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Abstract

Java�ight is a large sequential sublanguage of Java� We
formalize its abstract syntax� type system� well�formedness
conditions� and an operational evaluation semantics� Based
on this formalization� we can express and prove type sound�
ness� All de�nitions and proofs have been done formally in
the theorem prover Isabelle�HOL� Thus this paper demon�
strates that machine�checking the design of non�trivial pro�
gramming languages has become a reality�

� Introduction

Java�ight is a large subset of the sequential part of Java �����
This paper presents its formalization and a proof of type
soundness 	 speci�ed and veri�ed in the theorem prover
Isabelle�HOL ��
�� In the sequel� �Java�ight� is abbreviated
to �Bali��

On the face of it� this paper is mostly about Bali� its ab�
stract syntax� type system� well�formedness conditions� and
operational semantics� formalized as a hierarchy of Isabelle
theories� and the structure of the machine�checked proof
of type soundness� Although these technicalities do indeed
take up much of the space� there is a meta�theme running
through the paper� which we consider at least as impor�
tant
 the technology for producing machine�checked pro�
gramming language designs has arrived� We emphasize that
by �machine�checked� we do not just mean that it has passed
some type checker� but that some non�trivial properties of
the language have been established with the help of a �semi�
automatic� theorem prover� The latter process is still not
a piece of cake� but it has become more than just feasible�
Therefore any programming language intended for serious
applications should strive for such a machine�checked de�
sign� The bene�ts are not just greater reliability� but also
greater maintainability because the theorem prover keeps
track of the impact that changes have on already established
properties�
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��� Related work

The history of type soundness proofs goes back to the sub�
ject reduction theorem for typed ��calculus but starts in
earnest with Milner�s slogan �Well�typed expressions do not
go wrong� ���� in the context of ML� Milner uses a deno�
tational semantics� in contrast to most of the later work�
including ours� The question of type soundness came to
prominence with the discovery of its failure in Ei�el ���� Ever
since� many designers of programming languages �especially
OO ones� have been at pains to prove type soundness of
their languages �see� for example� the series of papers by
Bruce et al� ��� �� ����

Directly related to our work is that by Drossopoulou and
Eisenbach ���� who prove �on paper� type soundness of a
subset of Java very similar to Bali� Although we were fa�
miliar with an earlier version ��� of their work and have
certainly pro�ted from it� our work is not a formalization
of theirs in Isabelle�HOL but di�ers in many respects from
it� for example in the representation of programs and the
use of an evaluation �aka �big�step�� semantics instead of
a transition �aka �small�step�� semantics� Simultaneously
with our work� Syme ���� formalized the paper ��� as far as
possible� uncovering two signi�cant mistakes� both due to
the use of transition semantics� Syme uses his own theorem
prover DECLARE� also based on higher�order logic�

There are two other e�orts to formalize aspects of Java in
a theorem prover� Dean �
� studies the interaction of static
typing with dynamic linking� His simple PVS speci�cation
addresses only the linking aspect and requires a formaliza�
tion of Java �such as our work provides� to turn his lem�
mas about linking into theorems about the type soundness
of dynamically linked programs� Cohen ��� has formalized
the semantics of large parts of the Java Virtual Machine�
essentially by writing an interpreter in Common Lisp� He
used ACL�� the latest version of the Boyer�Moore theorem
prover ���� No proofs have been reported yet�

� Overview of Bali

Bali includes the features of Java that we believe to be
important for an investigation of the semantics of a practical
imperative object�oriented language


� interface and class declarations with
instance �elds and methods�

� subinterface� subclass� and implementation relations
with inheritance� overriding� and hiding�

� some primitive types� objects �including arrays��

�



� method calls with static overloading and
dynamic binding�

� type casts�

� a minimal treatment of exceptions�

The portion of Java we consider is roughly the same as cov�
ered by ���� and �����

We do not consider Java packages and concurrency� For
simplicity� we also leave out several features of Java like
class variables and static methods� constructors and �naliz�
ers� �nal classes� and others� Several constructs are simpli�
�ed without limiting the expressiveness of the language �see
x����� We have not yet considered full exception handling
and the visibility of names� but we aim to include them in
later stages of our project�

� The basics of Isabelle�HOL

Before we present the formalization of Bali� we brie�y in�
troduce the underlying theorem proving system�

Isabelle�HOL is the instantiation of the generic interac�
tive theorem prover Isabelle ��
� with Church�s formulation
of Higher�Order Logic and is very close to Gordon�s HOL
system ����� In this paper HOL is short for Isabelle�HOL�

The appearance of formulas is standard� e�g� ���� is the
implication symbol�

Logical constants are declared by giving their name and
type� separated by �

�� Primitive recursive function de��
nitions are written as usual� Non�recursive de�nitions are

written with �
def
���

Types follow the syntax of ML� except that the function
arrow is ���� There are the basic types bool and int� and
the polymorphic types �� �� � set and � list� and a conver�
sion function set 

 � list � � set� The �cons� operator on
lists is the in�x ���� concatenation the in�x ���� Tuples are
pairs �with projections fst and snd� nested to the right� e�g�
�a�b�c� � �a��b�c��� Type abbreviations are simply given as
equations� free datatypes are introduced with the datatype
keyword� We frequently use the following type


datatype � option � None j Some �

It has an unpacking function the 

 � option � � such that
the �Some x� � x and the None � arbitrary� where arbitrary
is an unknown value�

Most of the HOL text shown in this paper is directly
taken from the input �les� However� it has been massaged by
hand to hide Isabelle idiosyncrasies� increase readability� and
adapt the layout� Minor typos may have been introduced in
the process�

� The formalization of Bali

This section presents all the important aspects of our for�
malization of Bali��

As far as Bali is a subset of Java� it strictly adheres
to the o�cial Java language speci�cation ����� with three
generalizations


� we allow the result type of a method overriding another
method to widen to the result type of the other method
instead of requiring it to be identical�

� no check of result types in dynamic method lookup�

� the type of an assignment is determined by the right�
hand �not left�hand� side�

�The Isabelle sources are available from the Bali project page
http���www��informatik�tu�muenchen�de��isabelle�bali�

��� Abstract syntax

First� we describe how we represent the syntax of Bali as
Isabelle datatypes� and which abstractions we have intro�
duced thereby�

����� Programs

A Bali program is a pair of lists of interface and class dec�
larations


prog � idecl list� cdecl list

Throughout the paper� the symbol ��� denotes a Bali pro�
gram� as we use programs as part of the static type context
commonly written ����

Each declaration is a pair of a name and the de�ned
entity� We do not further specify the structure of names� but
use the opaque HOL types tname� mname� and ename for
Bali�s type names� method names� and �expression names�
�e�g� �eld identi�ers� see ���� ������

iface � tname list� imdecl list
idecl � tname � iface
class � tname option � tname option �

fdecl list� cmdecl list
cdecl � tname� class

An interface �iface� contains lists of superinterface names
and method declarations� A class speci�es the names of an
optional superclass and implemented interface� and lists of
�eld and method declarations� �A class that implements
more than one interface can be modeled as implementing an
intermediate interface that extends all these interfaces��

�eld � ty
fdecl � ename � �eld
sig � mname � ty
mhead � ty
mbody � stmt � expr
methd � mhead �mbody
cmdecl � sig �methd
imdecl � sig �mhead

A �eld declaration �fdecl� simply gives the �eld type �ty�
see x����� A method declaration �cmdecl or imdecl� con�
sists of a �signature� ���� 
����� �i�e� the method name and
parameter type�s�� excluding the result type� followed by
the result type �mhead� and� if it appears within a class�
the method body �mbody�� The latter consists of a state�
ment and a return expression �stmt and expr� see below��
Local variables of a method may be simulated with addi�
tional parameters� The separate return expression saves us
from dealing with return statements occurring in arbitrary
positions within the method body� Such statements may
be replaced by assignments to a suitable result variable fol�
lowed by a control transfer to the end of the method body�
using the result variable as return expression� We provide a
dummy result type and value for �void� methods� For sim�
plicity� each method has exactly one parameter multiple
parameters can be simulated by a single parameter object
with multiple �elds�

The list representation of declarations gives an implicit
�niteness constraint� which turns out to be necessary for the
well�foundedness of the subclass and subinterface relation�

�



����� Representation of lookup tables

For the lookup of declared entities� we transform declara�
tion lists into abstract tables� They are realized in HOL as
�partial� functions mapping names to values


�����table � � � � option

The empty table� pointwise update� extension of one table
by another� the function converting a declaration list into
a table� and an auxiliary predicate relating entries of two
tables� are easily de�ned


etable 

 �����table
� 
� � 

 �����table � � � � � �����table
� 

 �����table � �����table � �����table

table 

 �����list � �����table
hiding entails 

 �����table � �����table �

�� � � � bool� � bool

etable
def
� �k� None

t�x
�y�
def
� �k� if k � x then Some y else t k

s � t
def
� �k� case t k of None � s k

j Some x � Some x

table �� � etable
table ��k�x��t� � �table t��k
�x�

t hiding s entails R
def
� �k x y�

t k � Some x �� s k � Some y �� R x y

A simple application is the translation of programs to
tables indexed by interface and class names


iface �
def
� table �fst ��

class �
def
� table �snd ��

More interesting are the following functions that traverse
the type hierarchy of a program� collecting the methods and
�elds into a table


imethd 

 prog � tname � �sig� ref ty �mhead�table
cmethd 

 prog � tname � �sig� ref ty �methd�table
�elds 

 prog � tname � ��ename � ref ty� � �eld�list

As Syme ���� points out� a naive recursive de�nition is not
possible in HOL because the class hierarchy might be cyclic�
which is ruled out for well�formed programs only� This leads
to partial functions� which HOL does not support directly�
Syme de�nes these functions as relations instead� In con�
trast� we have chosen to de�ne them as proper functions�
based on Slind�s work on well�founded recursion ����� We
do not give the de�nitions� but only the recursion equations
which we derive as easy consequences


wf prog � � iface � I � Some �is�ms� ��
imethd ���I� � let imethds � ��J� imethd ���J��� set is

in �s�o � �Un tables imethds�� �
table �map ���s�mh�� �s�IfaceT I�mh�� ms�

wf prog � � class � C � Some �sc�si�fs�ms� ��
cmethd ���C� � �case sc of None � etable

j Some D � cmethd ���D�� �
table �map ���s�m�� �s��ClassT C�m��� ms�

wf prog � � class � C � Some �sc�si�fs�ms� ��
�elds ���C� � map ���fn�ft�� ��fn�ClassT C��ft�� fs �

�case sc of None � �� j Some D � �elds ���D��

where

s�o A
def
� if 	�x� x
A then Some ��x� x
A� else None

f�A
def
� fy� 	x
A� y � f xg

Un tables ts
def
� �k�

S
t
ts� case t k of None � f g

j Some x � fxg

����� Statements and expressions

We de�ne statements �appearing in method bodies�� expres�
sions �appearing in statements�� and literal values �appear�
ing in expressions� as recursive datatypes�

Statements are reduced to their bare essentials� We do
not formalize syntactic variants of conditionals and loops�
Neither do we consider jumps like the break statement� The
only non�standard statement is the �expression statement�
Expr� which is evaluated for its side e�ects only� Assignments
and method calls� both of which are expressions because
they yield a value� can be turned into statements via Expr�

datatype stmt � Skip
j Expr expr
j stmt� stmt
j If �expr� stmt Else stmt
j While�expr� stmt

Concerning expressions� our formalization leaves out the
standard unary and binary operators as their typing and
semantics is straightforward� Creation of multi�dimensional
arrays can be simulated with nested array creation� Because
methods have just one local variable� namely the �single�
parameter� we have given it the special name LVar� We have
chosen not to introduce the general syntactic category of
variables because the semantic treatment of local variables
�including parameters�� class instance variables� and array
components di�ers considerably�

datatype expr
� This this
j New tname class instance creation
j New ty�expr� array creation
j �ty�expr type cast
j Lit litval literal
j LVar local�param� access
j LVar
�expr local�param� assign�
j exprfref tyg�ename �eld access
j exprfref tyg�ename
�expr �eld assignment
j expr�expr� array access
j expr�expr�
�expr array assignment
j expr�mnameftyg�expr� method call

The terms in braces f� � �g above� called type annotations� are
normally added by the compiler in order to implement the
static� respectively dynamic� binding of �elds and methods�
We avoid distinguishing between the actual input language
and the augmented language� because this would lead to a
considerable amount of redundancy� Instead� we can safely
assume that the annotations are added beforehand� as they
are checked by the typing rules �in x������ anyway�

The de�nition of literal values is straightforward


datatype litval
� Unit dummy result of void methods
j Null null reference
j Bool bool Boolean value
j Intg int integer

This de�nition is based on the HOL types of Boolean values
�bool� and integers �int��

�



��� Type system

This section de�nes types� various ordering relations betwen
types� and the typing rules for statements and expressions�

����� Types

We formalize Bali types as values of datatype ty� dividing
them into primitive and reference types


datatype prim ty primitive type
� Void dummy type for void methods
j Boolean Boolean type
j Integer integer type

datatype ref ty reference type
� NullT null type
j IfaceT tname interface type
j ClassT tname class type
j ArrayT ty array type

datatype ty type
� PrimT prim ty primitive type
j RefT ref ty reference type

In the sequel Iface I stands for RefT�IfaceT I�� Class C for
RefT�ClassT C� and T�� for RefT�ArrayT T��

����� Type relations

The relations between types depend on the interface and
class hierarchy of a given program �� and are therefore ex�
pressed with reference to �� The direct subinterface � � ��

i
��

subclass � � ��

c � and implementation � � �� � relations
are of type prog � tname� tname � bool and are de�ned
as follows


� � I��

i J
def
� is iface � I � is iface � J �

J 
 set �fst �the �iface � I���

� �C��

c D
def
� is class � C � is class � D �

Some D � fst �the �class � C��

� �C�� I
def
� is class � C � is iface � I �

Some I � fst �snd �the �class � C���

They are based on the auxiliary functions

is iface � I
def
� iface � I 
� None

is class � C
def
� class � C 
� None

The transitive �but not re�exive� closures � �i and � �c

are de�ned as usual� There is also a kind of transitive closure
of � �� de�ned inductively


� �C�� J
� �C�J

� �C�� I� � � I�i J
� �C�J

� �C��

c D� � �D�J
� �C�J

The key relation is widening
 � � S�T� where S and T are
of type ty� means that S is a syntactic subtype of T� i�e� in
any expression context �especially assignments and method
invocations� expecting a value of type T� a value of type S
may occur� Note that this does not necessarily mean that
type S behaves like type T� but only that it has a syntac�
tically compatible set of �elds and methods� The widening
relation is de�ned inductively as

is type � T

� �T�T

� �C� I

� � Class C � Iface I

is iface � I� is class � Object

� � Iface I � Class Object

� �C�cD

� � Class C � Class D

� � I�i J

� � Iface I � Iface J

is type � �RefT R�

� � RefT NullT � RefT R

is type � T� is class � Object

� �T�� � Class Object

� � RefT S � RefT T

� � �RefT S��� � �RefT T���

where

is type � �PrimT � � True
is type � �RefT NullT� � True
is type � �Iface I� � is iface � I
is type � �Class C� � is class � C
is type � �T��� � is type � T

Object is the name of the top of the class hierarchy�
To allow for type casting we also have the relation � �� �

where � � S��T means that a value of type S may be cast
to type T


� � S�T

� � S��T

� �C�cD

� � Class D �� Class C

is class � C� is iface � I

� � Class C �� Iface I

is iface � I� is class � C

� � Iface I �� Class C

is class � Object� is type � T

� � Class Object ��T��

is iface � J� �� � I�i J�
imethd ���I� hiding imethd ���J� entails
���m��rT�� �m��rT��� � � rT��rT��

� � Iface I �� Iface J

� � RefT S ��RefT T

� � �RefT S��� �� �RefT T���

����� Typing rules

Now we come to the actual type checking rules� An envi�
ronment consists of a global part� namely a program� and a
local part� namely the type of the �single� current method
parameter and the current class� i�e� the type of This


env � prog � ty � tname

The well�typedness of statements � � 

�� and the typing
of expressions � � 

� are de�ned inductively relative to an
environment�

� 

� 

 env � stmt � bool
� 

 

 env � expr � ty � bool

The rules for statements are obvious


E � Skip

�

E � e

T

E � Expr e

�

E � s�

� � E � s�

�

s�� s�

�

E � e

PrimT Boolean� E � s�

� � E � s�

�

If�e� s� Else s�

�

E � e

PrimT Boolean� E � s

�

E �While�e� s

�

�



More interesting are the rules for expressions


is class �prg E� �thisT E�

E �This

Class �thisT E�

is class �prg E� C

E �New C

Class C

is type �prg E� T� E � i

PrimT Integer

E �New T�i�

T��

E � e

T� prg E �T��T
�

E � �T��e

T� E � Lit x

typeof ��a� None� x

is type �prg E� �localT E�

E � LVar

localT E

E � v

T� prg E �T� localT E

E � LVar
�v

T

E � e

Class C� c�eld �prg E�C� fn � Some �fd�fT�

E � effdg�fn

fT

E � effdg�fn

T� E � v

T�� prg E �T��T

E � effdg�fn
�v

T�

E � a

T��� E � i

PrimT Integer

E � a�i�

T

E � a�i�

T� E � v

T�� prg E �T��T

E � a�i�
�v

T�

E � e

RefT T� E � p

pT�
max spec �prg E� T �mn�pT� � f��md�rT��pT��g

E � e�mnfpT�g�p�

rT

The rules are based on the auxiliary functions given below�
The function c�eld is a variant of �elds implementing a �eld
lookup that is based on the �eld name alone in contrast to
a combination of �eld name and de�ning class� So in the
above typing rule for �eld access� equal �eld names hide
each other� while at run�time all �elds are accessible� using
the de�ning class as an additional search key�

prg ���lT�tT� � �
localT ���lT�tT� � lT
thisT ���lT�tT� � tT

typeof dt Unit � PrimT Void
typeof dt Null � RefT NullT
typeof dt �Bool b� � PrimT Boolean
typeof dt �Intg i� � PrimT Integer
typeof dt �Addr a� � dt a

c�eld
def
� table � �map ����fn�fd��ft�� �fn��fd�ft���� � �elds

The typing rules are rather straightforward� except for
the type annotations f� � �g� which are used to implement
static binding for �elds and to resolve overloaded method
names statically� The rules for �eld access and method call
determine how to compute these annotations� They read as
follows�

A �eld access effdg�fn is annotated correctly if fd is the
�rst de�ning class for a �eld with name fn when searching
the class hierarchy �using c�eld� starting from the static type
Class C of e� The annotation ffdg will be used subsequently
to access the �eld �the one just found� via the pair �fn�fd��

A method call e�mnfpT�g�p� is type�correct only if the
function max spec determining the set of �maximally spe�
ci�c� ���� �������� methods for reference type T �as de�ned
below� yields exactly one method entry� In this case� the
call is annotated by pT�� which is the argument type of the
most speci�c method mn applicable according to the static
types T of e and pT of p� So the dynamic method lookup
at run�time can be based on the signature �mn�pT���

max spec � rT sig
def
� fm j m 
appl methds � rT sig �

��m�
appl methds � rT sig�
more spec � m� m �� m� � m�g

appl methds � rT �mn� pT�
def
� f�m�pT�� j

mhead � rT �mn� pT�� � Some m � � � pT�pT�g

more spec � ��d�r��p� ��d��r���p��
def
�

� � RefT d�RefT d� � � � p�p�

mhead � t sig
def
� case t of NullT � None

j IfaceT I � imethd ���I� sig
j ClassT C � option map ���md��mh�mb��� �md�mh��

�cmethd ���C� sig�
j ArrayT T � None

��� Well�formedness

A program must satisfy a number of well�formedness condi�
tions concerning global properties of all declarations� The
conditions are expressed as predicates on �eld� method� in�
terface� and class declarations� as follows�

A �eld declaration is well�formed i� its type exists


wf fdecl � �fn�ft�
def
� is type � ft

A method declaration is well�formed if its argument and
result types are de�ned� If the declaration appears in a
class� additionally its body has to be well�typed �in the static
context of its parameter type and the current class� and its
result expression have a type that widens to the result type


wf mhead � �mn�pT� rT
def
� is type � pT � is type � rT

wf cmdecl � C �sig�rT�blk�res�
def
� wf mhead � sig rT �

let E����snd sig�C� in E � blk

� � 	T�
E � res

T � � �T�rT

More complex conditions are required for well�formed in�
terface and class declarations� The name of a well�formed
interface declaration is not a class name� All superinter�
faces exist and are not subinterfaces at the same time� All
methods newly declared in the interface are named uniquely
and are well�formed� Furthermore� there are no ambiguously
inherited methods� and any method hiding a method of a
superinterface has a compatible result type


wf idecl � �I��is�ms��
def
� � is class � I �

��J
set is� is iface � J � � � � J�i I� �
unique ms � ���sig�mh�
set ms� wf mhead � sig mh� �
let mtab � Un tables ���J� imethd ���J��� set is� in

��sig� atmost� �mtab sig�� �
�table ms� hiding �s�o � mtab� entails
��rT� �md�rT��� � � rT��rT��

where

unique t
def
� ��x��y��
set t� ��x��y��
set t�

x� � x� �� y� � y�

atmost� S
def
� �x
S� �y
S� x � y

Similarly� the name of a well�formed class declaration is
not an interface name� If the class implements an interface�
this interface exists� and for any method of the interface�
the class provides an implementing method with a possibly
narrower return type� All �elds and methods newly declared
in the class are named uniquely and are well�formed� If the
class is not Object� it refers to an existing superclass� which is
not subclass of the current class� Furthermore� any method
overriding a method of the superclass has a compatible result
type


�



wf cdecl � �C��sc�si�fs�ms��
def
� � is iface � C �

��I� si � Some I �� is iface � I �
�s m rT�� imethd ���I � s � Some �m �rT�� ��
	b m� rT�� cmethd ���C� s � Some �m��rT��b� �

� � rT��rT�� �
unique fs � ��f 
set fs� wf fdecl � f � �
unique ms � ��m
set ms� wf cmdecl � C m� �

�case sc of None � C � Object
j Some D � is class � D � � � �D�cC �

�table ms� hiding �cmethd ���D�� entails
���rT��b� �m��rT��b

���� � � rT��rT��

Finally� a well�formed program contains the standard
declaration of Object� namely the empty class declaration

ObjectC
def
� �Object��None�None��������� All its declared inter�

faces and classes are named uniquely and are well�formed


wf prog �
def
� ObjectC 
 set �snd �� �

unique �fst �� � �i
set �fst ��� wf idecl � i� �
unique �snd �� � �c
set �snd ��� wf cdecl � c�

��� Operational semantics

In this section� we describe the notion of a state and give
the evaluation rules for expressions and statements�

����� State

A state consists of an optional exception �of type xcpt� which
currently consists of system exceptions like NullPointerXcpt
only�� a heap� and the current invocation frame� which is
the value of the �single� parameter and the This pointer


state � xcpt option� heap � val � loc

A value is either a literal value or a location� i�e� an abstract
non�null pointer to an object a heap is a mapping from
locations to objects


heap � �loc� obj�table
datatype val � Val litval j Addr loc

The type loc of locations is not further speci�ed�
An object is either a class instance� modeled as a pair

of its class name and a table mapping pairs of a �eld name
and the de�ning class to values� or an array� modeled as a
pair of its component type and a table mapping integers to
values�

�elds � �ename � ref ty� val�table
components � �int � val�table

datatype obj � Obj tname �elds j Arr ty components

There is a number of auxiliary functions handling the state�
namely


� the Addr 

 val � loc is de�ned such that
the Addr �Addr a� � a 

� the Obj 

 obj option � tname � �elds with
the Obj �Obj C fs� � �C�fs� 

� the Arr 

 obj option � ty � components with
the Arr �Arr T cs� � �T�cs� 

� heap �h�l�t�
def
� h� local �h�l�t�

def
� l� this �h�l�t�

def
� t

� obj ty obj
def
� case obj of Obj C fs � Class C

j Arr T cs � T��

� raise if c x xo
def
�

if c � �xo � None� then Some x else xo

� np v
def
� raise if �v � Null� NullPointerXcpt

� c hupd h� �xo��h�l�t��
def
�

if xo � None then �None��h��l�t�� else �xo��h�l�t��

� cast ok � T h v
def
� �	pt� T � PrimT pt� �

� � obj ty �the �h �the Addr v����T

� default val �PrimT Void � � Unit
default val �PrimT Boolean� � Bool False
default val �PrimT Integer � � Intg �
default val �RefT r � � Null

����� Evaluation rule format

We de�ne the operational semantics of statements and ex�
pressions via mutually inductive rules� To obtain a concise
description� we use an evaluation semantics rather than a
transition semantics�

� � � �x��� �s� �x����� means that execution of state�
ment s transforms state �x��� into �x������

� � � �x��� �e�v� �x����� means that expression e eval�
uates to value v� transforming �x��� into �x������

Strictly speaking it is neither necessary to include an excep�
tion in the start state of a computation nor the This pointer
in the �nal state �because This does not change�� Similarly�
an expression needs only return either a value or an excep�
tion� but not both� However� the symmetry achieved by our
slightly redundant model simpli�es the rules considerably�
In particular� in many rules we can avoid case distinctions
on whether exceptions occur in intermediate states� which
would cause the rules to be split� As a result� there is exactly
one rule for each syntactic construct�

For both statements and expressions there is a general
rule de�ning that exceptions simply propagate


� � �Some xc��� �s� �Some xc���

� � �Some xc��� �e�arbitrary� �Some xc���

All other rules can assume that in their concerning initial
state no exception has been thrown� For such states� we
de�ne the abbreviation Norm �� which stands for �None����

����� Execution of statements

The rules for statements are obvious


� �Norm � �Skip� Norm �

� �Norm �� �e�v� ��

� �Norm �� �Expr e� ��

� �Norm �� �s� � ��� � � �� �s�� ��

� �Norm �� �s�� s�� ��

� �Norm �� �e�v� ���
� � �� �if the Bool v then s� else s�� ��

� �Norm �� �If�e� s� Else s�� ��

� �Norm �� �If�e� �s� While�e� s� Else Skip� ��

� �Norm �� �While�e� s� ��

�



����� Evaluation of expressions

In contrast� the evaluation rules for expressions deserve some
comments�

The value of This is a component of the state


� �Norm � �This�Addr �this ��� Norm �

Creating a new class instance means picking a new ad�
dress a �i�e� h a � None� and updating the heap at that ad�
dress with an object� the �elds of which are initialized with
default values according to their types


h � heap �� h a � None� h�� h�a
� Obj C �table
�map ���f�fT�� �f�default val fT�� ��elds ���C�����

� �Norm � �New C�Addr a� c hupd h� �Norm ��

Creating a new array means picking a new address� up�
dating the heap with an array� the components of which are
initialized with default values� and raising an exception if
the length of the array is negative


� �Norm �� �e�i
�� �x������ i � the Int i��

h � heap ��� h a � None� h��h�a
�Arr T ��j�
if �� j � j�i then Some �default val T� else None���

x�
��raise if �i��� NegArrSizeXcpt x�

� �Norm �� �New T�e��Addr a� c hupd h� �x�
�����

Type casts simply return their argument value� but raise
an exception if its dynamic type happens to be unsuitable


� �Norm �� �e�v� �x��s���
x�

� � raise if��cast ok � T �heap s�� v� ClassCastXcpt x�

� �Norm �� ��T�e�v� �x�
��s��

A literal value is simply returned


� �Norm � �Lit v�v� Norm �

An access to LVar reads from the corresponding state
component


� �Norm � �LVar�local �� Norm �

An assignment to LVar updates the state� in case the
subexpression does not raise an exception


� �Norm � �e�v� �x��h�l�t���
l� � �if x � None then v else l�

� �Norm � �LVar
�e�v� �x��h�l��t��

A �eld access reads from a �eld of the given object� check�
ing for null pointer access


� �Norm �� �e�a
�� �x������

v � the �snd �the Obj �heap �� �the Addr a���� �fn�T��

� �Norm �� �efTg�fn�v� �np a� x�����

A �eld assignment acts accordingly


� �Norm �� �e��a
�� �x������ a � the Addr a��

� � �np a� x����� �e��v � �x������
h � heap ��� �c�fs� � the Obj �h a��

h� � h�a
�Obj c �fs��fn�T�
�v���

� �Norm �� ��e�fTg�fn
�e���v� c hupd h� �x�����

An array access reads a component from the given array�
but raises an exception if the index is invalid


� �Norm �� �e��a
�� ��� � � �� �e��i

�� �x������
vo � snd �the Arr �heap �� �the Addr a���� �the Int i���
x�

� � raise if �vo � None� IndOutBoundXcpt �np a� x��

� �Norm �� �e��e���the vo� �x�
�����

Similarly� an array assignment updates the appropriate
component� but has to check the typing


� �Norm �� �e��a
�� ��� a � the Addr a��

� � �� �e��i
�� ��� i � the Int i��

� � �� �e��v � �x������ h � heap ���
�T�cs� � the Arr �h a�� h� � h�a
�Arr T �cs�i
�v����
x�

� � raise if ��cast ok � T h v� ArrStoreXcpt �
raise if �cs i � None� IndOutBoundXcpt �np a� x���

� �Norm �� ��e��e��
�e���v� c hupd h� �x�
�����

The most complex rule is the one for method invoca�
tion
 after evaluating e to the target location a and p to the
parameter value pv� the block blk and the result expression
res of method mn with argument type T are extracted from
the program � �using the dynamic type dynT of the object
stored at a�� After executing blk and res in the new invoca�
tion frame built from pv and a� the old invocation frame is
restored and the result value v returned


� �Norm �� �e�a
�� ��� a � the Addr a��

� � �� �p�pv� �x���h�l�t��� dynT � fst�the Obj �h a���
�md�mh�blk�res� � the �cmethd ���dynT� �mn�T���

� � �np a� x���h�pv�a�� �blk����
� � �� �res�v � �x�����

� �Norm �� ��e�mnfTg�p���v� �x���heap ���l�t��

Note that the rules are de�ned carefully in order to be
applicable in all situations� even not type�correct ones �e�g�
the Addr �Val �Bool b�� yields an arbitrary value�� A �defen�
sive� evaluation throwing some arti�cial exception in case of
type mismatches� which would require additional overhead�
is not necessary�

� Proof of type soundness

This section discusses the type soundness theorem and its
crucial lemmas� As the necessity of certain lemmas emerges
quite naturally� it is not surprising that many of them are
similar to those given by Drossopoulou and Eisenbach �����
On the other hand� the proof principles we use are sometimes
rather di�erent from those outlined in their earlier paper ����
some of which are inadequate�

��� Lemmas about the type relations

There are two non�trivial lemmas concerning the type rela�
tions of Bali� namely the well�foundedness wf of the �con�
verse� subinterface and subclass relations

wf prog � �� wf ���J �I �� � � I �i J �
� wf ���D�C�� � �C�c D�

and the frequently used transitivity of the widening relation


wf prog � �� � � S�U � � �U�T �� � � S�T

The two relations are well�founded because they are �nite
and acyclic� where the former is a consequence of represent�
ing class and interface declarations as lists� and the latter
follows from the irre�exivity of the relations� which in turn

�



follows from the well�formedness of the classes and interfaces
implied by the well�formedness of the whole program�

The well�foundedness facts are necessary for deriving the
recursion equations for the functions that traverse the type
hierarchy of a program �see x���� and also give rise to in�
duction principles for the �direct� subinterface and subclass
relations� e�g�

wf prog �� P Object�
�C D� C 
� Object � � �C��

c D � � � � � P D �� P C

�E� is class � E �� P E

Most lemmas like transitivity of � � � as well as auxil�
iary properties for deriving them� typically rely on several
well�formedness conditions and are usually proved by rule
induction on the type relation involved� or by applying the
induction principles just mentioned�

��� Lemmas about �elds and methods

For the type�safety of �eld accesses and method calls� char�
acteristic lemmas concerning the �eld lookup and method
lookup are required� They are used to relate the �static�
types of �elds and methods� as determined at compile�time�
to the actual �dynamic� types that occur at run�time�

For example� �elds correctly referred to at compile�time
must be found at run�time� More formally� if a �eld access
efTg�fn with E � e

Class C statically refers to a �eld of type
fT de�ned in the reference type �some class� T� within an
instance of some class C� which may be a subclass of C the
�eld can be referred to �dynamically� using the same name
and its de�ning class� In particular� there is no dynamic
binding for �elds� This fact requires the following lemma


wf prog � � c�eld ���C� fn � Some �fd�fT� �
� � Class C��Class C ��
table ��elds ���C��� �fn�fd� � Some fT

Concerning method calls� a similar requirement prevent�
ing �method not understood� errors can be formalized
 if
a method call of the form e�mnfpTg�p� with E � e

RefT T
refers to a method that is statically available for the refer�
ence e� the dynamic lookup of the object pointed at by e
should yield a method with a compatible result type� The
lemma that helps to establish this behavior reads as follows


wf prog � � mhead � T sig � Some �m��rT�� �
� � Class T��RefT T ��
	m� rT� b� cmethd ���T�� sig � Some �m��rT��b� �

� � rT��rT�

The proofs of these lemmas are lengthy and require many
auxiliary theorems that are proved by induction on the di�
rect subclass relation� by case splitting on the right�hand
argument of the widening relation and by rule induction on
the subinterface� subclass� and implementation relation�

��� Type soundness

Finally� we state and prove the type soundness theorem�

����� Notions

In order to express the type soundness theorem� we intro�
duce the notion of a state � conforming to an environment
E� written � 

�E� which intuitively means that the value of
any variable within the state is compatible with its static
type� The conformance relation is based on the two auxil�
iary concepts ��h � v 

�T of a value v conforming to a type

T and ��h � obj 

� � of all components of an object obj con�
forming to their respective types� both with reference to a
given program � and heap h


��h � v 

�T
def
� 	T�� typeof �option map obj ty � h� v �

Some T� � G �T��T

��h � obj 

� �
def
� case obj of

Obj C fs � �T f� table ��elds ���C�� f � Some T ��
	v� fs f � Some v � ��h � v 

�T

j Arr T cs � �i v� cs i � Some v �� ��h � v 

�T

s 

�E
def
� let � � prg E� h � heap s� t � this s in

��a obj� h a � Some obj �� ��h � obj 

� � � �
��h � local s 

� localT E �
��h � Addr t 

�Class �thisT E�

Another helpful notion used below is a pre�order on heaps

h�h� means that any object existing on heap h also exists
on h� and has the same type there� This property holds for
any transition of the operational semantics� which turns out
to be necessary in our proof of type soundness�

h�h� def
� �a� ��C fs� h a � Some �Obj C fs � ��

	fs�� h� a � Some �Obj C fs��� �
��T cs� h a � Some �Arr T cs � ��

	cs�� h� a � Some �Arr T cs���

����� Main theorem

Next� we give the key type soundness theorem� It is proved
by simultaneous rule induction on the evaluation of expres�
sions and statements and therefore has to be formulated in
a way that gives a strong enough induction hypothesis� We
do not attempt to cast it into words� Instead� we discuss
some of its corollaries below� which are surprisingly clear�

wf prog � ��
�� � �x��h �l �t�� �s� �x���h��l��t��� ��
�lT tT� �h �l �t � 

����lT�tT� ��

���lT�tT� � s

� ��
�h��l��t�� 

� ���lT�tT� � h�h�� �

�� � �x��h �l �t�� �e�v� �x���h��l��t��� ��
�lT tT� �h �l �t � 

����lT�tT� ��
�T� ���lT�tT� � e

T ��

�h��l��t�� 

� ���lT�tT� � h�h� �
�x� � None �� ��h� � v 

�T��

The proof of this theorem is by far the heaviest� At its top
level� it consists of �currently� �� cases� one per syntactic
construct� where

� � cases can be solved rather directly �e�g� from the
induction hypothesis��

� � cases require just simple lemmas on the structure of
the state�

� and the remaining 
 cases require extensive reasoning
on the characteristic properties of the constructs con�
cerned�

Most of this reasoning is independent of the operational se�
mantics itself and can be factored out� which keeps the main
proof manageable�






����� Corollaries

For a discussion of its consequences� we state two imme�
diate corollaries of the main theorem� In the context of a
well�formed program� the execution of a well�typed state�
ment transforms a state conforming to the environment into
another state that again conforms to the environment


� � fst E � wf prog � �
� � �x��� �s� �x����� � � 

�E � E � s

� ��
�� 

�E

The same holds for the evaluation of well�typed expression�
where additionally we have that� unless an exception occurs
during evaluation� the resulting value conforms to the static
type of the expression


� � fst E � wf prog � �
� � �x��� �e�v� �x����� � � 

�E � E � e

T ��
�� 

�E � �x� � None �� ��fst �� � v 

�T�

This is what type soundness actually means�
A corollary of type soundness is that method calls always

�nd a suitable method� i�e� a �method not understood� run�
time error is impossible� This can be stated more formally

for a well�formed program and a state that conforms to the
environment� if an expression of reference type �which plays
the role of the target expression for the method call consid�
ered� evaluates without an exception to a non�null reference�
and if there is a method available for that �static� type and
a given signature� the dynamic method lookup for the same
signature according to the class instance pointed at by the
reference value yields a method body


� � fst E � wf prog � �
� � �x��� �e�a�� Norm �� � a� 
� Val Null �
dynT � fst �the Obj �fst �� �the Addr a���� �
� 

�E � E � e

RefT T � mhead � T sig 
� None ��
cmethd ���dynT� sig 
� None

This implies that in a well�formed context� in every in�
stance of the evaluation rule for method calls� the function
cmethd returns a proper method body�

	 Experience and statistics

Because of the expressiveness of HOL� our formalization of
Bali is quite natural and direct� Isabelle�s mix�x syntax and
mathematical font are indispensable for writing moderately
readable de�nitions and theorems� The theory �les add up
to about ���� lines of well�documented speci�cations� It
took us roughly two months of work and about ���� lines of
proof scripts to show the type soundness theorem with all
necessary lemmas�

Although we are far from satis�ed with the current sta�
tus of Isabelle�s proof procedures �for example� the handling
of assumptions during simpli�cation� or the necessity to ex�
pand tuples and similar datatypes by hand�� they are ba�
sically adequate for the task at hand� Nevertheless� more
automation is necessary and feasible�

The adaption of old proofs after changing the formaliza�
tion is a tedious job� Although the changes in the proofs
are usually quite local� there tend to be many� Higher�level
proof scripts and more automation are some of the answers�
A dedicated mechanism for exploring and �xing the impact
of modi�cations would also help�


 Conclusion

The reader has been exposed to large chunks of a formal
language speci�cation and a proof of type soundness and
may need to be reminded of the bene�ts� Even including the
slight generalizations mentioned in x�� we did not discover
a loop�hole in the type system� But we had not seriously
expected this either� So what have we gained over and above
a level of certainty far beyond any paper�and�pencil proof!

We view our work primarily as an investment for the fu�
ture� For a start� it can serve as the basis for many other
mechanized proofs about Java� e�g� as a foundation for the
work by Dean �
� or for compiler correctness� More impor�
tantly� we see machine�checked proofs as an invaluable aid in
maintaining large language designs �or formal documents of
any kind�� It is all very well to perform a detailed proof on
paper once� but in the face of changes of the formalization�
the reliability of such proofs begins to crumble� In con�
trast� we developed the design incrementally� and Isabelle
reminded us where proofs needed to be modi�ed� Unless the
language changes drastically� such modi�cations of proofs
tend to be of a local nature� This change management will
continue to be of great importance when we extend Bali

further
 apart from adding the last important Java features
missing from Bali� full exception handling and threads� we
also plan to use Bali as a vehicle for experimental exten�
sions of Java such as parameterized classes ���� ��� ���

Despite our general enthusiasm for machine�checked lan�
guage designs� a few words of warning are in order


� Bali is still a half�way house
 not a toy language any
more� but missing many details and some important
features of Java�

� The type system of Bali is� despite subclassing� sim�
pler than that of your average functional language

whereas Bali�s type checking rules are almost directly
executable� the veri�cation of ML�s type inference al�
gorithm against the type system requires a signi�cant
e�ort ����� The key complication there is the presence
of free and bound type variables� which requires com�
plex reasoning about substitutions� VanInwegen ����
reports similar di�culties in her formalization of the
type system and the semantics of ML�

� Theorem provers� and Isabelle is no exception� require
a certain learning e�ort due to the machine�oriented
proof style� Recent moves towards a more human�
oriented proof style like Syme�s DECLARE system ����
promise to lower this barrier� However� as Harrison ����
points out� both proof styles have their merits� and we
are currently investigating a combination of both�

In a nutshell
 although machine�checked language designs
for the masses are still some way o�� this paper demonstrates
that they have de�nitely become a viable option for the
expert�
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