ����� ��
method ���C� � case map of � C of None � empty

j Some �sc�fs�ms� �
�case sc of None � empty j Some D � method ���D�� �
map of �map ���s�m�� �s�C�m�� ms�

A similar de�nition is used for

�elds 

 � prog � cname � ��vname � cname� � ty� list

The formalization given up to here is identical for �Java and our �JVM� Now comes
the part of the abstract syntax that is �Java�speci�c�

�	�	� �Java statements and expressions

The �Java statements are just the canonical ones for imperative languages� except that
any expression may be used as statement and assignments are considered as expressions
since they yield a result� Next to literals� local variables and type casts� the �Java ex�
pressions contain the actual object�oriented features� namely class creation� �eld access
and assignment� and method call� We model the this expression by a special non�
assignable local variable of that name� The Isabelle�HOL datatype de�nition of the
abstract syntax intentionally looks pretty much like a BNF speci�cation�

datatype stmt � Skip
j expr
j stmt� stmt
j if �expr� stmt else stmt
j while �expr� stmt

and expr � new cname
j �ty�expr
j val
j vname
j vname �� expr
j fcnamegexpr�vname
j fcnamegexpr�vname �� expr
j expr�mname�fty listgexpr list�



�	�	� Program annotations

The parts in braces f� � �g in the above de�nition of expressions are called type anno�
tations� Strictly speaking� they are not part of the source language but are normally
computed by the compiler during type checking� Their purpose is to serve as auxil�
iary information that is crucial for the resolution of method overloading and the static
binding of �elds� with the following meaning�

Static overloading of methods� in the method call obj�m�fformal�param�tysgparams��
formal�param�tys stands for the formal parameter types of the maximally speci�c
method applicable w�r�t� the static types of obj and params� During execution�
�m�formal�param�tys� is used for method lookup�

Static binding of �elds� in fCgobj�f� C is the class declaring the �eld f w�r�t� the
static type of obj� During execution� �C�f � is used for �eld selection�

In our language embedding� we do not distinguish between the source language
and the augmented internal form since this would lead to a considerable amount of
redundancy� Instead� we assume that the annotations are added beforehand �by some
preprocessing step� and checked by the typing rules given in x����
 below�

�	�	� Method bodies

Finally� the de�nitions of statements and expressions being available� we can formalize
�Java method body declarations� We de�ne them as a tuple of parameter names� local
variable declarations� a statement comprising the actual code block� and an expression
to be returned�there is no return statement in �Java�

types java mb � vname list � �vname � ty� list � stmt � expr

�	� Type system of �Java

The type system consists of the types already introduced� some basic relations between
types �in particular� classes� and the actual typing rules for expressions and statements�

�	�	
 Type relations

Being an object�oriented language� �Java of course features the subclass relation� which
is extracted w�r�t� a given program ��

� subcls� � � f�C�D� � �r� �C�Some D�r� � set �g
� ��C
cD � �C�D� � �subcls� ���

Built on the subclass relation we de�ne the important widening relation� where
��S
T means that in the context � value of type S may be used in a place where a
value of type T is expected� We give this relation via an inductive de�nition�

inductive

��T 
 T ��NT 
 Class C

��C
cD

��Class C 
 Class D



�	�	� Typing judgments

There are three forms of typing judgments� namely for well�typed statements� expres�
sions� and expression lists�
java mb env � stmt

p
java mb env � expr 

 ty
java mb env � expr list �

	 ty list

The judgments include a context called environment that consists of the program and
type bindings for local variables currently in scope�

types � env � � prog � �vname � ty�

The actual type parameter for �Java environments is java mb�

�	�	� Typing rules

The typing rules for most �Java terms are straightforward� thus we give only one typical
example� namely the well�typedness of while loops�

E�e 

 boolean E�s p

E�while �e� s
p

More interesting are the rules for �eld access and method call�
The �eld access rule enables static binding by calculating the annotation C with the

help of the auxiliary function �eld � map of � �map ����fn�fd��ft�� �fn��fd�ft���� � �elds as
follows� E�a 

 Class D

�eld �fst E�D� fn � Some �C�fT�

E�fCga�fn 

 fT

In a similar fashion� method overloading is resolved in the method call rule� This
involves the requirement that the max spec auxiliary function �given below� yields a
most speci�c applicable method�

E�e 

 Class C E�ps �

	 pTs
max spec �fst E� C �mn�pTs� � f�� �rT��fpTs�g

E�e�mn�ffpTsgps� 

 rT

�	�	� Maximally speci�c methods

Following the involved de�nition in the Java speci�cation� max spec � C sig determines
the set of all maximally speci�c applicable methods of signature sig available for class
C in program �� max spec � C sig �
fm� m � appl methds � C sig � �
m��appl methds � C sig� more spec � m� m �� m��m�g

The partial order on methods used for max spec is given by the relation more spec ��
which states that the de�ning classes as well as all parameter types are �pointwise� in
widening relation�

more spec � ��d� ��pTs� ��d�� ��pTs�� � ��d
d� � list all� ��T T �� ��T
T �� pTs pTs�

list all� P xs ys � length xs � length ys � �
�x�y��zip xs ys� P x y�

The set of methods �available for class C in program �� applicable for signature �mn�pTs�

are those with name mn and �tting parameter types�

appl methds � C �mn�pTs� � f��Class D�rT��pTs���
method ���C� �mn�pTs�� � Some �D�rT� � �
list all� ��T T �� ��T
T �� pTs pTs�g



�	� Well�formedness of both �Java and �JVM programs

Now we are equipped to express the well�formedness conditions on programs� which are
part of the static checks performed by the compiler�

�	�	
 Programs

A program is well�formed i� it contains class Object �for simplicity� we model this class
as if it were user�de�ned� and all class declarations are well�formed and no class is
declared twice�

wf prog wf mb � � ObjectDecl � set � �
�
c�set �� wf cdecl wf mb � c� � nodups �map fst ��

ObjectDecl � �Object� �None� �	� �	��

Note that this de�nition is parameterized with wf mb� which is aimed to be the well�
formedness predicate for method bodies �given in x����
 below��

A class declaration �C�sc�fs�ms� is well�formed �in �� i�

� all types in the �eld declarations fs are legal�

� no �eld is declared twice�

� all method declarations in ms are well�formed�

� no method is declared twice�

� only class Object has no superclass�

� if C extends D then

	 D must be declared in ��
	 D must not be a subclass of C� and
	 if a method in ms overwrites one higher up� its return type must widen to

the return type higher up�

Formally�

wf cdecl wf mb � �C�sc�fs�ms� �
�
� �T��set fs� is type � T� �
nodups �map fst fs� �
�
m�set ms� wf mdecl wf mb � C m� �
nodups �map fst ms� �
case sc of None � C � Object
j Some D � D � set �map fst �� �

� ��D
cC �

�sg�T� ��set ms� 
T �� method���D� sg � Some� �T �� � �� ��T 
 T �

�	�	� Methods �both �Java and �JVM�

The de�nition of well�formed classes relies on the well�formedness conditions for method
declarations� which in turn rely on the well�formedness of method heads� the well�
formedness parameter for method bodies� and the simple is type predicate testing the
existence of a class�

wf mdecl wf mb � C �sig�rT�b� � wf mhead � sig rT � wf mb � C �sig�rT�b�
wf mhead � �mn�pTs� rT � �
T�set pTs� is type � T� � is type � rT
is type � T � case T of Class C � C � set �map fst �� j � True



�	�	� Method bodies ��Java�

A method with signature �mn�pTs�� return type rT� and body �pns�lvars�blk�res� is well�
formed within class C in � i�

� there are as many parameter names pns as parameter types pTs�

� the names of parameters and local variables are unique and do not clash�

� all types of the local variables lvars are legal�

� in the context of �� the local variables and the current class C� the code block blk

is well�typed and the type of the result expression res widens to rT�

Formally�

wf java mdecl � C ��mn�pTs��rT��pns�lvars�blk�res�� �
length pns � length pTs �
nodups pns � nodups �map fst lvars� �
�
pn�set pns� map of lvars pn � None� �
�
�vn�T��set lvars� is type � T� �
let E � ���map of lvars�pns� ��	pTs��this��Class C��
in E�blk p � ��T� E�res

T � ��T
rT�

Note that in contrast to Java� it is not required that local variables are initialized
explicitly� the operational semantics does so implicitly upon method invocation�

Predicate wf java mdecl serves as actual parameter of wf prog for �Java programs�

wf java prog � � wf prog wf java mdecl �

�	� Operational semantics of �Java

For the semantics of �Java we use an operational description� as this style is the same as
the original speci�cation of Java 
GJS���� easy to understand� and almost immediately
executable�

�	�	
 Program state

A �Java state consists of the local variables and the heap� where the heap is a map�
ping from locations to objects� where objects consist of a class name and the instance
variables�

types obj � cname � �vname � val�
heap � loc � obj
locals � vname � val
state � heap � locals

An extended state is augmented with an optional exception� Here we need only a few
of the language�de�ned exceptions of Java�

types xstate � xcpt option � state

datatype xcpt � NullPointer
j ClassCast
j OutOfMemory

Usually the meta�variables � and s are of type state and xstate respectively�



�	�	� Evaluation judgments

We deliberately chose an evaluation semantics as opposed to a transition semantics�
since it is more abstract� less verbose and more convenient for proofs�

Analogously to typing judgments� there are three forms of evaluation judgments�
statements transform an initial state to a �nal one� expressions additionally yield a
value� and expression lists yield a list of values�
java mb prog � xstate �stmt� xstate

java mb prog � xstate �expr�val� xstate

java mb prog � xstate �expr list��	val list� xstate

�	�	� Evaluation rules and exception propagation

For each form of judgment� there is a general rule stating that exceptions propagate�
e�g�

���Some xc��� �c� �Some xc���

All other rules assume that the initial state is exception�free� but any further �interme�
diate� states may be exceptional� like s� and s� in the �otherwise trivial� composition
rule�

���None��� �c�� s� ��s� �c�� s�

���None��� �c�� c�� s�

�	�	� Method call rule

Most of the evaluation rules are more or less straightforward and are omitted here� The
most complex rule is that for method calls�

���None��� �e�a� s� ��s� �ps��	pvs� �x�h�l�

dynT � fst �the �h �the Addr a���

� � �pns�lvars�blk�res� � the �method ���dynT� �mn�pTs��

���np a x� h� �init vars lvars��pns� ��	pvs��this��a�� �blk� s�
��s� �res�v� �x��h�� �

���None��� �e�mn�fpTsgps��v� �x��h��l�

where

the Addr�Addr l� � l
np v x � if v � Null � x � None then Some NullPointer else x
init vars � map of � map ���n�T�� �n�default val T��

Note that local variables are initialized with their default values� in contrast to Java�
where the programmer must initialize them explicitly�

�	� Type�safety

�	�	
 The notion of type�safety

A programming language is type�safe i� its type system prevents type mismatches� i�e�
situations where dynamically produced values do not conform to the corresponding
statically determined types� A language may be not type�safe if it has no type system
at all �e�g�� Smalltalk� or the type system is unsound �e�g�� Ei�el�� A consequence of
type�safety for object�oriented languages is that method calls always �nd an applicable
method� Note that type�safety �usually� does not cover division by zero� nontermina�
tion� etc�



�	�	� Conformance of values to types

Central to the proof of type�safety is an invariant stating that all �run�time� values
conform to their declared types� i�e� the types of the values are subtypes of the declared
types� This notion is lifted pointwise from single values to maps of values and further to
the whole state conforming to a type environment� The conformance judgments have
the form

� prog�heap� val 


 ty
� prog�heap��� � val��


	�� � ty�

state 


 java mb env

and the de�nitions

obj ty o � case o of None � None j Some �C�fm� � Some C

��h�v 


T � �S� typeof �obj ty � h� v � Some S � ��S
T
��h�vm�


	Tm � 
n T� Tm n � Some T �� ��v� vm n � Some v � ��h�v 


T�
�h�l�


���lT� � �
a C fm� h a � Some�C�fm� �� ��h�fm �


	 map of��elds���C��� �

��h� l �


	 lT

�	�	� Proof of type�safety

A simple but important lemma for type�safety �not considering garbage collection� is
the invariant that during execution any object once created is never lost and retains its
type� This is formalized as the heap extension relation

h�h� � 
a C fm� h a � Some�C�fm� �� ��fm�� h� a � Some�C�fm���

The invariant is proved by simultaneous rule induction� such that the proof goal is

����x�h�l� � c � �x��h��l �� �� h�h� �
����x�h�l� � e � v � �x��h��l �� �� h�h� �
����x�h�l� �es��	vs� �x��h��l �� �� h�h�

The main theorem states that for well�formed programs� execution of well�typed
statements and expression preserves conformance�

wf java prog � ��
����x��� �c� �x����� ��


lT� �


���lT� �� ���lT��cp ��
��


���lT�� �

����x��� �e�v� �x����� ��

lT� �


���lT� �� 
T� ���lT��e

T ��

��


���lT� � �x� � None �� ��fst ���v 


T�� �
����x��� �es��	vs� �x����� ��


lT� �


���lT� �� 
Ts� ���lT��es�

	Ts ��
��


���lT� � �x� � None �� list all� ��v T� G�fst ���v 


T� vs Ts��

This theorem is proved again by simultaneous rule induction and requires a large
amount of auxiliary lemmas� The part concerning statements may be re�phrased in a
more readable form as

wf java prog � � E � ���lT� � E � c
p � � � � ��� �c� � ���� � � 


 E ��

�� 


 E

An almost direct consequence is that �method not understood� run�time errors
cannot occur�




 �JVM

�	
 The �Java Virtual Machine

The source language Java comes with an abstract machine known as the Java Virtual
Machine �JVM � 
LY���� Its instruction set is a high�level assembly language speci�cally
tailored for Java� It is meant to be the standard target language for Java compilers� In
this subsection we present the �JVM� an abstract version of the JVM geared towards
�Java� The main simpli�cation in our approach is the use of �Java program skeletons
for holding �JVM instruction sequences� This is the reason why type prog in x�����
above is de�ned in a generic way and is parameterized by the actual method code� As
a result� we can avoid the specialized �le formats ��class �les�� described in the JVM
speci�cation 
LY���� Their main purpose is to record the type information present in
the source programs�

�	
	
 Related work

There are a number of operational de�nitions of variants of the JVM� Our model is
based on the work of Pusch 
Pus��� which in turn is based on the work of Qian 
Qia����
Hartel et al	 
HBL��� independently arrive at a similar formalization� A description
based on Abstract State Machines is given by B�orger and Schulte 
BS����

�	
	� �JVM instructions

The �JVM is a stack machine� For each method invocation there is an operand stack
for expression evaluation and a list of local variables �which includes the parameters��
The formal model is described in x����
�

Following the JVM speci�cation 
LY���� we have structured the instructions into
several groups of related instructions� describing each by its own execution function�
This makes the operational semantics easier to understand� since every function only
works on the parameters that are needed for the corresponding group of instructions�

datatype instr � LS load and store
j CO create object
j MO manipulate object
j CH check object
j MI meth inv
j MR meth ret
j OS op stack
j BR branch

We will now discuss these groups brie�y� Instruction names mostly follow the JVM
nomenclature�

� datatype load and store � Load nat j Store nat j Bipush int j Aconst null
Load n pushes the contents of local variable n on the stack� Store n pops the top
from the stack and puts it into local variable n� Bipush i pushes integer i on the
stack� Aconst null pushes the null reference on the stack�

� datatype create object � New cname

New C creates a new object of class C and initializes its �elds according with their
default values�



� datatype manipulate object � Get�eld vname cname j Put�eld vname cname

Get�eld x C uses the top of the stack as the address of an object of class C and
replaces that address with the value of �eld x of the object� Put�eld x C expects
both a value and an address on the stack� puts the value into �eld x of the object
and pops both value and address from the stack�

� datatype check object � Checkcast cname

Checkcast C checks if the top of the stack is a reference to an object of class C �or
a subclass of C� and throws an exception if not�

� datatype meth inv � Invoke mname �ty list�

Invoke mn ts interprets the top of the stack as a reference to an object and calls
the method determined by the class of that object and the signature �mn�ts��

� datatype meth ret � Return

Return returns from a method invocation� The result value is the top of the stack�

� datatype op stack � Pop j Dup j Swap
The instructions pop� duplicate and swap the top of the stack�

� datatype branch � Goto int j Ifcmpeq int

Goto is unconditional� whereas Ifcmpeq compares and pops the two top elements
of the stack and only performs the jump if they are equal� The integer argument
is added to the current program counter�

This is just a representative sample of instructions which is su�cient to serve as a target
language for �Java� Because some features are missing �e�g� arrays and interfaces� and
because we have restricted the instruction set to the essentials� some groups have become
singletons� Type conversion instructions have disappeared altogether because we have
only one numeric type� int� Arithmetic is missing �as in �Java� but would be trivial to
include� There are also some subtle di�erences to the corresponding JVM instructions�

� A number of instructions such as Load� Store and Return are overloaded� i�e� they
work for all types� This streamlines the instruction set without� as we shall see�
compromising type�safety�

� Invoke does not carry the name of the class de�ning the invoked method� This
complicates the proof of type�safety� as discussed in x��
�

�	
	� Operational semantics of �JVM instructions

As discussed above� a �JVM program is simply a �Java program where the method
bodies consist of instruction sequences� Thus we instantiate our program skeleton type
prog once more�

types bytecode � instr list
jvm prog � �nat � bytecode� prog

The natural number in the method body simply says how many local variable this
method has �which could be computed by scanning the bytecode�� It is used when
allocating stack space upon method invocation� The JVM also records the maximum
stack size� which we have chosen to leave open�



The �JVM state is formalized as a triple consisting of an optional exception� the
heap� and the frame stack� This is just like in �Java�s xstate� except that the local
variables are replaced by the frame stack� For each active method invocation� there
exists a frame containing its own operand stack� a list of local variables� the name of
the current class� the signature of the current method� and the program counter�
types jvm state � xcpt option � heap � frame list

frame � opstack � locvars � cname � sig � nat
opstack � val list
locvars � val list

Note that xcpt� val and heap are inherited from �Java� The local variables are laid out
in the format �this�p�����pm�l�����ln	� where this is the value of this� p� through pm are
the parameters of the method� and l� through ln are the remaining local variables�

Execution of a �JVM instruction transforms the machine state� A raised exception
or an empty frame stack means the �JVM is in a �nal state�remember that there
is no exception handling� If the machine has not yet reached a �nal state� function
exec performs a single execution step� it calls an appropriate execution function �e�g�
exec mo� and incorporates the result in the new machine state� To model the distinction
between �nal and non��nal states� the result type of exec is jvm state option� None is
returned if there is no successor state�
exec 

 jvm prog � jvm state � jvm state option

exec��� �None� hp� �stk�loc�C�sig�pc��frs�� �
Some �case snd�snd�snd�the�method ���C� sig���� � pc of

MO ins �
let �xp��hp��stk��pc�� � exec mo ins hp stk pc
in �xp��hp���stk��loc�C�sig�pc���frs�

j � � � � � � ��
exec��� �xp� hp� �	�� � None
exec��� �Some xp� hp� frs�� � None

For example� the operational semantics of Get�eld looks like this�
exec mo 

 manipulate object � heap � opstack � nat �

�xcpt option � heap � opstack � nat�

exec mo �Get�eld F C� hp stk pc �
let oref � hd stk�

xp� � if oref�Null then Some NullPointer else None�
�oc�fs� � the�hp�the Addr oref���
stk� � if xp��None then the�fs�F�C����tl stk� else tl stk

in �xp�� hp� stk�� pc���

F is a �eld name and C the de�ning class of the �eld� The top of the operand stack
stk should contain a reference to a class instance stored on the heap hp� In case of
a null reference an exception is thrown� Otherwise� the �elds fs are extracted from
the referenced object� The content of the �eld determined by �F�C� is pushed on the
operand stack� Finally� the program counter pc is incremented�

But what if the stack is empty upon execution of Get�eld� The JVM speci�cation
describes the operational semantics for each instruction in the context of a JVM state
where several constraints hold� e�g� there must be an appropriate number of arguments
on the operand stack� or the operands must be of a certain type� If the constraints
are not satis�ed� the behavior of the JVM is unde�ned� In our approach� we formalize
the behavior of �JVM instructions with total functions� If a state does not satisfy the
constraints of the current instruction� the result is de�ned but we don�t know what it
is� For example� the top of an empty operand stack is hd �	� but the de�nition of hd

�which we have not shown� only says that hd �	 is some arbitrary but �xed value�



Finally� execution of the entire code consists of repeated application of exec as long

as the result is not None� The relation � � s
jvm�� t should be read as �In the context

of a �JVM program �� the execution starting with state s leads to t in �nitely many
steps�� Its de�nition uses the re�exive transitive closure of successful execution steps�

� � s
jvm�� t � �s�t� � f�s�s��� exec���s� � Some s�g�

�	� The Bytecode Veri�er

An essential part of the JVM is the bytecode veri�er that statically checks several safety�
relevant constraints before execution of the code� One main aspect of the bytecode
veri�er is to statically derive the types of all runtime data and check that all instructions
will receive arguments of the correct type� Hence the bytecode veri�er can be seen as
a type checker �more precisely� a type reconstructor� for the JVM� Therefore it has
become customary to separate the bytecode veri�er into a speci�cation in terms of
a type system and an implementation as a data �ow analyzer� Thus the correctness
argument for bytecode veri�cation is split in two parts� a type safety proof relating the
type system and the operational semantics� and an implementation proof relating the
type system and the data �ow analyzer�

�	�	
 Related work

Our approach for the proof of type�safety builds on the work of Qian 
Qia��� who
covers a considerably larger subset of the JVM� Closely related is the work by Stata
and Abadi 
SA���� who treat subroutines� and the work by Freund and Mitchell 
FM����
who treat object initialization� The correctness of the data �ow analyzer is analyzed
by Goldberg 
Gol��� and� more abstractly� Nipkow 
Nip��b�� An unorthodox approach
to bytecode veri�cation via model checking is reported by Basin et al	 
BFPV����

�	�	� Types and type relations

The static types for the �JVM are the same as for �Java� i�e� of type ty� Thus we
can reuse a number of concepts from the �Java level� The main distinction is that the
JVM allows the type of local variables to change during execution� If at a particular
instruction a local variable may hold values from either of two incompatible types
�because two execution paths lead to this instruction�� this local variable will have type
�unusable� at this point� In our formalization we work with the HOL type ty option�
which is either None� representing the unusable type� or Some T� representing type T�
We call these types static types because they are the result of a static analysis of the
program�

The subtype relation is lifted from types to static types as follows� any static type
is a subtype of None �because None represents the set of all types�� and otherwise the
subtype relation on ty is simply lifted�

� 
o 

 jvm prog � ty option � ty option � bool
�� � 
o None� � True
�� � None 
o Some T� � False
�� � Some T 
o Some T �� � �� � T
T ��



A state type contains type information for all local variables and the operand stack
at a certain program point� The local variables may contain unusable values� whereas
on the operand stack only usable values may be stored�

locvars type � ty option list
opstack type � ty list
state type � opstack type � locvars type

We extend the predicate 
o in two steps to state types�

� 
l 

 jvm prog � locvars type � locvars type � bool
� � LT 
l LT

� � length LT � length LT � � �
�t�t���set �zip LT LT ��� � � t 
o t��

� 
s 

 jvm prog � state type � state type � bool
� � s 
s s� � � � map Some �fst s� 
l map Some �fst s�� � � � snd s 
l snd s�

Type information for the entire code of a method is collected in a value of method
type� A value of class type maps a method signature to a value of method type� and a
value of program type maps a class name to a value of class type�

method type � state type list
class type � sig � method type
prog type � cname � class type

�	�	� Static well�typedness

Given some instruction sequence� the bytecode veri�er has to infer type information for
each instruction� i�e� a method type� such that the whole sequence is well�typed� We
concentrate on what well�typedness means and ignore the computation of the method
type� Let us start by looking at an example of a well�typed instruction sequence�

instruction stack local variables
Load � �	 �Some�Class B�� Some�int�	

Dup �Class A	 �Some�Class B�� None	

Store � �Class A� Class A	 �Some�Class B�� None	

Invoke m �	 �Class A	 �Some�Class B�� Some�Class A�	

Goto �� �Class A	 �Some�Class B�� Some�Class A�	

On the left the instructions are shown and on the right the type of the stack elements
and the local variables �opstack type and locvars type above�� The type information
attached to an instruction characterizes the state before execution of that instruction�
We assume that class B is a subclass of A and that A de�nes a method m which takes
no arguments and returns a value of type A�

Execution starts with an empty stack and the two local variables hold a reference
to an object of class B and an integer� The �rst instruction loads local variable �� a
reference to a B object� on the stack� The type information associated with following
instruction may puzzle at �rst sight� it says that a reference to an A object is on the
stack� and that local variable � has become unusable� This means the type information
has become less precise but is still correct� a B object is also an A object� and an integer
is now classi�ed as unusable� Formally� Class B 
 Class A and Some�int� 
o None� The
reason for these more general types is that the predecessor of the Dup instruction may
have either been Load � or Goto ��� Since there exist di�erent execution paths to reach
Dup� the type information of the two paths has to be �merged�� The type of the second
local variable is either int or Class A� which are incompatible� i�e� the only common
supertype is None�



Apart from this complication� the type of the stack elements and the local variables
changes as expected� It now remains to specify formally when an instruction sequence
is well�typed w�r�t� a method type�

We start by de�ning a predicate that checks whether an instruction at a certain
program point is well�typed with respect to a given method type� Additionally� it
checks several other constraints� e�g� an index to a local variable must not be greater
than the number of local variables and the program counter must remain within the
current method� These constraints are indispensable to carry out the soundness proof
for the bytecode veri�er� The type�checking predicate makes a case distinction over the
instruction to be executed at the current program point� We only show the Load case�

wt instr 

 instr � jvm prog � ty � method type � nat � nat � bool
wt instr �LS�Load i�� � sts max pc pc �
let �ST�LT� � sts�pc
in pc�� � max pc � i � length LT �

��T� LT �i � Some T � � � �T�ST � LT� 
s sts��pc����

The above predicate enforces that there is a next instruction �pc�� � max pc�� that the
local variable to be loaded exists �i � length LT� and is usable �LT �i � Some T�� and
that the new state type �T�ST� LT� is a subtype of the state type associated with the
successor instruction� We cannot ask for equality here because that next instruction
can have other predecessors as well�

The well�typedness checks for all instructions except Return follow the above schema�
there are some instruction�speci�c conditions and the general requirement that for each
successor instruction pc� and corresponding successor state st� both pc� � max pc and
� � st� 
s sts�pc� hold�

Step by step� we now extend the notion of well�typedness to methods� classes� and
programs� At the start of the execution of a method� the operand stack must be empty�
and the local variables must contain values according to the type of the current class
C �local variable � holds this�� the parameter types pTs of the current method� and
None for all other local variables� because the �JVM �as the JVM� does not initialize
the other local variables automatically �replicate i x produces a list of i copies of x��

wt start 

 jvm prog � cname � ty list � nat � method type � bool
wt start � C pTs mxl 
 �

� � ��	� Some�Class C���map Some pTs���replicate mxl None�� 
s 
��

The body of a method must be non�empty� A method is well�typed with respect to a
method type 
� if it is well�typed at the beginning of the method body� and if for every
program point in the method body the instruction is well�typed�

wt method 

 jvm prog � cname � ty list � ty � nat � instr list � method type � bool
wt method � C pTs rT mxl ins 
 �

let max pc � length ins
in � � max pc � wt start � C pTs mxl 
 �
�
pc�max pc� wt instr �ins�pc� � rT 
 max pc pc�

As jvm prog is an instance of the parameterized type prog of program skeletons�
well�typedness of �JVM programs is de�ned with the help of the parameterized well�
formedness predicate wf prog for program skeletons �see x������� We simply feed a
suitably instantiated version of wt method to wf prog�

wt jvm prog 

 jvm prog � prog type � bool
wt jvm prog � � �

wf prog ��� C �sig�rT�maxl�b�� wt method � C �snd sig� rT maxl b �� C sig�� �

This is in complete analogy with the de�nition of wf java prog in x����
�



�	� The proof of type�safety

A bytecode veri�er �or more abstractly� a type system� statically determines the types
of all runtime data� A type system is sound if the statically predicted type gives a
correct approximation of the runtime value produced during execution� Thus we �rst
need to de�ne this approximation relationship for the various runtime data and types
in the �JVM� This means lifting the relation 


 already de�ned at the �Java level
�see x����	� to complex data structures containing values and types�

The unusable type None approximates any value� a static type Some T approximates
value v if v conforms to T�

approx val 

 jvm prog � heap � val � ty option � bool
approx val � h v None � True
approx val � h v �Some T� � ���h�v 


T�

This relation is lifted pointwise to local variables and the operand stack�

approx loc 

 jvm prog � heap� val list � locvars type � bool
approx loc � hp loc LT � length loc � length LT �

�
�val�t��set�zip loc LT�� approx val � hp val t�

approx stk 

 jvm prog � heap � opstack � opstack type � bool
approx stk � hp stk ST � approx loc � hp stk �map Some ST�

The proof of type�safety follows the same pattern as the one for �Java� we show
that if we start in a correct state and execute an instruction of a well�typed program�
we again end up in a correct state� A correct state is one where the program type
approximates all the runtime data in the state� Unfortunately� this notion of a correct
state is too weak to make the above implication true�a typical example of an invariant
that needs strengthening� One has to take into account that the frames on the frame
stack are not unrelated but look roughly like this� the top element is the currently
executing frame� which can be at any program point� but the remaining frames are all
snapshots taken directly after an Invoke instruction� If we do not take this property into
account� it becomes impossible to show that the Return instruction preserves correctness
of states� Because of this di�erence between the top frame and the rest� correctness of
a state treats the top frame separately�

correct state 

 jvm prog � prog type � jvm state � bool
correct state � � �None�hp�f�fs� � � �h hp

p � �let �stk�loc�C�sig�pc� � f
in �rT maxl ins� method ���C� sig � Some�C�rT��maxl�ins�� �

correct frame � hp ��� C sig��pc� maxl ins f � correct frames � hp � rT sig fs�
correct state � � �None �hp��	� � True
correct state � � �Some x�hp�fs� � True

Correctness of a single frame requires the stack and heap data to be approximated
by the corresponding state type� Additionally� the program counter should point at a
valid instruction and the actual number of local variables should be as described by the
method de�nition�

correct frame 

 jvm prog � heap � state type � nat � bytecode � frame � bool
correct frame � hp �ST�LT� maxl ins �stk�loc�C�sig�pc� �

approx stk � hp stk ST � approx loc � hp loc LT �
pc � length ins � length loc � length �snd sig� � maxl � �



Predicate correct frames� which checks the correctness of a stack of pending frames� takes
as an argument the return type and the signature of the method executing in the frame
directly above� in order to check that it matches the information in the pending frame
below� This check is performed recursively through the frame stack�

correct frames 

 jvm prog � heap � prog type � ty � sig � frame list � bool
correct frames � hp � rT� sig� �	 � True
correct frames � hp � rT� sig� �f�frs� �

let �stk�loc�C�sig�pc� � f�
�ST�LT� � �� C sig� � pc

in
��rT maxl ins� method ���C� sig � Some�C�rT��maxl�ins�� �
��mn pTs k� pc � k�� � ins�k � MI�Invoke mn pTs� � �mn�pTs� � sig� �
��apTs D ST �� fst��� C sig��k� � �rev apTs� � �Class D� � ST � �
length apTs � length pTs �
��D� rT � maxl � ins�� method ���D� sig� � Some�D��rT ���maxl ��ins��� � � � rT�
rT �� �
correct frame � hp �tl ST� LT� maxl ins f �
correct frames � hp � rT sig frs���

This predicate needs some explanation� We discuss its body step by step� It requires
that�

� a method with signature sig is de�ned in class C�

� the instruction to be executed is preceded by an Invoke instruction which invokes
a method with signature sig� �from the frame above��

� the opstack type�part of the state type for the Invoke instruction consists of a list
of actual argument types apTs in reverse order� followed by a class D and some
remaining stack type�

� the length of the actual and the formal parameter lists agree�

� a method with signature sig� �executing in the frame above� is de�ned in some
class D� above D with a return type that is a supertype of the return type of the
actual method executing in the frame above�

� the frame itself is correct� as are the frames below� The current frame is checked
against tl ST because its operand stack does not yet contain the return value of
the method it invoked�

This is more complicated than the corresponding predicate in 
Pus��� because the Invoke

instruction does not carry around the de�ning class of the method any more� This loss
of static information �wt instr� requires the invariant �correct frames� to be strengthened�

Now we can prove the following main type�safety theorem� the preservation of the
invariant correct state�

wt jvm prog � � � correct state � � s � exec���s� � Some s� �� correct state � � s�

It is shown by a case distinction over the instructions� Most instructions are routine
and many are proved automatically �once the necessary lemmas have been identi�ed ��
Invoke� however� requires fairly subtle reasoning involving key properties of the type
system� The �nal corollary follows easily�

wt jvm prog � � � correct state � � s � � � s
jvm�� t �� correct state � � t



� Conclusion

We have given the reader a guided tour of a formal de�nition of �Java and the �JVM�
their type safety proofs and the supporting theorem proving technology� Although
�Java is a very impoverished version of Java� it should have convinced the reader of the
main claim� that theorem provers are suitable tools for the analysis of programming
language semantics� Further aspects of Java �a compiler and a Hoare logic�see 
Ohe���
for a preliminary report� have been formalized as well� thus making �Java a non�
trivial example of a formalized programming language� We believe that any serious
programming language deserves such formal de�nition and analysis�

References

�ABI���	 Peter B� Andrews� Matthew Bishop� Sunil Issar� Dan Nesmith� Frank Pfenning�
and Hongwei Xi� TPS
 A theorem proving system for classical type theory� J�
Automated Reasoning� ��
�������� �����

�And��	 Peter Andrews� An Introduction to Mathematical Logic and Type Theory� to
Truth through Proof� Computer Science and Applied Mathematics� Academic
Press� �����

�APP��	 F� Andersen� K�D� Petersen� and J�S� Pettersson� Program veri�cation using
HOL�UNITY� In J� Joyce and C� Seger� editors� Higher Order Logic Theorem
Proving and Its Applications� volume ��� of Lect� Notes in Comp� Sci�� pages
����� Springer�Verlag� �����

�BBC���	 B� Barras� S� Boutin� C� Cornes� J� Courant� J�C� Filliatre� E� Gim�enez� H� Herbe�
lin� G� Huet� C� Mu�noz� C� Murthy� C� Parent� C� Paulin� A� Sa��bi� and B� Werner�
The Coq Proof Assistant Reference Manual � Version V���� Technical Report
����� INRIA� August �����

�BCD���	 Patrick Borras� Dominique Cl�ement� Thierry Despeyroux� Janet Incerpi� Gilles
Kahn� Bernard Lang� and Val�erie Pascual� Centaur
 the system� In Third Sym�
posium on Software Development Environments� ����� �Also appears as INRIA
Report no� �����

�BF��	 Yves Bertot and Ranan Fraer� Reasoning with executable speci�cations� In TAP�
SOFT �	
� Theory and Practice of Software Development� volume ��� of Lect�
Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�BFPV��	 David Basin� Stefan Friedrich� Joachim Posegga� and Harald Vogt� Java bytecode
veri�cation by model checking� System abstract� In N� Halbwachs and D� Peled�
editors� Computer Aided Veri�cation �CAV�		
� volume ���� of Lect� Notes in
Comp� Sci�� pages �������� Springer�Verlag� �����

�BGG���	 Richard Boulton� Andrew Gordon� Mike Gordon� John Harrison� John Herbert�
and John Van Tassel� Experience with embedding hardware description languages
in HOL� In V� Stavridou� T�F� Melham� and R�T� Boute� editors� Theorem Provers
in Circuit Design� pages �������� North�Holland� �����

�BS��	 Egon B�orger and Wolfram Schulte� De�ning the Java Virtual Machine as platform
for provably correct Java compilation� In L� Brim� J� Gruska� and J� Zlatuska�
editors�Mathematical Foundations of Computer Science �MFCS�	�
� volume ����
of Lect� Notes in Comp� Sci�� pages ������ Springer�Verlag� �����

�BS��	 Egon B�orger and Wolfram Schulte� A programmer friendly modular de�nition of
the semantics of Java� In J� Alves�Foss� editor� Formal Syntax and Semantics of
Java� volume ���� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag�
�����

�C���	 Robert L� Constable et al� Implementing Mathematics with the Nuprl Proof De�
velopment System� Prentice�Hall� �����

�Chu��	 Alonzo Church� A formulation of the simple theory of types� J� Symbolic Logic�
�
������ �����

�Coh��	 Richard M� Cohen� The defensive Java Virtual Machine speci�cation� Technical
report� Computational Logic Inc�� ����� Draft version�



�DE��	 Sophia Drossopoulou and Susan Eisenbach� Is the Java type system sound�
In Proc� �th Int� Workshop Foundations of Object�Oriented Languages� January
�����

�DE��	 Sophia Drossopoulou and Susan Eisenbach� Describing the semantics of Java and
proving type soundness� In J� Alves�Foss� editor� Formal Syntax and Semantics
of Java� volume ���� of Lect� Notes in Comp� Sci�� pages ������ Springer�Verlag�
�����

�FHR��	 Amy Felty� Douglas Howe� and Abhik Roychoudhury� Formal metatheory using
implicit syntax� and an application to data abstraction for asynchronous systems�
In H� Ganzinger� editor� Automated Deduction � CADE���� volume ���� of Lect�
Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�FM��	 Stephen N� Freund and John C� Mitchell� A type system for object initialization
in the Java bytecode language� In ACM Conf� Object�Oriented Programming�
Systems� Languages and Applications� �����

�GJS��	 James Gosling� Bill Joy� and Guy Steele� The Java Language Speci�cation�
Addison�Wesley� �����

�GM��	 M�J�C� Gordon and T�F� Melham� editors� Introduction to HOL� a theorem�
proving environment for higher order logic� Cambridge University Press� �����

�Gol��	 Allen Goldberg� A speci�cation of Java loading and bytecode veri�cation� In
Proc� 
th ACM Conf� Computer and Communications Security� �����

�Gor��	 M�C�J� Gordon� HOL � a machine oriented formulation of higher�order logic�
Technical Report ��� University of Cambridge� Computer Laboratory� �����

�Gor��	 M�C�J� Gordon� Mechanizing programming logics in higher order logic� In
G� Birtwistle and P�A� Subrahmanyam� editors� Current Trends in Hardware Ver�
i�cation and Automated Theorem Proving� Springer�Verlag� �����

�HBL��	 Pieter Hartel� Michael Butler� and Moshe Levy� The operational semantics of a
Java secure processor� In J� Alves�Foss� editor� Formal Syntax and Semantics of
Java� volume ���� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag�
�����

�HC��	 Barbara Heyd and Pierre Cr�egut� A modular coding of Unity in Coq� In J� von
Wright� J� Grundy� and J� Harrison� editors� Theorem Proving in Higher Order
Logics� volume ���� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag�
�����

�JHvB���	 B� Jacobs� M� Huisman� M� van Berkum� U� Hensel� and H� Tews� Reasoning about
Java classes �preliminary report�� In ACM Conf� Object�Oriented Programming�
Systems� Languages and Applications� pages �������� �����

�JS��	 J� Joyce and C� Seger� editors� Higher Order Logic Theorem Proving and Its
Applications� volume ��� of Lect� Notes in Comp� Sci� Springer�Verlag� �����

�Kle��	 Thomas Kleymann� Hoare Logic and VDM� Machine�Checked Soundness and
Completeness Proofs� PhD thesis� Department of Computer Science� University
of Edinburgh� ����� Report ECS�LFCS��������

�Kli��	 Paul Klint� A meta�environment for generating programming environments� ACM
Transactions on Software Engineering and Methodology� ����
�������� �����

�LY��	 Tim Lindholm and Frank Yellin� The Java Virtual Machine Speci�cation�
Addison�Wesley� �����

�MG��	 Savitri Maharaj and Elsa Gunter� Studying the ml module system in hol� In T�F�
Melham and J� Camilleri� editors� Higher Order Logic Theorem Proving and its
Applications� volume ��� of Lect� Notes in Comp� Sci�� pages �������� Springer�
Verlag� �����

�Nes��	 Monica Nesi� Value�passing CCS in HOL� In J� Joyce and C� Seger� editors�
Higher Order Logic Theorem Proving and Its Applications� volume ��� of Lect�
Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�Nip��	 Tobias Nipkow� Winskel is �almost� right
 Towards a mechanized semantics text�
book� Formal Aspects of Computing� ��
�������� �����

�Nip��a	 Tobias Nipkow� Isabelle�HOL� The Tutorial� ����� Unpublished Manuscript�
Available at http���isabelle�in�tum�de�doc�tutorial�pdf�



�Nip��b	 Tobias Nipkow� Towards veri�ed bytecode veri�ers� Submitted for publication�
�����

�NO��	 Tobias Nipkow and David von Oheimb� Java�ight is type�safe � de�nitely� In
Proc� �
th ACM Symp� Principles of Programming Languages� pages ��������
ACM Press� �����

�Ohe��	 David von Oheimb� Hoare logic for mutual recursion and local variables� In
C� Pandu Rangan� V� Raman� and R� Ramanujam� editors� Foundations of Soft�
ware Technology and Theoretical Computer Science �FST�TCS
� volume ���� of
Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�ON��	 David von Oheimb and Tobias Nipkow� Machine�checking the Java speci�cation

Proving type�safety� In J� Alves�Foss� editor� Formal Syntax and Semantics of
Java� volume ���� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag�
�����

�Pau��	 Lawrence C� Paulson� Logic and Computation� Cambridge University Press� �����

�Pau��	 Lawrence C� Paulson� Isabelle� A Generic Theorem Prover� volume ���
of Lect� Notes in Comp� Sci� Springer�Verlag� ����� Isabelle home page

http���isabelle�in�tum�de��

�Pau��	 Lawrence C� Paulson� Mechanizing UNITY in Isabelle� Technical Report ����
University of Cambridge� Computer Laboratory� May ����� To appear in ACM
Trans� Computational Logic�

�Pfe��	 Frank Pfenning� Logic programming in the LF Logical Framework� In G�erard
Huet and Gordon Plotkin� editors� Logical Frameworks� pages ������ Cambridge
University Press� �����

�Pol��	 Robert Pollack� The Theory of LEGO� A Proof Checker for the Extended Calculus
of Constructions� PhD thesis� University of Edinburgh� �����

�Pra��	 Wishnu Prasetya� Mechanically Supported Design of Self�stabilising Algorithms�
PhD thesis� University of Utrecht� �����

�PS��	 Frank Pfenning and Carsten Sch�urmann� System description
 Twelf � a meta�
logical framework for deductive systems� In H� Ganzinger� editor� Automated
Deduction � CADE���� volume ���� of Lect� Notes in Comp� Sci�� pages ����
���� Springer�Verlag� �����

�Pus��	 Cornelia Pusch� Proving the soundness of a Java bytecode veri�er speci�cation
in Isabelle�HOL� In W�R� Cleaveland� editor� Tools and Algorithms for the Con�
struction and Analysis of Systems �TACAS�		
� volume ���� of Lect� Notes in
Comp� Sci�� pages ������� Springer�Verlag� �����

�Qia��	 Zhenyu Qian� A formal speci�cation of Java Virtual Machine instructions for
objects� methods and subroutines� In J� Alves�Foss� editor� Formal Syntax and
Semantics of Java� volume ���� of Lect� Notes in Comp� Sci�� pages ��������
Springer�Verlag� �����

�SA��	 Raymie Stata and Mart��n Abadi� A type system for Java bytecode subroutines�
In Proc� �
th ACM Symp� Principles of Programming Languages� pages ��������
ACM Press� �����

�Sli��	 Konrad Slind� Function de�nition in higher order logic� In J� von Wright�
J� Grundy� and J� Harrison� editors� Theorem Proving in Higher Order Logics�
volume ���� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�Sli��	 Konrad Slind� Derivation and use of induction schemes in higher�order logic� In
E� Gunter and A� Felty� editors� Theorem Proving in Higher Order Logics� volume
���� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�Sli��	 Konrad Slind� Reasoning about Terminating Functional Programs� PhD thesis�
Institut f�ur Informatik� TU M�unchen� �����

�Sne��	 Gregor Snelting� Experiences with the PSG � Programming System Generator�
In H� Ehrig� C� Floyd� M� Nivat� and J� Thatcher� editors� Formal Methods and
Software Development �TAPSOFT ��
� Vol� �
� volume ��� of Lect� Notes in
Comp� Sci�� pages �������� Springer�Verlag� �����

�Sym��	 D� Syme� Reasoning with the formal de�nition of Standard ML in HOL� In Joyce
and Seger �JS��	� pages ������



�Sym��	 Donald Syme� Proving Java type soundness� In J� Alves�Foss� editor� Formal
Syntax and Semantics of Java� volume ���� of Lect� Notes in Comp� Sci�� pages
������� Springer�Verlag� �����

�TW��	 Haykal Tej and Burkhart Wol � A corrected failure�divergence model for CSP
in Isabelle�HOL� In J� Fitzgerald� C�B� Jones� and P� Lucas� editors� FME �	��
Industrial Applications and Strengthened Foundations of Formal Methods� volume
���� of Lect� Notes in Comp� Sci�� pages �������� Springer�Verlag� �����

�VG��	 M� VanInwegen and E� Gunter� HOL�ML� In Joyce and Seger �JS��	� pages ������


